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Preface

The art of teaching is the art of assisting discovery.
MARK VAN DOREN

What do students really need to know to be prepared for calculus? What tools do in-
structors really need to assist their students in preparing for calculus? These two
questions have motivated the writing of this book.

To be prepared for calculus a student needs not only technical skill but also a clear
understanding of concepts. Indeed, conceptual understanding and technical skill go
hand in hand, each reinforcing the other. A student also needs to gain an appreciation
for the power and utility of mathematics in modeling the real-world. Every feature of
this textbook is devoted to fostering these goals.

We are keenly aware that good teaching comes in many different forms, and that
each instructor brings unique strengths and imagination to the classroom. Some in-
structors use technology to help students become active learners; others use the rule
of four, “topics should be presented geometrically, numerically, algebraically, and
verbally,” to promote conceptual reasoning; some use an expanded emphasis on ap-
plications to promote an appreciation for mathematics in everyday life; still others
use group learning, extended projects, or writing exercises as a way of encouraging
students to explore their own understanding of a given concept; and all present math-
ematics as a problem-solving endeavor. In this book we have included all these meth-
ods of teaching precalculus as enhancements to a central core of fundamental skills.
These methods are tools to be utilized by instructors and their students to navigate
their own course of action in preparing for calculus.

In writing this fifth edition our purpose was to further enhance the utility of the
book as an instructional tool. The main change in this edition is an expanded empha-
sis on modeling and applications: In each section the applications exercises have been
expanded and are grouped together under the heading Applications, and each chap-
ter (except Chapter 1) now ends with a Focus on Modeling section. We have also
made some organizational changes, including dividing the chapter on analytic
trigonometry into two chapters, each of more manageable size. There are numerous
other smaller changes—as we worked through the book we sometimes realized that
an additional example was needed, or an explanation could be clarified, or a section
could benefit from different types of exercises. Throughout these changes, however,
we have retained the overall structure and the main features that have contributed to
the success of this book.

xiii
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Many of the changes in this edition have been drawn from our own experience in
teaching, but, more importantly, we have listened carefully to the users of the current
edition, including many of our closest colleagues. We are also grateful to the many
letters and e-mails we have received from users of this book, instructors as well as
students, recommending changes and suggesting additions. Many of these have
helped tremendously in making this edition even more user-friendly.

Special Features

EXERCISE SETS The most important way to foster conceptual understanding and
hone technical skill is through the problems that the instructor assigns. To that end we
have provided a wide selection of exercises.

= Exercises Each exercise set is carefully graded, progressing from basic con-
ceptual exercises and skill-development problems to more challenging problems
requiring synthesis of previously learned material with new concepts.

= Applications Exercises We have included substantial applied problems that
we believe will capture the interest of students. These are integrated throughout
the text in both examples and exercises. In the exercise sets, applied problems
are grouped together under the heading, Applications. (See, for example, pages
127, 156, 314, and 451.)

= Discovery, Writing, and Group Learning Each exercise set ends with a
block of exercises called Discoverye Discussion. These exercises are designed to
encourage students to experiment, preferably in groups, with the concepts devel-
oped in the section, and then to write out what they have learned, rather than
simply look for “the answer.” (See, for example, pages 232 and 369.)

A COMPLETE REVIEW CHAPTER We have included an extensive review chapter
primarily as a handy reference for the student to revisit basic concepts in algebra and
analytic geometry.

= Chapter 1 This is the review chapter; it contains the fundamental concepts a
student needs to begin a precalculus course. As much or as little of this chapter
can be covered in class as needed, depending on the background of the students.

= Chapter 1 Test The test at the end of Chapter 1 is intended as a diagnostic
instrument for determining what parts of this review chapter need to be taught.
It also serves to help students gauge exactly what topics they need to review.

FLEXIBLE APPROACH TO TRIGONOMETRY The trigonometry chapters of this
text have been written so that either the right triangle approach or the unit circle ap-
proach may be taught first. Putting these two approaches in different chapters, each
with its relevant applications, helps clarify the purpose of each approach. The chap-
ters introducing trigonometry are as follows:

= Chapter 5: Trigonometric Functions of Real Numbers This chapter intro-
duces trigonometry through the unit circle approach. This approach emphasizes
that the trigonometric functions are functions of real numbers, just like the poly-
nomial and exponential functions with which students are already familiar.

= Chapter 6: Trigonometric Functions of Angles This chapter introduces

trigonometry through the right triangle approach. This approach builds on the
foundation of a conventional high-school course in trigonometry.
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Another way to teach trigonometry is to intertwine the two approaches. Some in-
structors teach this material in the following order: Sections 5.1,5.2,6.1,6.2,6.3,5.3,
5.4, 6.4, 6.5. Our organization makes it easy to do this without obscuring the fact that
the two approaches involve distinct representations of the same functions.

GRAPHING CALCULATORS AND COMPUTERS Calculator and computer tech-
nology extends in a powerful way our ability to calculate and visualize mathematics.
The availability of graphing calculators makes it not less important, but far more im-
portant to understand the concepts that underlie what the calculator produces. Ac-
cordingly, all our calculator-oriented subsections are preceded by sections in which
students must graph or calculate by hand, so that they can understand precisely what
the calculator is doing when they later use it to simplify the routine, mechanical part
of their work. The graphing calculator sections, subsections, examples, and exercises,
all marked with the special symbol Eﬁ, are optional and may be omitted without loss
of continuity. We use the following capabilities of the calculator:

= Graphing Calculators The use of the graphing calculator is integrated
throughout the text to graph and analyze functions, families of functions, and se-
quences, to calculate and graph regression curves, to perform matrix algebra, to
graph linear inequalities, and other powerful uses.

= Simple Programs We exploit the programming capabilities of a graphing cal-
culator to simulate real-life situations, to sum series, or to compute the terms of
a recursive sequence. (See, for instance, pages 702, 825, and 829.)

FOCUS ON MODELING The “modeling” theme has been used throughout to unify
and clarify the many applications of precalculus. We have made a special effort, in
these modeling sections and subsections, to clarify the essential process of translat-
ing problems from English into the language of mathematics. (See pages 204 or 647.)

= Constructing Models There are numerous applied problems throughout the
book where students are given a model to analyze (see, for instance, page 200).
But the material on modeling, where students are required to construct mathe-
matical models for themselves, has been organized into clearly defined sections
and subsections (see, for example, pages 203, 369, 442, and 848).

= Focus on Modeling Each chapter concludes with a Focus on Modeling sec-
tion. The first such section, after Chapter 2, introduces the basic idea of model-
ing a real-life situation by fitting lines to data (linear regression). Other sections
present ways in which polynomial, exponential, logarithmic, and trigonometric
functions, and systems of inequalities can all be used to model familiar phenom-
ena from the sciences and from everyday life (see, for example, pages 320, 386,
or 459). Chapter 1 concludes with a section entitled Focus on Problem Solving.

DISCOVERY PROJECTS One way to engage students and make them active learn-
ers is to have them work (perhaps in groups) on extended projects that give a feeling
of substantial accomplishment when completed. Each chapter contains one or more
Discovery Projects (see the table of contents); these provide a challenging but acces-
sible set of activities that enable students to explore in greater depth an interesting
aspect of the topic they have just learned. (See, for instance, pages 223, 432, or 700.)

MATHEMATICAL VIGNETTES Throughout the book we make use of the margins
to provide historical notes, key insights, or applications of mathematics in the mod-
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ern world. These serve to enliven the material and show that mathematics is an im-
portant, vital activity, and that even at this elementary level it is fundamental to every-
day life.

= Mathematical Vignettes These vignettes include biographies of interesting
mathematicians and often include a key insight that the mathematician discov-
ered and which is relevant to precalculus. (See, for instance, the vignettes on
Viete, page 49; coordinates as addresses, page 88; and radiocarbon dating,
page 360.)

= Mathematics in the Modern World This is a series of vignettes that empha-
sizes the central role of mathematics in current advances in technology and the
sciences. (See pages 256, 656, and 746, for example).

CHECK YOUR ANSWER The Check Your Answer feature is used wherever possible
to emphasize the importance of looking back to check whether an answer is reason-
able. (See, for instance, page 363.)

REVIEW MATERIAL The review material in this edition covers individual chapters
as well as groups of chapters. This material is an important tool for helping students
see the unity of the different precalculus topics. The questions and exercises in each
review section combine the topics from an entire chapter or from groups of chapters.
The review material is organized as follows.

= Concept Check The end-of-chapter material begins with a Concept Check de-
signed to get the students to think about and explain in their own words the ideas
presented in the chapter. These can be used as writing exercises, in a classroom
discussion setting, or for personal study.

= Review Exercises The Concept Checks are followed by review exercises de-
signed to provide additional practice for working with the chapter material. An-
swers to odd-numbered review exercises are given in the back of the book.

= Chapter Test Each chapter ends with a Chapter Test designed to help the stu-
dents assess their ability to work with the chapter material as a whole. Answers
to both even and odd test questions are given in the back of the book.

= Cumulative Review The Cumulative Reviews at the end of the text cover the
material of several related chapters, very much like midterm exams. Each such
review begins with a checklist of the topics the students should have mastered
after completing the respective chapters. This is followed by a Cumulative Re-
view Test. As with the Chapter Tests, answers to all cumulative test questions are
given in the back of the book.

Major Changes for the Fifth Edition

= More than 20 percent of the exercises are new. New exercises have been chosen
to provide more practice with basic concepts, as well as to explore ideas that we
do not have space to cover in the discussion and examples in the text itself.
Many new applied exercises have been added.

= Each chapter now begins with a Chapter Overview that introduces the main
themes of the chapter and explains why the material is important.

= Six new Focus on Modeling sections have been added, with topics ranging from
Mapping the World (Chapter 8) to Traveling and Standing Waves (Chapter 7).
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= Five new Discovery Projects have been added, with topics ranging from the
uses of vectors in sailing (see page 626) to the uses of conics in architecture
(see page 771).

= A few more mathematical vignettes have been added (see for example the
vignette on splines, page 252, and the one on Maria Agnesi, page 802.)

= We have moved the section on variation from Chapter 2 to Chapter 1, thus fo-
cusing Chapter 2 more clearly on the essential concept of a function.

= In Chapter 5, Trigonometric Functions of Real Numbers, we have incorporated
the material on harmonic motion as a new section. The Focus on Modeling sec-
tion is now about fitting sinusoidal curves to data.

= In Chapter 7, Analytic Trigonometry, we now include only the material on
trigonometric identities and equations. This change was done at the request of
users.

= Chapter 8, Polar Coordinates and Vectors, is a new chapter, incorporating mate-
rial that was previously in other chapters. The topics in this chapter, which also
include the polar representation of complex numbers, are united by the theme of
using the trigonometric functions to locate the coordinates of a point or describe
the components of a vector.

= In Chapter 9, Systems of Equations and Inequalities, we have put the section on
graphing of inequalities as the last section, so it now immediately precedes the
material on linear programming in the Focus on Modeling section.

= Chapter 10, Analytic Geometry, now includes only the conic sections and para-
metric equations. The material on polar coordinates is in the new Chapter 8.

= In Chapter 11, Sequence and Series, we have expanded the material on recursive
sequences by adding a Focus on Modeling section on the use of such sequences
in modeling real-world phenomena.
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own lecture, you can transform your classroom and assess
your students’ progress with instant in-class quizzes and polls.

iLrn™ Assessment
iLrn Assessment is a powerful and fully integrated teaching
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you complete control when creating assessments; you can
draw from the wealth of exercises provided or create your
own questions.
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The Interactive Video Skillbuilder CD-ROM contains hours
of video instruction. To help students evaluate their prog-
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tutors students by displaying annotated, step-by-step solu-
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Study Guide 0-534-49289-4

Contains detailed explanations, worked-out examples, prac-
tice problems, and key ideas to master. Each section of the
main text has a corresponding section in the Study Guide.

A real timesaver, iLrn Assessment offers automatic grading
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of text-specific homework, quizzes, and tests with results
flowing directly into the gradebook. The auto-enroliment
feature also saves time with course set up as students self-
enroll into the course gradebook. A wide range of problem
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ExamView® Computerized Testing 0-495-01994-1
Create, deliver, and customize tests (both print and online)
in minutes with this easy-to-use assessment system. Exam-
View is a registered trademark of FSCreations, Inc. Used
herein under license.
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This outstanding site features chapter-by-chapter online tu-
torial quizzes, a sample final exam, chapter outlines, chapter
review, chapter-by-chapter web links, flashcards, and more!
Plus, the Brooks/Cole Mathematics Resource Center features
historical notes, math news, and career information.
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To the Student

This textbook was written for you to use as a guide to mastering precalculus mathe-
matics. Here are some suggestions to help you get the most out of your course.

First of all, you should read the appropriate section of text before you attempt your
homework problems. Reading a mathematics text is quite different from reading a
novel, a newspaper, or even another textbook. You may find that you have to reread a
passage several times before you understand it. Pay special attention to the examples,
and work them out yourself with pencil and paper as you read. With this kind of
preparation you will be able to do your homework much more quickly and with more
understanding.

Don’t make the mistake of trying to memorize every single rule or fact you may
come across. Mathematics doesn’t consist simply of memorization. Mathematics is a
problem-solving art, not just a collection of facts. To master the subject you must
solve problems—Iots of problems. Do as many of the exercises as you can. Be sure
to write your solutions in a logical, step-by-step fashion. Don’t give up on a problem
if you can’t solve it right away. Try to understand the problem more clearly—reread
it thoughtfully and relate it to what you have learned from your teacher and from the
examples in the text. Struggle with it until you solve it. Once you have done this a few
times you will begin to understand what mathematics is really all about.

Answers to the odd-numbered exercises, as well as all the answers to each chapter
test, appear at the back of the book. If your answer differs from the one given, don’t
immediately assume that you are wrong. There may be a calculation that connects the
two answers and makes both correct. For example, if you get 1/(\vV2 — 1) but the an-
swer given is 1 + /2, your answer is correct, because you can multiply both nu-
merator and denominator of your answer by V2 + 1 to change it to the given answer.

The symbol @ is used to warn against committing an error. We have placed this
symbol in the margin to point out situations where we have found that many of our
students make the same mistake.

XXi
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Calculators and Calculations

Calculators are essential in most mathematics and science subjects. They free us from
performing routine tasks, so we can focus more clearly on the concepts we are study-
ing. Calculators are powerful tools but their results need to be interpreted with care.
In what follows, we describe the features that a calculator suitable for a precalcu-
lus course should have, and we give guidelines for interpreting the results of its
calculations.

Scientific and Graphing Calculators

For this course you will need a scientific calculator—one that has, as a minimum, the
usual arithmetic operations (+, —, X, <) as well as exponential, logarithmic, and
trigonometric functions (e*, 10", In, log, sin, cos, tan). In addition, a memory and at
least some degree of programmability will be useful.

Your instructor may recommend or require that you purchase a graphing calcula-
tor. This book has optional subsections and exercises that require the use of a
graphing calculator or a computer with graphing software. These special subsections
and exercises are indicated by the symbol E% Besides graphing functions, graphing
calculators can also be used to find functions that model real-life data, solve equa-
tions, perform matrix calculations (which are studied in Chapter 9), and help you per-
form other mathematical operations. All these uses are discussed in this book.

It is important to realize that, because of limited resolution, a graphing calculator
gives only an approximation to the graph of a function. It plots only a finite number
of points and then connects them to form a representation of the graph. In Sec-
tion 1.9, we give guidelines for using a graphing calculator and interpreting the
graphs that it produces.

Calculations and Significant Figures

Most of the applied examples and exercises in this book involve approximate values.
For example, one exercise states that the moon has a radius of 1074 miles. This does
not mean that the moon’s radius is exactly 1074 miles but simply that this is the ra-
dius rounded to the nearest mile.

One simple method for specifying the accuracy of a number is to state how many
significant digits it has. The significant digits in a number are the ones from the first
nonzero digit to the last nonzero digit (reading from left to right). Thus, 1074 has four
significant digits, 1070 has three, 1100 has two, and 1000 has one significant digit.
This rule may sometimes lead to ambiguities. For example, if a distance is 200 km to
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the nearest kilometer, then the number 200 really has three significant digits, not just
one. This ambiguity is avoided if we use scientific notation—that is, if we express the
number as a multiple of a power of 10:

2.00 xX10?

When working with approximate values, students often make the mistake of giv-
ing a final answer with more significant digits than the original data. This is incorrect
because you cannot “create” precision by using a calculator. The final result can be
no more accurate than the measurements given in the problem. For example, suppose
we are told that the two shorter sides of a right triangle are measured to be 1.25 and
2.33 inches long. By the Pythagorean Theorem, we find, using a calculator, that the
hypotenuse has length

\V/1.25% + 2.33% =~ 2.644125564 in.

But since the given lengths were expressed to three significant digits, the answer can-
not be any more accurate. We can therefore say only that the hypotenuse is 2.64 in.
long, rounding to the nearest hundredth.

In general, the final answer should be expressed with the same accuracy as the
least-accurate measurement given in the statement of the problem. The following
rules make this principle more precise.

Rules for Working with Approximate Data

1. When multiplying or dividing, round off the final result so that it has as
many significant digits as the given value with the fewest number of
significant digits.

2. When adding or subtracting, round off the final result so that it has its last
significant digit in the decimal place in which the least-accurate given value
has its last significant digit.

3. When taking powers or roots, round off the final result so that it has the
same number of significant digits as the given value.

As an example, suppose that a rectangular table top is measured to be 122.64 in.
by 37.3 in. We express its area and perimeter as follows:

Three significant

Area = length X width = 122.64 X 37.3 = 4570 in’ digits
Perimeter = 2(length + width) = 2(122.64 + 37.3) = 319.9 in.  Tenths digit

Note that in the formula for the perimeter, the value 2 is an exact value, not an ap-
proximate measurement. It therefore does not affect the accuracy of the final result.
In general, if a problem involves only exact values, we may express the final answer
with as many significant digits as we wish.

Note also that to make the final result as accurate as possible, you should wait un-
til the last step to round off your answer. If necessary, use the memory feature of your
calculator to retain the results of intermediate calculations.
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Abbreviations

kcal
kg
km
kPa

Ib
Im

centimeter
decibel
farad
foot
gram
gallon
hour
henry
Hertz
inch
Joule
kilocalorie
kilogram
kilometer
kilopascal
liter
pound
lumen
mole of solute
per liter of solution
meter

mg
MHz
min

mL

qt
oz

7]

2=2<9

yr
°C

T U=

milligram
megahertz
mile

minute
milliliter
millimeter
Newton

quart

ounce

second

ohm

volt

waltt

yard

year

degree Celsius
degree Fahrenheit
Kelvin

implies

is equivalent to
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Chapter Overview

In this first chapter we review the real numbers, equations, and the coordinate plane.
You are probably already familiar with these concepts, but it is helpful to get a fresh
look at how these ideas work together to solve problems and model (or describe) real-
world situations.

Let’s see how all these ideas are used in the following real-life situation: Suppose
you get paid $8 an hour at your part-time job. We are interested in how much money
you make.

To describe your pay we use real numbers. In fact, we use real numbers every
day—to describe how tall we are, how much money we have, how cold (or warm) it
is, and so on. In algebra, we express properties of the real numbers by using letters to
stand for numbers. An important property is the distributive property:

A(B + C) = AB + AC

To see that this property makes sense, let’s consider your pay if you work 6 hours one
day and 5 hours the next. Your pay for those two days can be calculated in two dif-
ferent ways: $8(6 + 5) or $8 6 + $8 -5, and both methods give the same answer.
This and other properties of the real numbers constitute the rules for working with
numbers, or the rules of algebra.

We can also model your pay for any number of hours by a formula. If you work
x hours then your pay is y dollars, where y is given by the algebraic formula

y = 8

So if you work 10 hours, your pay is y = 8- 10 = 80 dollars.

An equation is a sentence written in the language of algebra that expresses a fact
about an unknown quantity x. For example, how many hours would you need to work
to get paid 60 dollars? To answer this question we need to solve the equation

60 = 8x

We use the rules of algebra to find x. In this case we divide both sides of the equation
by 8,s0x = % = 7.5 hours.

The coordinate plane allows us to sketch a graph of an equation in two variables.
For example, by graphing the equation y = 8x we can “see” how pay increases with
hours worked. We can also solve the equation 60 = 8x graphically by finding the
value of x at which the graphs of y = 8x and y = 60 intersect (see the figure).

In this chapter we will see many examples of how the real numbers, equations, and
the coordinate plane all work together to help us solve real-life problems.
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The different types of real numbers
were invented to meet specific needs.
For example, natural numbers are
needed for counting, negative num-
bers for describing debt or below-zero
temperatures, rational numbers for
concepts like “half a gallon of milk,”
and irrational numbers for measuring
certain distances, like the diagonal

of a square.

A repeating decimal such as
x = 3.5474747. ..

is a rational number. To convert it to a
ratio of two integers, we write

1000x = 3547.47474747. ..
10x = 35.47474747. ..
990x = 3512.0

Thus, x = 332 (The idea is to multiply
x by appropriate powers of 10, and then
subtract to eliminate the repeating part.)

Let’s review the types of numbers that make up the real number system. We start with
the natural numbers:
1,2,3,4,...

The integers consist of the natural numbers together with their negatives and 0:
e, —3,-2,-1,0,1,2,3,4, ...

We construct the rational numbers by taking ratios of integers. Thus, any rational
number r can be expressed as

where m and n are integers and n # 0. Examples are:

3 -3 46 = % 0.17 = 155

(Recall that division by 0 is always ruled out, so expressions like 3 and ) are
undefined.) There are also real numbers, such as V2, that cannot be expressed as a
ratio of integers and are therefore called irrational numbers. It can be shown, with
varying degrees of difficulty, that these numbers are also irrational:

V2

V3 V5

The set of all real numbers is usually denoted by the symbol R. When we use the
word number without qualification, we will mean “real number.” Figure 1 is a dia-
gram of the types of real numbers that we work with in this book.

Rational numbers Irrational numbers

3
B, 5, . w5

1 3
50 —7» 46, 0.17, 0.6, 0.317

Integers
Natural numbers

...,—3,-2,-1,0,1, 2, 3,...

Figure 1
The real number system

Every real number has a decimal representation. If the number is rational, then its
corresponding decimal is repeating. For example,

1=10.5000. .. = 0.50 2 =0.66666...= 0.6

o3 = 03171717... = 0.317 2

1.285714285714. .. = 1.285714

(The bar indicates that the sequence of digits repeats forever.) If the number is irra-
tional, the decimal representation is nonrepeating:

V2 = 1.414213562373095. . . 7 = 3.141592653589793. ..
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If we stop the decimal expansion of any number at a certain place, we get an approx-
imation to the number. For instance, we can write

m =~ 3.14159265

where the symbol = is read “is approximately equal to.” The more decimal places we
retain, the better our approximation.

Properties of Real Numbers

Weall knowthat2 +3=3+2and5+7 =7+ 5and 513 + 87 = 87 + 513, and so
on. In algebra, we express all these (infinitely many) facts by writing

at+b=b+a

where a and b stand for any two numbers. In other words, “a + b = b + a” is a con-
cise way of saying that “when we add two numbers, the order of addition doesn’t mat-
ter.” This fact is called the Commutative Property for addition. From our experience
with numbers we know that the properties in the following box are also valid.

Properties of Real Numbers

Property

Commutative Properties
at+b=b+a
ab = ba

Associative Properties
(a+b)+c=a+ (b+c)

(ab)c = a(bc)

Distributive Property
alb + ¢) = ab + ac
(b + c)a=ab + ac

The Distributive Property is crucial
because it describes the way addition
and multiplication interact with each
other.

Example Description

T7+3=3+7 When we add two numbers, order doesn’t matter.

3.5=5-3 When we multiply two numbers, order doesn’t
matter.

2+4)+7=2+(4+7) When we add three numbers, it doesn’t matter

which two we add first.

(3:7):5=3-(7-5) When we multiply three numbers, it doesn’t

matter which two we multiply first.

2:3+5)=2:3+2-5 When we multiply a number by a sum of two
(3+5)-2=2-3+2-5 numbers, we get the same result as multiplying

the number by each of the terms and then adding
the results.

The Distributive Property applies whenever we multiply a number by a sum.
Figure 2 explains why this property works for the case in which all the numbers are
positive integers, but the property is true for any real numbers a, b, and c.

23 + 5)
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
Figure 2 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

The Distributive Property 2-3 2-5
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@ Don’t assume that —a is a nega-
tive number. Whether —a is negative or
positive depends on the value of a. For
example, if a = 5, then —a = —5,a
negative number, but if @ = —5, then
—a = —(=5) = 5 (Property 2), a posi-
tive number.

Example 1 Using the Distributive Property

AN
(a 2(x+3)=2-x+2-3 Distributive Property
=2x+6 Simplify

) (a +b)(x+y)=(a+b)x+ (a+Db)y Distributive Property

(ax + bx) + (ay + by) Distributive Property
=ax + bx + ay + by Associative Property of Addition
In the last step we removed the parentheses because, according to the

Associative Property, the order of addition doesn’t matter. ]

The number 0O is special for addition; it is called the additive identity because
a + 0 = qa for any real number a. Every real number a has a negative, —a, that
satisfies @ + (—a) = 0. Subtraction is the operation that undoes addition; to
subtract a number from another, we simply add the negative of that number. By
definition
a—b=a+ (-b)

To combine real numbers involving negatives, we use the following properties.

Properties of Negatives

Property Example

1. (-1)a= —a (=1)5= -5

2. (—a)=a —(=35)=5

3. (—a)b = a(=b) = —(ab) (=5)7=5(-7)=—(5-7)
4. (—a)(=b) = ab (=4)(=3)=4-3

5. (@ +b)=—-a—»b -3+35)=-3-5

6. (a—b)=b—-a —-(5—-8)=8-5

Property 6 states the intuitive fact thata — b and b — a are negatives of each other.
Property 5 is often used with more than two terms:

—(atb+tc)=—-a—-b-c

Example 2 Using Properties of Negatives

Let x, y, and z be real numbers.
(@ —(x+2)=—-x-2 Property 5: —=(a+ b) = —a— b
(b) —(x+y—z) = —x—y—(—z) Property&: —(a+b)=—a—»b

=—x—y+tz:z Property 2: —(—a) = a |
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The number 1 is special for multiplication; it is called the multiplicative identity
because a < 1 = a for any real number a. Every nonzero real number a has an inverse,
1 /a, that satisfies a - (1 / a) = 1. Division is the operation that undoes multiplication;
to divide by a number, we multiply by the inverse of that number. If » # 0, then, by
definition,

a+b=a- 1
b
We write a - (1/b) as simply a/b. We refer to a/b as the quotient of a and b or as the
fraction a over b; a is the numerator and b is the denominator (or divisor). To com-
bine real numbers using the operation of division, we use the following properties.

Properties of Fractions

Property
P 4.c_ac
b d bd
a ¢ ad
2. —+—=—-—
b d b c
a b a+b
B, ===
e @ c
4.g+£:ad+bc
b d bd
ac a
b, — =—
bc b

G
6. If — = —, then ad = bc

Example Description

25 _2:5_10 When multiplying fractions, multiply numer-

37 3.7 21 ators and denominators.

2.5 _27_ 14 When dividing fractions, invert the divisor and

3°7 35 15 multiply.

2 7 2+7 9 When adding fractions with the same

= =— .

5 5 5 5 denominator, add the numerators.

2 N 3_2-7+3-5_29 When adding fractions with different de-

5 7 35 Y nominators, find a common denominator.
Then add the numerators.

25 2 Cancel numbers that are common factors in

3.5 3 numerator and denominator.

2 6 .

3 = 9 s02:9=3-6 Cross multiply.

When adding fractions with different denominators, we don’t usually use Prop-
erty 4. Instead we rewrite the fractions so that they have the smallest possible com-
mon denominator (often smaller than the product of the denominators), and then
we use Property 3. This denominator is the Least Common Denominator (LCD)
described in the next example.

Example 3 Using the LCD to Add Fractions

5 7
7_1,_7

Evaluate:
36 120

Solution Factoring each denominator into prime factors gives
36 = 2%-32 120 = 2°-3-5

and

We find the least common denominator (LCD) by forming the product of all the
factors that occur in these factorizations, using the highest power of each factor.
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Thus, the LCD is 2*+3%-5 = 360. So
5 7 5-10 7-3
— 4+ ——= +
36 120 36-10  120-3
50 21 71

=—+ —=— Property 3: Adding fractions with the
360 360 360 same denominator ]

Use common denominator

The Real Line

The real numbers can be represented by points on a line, as shown in Figure 3. The
positive direction (toward the right) is indicated by an arrow. We choose an arbitrary
reference point O, called the origin, which corresponds to the real number 0. Given
any convenient unit of measurement, each positive number x is represented by the
point on the line a distance of x units to the right of the origin, and each negative num-
ber —x is represented by the point x units to the left of the origin. The number asso-
ciated with the point P is called the coordinate of P, and the line is then called a
coordinate line, or a real number line, or simply a real line. Often we identify the
point with its coordinate and think of a number as being a point on the real line.

111
—4.9 —4.7 —3.1725 T168 41 \/5 4.2 4.4 4.9999
VY 26 V2 N2 2y s oa Ny
e Y A
—4.85 03 43 4.5

Figure 3 The real line

The real numbers are ordered. We say that a is less than b and write a < b if
b — a is a positive number. Geometrically, this means that a lies to the left of b on
the number line. Equivalently, we can say that b is greater than a and write b > a.
The symbol @ = b (or b = a) means that either a < b or a = b and is read “a is less
than or equal to b.” For instance, the following are true inequalities (see Figure 4):

7<74<175 - < =3 V2 <2 2<2
7.4 75
/A e T A
4 -3 -2 -1 0 1 2 3 4 5 6 1 8

Figure 4

Sets and Intervals

A set is a collection of objects, and these objects are called the elements of the set. If
S is a set, the notation a € S means that a is an element of S, and b & S means that b
is not an element of S. For example, if Z represents the set of integers, then —3 € Z
but 7 & Z.

Some sets can be described by listing their elements within braces. For instance,
the set A that consists of all positive integers less than 7 can be written as

A=1{1,2,3,4,5,6}
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———

1,2,3,4,5,6,7,8

—_— —

S 1%

a b

Figure 5
The open interval (a, b)

a b

Figure 6
The closed interval [a, b]

The symbol co (“infinity”) does not
stand for a number. The notation (a, o),
for instance, simply indicates that the
interval has no endpoint on the right but
extends infinitely far in the positive
direction.
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We could also write A in set-builder notation as
A = {x| xis aninteger and 0 < x < 7}

which is read “A is the set of all x such that x is an integer and 0 < x < 7.7

If S and T are sets, then their union S U T is the set that consists of all elements
that are in S or T (or in both). The intersection of S and 7 is the set S N T consisting
of all elements that are in both S and T. In other words, S N T is the common part of
S and T. The empty set, denoted by (J, is the set that contains no element.

Example 4 Union and Intersection of Sets

IS =1{1,2,3,45},T=1{4,56,7},and V= {6,7, 8}, find the sets S U T,
SNT,and SN V.

Solution
SUT=1{1,2,3,4,5,6,7} All elements in Sor T
SNT={4,5} Elements common to both S and T

SNv=yY S and V have no element in common [ |

Certain sets of real numbers, called intervals, occur frequently in calculus and
correspond geometrically to line segments. If a < b, then the open interval from a
to b consists of all numbers between a and b and is denoted (a, b). The closed inter-
val from a to b includes the endpoints and is denoted [a, b]. Using set-builder nota-
tion, we can write

(a,b) = {x|a <x<b} [a,b] = {x]|a=x =1}

Note that parentheses () in the interval notation and open circles on the graph in
Figure 5 indicate that endpoints are excluded from the interval, whereas square
brackets [ ] and solid circles in Figure 6 indicate that the endpoints are included. In-
tervals may also include one endpoint but not the other, or they may extend infinitely
far in one direction or both. The following table lists the possible types of intervals.

Notation Set description Graph
(a,b) {x|la<x<b} >~
a b
[a, D] {x|la=x=0b} >
a b
[a,b) frla=x<b} -
a b
(a,b] {x|a<x=0b} >
a b
(a, ) {x]a<x} >
a
[a, ) {xla=x} . >
(—o0,b) {x|x < b} 4 >
(—o0,b] {x|x=b} 5 >
(—00, ) R (set of all real numbers) >
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No Smallest or Largest
Number in an Open Interval

Any interval contains infinitely
many numbers—every point on the
graph of an interval corresponds to
a real number. In the closed inter-
val [0, 1], the smallest number is 0
and the largest is 1, but the open in-
terval (0, 1) contains no smallest or
largest number. To see this, note
that 0.01 is close to zero, but 0.001
is closer, 0.0001 closer yet, and so
on. So we can always find a num-
ber in the interval (0, 1) closer to
zero than any given number. Since
0 itself is not in the interval, the in-
terval contains no smallest number.
Similarly, 0.99 is close to 1, but
0.999 is closer, 0.9999 closer yet,
and so on. Since 1 itself is not in
the interval, the interval has no
largest number.

‘|—3|:3‘ |5|=5

Figure 9

Example 5 Graphing Intervals

Express each interval in terms of inequalities, and then graph the interval.
(@ [-1,2)={x|-1=x<2}

\

-1 0 2

(b) [15,4] ={x|15=x=4} % -
0 1.5 4
© (=3,00) = {x| =3 <} : > =
-3 0

Example 6 Finding Unions and Intersections of Intervals

Graph each set.
@ (L3)N[27]  ® (1L3)U[2.7]

Solution

(a) The intersection of two intervals consists of the numbers that are in both
intervals. Therefore

(L3))N[2,7]={x|l<x<3and2=x=7}
={x|2=x<3}=1[2,3)
This set is illustrated in Figure 7.

(b) The union of two intervals consists of the numbers that are in either one
interval or the other (or both). Therefore

(1,L3)U[27]={x|1<x<3or2=x=7}
=x[l<x=7}=(1,7]

This set is illustrated in Figure 8.

(1,3) (1,3)
0 1 3 - 0 1 3
[2,7] [2,7]
0 2 7 - 0 2 7
[2,3) (1,7]

0 2 3 - 0 1 7
Figure 7 Figure 8
(1,3) N [2,7] = [2,3) (1,3) U [2,7] = (1,7] -

Absolute Value and Distance

The absolute value of a number «a, denoted by |a |, is the distance from a to 0 on
the real number line (see Figure 9). Distance is always positive or zero, so we have
|a| = 0 for every number a. Remembering that —a is positive when « is negative,
we have the following definition.
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Definition of Absolute Value

If a is a real number, then the absolute value of «a is

a ifa=0
lal =4 .
a ifa<O0

Example 7 Evaluating Absolute Values of Numbers

@ [3]=3

(b) [-3] =—(-3)=3

© [0] =0

@ |3-7|=-@B3—-—7)=m—-3 (since3<m = 3 —7<0) [

When working with absolute values, we use the following properties.

Properties of Absolute Value

Property Example Description

1. |a| =0 |=3|=3=0 The absolute value of
a number is always
positive or zero.

2. |a| = |—a| 5] = |=5] A number and its
negative have the same
absolute value.

3. |ab| = |a]||b] |=2:5| =|-2]||5] The absolute value of a
product is the product of
the absolute values.

4. | 4 |a] 12 [12] The absolute value of a
bl = b Y |3 quotient is the quotient
of the absolute values.
< 13 > What is the distance on the real line between the numbers —2 and 11? From

T Figure 10 we see that the distance is 13. We arrive at this by finding either
|11 — (=2)| = 13 0or |(=2) — 11| = 13. From this observation we make the fol-
Figure 10 lowing definition (see Figure 11).

Distance between Points on the Real Line

e L

——— e If a and b are real numbers, then the distance between the points a and b on
a b the real line is
Figure 11 dla,b) = |b —a|

Length of a line segment = |b — a|
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From Property 6 of negatives it follows that |b — a| = | a — b|. This confirms
that, as we would expect, the distance from a to b is the same as the distance from

b toa.

Example 8 Distance between Points on the Real Line

} 10 | The distance between the numbers —8 and 2 is
—
-8 0 2 da,b) = |-8—-2]=|-10| =10
Figure 12 We can check this calculation geometrically, as shown in Figure 12. ]

BEEN Exercises

1-2 = List the elements of the given set that are
(a) natural numbers

(b) integers

(¢) rational numbers

(d) irrational numbers

1. {0, —10,50,%,0.538, V7, 1.23, -1, V2}
2. {1.001,0.333..., —m, —11, 11,13, V16, 3.14, )

3-10 = State the property of real numbers being used.
3.7+10=10+7

4. 23 +5)=(3+5)2

5. (x+2y) +3z=x+ 2y + 3

6. 2(A + B) = 2A + 2B

7. 5x+1)3=15x+3

8. (xta)x+b)=(x+ax+ (x+ta)

9. 2x(3 +y) = (3 +y)2x

10. 7(a + b+ ¢) =7(a + b) + Tc

11-14 = Rewrite the expression using the given property of
real numbers.

11. Commutative Property of addition, x + 3 =

12. Associative Property of multiplication, 7(3x) =
13. Distributive Property, 4(A + B) =

14. Distributive Property, 5x + 5y =

15-20 = Use properties of real numbers to write the expression
without parentheses.

15. 3(x + y) 16. (a — b)8
17. 4(2m) 18. 5(—6y)
19. —3(2x — 4y) 20. (3a)(b + ¢ — 2d)

21-26 ® Perform the indicated operations.

21. (a) (b) i+ 5

22. (a) ;-3 by 1+3—¢
(b) 0.25(5 + 3)

Sl
+
e

[
w
—_
£
~
N LI Wi
—
[o)}
|
L
~—

w

24. () (3+)(1-9) ® G -3)G+3)
2 3 is
25. @) 7~ 5 (b) 77
3 8 9
53 241
26. (a) T— b) T
2 3 1 15

27-28 m Place the correct symbol (<, >, or =) in the space.
27. (@ 3 2 ®) -3 -1 (35 12

28. ()3 067 (b))%  —0.67 (c) |0.67] | —0.67 |

29-32 m State whether each inequality is true or false.

29. (a) —6< —10 (b) V2 > 141
10 12 1
. — <= —— < -1
30 @ =13 ® =
31. (a) —7 > =3 ) 8=9
32. (@ 1.1 > 1.1 (b) 8=38

33-34 m Write each statement in terms of inequalities.
33. (a) xis positive

(b) risless than 4

(¢) ais greater than or equal to 7

(d) xis less than % and is greater than —5

(e) The distance from p to 3 is at most 5
34. (a) yis negative

(b) zis greater than 1

(¢) bis at most 8



(d) wis positive and is less than or equal to 17

(e) yis at least 2 units from 7

35-38 ® Find the indicated set if

A=1{1,2,3,4,5,6,7} B=1{2,4,6,8}
=1{7,8,9,10}
35.(a) AUB (b) ANB
36. (a) BUC (b) BNC
37. (a) AUC (b)) ANC
38. (a) AUBUC b)) ANBNC
39-40 ® Find the indicated set if
A={x|x=-2} B = {x|x <4}

C=1{x|-1<x=5)
(b) BN C
() ANB

39. (a) BUC
40. (a) ANC

41-46 m Express the interval in terms of inequalities, and then

graph the interval.

41. (-3,0) 42. (2,8]
43. [2,8) 44. [—6,—3]
45. [2,00) 6. (—00,1)

47-52 m Express the inequality in interval notation, and then

graph the corresponding interval.

47. x=1 48. 1 =x=2
49, 2<x=1 50. x= -5
51. x> —1 52, —5<x<2

53-54 m Express each set in interval notation.

53. (a)

Y

-3 0 5

b) —— f >
® -3 0 5
54. (a) ¢ o—>
0 2
b) —=o + >
(b) - i

55-60 ® Graph the set.

55. (—2,0) U (—1,1) 56. (—2,0) N (—1,1)
57. [~4,6] N [0,8) 58. [—4,6) U [0,8)
59. (—o0, —4) U (4,00) 60. (—o00,6] N (2,10)

61-66 ® Evaluate each expression.
61. (a) |100] (b) |-73]
62. (a) | V5 -5 (b) |10 — 7|

63.

64.
65.

66.

SECTION 1.1 Real Numbers

-1

@] —6]—|—4]| (b)i‘ 0]

(@]2— |12 b) -1 —[1—[—1]

@ |(—2)-6] ®) [(=5)(=15)]
-6 7-12

(a) ‘H (b) ‘ ‘

67-70 ® Find the distance between the given numbers.

67.

68.

69.

70.

_
-3 -2-1 0 1 2 3

_—t
-3 -2-1 0 1 2 3

(a) 2 and 17

(b) —3and 21

(¢) ¥ and —

(@) sand —3;

(b) —38and —57
(¢) —2.6and —1.8

1

71-72 m Express each repeating decimal as a fraction. (See the
margin note on page 2.)

71. (a) 0.7 (b) 0.28 (c) 0.57

72. (a) 5.23 (b) 1.37 (¢) 2.135
Applications

73. Area of a Garden Mary’s backyard vegetable garden

74.

measures 20 ft by 30 ft, so its area is 20 X 30 = 600 ft>.
She decides to make it longer, as shown in the figure, so

that the area increases to A = 20(30 + x). Which property
of real numbers tells us that the new area can also be written

A =600 + 20x?

30 ft X

________

1
1
1
|
20 ft l
1
1
1
1
1
1

Temperature Variation The bar graph shows the daily
high temperatures for Omak, Washington, and Geneseo,

New York, during a certain week in June. Let 7, represent
the temperature in Omak and 7 the temperature in Gene-
seo. Calculate Tp — Tgand | Ty —

T;| for each day shown.
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Which of these two values gives more information?

[] Omak, WA
[[] Geneseo, NY

NIy

Sun Mon Tue Wed Thu Fri Sat
Day

~ 0
W o

~J
o

Daily high
temperature (°F)

(o))
(W

75. Mailing a Package The post office will only accept
packages for which the length plus the “girth” (distance
around) is no more than 108 inches. Thus, for the package
in the figure, we must have

L+2(x+y)=108

(a) Will the post office accept a package that is 6 in. wide,
8 in. deep, and 5 ft long? What about a package that
measures 2 ft by 2 ft by 4 ft?

(b) What is the greatest acceptable length for a package
that has a square base measuring 9 in. by 9 in?

5 ft = 60 in.
6 in. —3

Discovery ¢ Discussion

76. Signs of Numbers Leta, b, and ¢ be real numbers such
thata > 0, b <0, and ¢ < 0. Find the sign of each expression.

(@) —a (b) —b (¢) bc
d) a—0»b (€) ¢c—a (f) a + bc
(g) ab + ac (h) —abc (i) ab*

77. Sums and Products of Rational and Irrational
Numbers Explain why the sum, the difference, and the

product of two rational numbers are rational numbers.
Is the product of two irrational numbers necessarily
irrational? What about the sum?

. Combining Rational Numbers with Irrational

Numbers Is2 + /2 rational or irrational? Is 3 - V/2
rational or irrational? In general, what can you say about
the sum of a rational and an irrational number? What about
the product?

79. Limiting Behavior of Reciprocals Complete the tables.

80.

81.

What happens to the size of the fraction 1/x as x gets large?
As x gets small?

X 1/x X 1/x
1 1.0
2 0.5
10 0.1
100 0.01
1000 0.001

Irrational Numbers and Geometry Using the follow-
ing figure, explain how to locate the point /2 on a number
line. Can you locate /5 by a similar method? What about
V/6? List some other irrational numbers that can be located
this way.

\

T

-1 0

Commutative and Noncommutative Operations
We have seen that addition and multiplication are both
commutative operations.

(a) Is subtraction commutative?
(b) Is division of nonzero real numbers commutative?

m Exponents and Radicals

In this section we give meaning to expressions such as a"" in which the exponent
m / n is a rational number. To do this, we need to recall some facts about integer ex-
ponents, radicals, and nth roots.

Integer Exponents

A product of identical numbers is usually written in exponential notation. For ex-
ample, 55 -5 is written as 5°. In general, we have the following definition.



@ Note the distinction between
(—3)*and —3*. In (—3)* the exponent
applies to —3, but in —3* the exponent
applies only to 3.

SECTION 1.2 Exponents and Radicals 13

Exponential Notation

If a is any real number and # is a positive integer, then the nth power of a is

an:a.a...-.a

n factors

The number « is called the base and 7 is called the exponent.

Example 1 Exponential Notation
@ () =(EGHE) ==
(b) (=3)" = (=3)-(=3)-(=3)-(=3) = 81
(c) —=3*= —(3-3-3:3) = -8l n

We can state several useful rules for working with exponential notation. To dis-
cover the rule for multiplication, we multiply 5* by 5%
5.5 =(5-5-5-5)(5-5)=5-5-5-5-5-5 =50 =5%2

4 factors 2 factors 6 factors

It appears that fo multiply two powers of the same base, we add their exponents. In
general, for any real number a and any positive integers m and n, we have

aman:(a.a...'.a)(a.a.....a) :acaoa.-.-ca:am+n

m factors n factors m + n factors

Thus a"a" = a™*".

We would like this rule to be true even when m and n are O or negative integers.
For instance, we must have

20.23 — 20+3 — 23
But this can happen only if 2° = 1. Likewise, we want to have
54.5*4 — 54+(*4) — 54*4 — 50 =1

and this will be true if 5~ = 1/5* These observations lead to the following definition.

Zero and Negative Exponents

If a # 0 is any real number and 7 is a positive integer, then

a® =1 and at=—

Example 2 Zero and Negative Exponents

@ (5)' =1
0 x ==
X X
oy b1
(C) ( 2) (_2)3 —8 8 =
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Familiarity with the following rules is essential for our work with exponents and

bases. In the table the bases a and b are real numbers, and the exponents m and n are
integers.

Laws of Exponents

Law
1. d"a" = a"™"
2. 4 =a""
a
. (@) =a™
4. (ab)" = a"D"

Example Description
2.3 =32 =37 To multiply two powers of the same number, add the exponents.
35
Foie 3P 2=3° To divide two powers of the same number, subtract the exponents.
(32)° = 32° = 310 To raise a power to a new power, multiply the exponents.
3:4)2 = 32.47 To raise a product to a power, raise each factor to the power.
p p p

(

3

4

)

2 32
g

To raise a quotient to a power, raise both numerator and
denominator to the power.

®  Proof of Law 3 If m and n are positive integers, we have

@y =(a-a----a"

m factors
:(a.a.. . ..a)(a.a.. . ..a) P (a.a.. . ..a)
m faélors m factors m factors

n groups of factors

mn

=qa-*dad*"*a=adad

mn factors
The cases for which m = 0 or n = 0 can be proved using the definition of negative
exponents. ]

" Proof of Law 4 If n is a positive integer, we have

(ab)" = (ab)(ab) - - - (ab)=(a+a+---+a)-(b+b+----b)= a"b"

—
n factors n factors n factors

Here we have used the Commutative and Associative Properties repeatedly. If n = 0,
Law 4 can be proved using the definition of negative exponents. ]

You are asked to prove Laws 2 and 5 in Exercise 88.

Example 3 Using Laws of Exponents

(a) x4x7 — x4+7 — xll

n

Law1:2"a" = a™"

n

1
(b) )’4)’_7 = )’4_7 = y_3 =3 Law 1: 2"g" = g™

9

c
© == =t
c

Law 2: 2"/a" = g™ "
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d (b*)° = b*> = b* Law 3: (a™)" = a™
(e) (3x)* = 3x* =27x° Law 4: (ab)" = a"b"
) X X
) (2> = ? = 37 Law 5: (a/b)" = a"/b" [
Example 4 Simplifying Expressions with Exponents
Simplify:
X 3 y2x 4

(@) (2a°b*)(3ab*)? (b) (y (Z)
Solution
(@) (2a’h?)(3ab*)® = (2a°h*)[3’a*(b*)*] Law 4: (ab)" = 2"

= (2a°b*)(27a’b"?) Law 2: (a™)" = a™

= (2)(27)a’a’b*b"* Group factors with the same base

= 544" Law 1: 278" = 2"

3 2x 4 3 2 4)64
(b) X YY) L(y ) Laws 5 and 4
y - v o
3 854
= )% Y 7 Law 3
v’ oz
¥\ 1
= (x3x4) <3)4 Group factors with the same base
y’/)z
T3
=X Laws 1and 2 |

When simplifying an expression, you will find that many different methods will
lead to the same result; you should feel free to use any of the rules of exponents to ar-
rive at your own method. We now give two additional laws that are useful in simpli-
fying expressions with negative exponents.

Laws of Exponents

Law Example Description

6 a\™ _(b)\" 3\ (4 2 To raise a fraction to a negative power, invert the fraction and change
"\ p " \a 4 T\ 3 the sign of the exponent.

7 a" b" 372 . 4 To move a number raised to a power from numerator to denominator
pm gt -5 32 or from denominator to numerator, change the sign of the exponent.

B Proof of Law 7 Using the definition of negative exponents and then
Property 2 of fractions (page 5), we have

a" 1/a"

b 1/p"

bm
:7 ]

a

1"
at 1

You are asked to prove Law 6 in Exercise 88.
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Mathematics in the
Modern World

Although we are often unaware of
its presence, mathematics perme-
ates nearly every aspect of life in
the modern world. With the advent
of modern technology, mathemat-
ics plays an ever greater role in our
lives. Today you were probably
awakened by a digital alarm clock,
made a phone call that used digital
transmission, sent an e-mail mes-
sage over the Internet, drove a car
with digitally controlled fuel injec-
tion, listened to music on a CD
player, then fell asleep in a room
whose temperature is controlled by
adigital thermostat. In each of these
activities mathematics is crucially
involved. In general, a property
such as the intensity or frequency of
sound, the oxygen level in the ex-
haust emission from a car, the col-
ors in an image, or the temperature
in your bedroom is transformed
into sequences of numbers by so-
phisticated mathematical algo-
rithms. These numerical data,
which usually consist of many mil-
lions of bits (the digits 0 and 1), are
then transmitted and reinterpreted.
Dealing with such huge amounts of
data was not feasible until the in-
vention of computers, machines
whose logical processes were in-
vented by mathematicians.

The contributions of mathemat-
ics in the modern world are not
limited to technological advances.
The logical processes of mathe-
matics are now used to analyze
complex problems in the social,
political, and life sciences in new
and surprising ways. Advances in
mathematics continue to be made,
some of the most exciting of these
just within the past decade.

In other Mathematics in the
Modern World, we will describe in
more detail how mathematics
affects all of us in our everyday
activities.

Example 5 Simplifying Expressions with Negative
Exponents

Eliminate negative exponents and simplify each expression.
6st 4 ( y )2
Q) ——> b) | —
@ 257212 ®) 37
Solution
(a) We use Law 7, which allows us to move a number raised to a power from the

numerator to the denominator (or vice versa) by changing the sign of the

exponent.
+t~* moves to denominator
and becomes t*,

6st 4 B 6ss>
2s %t 207t

Law 7

52 moves to numerator
and becomes 2.

=— Law 1

(b) We use Law 6, which allows us to change the sign of the exponent of a fraction
by inverting the fraction.

() = (5)

Law 6
976
= Laws 5 and 4 [ |
y

Scientific Notation

Exponential notation is used by scientists as a compact way of writing very large
numbers and very small numbers. For example, the nearest star beyond the sun, Prox-
ima Centauri, is approximately 40,000,000,000,000 km away. The mass of a hydro-
gen atom is about 0.00000000000000000000000166 g. Such numbers are difficult to
read and to write, so scientists usually express them in scientific notation.

Scientific Notation

A positive number x is said to be written in scientific notation if it is ex-
pressed as follows:

x=a X 10" where 1 = a < 10 and 7 is an integer

For instance, when we state that the distance to the star Proxima Centauri is
4 X 10" km, the positive exponent 13 indicates that the decimal point should be
moved 13 places to the right:

4 X 10" = 40,000,000,000,000
\_/‘

Move decimal point 12 places to the right.



To use scientific notation on a calcula-
tor, press the key labeled or

or to enter the exponent.
For example, to enter the number
3.629 X 10" on a TI-83 calculator,
we enter

3.629 15
and the display reads
3.629€e15

It is true that the number 9 has two
square roots, 3 and —3, but the notation
V9 is reserved for the positive square
root of 9 (sometimes called the princi-
pal square root of 9). If we want the
negative root, we must write —\/9,
which is —3.
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When we state that the mass of a hydrogen atom is 1.66 X 10~** g, the exponent —24
indicates that the decimal point should be moved 24 places to the left:

1.66 X 107%* = 0.00000000000000000000000166
-

Move decimal point 24 places to the left.

Example 6 Writing Numbers in Scientific Notation
(a) 327,900 = 3.279 X 10° (b) 0.000627 = 6.27 X 10™*
5 plﬁces 4 places [ |

Scientific notation is often used on a calculator to display a very large or very
small number. For instance, if we use a calculator to square the number 1,111,111,
the display panel may show (depending on the calculator model) the approximation

1.234568 12| or [1.23468 €12

Here the final digits indicate the power of 10, and we interpret the result as

1.234568 X 10?2

Example 7 Calculating with Scientific Notation

If a = 0.00046, b = 1.697 X 10, and ¢ = 2.91 X 107'3, use a calculator to
approximate the quotient ab/c.

Solution We could enter the data using scientific notation, or we could use laws
of exponents as follows:

ab (4.6 X 107%)(1.697 X 10%)

c 291 x 107"
_ (4.6)(1.697) % 10-++22+18
291
~ 2.7 X 10%
We state the answer correct to two significant figures because the least accurate
of the given numbers is stated to two significant figures. ]
Radicals

We know what 2" means whenever 7 is an integer. To give meaning to a power, such
as 24/ 3, whose exponent is a rational number, we need to discuss radicals.
The symbol V' means “the positive square root of” Thus

Va=b means b2=a and b=0

Since a = b* = 0, the symbol Va makes sense only when a = 0. For instance,

V9 =3 because 3?=9 and 3=0
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Square roots are special cases of nth roots. The nth root of x is the number that,
when raised to the nth power, gives x.

Definition of nth Root

If n is any positive integer, then the principal nth root of a is defined as
follows:

\Va = b means b =a

If n is even, we must have a = 0 and b = 0.

Thus
V81 =3 because 3*=81 and 3=0
V=8 = -2 because (—2)'= —8
But V-8, v/ —8, and /=8 are not defined. (For instance, vV —8 is not defined

because the square of every real number is nonnegative.)
Notice that

V& =vVi6=4 but V(-4)?2=Vi6=4=|-4|

So, the equation Va? = a'is not always true; it is true only when a = 0. However,
we can always write Va? = | a|. This last equation is true not only for square roots,
but for any even root. This and other rules used in working with nth roots are listed
in the following box. In each property we assume that all the given roots exist.

Properties of nth Roots

Property Example

1. Vab = /a\/b V=8-27 = V=8V27 = (—2)(3) = —6
2 "ﬁ_% 416 _ 4"16_%

“Nb Y 81 81 3

3. V/Va=Va V729 = /729 = 3
4. \/a"=a ifnisodd J(—5P = -5 V2°=2
5.\’7(17=|a| if n is even V(-3)*=|-3] =3

Example 8 Simplifying Expressions Involving nth Roots
(a) \3/; = \S/E Factor out the largest cube
= \3/;\3/); Property 1: Vab = Vavb
= x\%; Property 4: \7/; =a



@ Avoid making the following error:
Va+b ¥ Va+ Vb

For instance, if we let a = 9 and
b = 16, then we see the error:

VO +16 2 V9 + V16

V2523 +4
527 Wrong!
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(b) V 81x¥y* = WWW Property 1: abe = VaN/bVe
=3V (x3)*y ]| Property 5: Va* = |a|
=3x%|y| ?roperty&\yg:\ﬂ.\xz\:xz [
It is frequently useful to combine like radicals in an expression such as
2V/3 + 5V/3. This can be done by using the Distributive Property. Thus
2V3+5V3=02+35)V3=7V3

The next example further illustrates this process.

Example 9 Combining Radicals

(@) V32 + V200 = V16-2 + V100-2 Factor out the largest squares
=V16V2 + V100V2 Property 1: Vab = VaVb
=4V2 + 10V2 = 14V2  Distributive Froperty

(b) If b > 0, then

V256 — Vb = V25V — Vb2V Property 1: Vab = Va Vb

=5Vb — b\Vb Property B, b > O
=(5 - b)\/l; Distributive Property u

Rational Exponents

To define what is meant by a rational exponent or, equivalently, a fractional exponent
such as a'?, we need to use radicals. In order to give meaning to the symbol a'"in a
way that is consistent with the Laws of Exponents, we would have to have

(al/n)n — a(l/n)n — al =a

So, by the definition of nth root,

a'" = Va

In general, we define rational exponents as follows.

Definition of Rational Exponents

For any rational exponent m/n in lowest terms, where m and n are integers
and n > 0, we define
a"" = (Va)"  orequivalently "= \/a”

If n is even, then we require that a = 0.

With this definition it can be proved that the Laws of Exponents also hold for ra-
tional exponents.
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Diophantus lived in Alexandria
about 250 A.D. His book Arith-
metica is considered the first book
on algebra. In it he gives methods
for finding integer solutions of al-
gebraic equations. Arithmetica was
read and studied for more than a
thousand years. Fermat (see page
652) made some of his most im-
portant discoveries while studying

Example 10 Using the Definition of Rational Exponents

(@) 4'2 = Va4 =2
(b) 82 = (V82 =22=4  Alternative solution: 8%° = /8% = V64 = 4
1 1 1
(© 125718 = ===
125 V125 5

11

_ .43

(d)

this book. Diophantus’ major con-
tribution is the use of symbols to
stand for the unknowns in a prob-
lem. Although his symbolism is
not as simple as what we use today,

Using the Laws of Exponents
with Rational Exponents

Example 11

(a) a'Pa’l = a% Law 1: a"a" = a™*"

it was a major advance over writing 25475 "
everything in words. In Diophan- (b) = G235 = 4605 Law 1, Law2: = """
tus’ notation the equation a*l’
X =T +8x—5=24 (c) (2a3b4)3/2 = 23/2((13)3/2(b4)3/2 Law 4: (abc)" = a"b'c"
is written . _ (\6)3 PECRIRTER) Law 3: (a7)" = a™
AKasn P A" Me"kS o6

Our modern algebraic notation did =2V2a""b
not come into common use until 234N\ 3 y4 23(x3/4)3

— 4. 1/2
the 17th century. (d) z )T T (> Laws B, 4, and 7

y x O
8x9/4
= 7-y4x1/2 Law 3
y
= 8x“/4y3 Laws 1 and 2 [ ]

Example 12 Simplifying by Writing Radicals
as Rational Exponents
(@ 2VE)(3Vx) = (2x7)(3x')
_ 6x1/2+1/3 _ 6x5/6
(b) \/)6\7 = (xx'/?)1?

— (x3/2)1/2

Definition of rational exponents
Law 1
Definition of rational exponents
Law 1

= x3/4 Law 3 u

Rationalizing the Denominator

It is often useful to eliminate the radical in a denominator by multiplying both nu-
merator and denominator by an appropriate expression. This procedure is called ra-
tionalizing the denominator. If the denominator is of the form Va, we multiply
numerator and denominator by Va. In doing this we multiply the given quantity by
1, so we do not change its value. For instance,
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Note that the denominator in the last fraction contains no radical. In general, if the
denominator is of the form \/a™ with m < n, then multiplying the numerator and de-
nominator by \/a" =™ will rationalize the denominator, because (for a > 0)

\"/am\’yanfm — \’yaern*m — a'=a

Example 13 Rationalizing Denominators

2V3

3

_ Vx _Vx
3x3 X

@ 2o 2.V
Y3 V3B
I
® ¥~ Vs
(c) i 7a2

BEFA Exercises

1-8 ® Write each radical expression using exponents, and each
exponential expression using radicals.

Radical expression Exponential expression

2. /72
3. 42
4. 117372
5. V53
6. 2715
7. a*’
1
8.
V'
9-18 ® Evaluate each expression.
9. (a) —3° (b) (-3)* () (=3)°
107 3
10. (a) 5°-(3)° ) T © 3=
4*3 3*2
1 @ ) 5 © (§)7
@O mOTE @0
13. (a) V16 (b) V16 (¢) V1/16
14. (a) V64 (b) V—64 (©) V—-32
J— \5/_
15. (@) | 8 ) J L (© &

27 64 V96

16. () V7IV28 (b % (¢c) V2454
17. (@) ()2 (b) (—32)° () —32%
18. (a) 1024°°! (b) (=373 © (B)7"

19-22 m Evaluate the expression using x = 3,y = 4, and
z=—1.

19. VX2 +y?

21. (9x)%P + (29)% + 2

20. V& + 14y + 22

22. (xy)*

23-26 ® Simplify the expression.
23. V32 + V18 24. V75 + V48
25. V96 + V3 26. V48 — V3

27-44 m Simplify the expression and eliminate any negative
exponent(s).

27. da”? 28. (3y?)(4y°)
29. (12x°y*)(3x%) 30. (6y)°
x°(2x)* a bt
31. > 32. R
33. p*(30%)(126°%) 34. (25 H(Es%)(161%)
35. (rs)*(2s) " %(4r)* 36. (2u**)’(3u’v) 2
6y*)* 2x%)%(3x*
3w, @ 5) 38. %
2y ()
SENC IS 443 2\3
39. M 40. (C ¢ ><d—3)
Xy cd c
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(xy223)4
* (x3y22)3

T2\ !
43. (qfs 73)
rsq

Fundamentals

45-52 m Simplify the expression. Assume the letters denote any

real numbers.
45. Vx*

47. V1e6x®
49. \Va»*
51. V/V64x®

46. Vx'
48. V/ x3y6
50. Va*bVa'b

52. V xty?z?

53-70 = Simplify the expression and eliminate any negative
exponent(s). Assume that all letters denote positive numbers.

53. xx!

55. (—3a'*)(9a)
57. (4b)'(8b%5)
59. (¢?d*)~'

61. (y4)*

63. (

Y
2x 4 4/5) (8y2)2/3

65.

()"
o (22)°

(9s1)*
(27s5% 4P

69.

54.
56.
58.
60.

62.
64. (x 5yzzm) 3/5

_2x1/3 4
66. ( 1/2 1/6>
(y102—5)1/5
223)1/3

2/2)(4)‘) 1/2
%/4)(5a‘4/2)
8x ) 2/3
4x6 )3/2

s )" 3/4

(2
(-2
(
(
(
(

68.
O

a2b*3 3 X*bel
x_lyz a3/2y1/3

70.

=

71-72 ®m Write each number in scientific notation.

71. (a) 69,300,000
(c) 0.000028536

72. (a) 129,540,000
(c) 0.0000000014

(b) 7,200,000,000,000
(d) 0.0001213

(b) 7,259,000,000
(d) 0.0007029

73-74 ®m Write each number in decimal notation.

73. (a) 3.19 X 10°
(¢) 2.670 X 107%

74. (a) 7.1 X 10"
(c) 8.55x 1073

(b) 2.721 X 10®
(d) 9.999 X 107°
(b) 6 X 10"

(d) 6.257 X 107'°

75-76 ® Write the number indicated in each statement in

scientific notation.

75. (a) A light-year, the distance that light travels in one year,
is about 5,900,000,000,000 mi.

(b) The diameter of an electron is about

0.0000000000004 cm.

(¢) A drop of water contains more than 33 billion billion

molecules.

76. (a) The distance from the earth to the sun is about

93 million miles.

(b) The mass of an oxygen molecule is about
0.000000000000000000000053 g.

(¢) The mass of the earth is about
5,970,000,000,000,000,000,000,000 kg.

77-82 m Use scientific notation, the Laws of Exponents, and
a calculator to perform the indicated operations. State your

answer correct to the number of significant digits indicated by
the given data.

77.
78.

79

80.

81.

(7.2 X 107%)(1.806 X 10712)
(1.062 X 10*)(8.61 X 10")
1.295643 X 10°

T (3.610 X 10717)(2.511 X 10°)

(73.1)(1.6341 X 10%)
0.0000000019

(0.0000162)(0.01582)

(3.542 X 107°)°

(594.621,000)(0.0058)

(5.05 X 10%)2

83-86 ® Rationalize the denominator.

83.

84.

85.

86.

87.

88.

1 2

(a) Vio (b) \/;
5 X

@ /75 (b) \ﬁ
2 1

@ o (b) e
1 a

@ - (b) i

X
o3
© %
(©) —r 2/5

© 5 3/7

Let a, b, and ¢ be real numbers with a > 0, b < 0, and
¢ < 0. Determine the sign of each expression.

(a) b’ (b) b"°

@ (b-a)? (e (b—a)t

(¢) ab’c®

3C3

(f )

Prove the given Laws of Exponents for the case in which m
and n are positive integers and m > n.

(a) Law 2 (b) Law 5

Applications

89.

Distance to the Nearest Star

(¢) Law 6

Proxima Centauri, the star

nearest to our solar system, is 4.3 light-years away. Use the



90.

91.

92.

93.

9.

information in Exercise 75(a) to express this distance in
miles.

Speed of Light The speed of light is about 186,000 mi/s.

Use the information in Exercise 76(a) to find how long it
takes for a light ray from the sun to reach the earth.

Volume of the Oceans The average ocean depth is

3.7 X 10° m, and the area of the oceans is 3.6 X 10'* m%
What is the total volume of the ocean in liters? (One cubic
meter contains 1000 liters.)

National Debt As of November 2004, the population of
the United States was 2.949 X 108, and the national debt
was 7.529 X 10'? dollars. How much was each person’s
share of the debt?

Number of Molecules A sealed room in a hospital,
measuring 5 m wide, 10 m long, and 3 m high, is filled
with pure oxygen. One cubic meter contains 1000 L,
and 22.4 L of any gas contains 6.02 X 10* molecules
(Avogadro’s number). How many molecules of oxygen
are there in the room?

How Far Can You See? Due to the curvature of the
earth, the maximum distance D that you can see from the

top of a tall building of height / is estimated by the formula

D =\2rh+h

where r = 3960 mi is the radius of the earth and D and i

are also measured in miles. How far can you see from the
observation deck of the Toronto CN Tower, 1135 ft above
the ground?

SECTION 1.2 Exponents and Radicals 23

95. Speed of a Skidding Car Police use the formula
s = V' 30fd to estimate the speed s (in mi/h) at which a car
is traveling if it skids d feet after the brakes are applied sud-
denly. The number fis the coefficient of friction of the road,
which is a measure of the “slipperiness” of the road. The
table gives some typical estimates for f.

Tar Concrete Gravel
Dry 1.0 0.8 0.2
Wet 0.5 0.4 0.1

(a) If a car skids 65 ft on wet concrete, how fast was it
moving when the brakes were applied?

(b) If a car is traveling at 50 mi/h, how far will it skid on

wet tar?

96. Distance from the Earth to the Sun It follows from
Kepler’s Third Law of planetary motion that the average
distance from a planet to the sun (in meters) is

1/3
g (GM) 20
42

where M = 1.99 X 10** kg is the mass of the sun,

G = 6.67 X 107" N - m?/kg? is the gravitational constant,
and 7 is the period of the planet’s orbit (in seconds).

Use the fact that the period of the earth’s orbit is about
365.25 days to find the distance from the earth to the sun.

97. Flow Speed in a Channel The speed of water flowing in
a channel, such as a canal or river bed, is governed by the
Manning Equation

A2/3 ! 2
V = 1.486

p2/3n

Here V is the velocity of the flow in ft/s; A is the cross-
sectional area of the channel in square feet; S is the down-
ward slope of the channel; p is the wetted perimeter in feet
(the distance from the top of one bank, down the side of the
channel, across the bottom, and up to the top of the other
bank); and # is the roughness coefficient (a measure of the
roughness of the channel bottom). This equation is used to
predict the capacity of flood channels to handle runoff from
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heavy rainfalls. For the canal shown in the figure, 99. Easy Powers That Look Hard Calculate these expres-
A =751ft% 5 = 0.050, p = 24.1 ft, and n = 0.040. sions in your head. Use the Laws of Exponents to help you.
(a) Find the speed with which water flows through this 18°

o P & ® o5 (b) 20°-(0.5)°

(b) How many cubic feet of water can the canal discharge
per second? [Hint: Multiply V by A to get the volume of
the flow per second.]

100. Limiting Behavior of Powers Complete the following
tables. What happens to the nth root of 2 as n gets large?
What about the nth root of 32

n 21/n n (%)l/n
1 1
2 2
5 5
10 10
100 100
Discovery . Discussion Construct a similar table for n'”. What happens to the nth

root of n as n gets large?
98. How BigIs a Billion?  If you have a million (10°) dollars in
a suitcase, and you spend a thousand (10°) dollars each day, . . . . .
. mine which number is larger in each pair.
how many years would it take you to use all the money? \h " 112 113
Spending at the same rate, how many years would it take (@) 277 or2 ) ()7 or (3)
you to empty a suitcase filled with a billion (10°) dollars? (¢) 7" or 415 @ V5orV3

m Algebraic Expressions

A variable is a letter that can represent any number from a given set of numbers. If
we start with variables such as x, y, and z and some real numbers, and combine them
using addition, subtraction, multiplication, division, powers, and roots, we obtain an
algebraic expression. Here are some examples:

101. Comparing Roots Without using a calculator, deter-

y— 2z
y2+4

2% —3x + 4 Vx + 10

A monomial is an expression of the form ax®, where a is a real number and k is a
nonnegative integer. A binomial is a sum of two monomials and a trinomial is a sum
of three monomials. In general, a sum of monomials is called a polynomial. For ex-
ample, the first expression listed above is a polynomial, but the other two are not.

Polynomials

A polynomial in the variable x is an expression of the form
ax"+a,_x" '+ +ax+a,

where ay, a,, . . . , a, are real numbers, and n is a nonnegative integer. If
a, # 0, then the polynomial has degree n. The monomials a,x* that make up
the polynomial are called the terms of the polynomial.



Distributive Property

ac + bc = (a + b)c

SECTION 1.3 Algebraic Expressions 25

Note that the degree of a polynomial is the highest power of the variable that ap-
pears in the polynomial.

Polynomial Type Terms Degree
2x>—3x + 4 trinomial 2x2, —3x, 4 2
x4+ 5x binomial X%, 5x 8
3—x+x2—4x* | fourterms | —ix3 x2% —x, 3 3
Sx+1 binomial 5x, 1 1
9x° monomial | 9x3 5
6 monomial | 6 0

Combining Algebraic Expressions

We add and subtract polynomials using the properties of real numbers that were dis-
cussed in Section 1.1. The idea is to combine like terms (that is, terms with the same
variables raised to the same powers) using the Distributive Property. For instance,

57+ 3x" = (5 + 3)x’ = 8’

In subtracting polynomials we have to remember that if a minus sign precedes an ex-
pression in parentheses, then the sign of every term within the parentheses is changed
when we remove the parentheses:

—(b+c¢)=-b—-c
[This is simply a case of the Distributive Property, a(b + ¢) = ab + ac, with
a=—1.]
Example 1

(a) Find the sum (x* — 6x> + 2x + 4) + (x* + 5x* — 7x).
(b) Find the difference (x* — 6x? + 2x + 4) — (x* + 5x% — 7x).

Adding and Subtracting Polynomials

Solution

(@) (x* — 6x% + 2x + 4) + (x* + 5x* — 7x)
= (x> +x%) + (—6x* + 5x%) + (2x — Tx) + 4
=2x*—x*—5x+4

(b) (x* — 6x* + 2x + 4) — (x* + 5x* — Tx)
=xP—6x?+2x+4 —x— 52+ Tx
= (x* = x?) + (=6x* = 5x%) + (2x + Tx) + 4

=—1lx*+9x + 4

Group like terms

Combine like terms

Distributive Property
Group like terms
Combine like terms M
To find the product of polynomials or other algebraic expressions, we need to use

the Distributive Property repeatedly. In particular, using it three times on the product
of two binomials, we get

(a+b)(c+d) =alc+d)+blc+d) =ac+ ad+ bc + bd
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The acronym FOIL helps us remember
that the product of two binomials is the
sum of the products of the First terms,
the Outer terms, the Inner terms, and
the Last terms.

See the Discovery Project on page 34
for a geometric interpretation of some
of these formulas.

This says that we multiply the two factors by multiplying each term in one factor by
each term in the other factor and adding these products. Schematically we have

QY

(a +b)(c +

~_

) = ac + ad + bc + bd

[ 1
F O 1 L

In general, we can multiply two algebraic expressions by using the Distributive
Property and the Laws of Exponents.

Example 2 Multiplying Algebraic Expressions

(@ 2x+ 1)(Bx —5) =6x* — 10x + 3x — 5 Distributive
w 1 1 1 1 Property
F (6] 1 L
=6x>—7x—5 Combine like
terms
b)) (> =3P+ 2x+ 1) =x(x>+2x+ 1) = 3>+ 2x + 1) Distributive
Property
=X +2+x* =33 —6x—-3 Distributive
Property
=x>—x +x*-6x-3 Combine like
terms
(© (1 +Vx)(2—3Vx)=2-3Vx+2Vx—3(Vx)? Distributive
Property
=2—Vx—3x Combine like
terms ]

Certain types of products occur so frequently that you should memorize them. You
can verify the following formulas by performing the multiplications.

Special Product Formulas

If A and B are any real numbers or algebraic expressions, then

1. (A+B)(A—B) =A*—- B Sum and product of same terms
2. (A+ B)>=A>+ 2AB + B* Square of a sum

3. (A—B)*=A?>—-2AB + B* Square of a difference

4. (A + B)’ = A’ + 3A’B + 3AB* + B® Cube of a sum

5. (A — B)’ = A* — 34’B + 3AB> — B* Cube of a difference

The key idea in using these formulas (or any other formula in algebra) is the
Principle of Substitution: We may substitute any algebraic expression for any letter
in a formula. For example, to find (x* + y*)* we use Product Formula 2, substituting
x? for A and y* for B, to get

(x* + %) = (%) + 2(°) () + ()

(A+B? = A2 + 2AB + B?



Check Your Answer
Multiplying gives
3x(x — 2) = 3x* — 6x

Check Your Answer
Multiplying gives
2xy?(4x® + 3x%y —y?) =

8xty? + 6x3y® — 2xy*
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Example 3 Using the Special Product Formulas

Use the Special Product Formulas to find each product.

(@) (3x +5)* (b) (x* = 2)° (©) (2x — Vy)(2x + VYy)
Solution

(a) Substituting A = 3x and B = 5 in Product Formula 2, we get

(3x + 5)* = (3x)* + 2(3x)(5) + 5% = 9x? + 30x + 25
(b) Substituting A = x? and B = 2 in Product Formula 5, we get
(x* = 2)° = (¢*)* = 3(x*)%(2) + 3(x*)(2)* - 2°

=x0 —6x* + 1222 — 8

(c) Substituting A = 2x and B = Vy in Product Formula 1, we get
(2x = Vy)(2x + Vy) = (2x)* = (Vy)?
=4x2—y [ ]
Factoring

We use the Distributive Property to expand algebraic expressions. We sometimes
need to reverse this process (again using the Distributive Property) by factoring an
expression as a product of simpler ones. For example, we can write

B FACTORING Wi
xP—4=(x-2)(x+2)

pr NP A NI I 2 Em—"
I!||=|||| EXPANDING i

We say that x — 2 and x + 2 are factors of x> — 4.
The easiest type of factoring occurs when the terms have a common factor.
Example 4 Factoring Out Common Factors

Factor each expression.
(a) 3x? — 6x (b) 8x*y? + 6x3y* — 2xy*
© 2x+4)(x—3) —5x—3)
Solution
(a) The greatest common factor of the terms 3x2 and —6x is 3x, so we have
3x% — 6x = 3x(x — 2)
(b) We note that
8, 6, and —2 have the greatest common factor 2
x*, x3, and x have the greatest common factor x
y2, y?, and y* have the greatest common factor y>
So the greatest common factor of the three terms in the polynomial is 2xy?, and we have
8xly? + 6xy? — 2xy* = (20y%)(4x%) + (2xy?)(3x%) + (2xy*)(—y?)
= 2xy(4x® + 3x%y — y?)
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Check Your Answer
Multiplying gives
x+3Nx+4)=x>+Tx+12 4

factors of a

J J
ax®>+ bx +c=(px+r)gx +s)
1 1

factors of ¢

Check Your Answer
Multiplying gives
Bx+502x—1)=6x*+7x -5 ¢

(c) The two terms have the common factor x — 3.
2x +4)(x —3) = 5x—3)=[2x +4) —5](x — 3)  Distributive Property
=(2x — 1)(x — 3) Simplify [
To factor a trinomial of the form x> + bx + ¢, we note that
x+rx+s)=x>+F+s)x+rs

so we need to choose numbers r and s so that r + s = b and rs = c.

Example 5 Factoring x*> + bx + ¢ by Trial and Error
Factor: x2 + 7x + 12

Solution We need to find two integers whose product is 12 and whose sum is 7.
By trial and error we find that the two integers are 3 and 4. Thus, the factorization is

x4+ Tx4+12=(x+3)(x + 4)
1

factors of 12 | |

To factor a trinomial of the form ax®> + bx + ¢ with a # 1, we look for factors of
the form px + rand gx + s:

ax’ + bx + ¢ = (px + r)(gx + s) = pgx* + (ps + qr)x + rs

Therefore, we try to find numbers p, ¢, r, and s such that pg = a, rs = ¢, ps + qr = b.
If these numbers are all integers, then we will have a limited number of possibilities
to try for p, ¢, r, and s.

Example 6 Factoring ax> + bx + c by Trial and Error
Factor: 6x>+ 7x — 5

Solution We can factor 6as 6+ 1 or3-2,and —5as —25-1or5-(—1). By try-
ing these possibilities, we arrive at the factorization

factors of 6
6x + 7x —5=03x+ 5)(2x — 1)
(R

factors of —5 | |

Example 7 Recognizing the Form of an Expression
Factor each expression.
(@) x> —2x — 3 b) Sa+ 12 —25a+1)—3
Solution
@ x*—2x—3=(x—-3)x+1) Trial and error
(b) This expression is of the form

-2 -3



SECTION 1.3 Algebraic Expressions 29

where represents Sa + 1. This is the same form as the expression in part (a),
so it will factor as ( = 3) + 1).
(5a+1)P—25a+1)-3=[(Sa+1)-3](5a+1)+1]
= (5a — 2)(5a + 2) ]

Some special algebraic expressions can be factored using the following formulas.
The first three are simply Special Product Formulas written backward.

Special Factoring Formulas

Formula Name

1. - B>=(A—-B)(A + B) Difference of squares
2. A +2AB+ B*>= (A + B)? Perfect square

3. A —2AB + B> = (A — B)? Perfect square

4. A’ — B> = (A — B)(A* + AB + B®)  Difference of cubes
5. A’ + B> = (A + B)(A’ — AB+ B?)  Sum of cubes

Example 8 Factoring Differences of Squares
Factor each polynomial.
(a) 4x* — 25 b) (x +y)?—22
Solution
(a) Using the Difference of Squares Formula with A = 2x and B = 5, we have

4x? — 25 = (2x)> — 5 = (2x — 5)(2x + 5)
A? — B = (A — B)(A + B)

(b) We use the Difference of Squares Formula withA = x + yand B = z.

x+y)P—-z22=@x+y—2)x+y+2) ]

Example 9 Factoring Differences and Sums of Cubes
Factor each polynomial.
(a) 27x* — 1 (b) x*+8
Solution
(a) Using the Difference of Cubes Formula with A = 3x and B = 1, we get
27x* — 1 = (3x)* — 17 = (3x — 1)[(3x)* + (3x)(1) + 1]
=Bx— 1)+ 3x+ 1)
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Mathematics in the
Modern World

Changing Words, Sound,
and Pictures into Numbers

Pictures, sound, and text are rou-
tinely transmitted from one place
to another via the Internet, fax ma-
chines, or modems. How can such
things be transmitted through tele-
phone wires? The key to doing this
is to change them into numbers or
bits (the digits 0 or 1). It’s easy to
see how to change text to numbers.
For example, we could use the cor-
respondence A = 00000001, B =
00000010, C = 00000011, D =
00000100, E = 00000101, and so
on. The word “BED” then becomes
000000100000010100000100. By
reading the digits in groups of
eight, it is possible to translate this
number back to the word “BED.”
Changing sound to bits is more
complicated. A sound wave can be
graphed on an oscilloscope or a
computer. The graph is then broken

down mathematically into simpler
components corresponding to the
different frequencies of the origi-
nal sound. (A branch of mathemat-
ics called Fourier analysis is used
here.) The intensity of each
component is a number, and the
original sound can be recon-
structed from these numbers. For
example, music is stored on a CD
as a sequence of bits; it may look
like 101010001010010100101010
1000001011110101000101011......
(One second of music requires 1.5
million bits!) The CD player re-
constructs the music from the num-
bers on the CD.

Changing pictures into num-
bers involves expressing the color
and brightness of each dot (or
pixel) into a number. This is done
very efficiently using a branch of
mathematics called wavelet theory.
The FBI uses wavelets as a com-
pact way to store the millions of
fingerprints they need on file.

(b) Using the Sum of Cubes Formula with A = x*and B = 2, we have
0+ 8=+ 2 =+ 2)xt - 2xr 4+ 4) n
A trinomial is a perfect square if it is of the form
A*+2AB+ B> or A’—2AB+ B’

So, we recognize a perfect square if the middle term (2AB or —2AB) is plus or
minus twice the product of the square roots of the outer two terms.

Example 10 Recognizing Perfect Squares

Factor each trinomial.

(@) x>+ 6x+9 (b) 4x? — 4xy + y?

Solution
(a) Here A = xand B = 3,50 2AB = 2-x-3 = 6x. Since the middle term is 6x,
the trinomial is a perfect square. By the Perfect Square Formula, we have
x4+ 6x +9=(x+3)?

(b) Here A = 2xand B = y, so 2AB = 2-2x-y = 4xy. Since the middle term is
—4xy, the trinomial is a perfect square. By the Perfect Square Formula, we have

4x* — dxy + y* = (2x — y)? =

When we factor an expression, the result can sometimes be factored further. In
general, we first factor out common factors, then inspect the result to see if it can be
factored by any of the other methods of this section. We repeat this process until we
have factored the expression completely.

Example 11 Factoring an Expression Completely
Factor each expression completely.
(a) 2x* — 8x? (b) x°y* — xy®
Solution

(a) We first factor out the power of x with the smallest exponent.
2x* — 8x? = 2x*(x? — 4)
=2x%(x — 2)(x + 2)

Common factor is 2x°
Factor x* — 4 as a difference of squares

(b) We first factor out the powers of x and y with the smallest exponents.
x5y2 - xy6 = xyz(x“ - y4) Common factor is xy?

(% + ¥ = y?)

Factor x* — y* as a difference of
squares

Factor x* — y? as a difference of
squares [ |

= xy°(x + ) + y)x —y)

In the next example we factor out variables with fractional exponents. This type of
factoring occurs in calculus.



1) 1)
To factor out x 2 from x*?,

subtract exponents:

X}/z = U z(xm

we

(- 1/2))

_ x—]/z(xz/zv 1/2)

_ x*l/Z(XZ)

Check Your Answer

To see that you have factored correctly,
multiply using the Laws of Exponents.

(a) 3x "A(x? — 3x + 2)
=332 —9x12 4 612

®) 2+x)P[x+ (2+1x)]

=Q+x) P+ Q2+ g

v
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Example 12 Factoring Expressions with Fractional Exponents
Factor each expression.
(@) 3x¥? — 9x'? + 6x 712 ® 2+ x)Px+ @2 +x)"
Solution
(a) Factor out the power of x with the smallest exponent, that is, x 12
3 — 9x? + ex 712 = 3x T 1P(x2 — 3x + 2) Factor out 3x*

= 3x7]/2(x - 1)(x—2) Factor the quadratic
x* = Bx + 2

(b) Factor out the power of 2 + x with the smallest exponent, that is, (2 + x) .
Q+x)Px+ 2+ x0)P =2 +x)Px+ Q+x)] Factorour (2 +x)
=2+ )2 + 2x) Simplify
=22+ X)72/3(1 + x) Factor out 2 ]

Polynomials with at least four terms can sometimes be factored by grouping
terms. The following example illustrates the idea.

Example 13 Factoring by Grouping

Factor each polynomial.

(@ x>+ x>+ 4x + 4 (b) x> —2x>—3x+6

Solution

(@ x*+x*+dx+4=x+xH)+ @x+4) Group terms
=x*(x+1)+4x+1) Factor out common factors
=@ +4H)x+1) Factor out x + 1 from each term

(b) x> = 2x* =3x+ 6 =(x —2x?) — 3x — 6) Group terms

=x*(x —2) —3(x —2) Factor out common factors

=@x?*=3)(x—2) Factor out x — 2 from each
term |
BEEN Exercises
1-6 ® Complete the following table by stating whether the 7-42 m Perform the indicated operations and simplify.

polynomial is a monomial, binomial, or trinomial; then list its
terms and state its degree.

Polynomial

Type

7. (12x = 7) — (5x — 12) 8 (5—3x)+ (2x — 8)
9. Bx*+x+ 1)+ (2x>—3x—5)

R

Lx2=3x+7

2x° + 4x?

(1
€
Terms Degree 10. 3x> +x+ 1) — (2x*> — 3x — 5)
1 (x* + 6x2 —4x + 7) — 3x* + 2x — 4)
12. 3(x — 1) + 4(x + 2)
13. 8(2x +5) — 7(x — 9)
4. 4(x* = 3x +5) = 3(x* —2x + 1)
15. 22 = 50) + 2 — 1) — (* — 1)
16. 53t — 4) — (1> +2) — 2t — 3)
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17. Vax(x — Vi) 18. x¥(Vx — 1/Vx)
19. (3t — 2)(7t — 5) 20. (4x — 1)(3x + 7)
21. (x + 2y)(3x — y) 22. (4x — 3y)(2x + 5y)
23. (1 — 2y)? 24. (3x + 4)?

25. (2x% + 3y?)? 26. (c + %)2

27. 2x = 5)(x*—x+ 1) 28.
29. (x* — a®)(x* + a?) 30.

31, (\f—f)(\er )

1+ 2x)(x* = 3x+ 1)

(
( 1/2 + y1/2)(x1/2 _ y1/2)

2. (VRR+1+D)(VE+1-1)

3. (1 + )

34. (1 —2)°

35 (P4 x— D22 —x+2)

36. 3x* + x* —2)(x* + 2x — 1)

37. (1 + X1 — x¥) 38. (1 — b)*(1 + b)?

39. (3x%y + Tay?)(x?y? = 2y%) 40. (x'y — y7)(x* + xy + y?)
4. (x+y+2)x—y—z) 4 (P-y+)x*+y—2)

43-48 ® Factor out the common factor.

43. —2x* + 16x 44, 2x* + 4x7 — 1457
45. y(y — 6) + 9(y — 6) 46. (z +2)> — 5(z + 2)
47. 2x%y — 6xy* + 3xy 48. —7x*y? + 14xy? + 21xy*

49-54 m Factor the trinomial.

49. x* +2x - 3 50. x> —6x+5
51. 8x> — 14x — 15 52. 6y> + 11y — 21
53. B3x +2)2+8(3x+2) + 12

54. 2(a + b)* + 5(a + b) — 3

55-60 ®m Use a Special Factoring Formula to factor the
expression.

55. 94> — 16
57. 27x° +*
59, x2 + 12x + 36

56. (x + 3)2 —
58. 8% — 125(°
60. 1622 — 24z + 9

61-66 ®m Factor the expression by grouping terms.
62. 3x> — x>+ 6x — 2
63. 2x° +x2—6x—3 64. —9x° —3x2+3x + 1

61l. x>+ 4x*+x+4

65 x>+ x*+x+1 66. x>+ x*+x+1

67-70 m Factor the expression completely. Begin by factoring
out the lowest power of each common factor.

67. X3 — x1~2 68. x 2 + 2x 12 4 yI12
69. (x> + D)2+ 2(x> + 1)1
70. 2x'P(x — 2)% — 5x¥B(x — 2)7'5

71-100 = Factor the expression completely.

71, 12x° + 18x 72. 5ab — 8abc
73. x> —2x — 8 74. y* — 8y + 15
75. 2x*+ 5x + 3 76. 9x? — 36x — 45
77. 6x> —5x — 6 78. r? — 6rs + 9s°
79. 25s5% — 10st + t* 80. x> — 36

81. 4x> — 25 82. 49 — 4y?

83. (a + b)* — (a — b)?

(et (ot

85. x*(x* — 1) —9(x* — 1) 86. (a* — 1)b* — 4(a* — 1)

87. 8x7 + 125 88. x° + 64

89. x° — 8y° 90. 274° — b°

91. x* +2x” +x 92. 3x% — 27x

93. y° —3y? — 4y + 12 94, x*+3x>—x—3
95. 2x° +4x>+x+2 96. 3x° + 5x2 — 6x — 10

97. (x — Dx +2)*— (x — DA(x +2)
98. yi(y +2)° +»(y + 2)*

99. (a*+ 1)>— 7@+ 1)+ 10

100. (a* + 2a)* — 2(a* + 2a) — 3

101-104 = Factor the expression completely. (This type of
expression arises in calculus when using the “product rule.”)

101, 5(x* + 4)*(2x)(x — 2)* + (x* + 4)°4)(x — 2)*
102 3(2x — 1)’2)(x + 3)2 + (2x — 1)’(})(x + 3)72
103, (x* + 3)71P — 32 + 3) 74

104, 5x'2(3x + 4)12 — 3x1P(3x + 4)712

105. (a) Show that ab = 3[(a + b)* — (a® + b?)].
(b) Show that (a® + b)? — (> — b*)? = 4a%b".
(¢) Show that
(a* + b*)(c* + d*) = (ac + bd)* + (ad — bc)?
(d) Factor completely: 4a’c?> — (a®> — b* + ¢2)°.

106. Verify Special Factoring Formulas 4 and 5 by expanding
their right-hand sides.



Applications

107. Volume of Concrete A culvert is constructed out of
large cylindrical shells cast in concrete, as shown in the
figure. Using the formula for the volume of a cylinder
given on the inside back cover of this book, explain why
the volume of the cylindrical shell is

V =mR’h — wr*h
Factor to show that

V = 2 - average radius - height - thickness

Use the “unrolled” diagram to explain why this makes sense
geometrically.

= —]

108. Mowing a Field A square field in a certain state park is
mowed around the edges every week. The rest of the field
is kept unmowed to serve as a habitat for birds and small
animals (see the figure). The field measures b feet by b feet,
and the mowed strip is x feet wide.

(a) Explain why the area of the mowed portion is
b* — (b — 2x)%

(b) Factor the expression in (a) to show that the area of the
mowed portion is also 4x(b — x).

[< b |

Discovery ¢ Discussion

109. Degrees of Sums and Products of Polynomials Make
up several pairs of polynomials, then calculate the sum
and product of each pair. Based on your experiments and
observations, answer the following questions.

(a) How is the degree of the product related to the degrees
of the original polynomials?

(b) How is the degree of the sum related to the degrees of
the original polynomials?
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110. The Power of Algebraic Formulas Use the Difference
of Squares Formula to factor 17> — 162 Notice that it is
easy to calculate the factored form in your head, but not so
easy to calculate the original form in this way. Evaluate
each expression in your head:

(a) 528° — 527 (b) 122> — 1207
Now use the Special Product Formula

(¢) 1020% — 10107

(A+B)A—B)=A*—-B

to evaluate these products in your head:
(d) 79-51 (e) 998 -1002

111. Differences of Even Powers

(a) Factor the expressions completely: A* — B* and
A® — B®.

(b) Verify that 18,335 = 12* — 7* and that
2,868,335 = 126 — 7°.

(c) Use the results of parts (a) and (b) to factor the integers
18,335 and 2,868,335. Then show that in both of these
factorizations, all the factors are prime numbers.

112. Factoring A” — 1  Verify these formulas by expanding
and simplifying the right-hand side.

A-1=A-1DA+1)
A-1=A-1DA+A+1)
A—1=A-1A+A+A+1)

Based on the pattern displayed in this list, how do you
think A% — 1 would factor? Verify your conjecture. Now
generalize the pattern you have observed to obtain a factor-
ing formula for A" — 1, where n is a positive integer.

113. Factoring x* + ax? + b A trinomial of the form
x* 4+ ax? + b can sometimes be factored easily. For exam-
ple, x* + 3x> — 4 = (x> + 4)(x*> — 1). Butx* + 3x> + 4
cannot be factored in this way. Instead, we can use the
following method.

x4+ 4= (AP +4) — X2 Add and

subtract

=@*+2)"—x? Factor per-

fect equare

=[(x*+2) = x][(x* + 2) + x] Difference

of squares
=@ —x+2)x*+x+2)

Factor the following using whichever method is appropriate.
@@ x*+x*-2

() x*+2x2+9

(© x*+4x*+16

d x*+2x2+1
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Visualizing a Formula

Many of the Special Product Formulas that we learned in this section can be
“seen” as geometrical facts about length, area, and volume. For example, the
figure shows how the formula for the square of a binomial can be interpreted
as a fact about areas of squares and rectangles.

| [
b : b ab IV
Em————— e
(a+ b)?| |
a : a @’ : ab
| |
a b a b

(a + b)? = a® + 2ab + b*

In the figure, a and b represent lengths, a?, b, ab, and (a + b)?* represent areas.
The ancient Greeks always interpreted algebraic formulas in terms of geometric
figures as we have done here.

1. Explain how the figure verifies the formula a*> — b* = (a + b)(a — b).

) a g

o -

2. Find a figure that verifies the formula (@ — b)* = a* — 2ab + b°.

b

3. Explain how the figure verifies the formula
(a + b)* =d’® + 3a’h + 3ab® + b’

}

| \
| \
| |
| \
| \
g g

[ I
b [ | |

— —
LA i

b a b

4. Is it possible to draw a geometric figure that verifies the formula
for (a + b)*? Explain.

5. (a) Expand (a + b + ¢)>

(b) Make a geometric figure that verifies the formula you found in part (a).
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A quotient of two algebraic expressions is called a fractional expression. Here are
some examples:

2x Vx+3 y—2
x—1 x+1 y:+4

A rational expression is a fractional expression where both the numerator and de-
nominator are polynomials. For example, the following are rational expressions:

2x X x> —x
x—1 x2+1 x2—=5x+6

In this section we learn how to perform algebraic operations on rational expressions.

The Domain of an Algebraic Expression

In general, an algebraic expression may not be defined for all values of the variable.

Expression Domain The domain of an algebraic expression is the set of real numbers that the variable
1 {x|x # 0} is permitted to have. The table in the margin gives some basic expressions and their
X domains.

Vax {x|x =0}
1 Example 1 Finding the Domain of an Expression
7 {x | x> 0}
" Find the domains of the following expressions.
X Vi
2x* 4+ 3x — 1 b)
(@) 2 * ()x2—5x+6 (C)x—S
Solution

(a) This polynomial is defined for every x. Thus, the domain is the set R of real
numbers.

(b) We first factor the denominator.

x _ x
P =5+6 (x—2)(x—3)

Denominator would be O if
x=2o0rx=23.

Since the denominator is zero when x = 2 or 3, the expression is not defined
for these numbers. The domain is {x| x # 2 and x # 3}.

(c) For the numerator to be defined, we must have x = 0. Also, we cannot divide
by zero, so x # 5.

Must have x = O Vi
to take square root. Denominator would be

x—35 Oifx = 5.

Thus, the domain is {x | x = 0 and x # 5}. (]
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0,
@ We can’t cancel the x“’s in

x> =1

X4+ x-2

because x? is not a factor.

Simplifying Rational Expressions

To simplify rational expressions, we factor both numerator and denominator and
use the following property of fractions:

This allows us to cancel common factors from the numerator and denominator.

Example 2 Simplifying Rational Expressions by Cancellation

Simplify: !
implifty: ————
Py xX2+x—2
Solution
x2—1 (x =D+ 1) .
= T
+Hx—2 (x—-1Dx+2) o
x+1
= Cancel common factors [ |

x+2

Multiplying and Dividing Rational Expressions

To multiply rational expressions, we use the following property of fractions:

o3 |

Tla
Oa‘:>
Sla

This says that to multiply two fractions we multiply their numerators and multiply
their denominators.
Example 3 Multiplying Rational Expressions

x2+2x—3 3x+ 12
x>+ 8x + 16

Perform the indicated multiplication and simplify: 1
X —

Solution We first factor.
xP+2x—3 3x+ 12 (x—1)x+3) 3x+4)
x*+ 8x+ 16 (x + 4)?

3 — D)(x + 3)(x + 4)
= Property of fractions

(x — D)(x + 4)?

_ M Cancel common -
X+ 4 factors

Factor

x—1 x—1

To divide rational expressions, we use the following property of fractions:

CIES
.|.

TR
Qo

Tla




@ Avoid making the following error:

A

A A

X=+
B+C/\B C

For instance, if weletA =2, B =1,
and C = 1, then we see the error:

2 22
2=+
1+1"1 1
2
—22+2
2
1 24 Wrong!
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This says that to divide a fraction by another fraction we invert the divisor and
multiply.

Example 4 Dividing Rational Expressions

—4 P—-3x—4
Perform the indicated division and simplify: xz L2 3 o
x“—4 x"+5x+6

Solution

x—4 ;x2—3x—4_ x—4 x*+5x+6
x2—4  x24+5x+6 x*—4 x2—3x—4

Invert and multiply

(x = H)(x + 2)(x + 3)

= Fact.
x—2)x+ ) - +1)

_ & Cancel common -
(x—=2)(x+1) factors

Adding and Subtracting Rational Expressions

To add or subtract rational expressions, we first find a common denominator and
then use the following property of fractions:

Although any common denominator will work, it is best to use the least common de-
nominator (LCD) as explained in Section 1.1. The LCD is found by factoring each
denominator and taking the product of the distinct factors, using the highest power
that appears in any of the factors.

Example 5 Adding and Subtracting Rational
Expressions

Perform the indicated operations and simplify:

@) 3 L% ) 1 2
a _
x—1 x+2 xP—1 (x+1)?
Solution
(a) Here the LCD is simply the product (x — 1)(x + 2).
3 X 3(x +2) xx —1) Write fractions using

=1 x+2 (-DE+2)  G-Dar+2) LD

_3x+6+x2—x
(x—1D(x+2)

Add fractions

B )62"‘2—)6'*‘6 Combine terms in
- (x _ 1)(x + 2) numerator
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NASA

Mathematics in the
Modern World

Error-Correcting Codes

The pictures sent back by the
Pathfinder spacecraft from the sur-
face of Mars on July 4, 1997, were
astoundingly clear. But few watch-
ing these pictures were aware of
the complex mathematics used to
accomplish that feat. The distance
to Mars is enormous, and the back-
ground noise (or static) is many
times stronger than the original
signal emitted by the spacecraft.
So, when scientists receive the sig-
nal, it is full of errors. To get a clear
picture, the errors must be found
and corrected. This same problem
of errors is routinely encountered
in transmitting bank records when
you use an ATM machine, or
voice when you are talking on the
telephone.

To understand how errors are
found and corrected, we must first
understand that to transmit pic-
tures, sound, or text we transform
them into bits (the digits 0 or 1;
see page 30). To help the receiver
recognize errors, the message is
“coded” by inserting additional
bits. For example, suppose you
want to transmit the message
“10100.” A very simple-minded
code is as follows: Send each digit
a million times. The person receiv-
ing the message reads it in blocks of
a million digits. If the first block is
mostly 1’s, he concludes that you
are probably trying to transmit a 1,
and so on. To say that this code is

(continued)

(b) The LCDof x*> — 1 = (x — 1)(x + 1) and (x + 1)*is (x — 1)(x + 1)~
2 1 2
=1 (412 E-Dx+1) (x+1)?
e+ 1) —2(x—1)
(= D+ 1)?
x+1—2x+2
e = D+ 1)?
3—x Combine terms in

- (x = 1)(x + 1)2 numerator "

Factor

Combine fractions
using LCD

Distributive Property

Compound Fractions

A compound fraction is a fraction in which the numerator, the denominator, or both,
are themselves fractional expressions.

Example 6 Simplifying a Compound Fraction

T

Simplify:
1 —
X
Solution 1 We combine the terms in the numerator into a single fraction. We
do the same in the denominator. Then we invert and multiply.

x +
i Y
y Yy xty X
Loy Xy oy xoy
X x
_x(x+y)
y(x = y)

Solution 2 We find the LCD of all the fractions in the expression, then multiply
numerator and denominator by it. In this example the LCD of all the fractions
is xy. Thus

o1 T
y Y Xy Multiply numerator and
: y - . y ) xy denominator by xy
X X
x*+ Xy Simplfy
=—7 impli
xy = y?
x(x +y)
= Factor |

yx =)



not efficient is a bit of an under-
statement; it requires sending a mil-
lion times more data than the
original message. Another method
inserts “check digits.” For example,
for each block of eight digits insert
aninth digit; the inserted digitis 0 if
there is an even number of 1’s in the
block and 1 if there is an odd num-
ber. So, if a single digit is wrong (a
0 changed to a 1, or vice versa), the
check digits allow us to recognize
that an error has occurred. This
method does not tell us where the
error is, so we can’t correct it. Mod-
ern error correcting codes use inter-
esting mathematical algorithms
that require inserting relatively few
digits but which allow the receiver
to not only recognize, but also cor-
rect, errors. The first error correct-
ing code was developed in the
1940s by Richard Hamming at
MIT. Itis interesting to note that the
English language has a built-in er-
ror correcting mechanism; to test
it, try reading this error-laden sen-
tence: Gve mo libty ox giv ne deth.

Factor out the power of 1 4+ x? with

the smallest exponent, in this case

(1+ xz)”"z‘
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The next two examples show situations in calculus that require the ability to
work with fractional expressions.

Example 7 Simplifying a Compound Fraction

Simplify: h

Solution We begin by combining the fractions in the numerator using a common
denominator.

1 1 a—(a+h)
at+h a ala + h) Combine fractions in the
h = h numerator
_a- (a +h) l Property 2 of fractions
ala+h) h (invert divieor and multiply)
A A e Pt
a(a T h) h IsTriputive FOP@?" Y
—h 1 Simplity
= .- m
ala+h) h o
_ -1 Property 5 of fractions
o a(a + h) (cancel common factors) "
Example 8 Simplifying a Compound Fraction
Simolif (1 + x2)1/2 _ x2(1 + x2)—1/2
implify: T 12
Solution 1 Factor (1 + x2)~" from the numerator.
(1+ )52)1/2 —x¥(1 + xz)_l/2 B (1+ xz)_l/z[(l + x?) — x7]
1+ x2 a 1+ x?
(1 +x2)7'2 1
ol +x? (14 a2
Solution 2 Since (1 + x2)™"2 = 1/(1 + x?)"? is a fraction, we can clear all
fractions by multiplying numerator and denominator by (1 + x?) 12
(1+x)P2 =21+ 22 (1 +x)2 =21+ 272 (1 +x2)"
1+ x? B 1 + x2 (1 + x2)1/2
(14 x?) — x? 1
= = ]

(1+x2)%2 1+
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Special Product Formula 1
(a + b)a—b) =a*— b*

Special Product Formula 1
(a + b)a—0b)=a*— b?

Rationalizing the Denominator or the Numerator

If a fraction has a denominator of the form A + BVC, we may rationalize the de-
nominator by multiplying numerator and denominator by the conjugate radical
A — BV/C. This is effective because, by Special Product Formula 1 in Section 1.3,
the product of the denominator and its conjugate radical does not contain a radical:

(A+ BVC)A - BVC)=A*-BC

Example 9 Rationalizing the Denominator
1
Rationalize the denominator: —————
1+ V2
Solution We multiply both the numerator and the denominator by the conjugate
radical of 1 + V2, whichis 1 — V2.

1 B 1 1—\V2 Multiply numerator and
1+V2 T+ \/Q.l —\V2 denominator by the con-

Jjugate radical

_1-v2 Special Product Formula 1
= m

12_(’\/2)2 p@CJa roauc ormula

1-V2 1-\V2
= = —V2-1 »

1-2 —1

Example 10 Rationalizing the Numerator

. . V4 +h—2
Rationalize the numerator: T
Solution We multiply numerator and denominator by the conjugate radical
V4 + h + 2.
N4+ h—2 NI+ h—2 \4+h+2 Multiply humerator and
= . denominator by the
h h V4 + h + 2 conjugate radical
(VA + h)? - 2°
= Special Product F la1
h(\/m n 2) pecwa roauc ormula
4+ h—-4
V4 +h+2)
h 1 Property B of fractions

- h(\/4 +h+ 2) - V4 + h+2 (cancel common factors)

Avoiding Common Errors

Don’t make the mistake of applying properties of multiplication to the operation of
addition. Many of the common errors in algebra involve doing just that. The follow-
ing table states several properties of multiplication and illustrates the error in apply-
ing them to addition.
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Correct multiplication property | Common error with addition

(a-b)* = a*-b*

(a + b)* = ad*+ b

Va+bx Va+ Vb
Va*+b>*=a+b

Va-b=VaVvb (a,b=0)

a*-b*=a-b (a,b=0)

r1_ 1 1. 1y 1
ab a-b a bl\a+b
b +b
aw_y a =5

a a

al b '=(a-b)"! a'+b ' % (a+b)!

To verify that the equations in the right-hand column are wrong, simply substitute
numbers for a and b and calculate each side. For example, if we take ¢ = 2 and
b = 2 in the fourth error, we find that the left-hand side is

1
a
whereas the right-hand side is

1 1 1

a+b 2+2 4

Since 1 # 3, the stated equation is wrong. You should similarly convince yourself of
the error in each of the other equations. (See Exercise 97.)

1-6 ® Find the domain of the expression. 3 y2+y y2 =3y — 18
1. 4x>— 10x+ 3 2. —x*+x3+9x ')’2_1 .2y2+5y+3
2x + 1 2[2_5 15. 2x3_x2_6x 16. l_xz
3'x—4 ‘3146 2x*—Tx + 6 x -1
[ —. B Pertorm the multiplication or division and simplity.
5 Vx+3 6. 17-30 = Perf h Itiplicati divisi d simplify.
-1 17 4x x+2 18 x>—=25 x+4
7-16 ® Simplify the rational expression. TxX2—4  l6x Txt—16 x+5
73(x+2)(x—1) 4()52_1) 19 x>=x—-12 3+«x 20 X>4+2x—3 3—x
To6(x —1)? T12(x+ 2)(x — 1) B 4—x Tx?—2x—3 3+x
-2 T_x-2 t—3 t+3 l-x—-6 S+ x?
9. 0. = 2, oL R
x°-—4 x-—1 t“+9 t°—=9 x°+ 2x x*—2x—3
1 x>+ 6x+8 12 XX=x-12 23 XH+Tx+12 xX2+5+6
X2+ 5x+4 T2+ 5x+6 T2+ +2 P46+ 9
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24.

25.

26

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

46.

47.

48.

49.

50.
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22+ 2xy + ¥ 2x% —xy — y?

Xr—y? = xy— 22
2x2+3x+1;x2+6x+5
X420 — 15 2x*—Tx+3

4y2—9 _2y2+y—3
T2yr+ 9y — 18 Y245y —6

x? 2x2—3x—2

+1 -1

al 28.2)67

X 2x°+ 5x + 2
x2+2x+ 1 X+ x—2
X X
oy 30, X
z y/z

31-50 = Perform the addition or subtraction and simplify.
2x — 1
2+ — Ry e
x+3 x+4
1 2 1 1
+ 34. +
x+5 x—3 x+1 x—1
1 1 3
- 36 —— —
x+1 x+2 x—4 x+6
5 3
—= 38. - -
(x+1) x+1 2x =3  (2x — 3)
2 3 4
+1+ 40. & —— + —
" u+1 a> ab b?

1 1 1 1 1
— + 42—+ —+ —
x> xr+x x x2 X
2 1 1

- 4. 5~
x+3 x*+Tx+ 12 x*—4 x-2

1 1
x+3 x*2-9

X B 2
X+x—2 x*—-5x+4
2 3 4
7+ —

x x—1 x*—x

X B 1 _ 2
x*-x—-6 x+2 x-3

1 _ 1
X>4+3%x+2 x2-2x-3
| 2 3
x+1 (x+1)?% x*-1

51-60 = Simplify the compound fractional expression.

52.

x —

==
= =

1+ — {
< 54. 1+
1 1
1 - 1+
c—1 1 +x
5 B 2 a—b_a+b
-1 + 1 b
X X 56. a
X 1 a—b a+b
x—1 x+1 b a
22 2l 4yl
2 58. -
+y x+y)
( +l)m( l)n
a+ — a— —
1 1 b b
+ 60
1 +a"

1+a™ ' 1\" Ly
() (-d)
a a

61-66 ®m Simplify the fractional expression. (Expressions like
these arise in calculus.)

61.

62.

63.

1 1

ath a
h
(x+h)3—x73
h
I—(x+h) 1-—x
24 (x+h) 2+x
h

" (x + h)> = 7(x + h) = (x* = 7x)

65. \/1 + (\/1)67)&)2

h

1 2
66. \/1+ <x3—ﬁ>
4x-

67-72 m Simplify the expression. (This type of expression
arises in calculus when using the “quotient rule.”)

67.

68.

69.

70.

71.

72.

3(x +2)%(x — 3)* — (x + 2)’2)(x — 3)

(x—3)*
2x(x + 6)* — x}(4)(x + 6)°

(x + 6)*
2(1 + X)) — x(1 + x)7'2

x+ 1

(1 - x2)1/2 + xz(l _ x2)—1/2

1 —x2

3(1 +x)"P = x(1 +x)7

(1+ )6)2/3
(7 = 3x)"? + 3x(7 — 3x)"?

7 — 3x



73-78 m Rationalize the denominator. 94.
73 # 74 L
2-V3 "3-1V5
2 1
75. ———— 76. ————
V2 + V7 Vx + 1
2 —
S 78, X7 Y)
V3+ Vy Vi — Vy
79-84 m Rationalize the numerator.
- +
29 L7 V5 g, Y3+ V5
3 2
g Vr+ V2 g, VX Vxth
) 5 T nVaVx Fh
83 Vxr+1—x 84. Vx +1— Vix

85-92 m State whether the given equation is true for all values
of the variables. (Disregard any value that makes a denominator
Zero.)

16 +
8s. 616“=1+% 86.bf —1-2
¢ ¢ 95.
+
g7 > -1.2 gg, * 1 _~
4+x 2 x y+1 'y
g9, - ! 90. 2(3>:2—“
x+y 1+y b 2b

—a a 1+ x+x° 1
L——=- 2. =—+1+
9 b b 9 . X

Applications

93. Electrical Resistance If two electrical resistors with
resistances R; and R, are connected in parallel (see the
figure), then the total resistance R is given by
1

1 1

— + —

R R

R =

(a) Simplify the expression for R.

(b) If R, = 10 ohms and R, = 20 ohms, what is the total
resistance R?

R

MW

96.

97.
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Average Cost A clothing manufacturer finds that the cost
of producing x shirts is 500 + 6x + 0.01x? dollars.

(a) Explain why the average cost per shirt is given by the
rational expression

4= 500 + 6x + 0.01x>
X

(b) Complete the table by calculating the average cost per
shirt for the given values of x.

X Average cost

10
20
50
100
200
500
1000

Discovery ¢ Discussion

Limiting Behavior of a Rational Expression The
rational expression

x>=9

x—3

is not defined for x = 3. Complete the tables and
determine what value the expression approaches as

x gets closer and closer to 3. Why is this reasonable?
Factor the numerator of the expression and simplify to
see why.

x>=9 x>=9
X X
x—3 x—3
2.80 3.20
2.90 3.10
2.95 3.05
2.99 3.01
2.999 3.001

Is This Rationalization? In the expression 2/Vx we
would eliminate the radical if we were to square both nu-
merator and denominator. Is this the same thing as rational-
izing the denominator?

Algebraic Errors The left-hand column in the table
lists some common algebraic errors. In each case, give an
example using numbers that show that the formula is not
valid. An example of this type, which shows that a
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statement is false, is called a counterexample. 98. The Form of an Algebraic Expression An algebraic
expression may look complicated, but its “form” is always
Algebraic error Counterexample simple; it must be a sum, a product, a quotient, or a power.
For example, consider the following expressions:
1 1 1 1 1
— 4+ - ¥ — 4+ = 3
a bMNa+b 2 27 2+2 (l+x2)2+(ﬁ) (l+x)(1+x+5)
x+ 1 1+ x*
(a+b)2=a2+b2 5_x3 1+ x
Va+b*%a+b 1+ VI1+x? I—x
With appropriate choices for A and B, the first has the form
atb vV, A + B, the second AB, the third A/B, and the fourth A2,
a Recognizing the form of an expression helps us expand,
R 1 simplify, or factor it correctly. Find the form of the follow-
(@+b)" Za+b ing algebraic expressions.
1
a"la" £ a"" @ x+ /1 +— (b) (1 + xH)(1 + x)°
X
RYAYES Ty 1-2V1+x
a g (c) Vx*(4x>+1) d —F——
L+ V14 x?

An equation is a statement that two mathematical expressions are equal. For example,
3+5=38

is an equation. Most equations that we study in algebra contain variables, which are
symbols (usually letters) that stand for numbers. In the equation

dx+7 =19

the letter x is the variable. We think of x as the “unknown” in the equation, and our
goal is to find the value of x that makes the equation true. The values of the unknown

x = 3 is a solution of the equation that make the equation true are called the solutions or roots of the equation, and the
4x + 7 = 19, because substituting process of finding the solutions is called solving the equation.

x = 3 makes the equation true: Two equations with exactly the same solutions are called equivalent equations.

x=3 To solve an equation, we try to find a simpler, equivalent equation in which the vari-

able stands alone on one side of the “equal” sign. Here are the properties that we use

43) +7 =19 v to solve an equation. (In these properties, A, B, and C stand for any algebraic expres-

sions, and the symbol <= means “is equivalent to.”)

Properties of Equality

Property Description

1.A=B&A+C=B+C Adding the same quantity to both sides of
an equation gives an equivalent equation.

2. A=B&CA=CB (C#0) Multiplying both sides of an equation by
the same nonzero quantity gives an
equivalent equation.



Because it is important to CHECK
YOUR ANSWER, we do this in many
of our examples. In these checks, LHS
stands for “left-hand side” and RHS
stands for “right-hand side” of the
original equation.
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These properties require that you perform the same operation on both sides of an
equation when solving it. Thus, if we say “add —7” when solving an equation, that
is just a short way of saying “add —7 to each side of the equation.”

Linear Equations

The simplest type of equation is a linear equation, or first-degree equation, which is an
equation in which each term is either a constant or a nonzero multiple of the variable.

Linear Equations

A linear equation in one variable is an equation equivalent to one of the form
ax +b=0

where a and b are real numbers and x is the variable.

Here are some examples that illustrate the difference between linear and nonlinear
equations.

Linear equations Nonlinear equations
Not linear; contains the
4 —5=3 x2+2x=28 square of the variable
Not linear; contains the
— 1. _ — 6x = ’
2x =qx 17 Vx = 6x=0 square root of the variable
X 3 ; :
x—6==— — —2x =1 Not linear; contains the
X

reciprocal of the variable

Example 1 Solving a Linear Equation
Solve the equation 7x — 4 = 3x + 8.

Solution We solve this by changing it to an equivalent equation with all terms
that have the variable x on one side and all constant terms on the other.

Tx —4=3x+38 Given equation
(Tx —4)+4=03Bx+38) +4 Add 4

Tx =3x + 12 Simplify

Tx —3x = (3x + 12) — 3x  Subtract 3x
4x = 12 Simplify

Tedx=1-12 Multiply by 2
x =3 Simplify [ |
Check Your Answer w =13 w=3
x =3: LHS = 7(3) — 4 RHS = 3(3) + 8
=17 =17

LHS = RHS v
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This is Newton’s Law of Gravity. It
gives the gravitational force F between
two masses m and M that are a distance
r apart. The constant G is the universal
gravitational constant.

Figure 1
A closed rectangular box

Many formulas in the sciences involve several variables, and it is often necessary to
express one of the variables in terms of the others. In the next example we solve for
a variable in Newton’s Law of Gravity.

Example 2 Solving for One Variable in Terms of Others
Solve for the variable M in the equation
mM
F=G6""7%
,

Solution Although this equation involves more than one variable, we solve
it as usual by isolating M on one side and treating the other variables as we
would numbers.

Gm
F = e M
r
Gm Gm 2 ultiply by reciprocal o 2

Factor M from RHS

r’F _ —
7Gm implify
L r’F
The solutionis M = —. [
Gm

Example 3 Solving for One Variable in Terms
of Others

The surface area A of the closed rectangular box shown in Figure 1 can be calcu-
lated from the length /, the width w, and the height & according to the formula

A = 2lw + 2wh + 2lh
Solve for w in terms of the other variables in this equation.

Solution Although this equation involves more than one variable, we solve it as
usual by isolating w on one side, treating the other variables as we would numbers.

A = (2w + 2wh) + 21h
A — 2lh = 2lw + 2wh
A —2h = (21 + 2h)w
A —2Ih
2A+2n "

€ solution 18 .

Collect terms involving w
Subtract 2lh

Factor wfrom RHS

Divide by 21 + 2h

Quadratic Equations

Linear equations are first-degree equations like 2x + 1 = 5 or 4 — 3x = 2. Quadratic
equations are second-degree equations like x* + 2x — 3 = 0 or 2x + 3 = 5x.
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Quadratic Equations Quadratic Equations

> —2x—8=0 . .
! ‘ A quadratic equation is an equation of the form

3x + 10 = 4x7? 2
ax“+bx +c=0

%xz-i-_%x—é:()

where a, b, and c are real numbers with a # 0.

Some quadratic equations can be solved by factoring and using the following basic
property of real numbers.

Zero-Product Property

AB =0 if and only if A=0 or B=0

This means that if we can factor the left-hand side of a quadratic (or other) equation,
@ then we can solve it by setting each factor equal to 0 in turn. This method works only
when the right-hand side of the equation is 0.

Example 4 Solving a Quadratic Equation by Factoring

Solve the equation x* + 5x = 24.

Solution We must first rewrite the equation so that the right-hand side is 0.

Check Your Answers x* + 5x =24

X =3 x> +5x—-24=0 Subtract 24
(3)2+5(3)=9+ 15 =24 v (x—=3)(x+8)=0 Factor

x=-8 x—3=0 or x+8=0 Zero-Product Property
(—8)> + 5(—8) = 64 — 40 = 24 x=3 x=—8  Sole

v
The solutions are x = 3 and x = —8.

Do you see why one side of the equation must be 0 in Example 4? Factoring the
equation as x(x + 5) = 24 does not help us find the solutions, since 24 can be fac-
tored in infinitely many ways, such as 6+ 4, 5 - 48, (—3) - (—60), and so on.

A quadratic equation of the form x> — ¢ = 0, where ¢ is a positive constant, fac-
tors as (x — Ve)(x + V) = 0, and so the solutions are x = Vc and x = — V.

We often abbreviate this as x = *Ve.

Solving a Simple Quadratic Equation

The solutions of the equation x> = ¢ are x = Vcand x = — V.
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See page 30 for how to recognize when
a quadratic expression is a perfect
square.

Completing the Square

Area of blue region is

b
xr+ 2(5)){ =x2 + bx

Add a small square of area (h/2)* to
“complete” the square.

[SYIS S

X

(SIS

@ When completing the square,
make sure the coefficient of x%is 1. If
it isn’t, you must factor this coefficient
from both terms that contain x:

b
ax® + bx = a(xz + *x)
a

Then complete the square inside the
parentheses. Remember that the term
added inside the parentheses is multi-
plied by a.

Example 5 Solving Simple Quadratics
Solve each equation.

(@ x*=5 b) (x—4)?=5

Solution
(a) From the principle in the preceding box, we get x = + V/5.

(b) We can take the square root of each side of this equation as well.
(x—4)? =5
x—4==+V5
45 Add4
The solutions are x = 4 + VSand x = 4 — V5.

Take the square root

X

As we saw in Example 5, if a quadratic equation is of the form (x * a)* = ¢, then
we can solve it by taking the square root of each side. In an equation of this form
the left-hand side is a perfect square: the square of a linear expression in x. So, if a
quadratic equation does not factor readily, then we can solve it using the technique of
completing the square. This means that we add a constant to an expression to make
it a perfect square. For example, to make x* — 6x a perfect square we must add 9,

since x> — 6x + 9 = (x — 3)~

Completing the Square

b 2
To make x? + bx a perfect square, add <2> , the square of half the

coefficient of x. This gives the perfect square

b\? b\?
x2+bx+<2> =<x+2)

Example 6 Solving Quadratic Equations by Completing
the Square

Solve each equation.

(@ x>—8x+13=0 (b) 3x>— 12x+6=0

Solution
(@ x>?— 8 +13=0 Given equation
x> — 8 =-13 Subtract 13
x*=8x+ 16 = =13+ 16  Complete the square: add <%8>7 =16
(x—4)>=3 Perfect square
x—4==%=V3 Take square root
x=4+13 Add 4



Francois Viete (1540-1603) had a
successful political career before
taking up mathematics late in life.
He became one of the most famous
French mathematicians of the 16th
century. Viete introduced a new
level of abstraction in algebra by
using letters to stand for known
quantities in an equation. Before
Viete’s time, each equation had to
be solved on its own. For instance,
the quadratic equations

3x2+2x+8=0
5x2—6x+4=0

had to be solved separately by
completing the square. Viete’s idea
was to consider all quadratic equa-
tions at once by writing

ax>+bx+c=0

where a, b, and ¢ are known quan-
tities. Thus, he made it possible to
write a formula (in this case, the
quadratic formula) involving a, b,
and c that can be used to solve all
such equations in one fell swoop.

Viete’s mathematical genius
proved quite valuable during a war
between France and Spain. To
communicate with their troops, the
Spaniards used a complicated code
that Viete managed to decipher.
Unaware of Viete’s accomplish-
ment, the Spanish king, Philip II,
protested to the Pope, claiming that
the French were using witchcraft to
read his messages.
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(b) After subtracting 6 from each side of the equation, we must factor the
coefficient of x? (the 3) from the left side to put the equation in the correct form
for completing the square.

32— 12x+6=0
3x2— 12x = —6
3(x? — 4x) = —6

Given equation
Subtract ©
Factor 3 from LHS

Now we complete the square by adding (—2)? = 4 inside the parentheses.

Since everything inside the parentheses is multiplied by 3, this means that we are
actually adding 3 -4 = 12 to the left side of the equation. Thus, we must add

12 to the right side as well.

3x* —4x +4) = —6 +3-4  Complete the square: add 4
3x —2)*=6 Perfect square
(x—2)7=2 Divide by 3
x—2=*V2 Take square root
x=2*V2 Add 2 n

We can use the technique of completing the square to derive a formula for the roots
of the general quadratic equation ax* + bx + ¢ = 0.

The Quadratic Formula

The roots of the quadratic equation ax®> + bx + ¢ = 0, where a # 0, are

_ —b=* \Vb* — 4dac

T 2a

B Proof First, we divide each side of the equation by a and move the constant
to the right side, giving

) c
x°+—x=—-— Divide by a
a

a

We now complete the square by adding (b/2a)? to each side of the equation:

e (i) i (3)
X —Xx — ] = —— —
a 2a a 2a

( b)2 —dac + b*
X+~ =——

b 2
Complete the square: Add <?>
a

Ferfect square

2a 44>
\Vb? — 4dac
X+ —=*xx— Take square root
2a 2a
—b * Vb* — 4dac b
X = Subtract — u
2a 2a

The quadratic formula could be used to solve the equations in Examples 4 and 6.
You should carry out the details of these calculations.
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Another Method
4>+ 12x+9=0

(2x+3)*’=0

2x +3 =0

X

(S}

Example 7 Using the Quadratic Formula

Find all solutions of each equation.
(@ 3x2—5x—1=0 (b) 4x>+12x+9=0 © x>+2x+2=0

Solution

(a) In this quadratic equationa = 3,b = —5,and ¢ = —1.

By the quadratic formula,

—(=5) = V(=5 —4(3)(-1) 5+ /37

2(3) 6
If approximations are desired, we can use a calculator to obtain
5+ V37 5 — V37
X=Tme ~ 1.8471 and X=Te ~ —0.1805

(b) Using the quadratic formula witha = 4, b = 12, and ¢ = 9 gives
2= (12)> — 4-4-9 _—12*x0 3

2.4 8 2

This equation has only one solution, x = —3.
(c) Using the quadratic formula witha = 1,5 = 2, and ¢ = 2 gives

2= V2-4.2 —2xV-4 222V

=—1*V-1
2 2 2

X

Since the square of any real number is nonnegative, vV —1 is undefined in the
real number system. The equation has no real solution. ]

In Section 3.4 we study the complex number system, in which the square roots of
negative numbers do exist. The equation in Example 7(c) does have solutions in the
complex number system.

The quantity b> — 4ac that appears under the square root sign in the quadratic for-
mula is called the discriminant of the equation ax> + bx + ¢ = 0 and is given the
symbol D. If D < 0, then \/b*> — 4ac is undefined, and the quadratic equation has
no real solution, as in Example 7(c). If D = 0, then the equation has only one real so-
lution, as in Example 7(b). Finally, if D > 0, then the equation has two distinct real
solutions, as in Example 7(a). The following box summarizes these observations.

The Discriminant

The discriminant of the general quadratic ax? + bx + ¢ = 0 (a # 0) is
D = b? — 4ac.

1. If D > 0, then the equation has two distinct real solutions.

2. If D = 0, then the equation has exactly one real solution.

3. If D < 0, then the equation has no real solution.
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Example 8 Using the Discriminant

Use the discriminant to determine how many real solutions each equation has.
(@ x>+4x—1=0 (b) 4x>—12x+9=0 (c)%x2—2x+4=0

Solution

(a) The discriminantis D = 4> — 4(1)(—1) = 20 > 0, so the equation has two
distinct real solutions.

(b) The discriminantis D = (—12)* — 4-4-9 = 0, so the equation has exactly
one real solution.

(c) The discriminant is D = (—2)> — 4(})4 = —3 < 0, so the equation has no real
solution. -

Now let’s consider a real-life situation that can be modeled by a quadratic equation.

Example 9 The Path of a Projectile

An object thrown or fired straight upward at an initial speed of v, ft/s will reach a

This formula depends on the fact that height of & feet after 7 seconds, where h and ¢ are related by the formula
acceleration due to gravity is constant )
near the earth’s surface. Here we h = —16t" + vyt

lect the effect of air resistance. . . .
neglect the effect ofair resistance Suppose that a bullet is shot straight upward with an initial speed of 800 ft/s. Its
path is shown in Figure 2.

(a) When does the bullet fall back to ground level?
(b) When does it reach a height of 6400 ft?

(c) When does it reach a height of 2 mi?

(d) How high is the highest point the bullet reaches?

Solution Since the initial speed in this case is v, = 800 ft/s, the formula is
h = —16t* + 800t
(a) Ground level corresponds to 2 = 0, so we must solve the equation
0= —16¢* 4800t Seth=0
0 = —161(t — 50) Factor

Thus, t = 0 or # = 50. This means the bullet starts (z = 0) at ground level and
returns to ground level after 50 s.

(b) Setting i = 6400 gives the equation
6400 = —16t> + 800t  Set h = 6400

16t — 800¢ + 6400 = 0 All terms to LHS
12— 50t + 400 = 0 Divide by 16
OT (t — 10)(t — 40) = 0 Factor
6400 ft t=10 or t =40 Solve

The bullet reaches 6400 ft after 10 s (on its ascent) and again after 40 s (on its
e —— descent to earth).
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>

©
S}
| 2.

10,000 ft

Check Your Answers

v =
3.5

S =373
=1+1=2

RHS = 2

LHS = RHS v

x=—1:

LHSZ%+—15+2
=3+5=2

RHS = 2

LHS = RHS v

(¢) Two miles is 2 X 5280 = 10,560 ft.
10,560 = —16¢* + 800t  Set h = 10,560
161> — 8007 + 10,560 = 0 All terms to LHS
2 — 50t + 660 = 0 Divide by 16

The discriminant of this equation is D = (—50)* — 4(660) = —140, which is
negative. Thus, the equation has no real solution. The bullet never reaches a
height of 2 mi.

(d) Each height the bullet reaches is attained twice, once on its ascent and once on
its descent. The only exception is the highest point of its path, which is reached
only once. This means that for the highest value of £, the following equation
has only one solution for #:

h = —161* + 800t
161 — 800t + h = 0 All terms to LHS
This in turn means that the discriminant D of the equation is 0, and so
D = (—800)* — 4(16)h = 0
640,000 — 64h = 0
h = 10,000

The maximum height reached is 10,000 ft. ]

Other Types of Equations

So far we have learned how to solve linear and quadratic equations. Now we study
other types of equations, including those that involve higher powers, fractional ex-
pressions, and radicals.

Example 10 An Equation Involving Fractional
Expressions

5 pr—
x+2

3
Solve the equation T + 2.

Solution We eliminate the denominators by multiplying each side by the lowest
common denominator.

(i + . i 2)x(x +2) =2x(x +2) Multiply by LCD x(x + 2)
3(x + 2) + 5x = 2x* + 4x Expand
8x + 6 = 2x? + 4x Expand LHS
0=2x*—4x—6 Subtract &x + 6
0=x>—2x—-3 Divide both sides by 2
0=(x—3)x+1)  Factor
x—3=0 or x+1=0 Zero-Froduct Froperty

x=3 x=—1 Solve



Check Your Answers

LHS = RHS

x=1:

LHS =2(1) =2

RHS=1—-V2—-1
=1-1=0

LHS # RHS
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We must check our answers because multiplying by an expression that contains the
variable can introduce extraneous solutions. From Check Your Answers we see that
the solutions are x = 3 and —1. [

When you solve an equation that involves radicals, you must be especially careful
to check your final answers. The next example demonstrates why.

Example 11 An Equation Involving a Radical
Solve the equation 2x = 1 — V2 — x.

Solution To eliminate the square root, we first isolate it on one side of the equal
sign, then square.

2x—1=-V2—x Subtract 1
x—1)Y?=2—-x Square each side
4x* —4x+1=2—x Expand LHS
4x* =3x—1=0 Add —2 + x
dx+DHx—1)=0 Factor
4x+1=0 or x—1=0 Zero-Froduct Property
x=—1 x=1 Solve
The values x = —2 and x = 1 are only potential solutions. We must check them
to see if they satisfy the original equation. From Check Your Answers we see that
x = —1is asolution but x = 1 is not. The only solution is x = —3. n

When we solve an equation, we may end up with one or more extraneous solu-
tions, that is, potential solutions that do not satisfy the original equation. In Example
11, the value x = 1 is an extraneous solution. Extraneous solutions may be introduced
when we square each side of an equation because the operation of squaring can turn
a false equation into a true one. For example, —1 # 1, but (—1)2 = 12. Thus, the
squared equation may be true for more values of the variable than the original equa-
tion. That is why you must always check your answers to make sure that each satisfies
the original equation.

An equation of the form aW? + bW + ¢ = 0, where W is an algebraic expression,
is an equation of quadratic type. We solve equations of quadratic type by substitut-
ing for the algebraic expression, as we see in the next two examples.

Example 12 A Fourth-Degree Equation of Quadratic Type
Find all solutions of the equation x* — 8x? + 8 = 0.

Solution If we set W = x2, then we get a quadratic equation in the new variable W:

(x*)? —8x*+8=0 Write x* as (x*)*
W2 —8W+8=0 Let W = x?
—(—8) = —8)?—4-8
W= (=8) 2( ) =4 +2V2 Quadratic formula
X’ =422V2 W= x?
x=*V4+2V2 Take square roots
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Pythagoras (circa 580-500 B.C.)
founded a school in Croton in
southern Italy, which was devoted
to the study of arithmetic, geom-
etry, music, and astronomy. The
Pythagoreans, as they were called,
were a secret society with peculiar
rules and initiation rites. They
wrote nothing down, and were not
to reveal to anyone what they had
learned from the Master. Although
women were barred by law from at-
tending public meetings, Pythago-
ras allowed women in his school,
and his most famous student was
Theano (whom he later married).

According to Aristotle, the
Pythagoreans were convinced that
“the principles of mathematics are
the principles of all things.” Their
motto was “Everything is Number,”
by which they meant whole num-
bers. The outstanding contribution
of Pythagoras is the theorem that
bears his name: In a right triangle
the area of the square on the hypo-
tenuse is equal to the sum of the
areas of the square on the other two
sides.

ct=a*+ b?

The converse of Pythagoras’s The-
orem is also true: A triangle whose
sides a, b, and c satisfy a+b=c
is a right triangle.

So, there are four solutions:

V4 +2V2, V4 -2V2, -V4 +2V2,

-V4-2V2

Using a calculator, we obtain the approximations x = 2.61, 1.08, —2.61, —1.08. =
Example 13 An Equation Involving Fractional Powers
Find all solutions of the equation x 134 x6—2=0.
Solution This equation is of quadratic type because if we let W = x 1 % then
w2 = (x1/6)2 = 13
x4 x—2=0
W24+ W-2=0 Let W= x"®
W-1HW+2)=0 Factor
W—-1=0 or W+2=0 Zero-Product Property
wW=1 W= -2 Solve
X6 =1 xo=—2 w=xe
x=1°=1 x=(—2)°=64  Take the Gth power

From Check Your Answers we see that x = 1 is a solution but x = 64 is not. The
only solution is x = 1. ]
Check Your Answers
x=1: x = 64:

LHS = 1" + 1 =2 =0 LHS = 64 + 64'° — 2

=4+2-2=4

RHS =0 RHS =0

LHS = RHS v LHS # RHS X

When solving equations that involve absolute values, we usually take cases.

Example 14 An Absolute Value Equation
Solve the equation |2x — 5| = 3.
Solution By the definition of absolute value, | 2x — 5| = 3 is equivalent to
2x —5=3 or 2x —5=-3
2x =8 2x =2
x=4 x=1

The solutions are x = 1, x = 4. ]
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BEE Exercises

1-4 ® Determine whether the given value is a solution of the
equation.
1. 4x+7=9x -3
(@ x= -2 (b) x=2

M
31. V= %ﬂ'rzh; for r 32. F = Gfm2 . forr
r

33. a®> + b2 =c? forb

©\2
l .
2.1-[2-(3-x)]=4x— (6 +x) 34-A:P(l+m); for i
=2 b) x =4
W " 35. h = 3gt* + vpt; 36 s—Ll+l)~ fi
1 1 . h=5gt" + vyt; fort .S = 5 forn
.- =1
x x—4
(@ x=2 (b) x=4 37-44 m Solve the equation by factoring.
32 37. x2+x—12=0 38. x24+3x—4=0
4. =x—38
x—6 39. X2~ Tx+12=0 40. X2+ 8x +12=0
(@) x=4 (b) x=38 41. 4x* —4x—15=0 42. 22+ 7y +3=0
5-22 ® The given equation is either linear or equivalent to a 43. 3x> +5x=2 44. 6x(x — 1) =21 — x
linear equation. Solve the equation.
s 5 . 6 s sy 45-52 m Solve the equation by completing the square.
L 2x+ 7= . S5x —3 =
7l g 6 34 lres 45. > +2x—-5=0 46. x> —4x +2=0
.3 X — 8 = .3+t 3x =
? ’ 47. X +3x—1=0 48. x> =3x -1
9. “Tw=15—-2w 10. 5+ — 13 =12 — 5t
" )1 1. 2 3 49. 2x>+8x+1=0 50. 3x>—6x—1=0
3y —2=3 o=z +7
2 W 5 10 51 4x* —x =0 52 —2x>+6x+3=0
13. 2(1 —x) =3(1 +2x) +5
b 1 y+1 53-68 m Find all real solutions of the quadratic equation.
Loyt oy —3)=——
Woyty=39) =" 53.x2—2x—15=0 54. x? + 30x + 200 = 0
15 ! 1 5-0 16. 2 x+x+l 6 55. x> +3x+1=0 56. x> —6x+1=0
X —3x—3x—5= . 2x — = = 6x
2 4 57.2x*+x—3=0 58. 32+ 7x +4=0
17_1:3i+1 18.2x—21:% 59.2°—y—5=0 60. 0> —30 + 1 =0
+
o * 6L 4x>+ 16x—9=0 62. w? = 3w — 1)
3 1 1 4 2 35
19, = 20. AT 63.3+5:+22=0 64. x> — V5x+1=0
X X X = X X7 —
+5 . T+2x - V32 = L3+ 2x+2=
2 (1— 42 =(r+42+32 22.\V3x+ VIZ=" 65. Vox* + 20— V3/2=0 66 3"+ 2x 0
V3 67. 25> +70x +49=0  68. 5x>—Tx+5=0
23-36 ®m Solve the equation for the indicated variable.
M 69-74 m Use the discriminant to determine the number of real
23. PV = nRT; forR 24. F = Gm—z; for m solutions of the equation. Do not solve the equation.
r
| | | 69. x2—6x+1=0 70. 3x2=6x—9
25. 5= R + & for R, 26. P =20+ 2w; forw 71 x2+220x+121=0  72. x>+ 221x+121=0
o+ b 73 4x+5x+ 2 =0 74. x>+ mx—s5=0 (s>0)
27. =2; forx
ex +d 75-98 m Find all real solutions of the equation.
28.a—2[b—3(c—x)]=6; for x 75 1 N 1 _é 76&_ 12 t4—0
29. a*x + (a— 1) =(a + 1)x; forx Tx—1 x+2 4 “x x-3
a+1l a—1 b+1 x? 1 2
30. = + ;T 7. =50 78. -—=0
b b L oond X+ 100 x—1 i
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x+5 5 28 X
= +

30 7x+1_
x—2 x+2 x*—4 " 2x+7 x+3

81. V2x+1+1=x 82. V5 —x+1=x—-2

79. 1

83. 2x + Vx +1=28 84. Vx—5+x=5
85. x*—13x2+40=0 86. x* —5x2+4=0
87. 2x*+4x2+1=0 88. x°—2x7=3=0

89. x*3 —5x+6=0 90. Vx—3Vx—4=0
91 4x + 1) =50+ 1)+ (x + 1) =0

92. x'? + 3x7 12 = 1057
93, x'2 = 3x!P =3y — 9
95. |2x| =3

97. |x — 4| = 0.01

9. x —5Vx+6=0
96. |3x + 5| =1
98. |x — 6] =—1

Applications

99-100 m Falling-Body Problems Suppose an object is
dropped from a height A, above the ground. Then its height after
t seconds is given by h = —16¢> + hy, where h is measured in
feet. Use this information to solve the problem.

99. If a ball is dropped from 288 ft above the ground, how
long does it take to reach ground level?
100. A ball is dropped from the top of a building 96 ft tall.

(a) How long will it take to fall half the distance to ground
level?

(b) How long will it take to fall to ground level?

101-102 = Falling-Body Problems Use the formula
h = —16t* + vyt discussed in Example 9.

101. A ball is thrown straight upward at an initial speed of
vy = 40 ft/s.
(a) When does the ball reach a height of 24 ft?
(b) When does it reach a height of 48 ft?
(¢) What is the greatest height reached by the ball?
(d) When does the ball reach the highest point of its path?
(e) When does the ball hit the ground?
102. How fast would a ball have to be thrown upward to reach a

maximum height of 100 ft? [Hint: Use the discriminant of
the equation 1612 — vyt + h = 0.]

103. Shrinkage in Concrete Beams As concrete dries, it
shrinks—the higher the water content, the greater the
shrinkage. If a concrete beam has a water content of
w kg/m’, then it will shrink by a factor

~0.032w — 2.5
10,000

104.

105.

106.

107.

108.

where S is the fraction of the original beam length that
disappears due to shrinkage.

(a) A beam 12.025 m long is cast in concrete that contains
250 kg/m® water. What is the shrinkage factor S? How
long will the beam be when it has dried?

(b) A beamis 10.014 m long when wet. We want it to
shrink to 10.009 m, so the shrinkage factor should be
S = 0.00050. What water content will provide this
amount of shrinkage?

The Lens Equation If F is the focal length of a convex
lens and an object is placed at a distance x from the lens,
then its image will be at a distance y from the lens,
where F, x, and y are related by the lens equation

1 1

— + —
F x vy
Suppose that a lens has a focal length of 4.8 cm, and that
the image of an object is 4 cm closer to the lens than the
object itself. How far from the lens is the object?

Fish Population The fish population in a certain lake
rises and falls according to the formula

F = 1000030 + 17t — %)

Here F is the number of fish at time 7, where ¢ is measured

in years since January 1, 2002, when the fish population

was first estimated.

(a) On what date will the fish population again be the
same as on January 1, 2002?

(b) By what date will all the fish in the lake have died?

Fish Population A large pond is stocked with fish.
The fish population P is modeled by the formula

P =3t + 10Vt + 140, where ¢ is the number of days
since the fish were first introduced into the pond. How
many days will it take for the fish population to

reach 5007

Profit A small-appliance manufacturer finds that the
profit P (in dollars) generated by producing x microwave
ovens per week is given by the formula P = 15x (300 — x)
provided that 0 = x = 200. How many ovens must be
manufactured in a given week to generate a profit of
$1250?

Gravity If an imaginary line segment is drawn between
the centers of the earth and the moon, then the net



gravitational force F acting on an object situated on this
line segment is

F= —-K N 0.012K

x* (239 —x)?

where K > 0 is a constant and x is the distance of the
object from the center of the earth, measured in thousands
of miles. How far from the center of the earth is the “dead
spot” where no net gravitational force acts upon the ob-
ject? (Express your answer to the nearest thousand miles.)

_x—>|

109.

Depth of a Well One method for determining the depth
of a well is to drop a stone into it and then measure the
time it takes until the splash is heard. If d is the depth of
the well (in feet) and #, the time (in seconds) it takes

for the stone to fall, then d = 163, so t; = Vd/4. Now if
1, is the time it takes for the sound to travel back up, then
d = 1090t, because the speed of sound is 1090 ft/s. So

1, = d/1090. Thus, the total time elapsed between drop-
ping the stone and hearing the splash is

Vd d

o=
P24 1090

How deep is the well if this total time is 3 s?

Time Time
stone sound
falls: 1 rises:
_d _d_
h=7 2 = 7090

Discovery ¢ Discussion

110.

A Family of Equations The equation

x+k—5=kc —k+1

111.

112.

113.
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is really a family of equations, because for each value
of k, we get a different equation with the unknown x. The
letter k is called a parameter for this family. What value
should we pick for k to make the given value of x a solu-
tion of the resulting equation?

@ x=0 (b) x=1 () x=2

Proof That 0 = 1? The following steps appear to give
equivalent equations, which seem to prove that 1 = 0. Find
the error.

x=1 Given
x2=x Multiply by x
X2 —x= Subtract x
x(x—1)=0 Factor
x(x — 1) 0
=1 :x—l Divide by x — 1
x=0 Simplify
1= Given x =1

Volumes of Solids The sphere, cylinder, and cone
shown here all have the same radius r and the same
volume V.

(a) Use the volume formulas given on the inside front
cover of this book, to show that

4 3

4 4
3 3Tr

ard = wr’h, and = %wrzhz

(b) Solve these equations for 4, and h,.

v
oW Ai

Relationship between Roots and Coefficients

The quadratic formula gives us the roots of a quadratic
equation from its coefficients. We can also obtain the
coefficients from the roots. For example, find the roots of
the equation x? — 9x + 20 = 0 and show that the product
of the roots is the constant term 20 and the sum of the
roots is 9, the negative of the coefficient of x. Show that
the same relationship between roots and coefficients holds
for the following equations:

x> —-2x—8=0
X +H4x+2=0

Use the quadratic formula to prove that in general, if the
equation x> + bx + ¢ = 0 has roots 7, and r,, then ¢ = r,7,
andb = —(r; + rp).
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114. Solving an Equation in Different Ways We have Solve the following equations using both methods
learned several different ways to solve an equation in this indicated, and show that you get the same final answers.
section. Some equations can be tackled by more than one (@) x — Vx —2=0 quadratic type; solve for the
method. For example, the equation x — Vx — 2 = 0 is of radical, and square
quadratic type: We can solve it by letting \/x = u and 12 10
x = u?, and factoring. Or we could solve for Vx, square b — + + 1 =0 quadratic type; multiply

. . . . (x—3)? x-3
each side, and then solve the resulting quadratic equation. by LCD

m Modeling with Equations

Many problems in the sciences, economics, finance, medicine, and numerous other
fields can be translated into algebra problems; this is one reason that algebra is so
useful. In this section we use equations as mathematical models to solve real-life
problems.

Guidelines for Modeling with Equations

We will use the following guidelines to help us set up equations that model situations
described in words. To show how the guidelines can help you set up equations, we
note them in the margin as we work each example in this section.

Guidelines for Modeling with Equations

1. Identify the Variable. Identify the quantity that the problem asks you to
find. This quantity can usually be determined by a careful reading of the
question posed at the end of the problem. Then introduce notation for the
variable (call it x or some other letter).

2. Express All Unknown Quantities in Terms of the Variable. Read each
sentence in the problem again, and express all the quantities mentioned in the
problem in terms of the variable you defined in Step 1. To organize this infor-
mation, it is sometimes helpful to draw a diagram or make a table.

3. Set Up the Model. Find the crucial fact in the problem that gives a rela-
tionship between the expressions you listed in Step 2. Set up an equation (or
model) that expresses this relationship.

4. Solve the Equation and Check Your Answer. Solve the equation, check
your answer, and express it as a sentence that answers the question posed in
the problem.

The following example illustrates how these guidelines are used to translate a
“word problem” into the language of algebra.



Identify the variable

Express all unknown quantities in
terms of the variable

Set up the model

Solve

Check Your Answer

total cost = mileage cost + daily cost
= 0.15(320) + 2(30)
=108

v

Identify the variable
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Example 1 Renting a Car
A car rental company charges $30 a day and 15¢ a mile for renting a car. Helen
rents a car for two days and her bill comes to $108. How many miles did she
drive?
Solution We are asked to find the number of miles Helen has driven. So we let
x = number of miles driven

Then we translate all the information given in the problem into the language of
algebra.

In Words In Algebra
Number of miles driven X

Mileage cost (at $0.15 per mile) 0.15x
Daily cost (at $30 per day) 2(30)

Now we set up the model.

mileage n daily
cost cost

total cost

0.15x + 2(30) = 108

0.15x = 48 Subtract 60
X = ﬁ Divide by 0.15
015 ivide by O.

x = 320 Calculator

Helen drove her rental car 320 miles. [}

Constructing Models

In the examples and exercises that follow, we construct equations that model prob-
lems in many different real-life situations.

Example 2 Interest on an Investment

Mary inherits $100,000 and invests it in two certificates of deposit. One
certificate pays 6% and the other pays 43 % simple interest annually. If Mary’s
total interest is $5025 per year, how much money is invested at each rate?

Solution The problem asks for the amount she has invested at each rate. So
we let
x = the amount invested at 6%

Since Mary’s total inheritance is $100,000, it follows that she invested 100,000 — x
at 43%. We translate all the information given into the language of algebra.
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In Words In Algebra
Amount invested at 6% X
Express all unknown quantities in Amount invested at 43 % 100,000 — x
terms of the variable Interest earned at 6% 0.06x
Interest earned at 4% % 0.045(100,000 — x)

We use the fact that Mary’s total interest is $5025 to set up the model.

Set up the model interest at 6% + interest at 43% = total interest

0.06x + 0.045(100,000 — x) = 5025
Solve 0.06x + 4500 — 0.045x = 5025 Multiply
0.015x + 4500 = 5025 Combine the x-terms
0.015x = 525 Subtract 4500
X = % = 35,000  Divide by 0.015
So Mary has invested $35,000 at 6% and the remaining $65,000 at 4%%. n

Check Your Answer
total interest = 6% of $35,000 + 4%% of $65,000
= $2100 + $2925 = $5025 v

Example 3 Dimensions of a Poster

In a problem such as this, which A poster has a rectangular printed area 100 cm by 140 cm, and a blank strip of
involves geometry, it is essential to uniform width around the four edges. The perimeter of the poster is 1% times the
draw a diagram like the one shown perimeter of the printed area. What is the width of the blank strip, and what are the
in Figure 1. dimensions of the poster?

Solution We are asked to find the width of the blank strip. So we let

Identify the variable x = the width of the blank strip

Then we translate the information in Figure 1 into the language of algebra:

In Words In Algebra
Width of blank strip X
E 1 unk o Perimeter of printed area 2(100) + 2(140) = 480
xpress all unknown quantltles in Width of poster 100 + 2x
terms of the variable
Length of poster 140 + 2x

Perimeter, of poster 2(100 + 2x) + 2(140 + 2x)
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Now we use the fact that the perimeter of the poster is 13 times the perimeter of the
printed area to set up the model.

Set up the model perimeter of poster = 3 . perimeter of printed area

2(100 + 2x) + 2(140 + 2x) = 3480

_ Expand and combine
480 + 8x = 720 like terms on LHS

8x = 240 Subtract 480

Solve

x =30 Divide by &
The blank strip is 30 cm wide, so the dimensions of the poster are
100 + 30 + 30 = 160 cm wide
by 140 + 30 + 30 = 200 cm long

<— 100 cm H‘

2
X
t

140 cm

o
> = |

Figure 1 [ |

Example 4 Dimensions of a Building Lot

A rectangular building lot is 8 ft longer than it is wide and has an area of 2900 ft*.
Find the dimensions of the lot.

Solution We are asked to find the width and length of the lot. So let
Identify the variable w = width of lot

Then we translate the information given in the problem into the language of algebra
(see Figure 2 on page 62).

In Words In Algebra

Express all unknown quantities in Width of lot w

terms of the variable Length of lot w+ 8

Now we set up the model.



62 CHAPTER 1 Fundamentals

width length area

Setup the model oflot ~ oflot  oflot
w(w + 8) = 2900

Solve W+ 8w =2900  Expand

w” + 8w — 2900 = 0 Subtract 2900

(w — 50)(w + 58)

0 Factor
w = 50 or w= —58 Zero-Froduct Froperty

Since the width of the lot must be a positive number, we conclude that w = 50 ft.
The length of the lotisw + 8 = 50 + 8 = 58 ft.

Figure 2 w8 [ ]

Example 5 Determining the Height of a Building Using
Similar Triangles

A man 6 ft tall wishes to find the height of a certain four-story building. He mea-
sures its shadow and finds it to be 28 ft long, while his own shadow is 33 ft long.
How tall is the building?

Solution The problem asks for the height of the building. So let
Identify the variable h = the height of the building

We use the fact that the triangles in Figure 3 are similar. Recall that for any pair of
similar triangles the ratios of corresponding sides are equal. Now we translate these
observations into the language of algebra.

In Words In Algebra
E — L Height of building h
XPpress a1 untmown quantltles n Ratio of height to base in large triangle zhfg
terms of the variable ) ) ) ) p
Ratio of height to base in small triangle 33

Since the large and small triangles are similar, we get the equation

ratio of height to _ ratio of height to
Set up the model base in large triangle base in small triangle
h_6
28 3.5
6-28
Solve h = =48

35



Identify the variable

Figure 4
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The building is 48 ft tall.

T A
' A

@l
aa|

6 ft I |

e

<—28 ft — (<]
. 35 ft
Figure 3 ]

Example 6 Mixtures and Concentration

A manufacturer of soft drinks advertises their orange soda as “naturally flavored,”
although it contains only 5% orange juice. A new federal regulation stipulates that
to be called “natural” a drink must contain at least 10% fruit juice. How much pure
orange juice must this manufacturer add to 900 gal of orange soda to conform to
the new regulation?

Solution The problem asks for the amount of pure orange juice to be added.
So let

x = the amount (in gallons) of pure orange juice to be added

In any problem of this type—in which two different substances are to be
mixed—drawing a diagram helps us organize the given information (see
Figure 4).

- + - - 10% juice
5% juice 100% juice
Volume 900 gallons x gallons 900 + x gallons
Amount of 5% of 900 gallons  100% of x gallons 10% of 900 + x gallons
orange juice = 45 gallons = x gallons = 0.1(900 + x) gallons
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We now translate the information in the figure into the language of algebra.

In Words In Algebra
Amount of orange juice to be added by
E 1 unk L Amount of the mixture 900 + x
Xpress all un<nown quantities in Amount of orange juice in the first vat 0.05(900) = 45
terms of the variable o
Amount of orange juice in the second vat lex=x
Amount of orange juice in the mixture 0.10(900 + x)

To set up the model, we use the fact that the total amount of orange juice in the
mixture is equal to the orange juice in the first two vats.

amount of amount of amount of
Set up the model orange juice + orange juice =  orange juice
in first vat in second vat in mixture
45 + x = 0.1(900 + x) From Figure 4
45 + x =90 + 0.1x Multiply
Solve 0.9x = 45 Subtract O.1x and 45
45 50 Divide by 0.9
X = _—_= wide B
0.9 ’

The manufacturer should add 50 gal of pure orange juice to the soda.

Check Your Answer
amount of juice before mixing = 5% of 900 gal + 50 gal pure juice
=45 gal + 50 gal = 95 gal

amount of juice after mixing = 10% of 950 gal = 95 gal

Amounts are equal. v

\ Example 7 Time Needed to Do a Job

yB Because of an anticipated heavy rainstorm, the water level in a reservoir must be
lowered by 1 ft. Opening spillway A lowers the level by this amount in 4 hours,
whereas opening the smaller spillway B does the job in 6 hours. How long will it
take to lower the water level by 1 ft if both spillways are opened?

b

\>)

Solution We are asked to find the time needed to lower the level by 1 ft if both
1\ spillways are open. So let

x = the time (in hours) it takes to lower the water level

LIS UV LI by 1 ft if both spillways are open

Finding an equation relating x to the other quantities in this problem is not easy.



Express all unknown quantities in
terms of the variable

Set up the model

Solve

Identify the variable
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Certainly x is not simply 4 + 6, because that would mean that together the two
spillways require longer to lower the water level than either spillway alone. Instead,
we look at the fraction of the job that can be done in one hour by each spillway.

In Words In Algebra
Time it takes to lower level 1 ft with A and B together xh
Distance A lowers level in 1 h i ft
Distance B lowers level in 1 h é ft
Distance A and B together lower levels in 1 h Lt

Now we set up the model.

fraction done by A + fraction done by B = fraction done by both

1 1 1

— 4 - ==

4 6 x

3x +2x =12 Multiply by the LCD, 12x
S5x =12 Add
12
X = ? Divide by 5

It will take 2% hours, or 2 h 24 min to lower the water level by 1 ft if both spillways
are open. [

The next example deals with distance, rate (speed), and time. The formula to
keep in mind here is

distance = rate X time

where the rate is either the constant speed or average speed of a moving object. For
example, driving at 60 mi/h for 4 hours takes you a distance of 60 - 4 = 240 mi.

Example 8 A Distance-Speed-Time Problem

A jet flew from New York to Los Angeles, a distance of 4200 km. The speed for
the return trip was 100 km/h faster than the outbound speed. If the total trip took
13 hours, what was the jet’s speed from New York to Los Angeles?

Solution We are asked for the speed of the jet from New York to Los Angeles.
So let

s = speed from New York to Los Angeles
Then s + 100 = speed from Los Angeles to New York

Now we organize the information in a table. We fill in the “Distance” column
first, since we know that the cities are 4200 km apart. Then we fill in the “Speed”
column, since we have expressed both speeds (rates) in terms of the variable s.
Finally, we calculate the entries for the “Time” column, using
distance

time =
rate
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Express all unknown quantities in
terms of the variable

Set up the model

Solve
Island

A

T\\

\ 2

|5 mi N

\ DL

-~ NS/l L

< x>  Nesting

area
12 mi >|

Figure 5

Distance (km) Speed (km/h) Time (h)
4200
N.Y. to L.A. 4200 K T
L.A. to N.Y. 4200 s + 100 4200
s + 100

The total trip took 13 hours, so we have the model

time from time from _  total
N.Y. to L.A. L.A. to N.Y. time
4200 4200
—+—=13
s s + 100

Multiplying by the common denominator, s(s + 100), we get
4200(s + 100) + 4200s = 13s(s + 100)
8400s + 420,000 = 135> + 1300s
0 = 135> — 7100s — 420,000

Although this equation does factor, with numbers this large it is probably quicker to
use the quadratic formula and a calculator.

_ 7100 = V/(=7100)? — 4(13)(~420,000)

N

2(13)
7100 * 8500
26
—1400
= 600 = ~ —53.8
N or N 26

Since s represents speed, we reject the negative answer and conclude that the jet’s
speed from New York to Los Angeles was 600 km/h. ]

Example 9 Energy Expended in Bird Flight

Ornithologists have determined that some species of birds tend to avoid flights over
large bodies of water during daylight hours, because air generally rises over land
and falls over water in the daytime, so flying over water requires more energy. A
bird is released from point A on an island, 5 mi from B, the nearest point on a
straight shoreline. The bird flies to a point C on the shoreline and then flies along
the shoreline to its nesting area D, as shown in Figure 5. Suppose the bird has

170 kcal of energy reserves. It uses 10 kcal/mi flying over land and 14 kcal/mi
flying over water.

(a) Where should the point C be located so that the bird uses exactly 170 kcal of
energy during its flight?

(b) Does the bird have enough energy reserves to fly directly from A to D?



Identify the variable

Express all unknown quantities in
terms of the variable

Set up the model

Solve
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Solution

(a)

We are asked to find the location of C. So let
x = distance from Bto C
From the figure, and from the fact that
energy used = energy per mile X miles flown

we determine the following:

In Words In Algebra
Distance from B to C x
Distance flown over water (from A to C) VxZ + 25 Pythagorean Theorem
Distance flown over land (from C to D) 12 — x
Energy used over water 14V x>+ 25
Energy used over land 10(12 — x)

(b)

Now we set up the model.

total energy _  energy used 4 energy used
used over water over land

170 = 14Vx* + 25 + 10(12 — x)

To solve this equation, we eliminate the square root by first bringing all other
terms to the left of the equal sign and then squaring each side.

170 — 10(12 _ x) 147\ /xz + 25 Isolate square-root term

on RHS
50 + 10x = 14Vx% + 25 Simplify LHS
(50 + 10x)* = (14)*(x* + 25) Square each side
2500 + 1000x + 100x> = 196x> + 4900 Expand
0 = 96x2 — 1000x + 2400 Al terms to RHS

This equation could be factored, but because the numbers are so large it is eas-
ier to use the quadratic formula and a calculator:

1000 = V/(—1000)” — 4(96)(2400)
T 2(96)

1000 = 280

192 6

W
L)

or 3

Point C should be either 63 mi or 33 mi from B so that the bird uses exactly
170 kcal of energy during its flight.

By the Pythagorean Theorem (see page 54), the length of the route directly
from A to D is V5% + 122 = 13 mi, so the energy the bird requires for that
route is 14 X 13 = 182 kcal. This is more energy than the bird has available,

so0 it can’t use this route. ]
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BEX-M Exercises

1-12 = Express the given quantity in terms of the indicated
variable.

1. The sum of three consecutive integers; n = first integer of
the three

2. The sum of three consecutive integers; n = middle integer
of the three

3. The average of three test scores if the first two scores are
78 and 82; s = third test score

4. The average of four quiz scores if each of the first three
scores is 8; ¢ = fourth quiz score

5. The interest obtained after one year on an investment at
21% simple interest per year; x = number of dollars
invested

6. The total rent paid for an apartment if the rent is $795 a
month; »n = number of months

7. The area (in ft?) of a rectangle that is three times as long as
itis wide; w = width of the rectangle (in ft)

8. The perimeter (in cm) of a rectangle that is 5 cm longer than
itis wide; w = width of the rectangle (in cm)

9. The distance (in mi) that a car travels in 45 min; s = speed
of the car (in mi/h)

10. The time (in hours) it takes to travel a given distance at
55 mi/h; d = given distance (in mi)

11. The concentration (in oz/gal) of salt in a mixture of 3 gal of
brine containing 25 oz of salt, to which some pure water has
been added; x = volume of pure water added (in gal)

12. The value (in cents) of the change in a purse that contains
twice as many nickels as pennies, four more dimes than
nickels, and as many quarters as dimes and nickels com-
bined; p = number of pennies

Applications

13. Number Problem Find three consecutive integers whose
sum is 156.

14. Number Problem Find four consecutive odd integers
whose sum is 416.

15. Number Problem Find two numbers whose sum is 55
and whose product is 684.

16. Number Problem The sum of the squares of two
consecutive even integers is 1252. Find the integers.

17. Investments Phyllis invested $12,000, a portion earning
a simple interest rate of 41% per year and the rest earning a
rate of 4% per year. After one year the total interest earned

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

on these investments was $525. How much money did she
invest at each rate?

Investments If Ben invests $4000 at 4% interest per year,
how much additional money must he invest at 53% annual
interest to ensure that the interest he receives each year is
41% of the total amount invested?

Investments What annual rate of interest would you
have to earn on an investment of $3500 to ensure receiving
$262.50 interest after one year?

Investments Jack invests $1000 at a certain annual inter-
est rate, and he invests another $2000 at an annual rate that
is one-half percent higher. If he receives a total of $190
interest in one year, at what rate is the $1000 invested?

Salaries An executive in an engineering firm earns a
monthly salary plus a Christmas bonus of $8500. If she
earns a total of $97,300 per year, what is her monthly salary?

Salaries A woman earns 15% more than her husband.
Together they make $69,875 per year. What is the husband’s
annual salary?

Inheritance Craig is saving to buy a vacation home. He
inherits some money from a wealthy uncle, then combines
this with the $22,000 he has already saved and doubles the
total in a lucky investment. He ends up with $134,000, just
enough to buy a cabin on the lake. How much did he inherit?

Overtime Pay Helen earns $7.50 an hour at her job,

but if she works more than 35 hours in a week she is paid 11
times her regular salary for the overtime hours worked. One
week her gross pay was $352.50. How many overtime hours
did she work that week?

Labor Costs A plumber and his assistant work together
to replace the pipes in an old house. The plumber charges
$45 an hour for his own labor and $25 an hour for his
assistant’s labor. The plumber works twice as long as his
assistant on this job, and the labor charge on the final bill is
$4025. How long did the plumber and his assistant work on
this job?

Career Home Runs During his major league career,
Hank Aaron hit 41 more home runs than Babe Ruth hit
during his career. Together they hit 1469 home runs.
How many home runs did Babe Ruth hit?

A Riddle A movie star, unwilling to give his age, posed
the following riddle to a gossip columnist. “Seven years
ago, I was eleven times as old as my daughter. Now I am
four times as old as she is.” How old is the star?

A Riddle A father is four times as old as his daughter.
In 6 years, he will be three times as old as she is. How old
is the daughter now?



29. Value of Coins A change purse contains an equal number
of pennies, nickels, and dimes. The total value of the coins
is $1.44. How many coins of each type does the purse
contain?

30. Value of Coins Mary has $3.00 in nickels, dimes, and
quarters. If she has twice as many dimes as quarters and five
more nickels than dimes, how many coins of each type does
she have?

31. Law of the Lever The figure shows a lever system,
similar to a seesaw that you might find in a children’s play-
ground. For the system to balance, the product of the weight
and its distance from the fulcrum must be the same on each
side; that is

WX = Wiy

This equation is called the law of the lever, and was first
discovered by Archimedes (see page 748).

A woman and her son are playing on a seesaw. The boy is
at one end, 8 ft from the fulcrum. If the son weighs 100 Ib
and the mother weighs 125 1b, where should the woman sit
so that the seesaw is balanced?

Wy
wy

g ——
e

32. Law of the Lever A plank 30 ft long rests on top of a
flat-roofed building, with 5 ft of the plank projecting over
the edge, as shown in the figure. A worker weighing
240 b sits on one end of the plank. What is the largest
weight that can be hung on the projecting end of the plank
if it is to remain in balance? (Use the law of the lever stated
in Exercise 31.)

e
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33. Length and Area Find the length x in the figure. The area
of the shaded region is given.

() x (b)

X

14 in.

10 cm 6 cm

13 in.

area = 144 cm? area = 160 in?

34. Length and Area Find the length y in the figure. The area
of the shaded region is given.

(a) (b)
y
y
y y
. y oo oo
_ 2
area = 120 in 1em

area = 1200 cm?

35. Length of a Garden A rectangular garden is 25 ft wide.
If its area is 1125 ft?, what is the length of the garden?

36. Width of a Pasture A pasture is twice as long as it is
wide. Its area is 115,200 ft*. How wide is the pasture?

37. Dimensions of a Lot A square plot of land has a build-
ing 60 ft long and 40 ft wide at one corner. The rest of the
land outside the building forms a parking lot. If the parking
lot has area 12,000 ft?, what are the dimensions of the entire
plot of land?

38. Dimensions of a Lot A half-acre building lot is five
times as long as it is wide. What are its dimensions?
[Note: 1 acre = 43,560 ft%.]

39. Dimensions of a Garden A rectangular garden is
10 ft longer than it is wide. Its area is 875 ft>. What are its
dimensions?
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40.

41.

42,

43.

44.

45.
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Dimensions of a Room A rectangular bedroom is
7 ft longer than it is wide. Its area is 228 ft>. What is the
width of the room?

Dimensions of a Garden A farmer has a rectangular
garden plot surrounded by 200 ft of fence. Find the length
and width of the garden if its area is 2400 ft>.

perimeter = 200 ft

Dimensions of a Lot A parcel of land is 6 ft longer than
it is wide. Each diagonal from one corner to the opposite
corner is 174 ft long. What are the dimensions of the parcel?

Dimensions of a Lot A rectangular parcel of land is 50 ft
wide. The length of a diagonal between opposite corners is
10 ft more than the length of the parcel. What is the length
of the parcel?

Dimensions of a Track A running track has the shape
shown in the figure, with straight sides and semicircular
ends. If the length of the track is 440 yd and the two
straight parts are each 110 yd long, what is the radius of
the semicircular parts (to the nearest yard)?

[« —110yd—>]

Framing a Painting Al paints with watercolors on a sheet
of paper 20 in. wide by 15 in. high. He then places this sheet
on a mat so that a uniformly wide strip of the mat shows all
around the picture. The perimeter of the mat is 102 in. How
wide is the strip of the mat showing around the picture?

15 in.

l< X >

20 in.

46.

47.

48.

49.

Width of a Lawn A factory is to be built on a lot mea-
suring 180 ft by 240 ft. A local building code specifies that a
lawn of uniform width and equal in area to the factory must
surround the factory. What must the width of this lawn be,
and what are the dimensions of the factory?

Reach of a Ladder A 193 -foot ladder leans against
a building. The base of the ladder is 73 ft from the building.
How high up the building does the ladder reach?

f<—73 ft—>

Height of a Flagpole A flagpole is secured on

opposite sides by two guy wires, each of which is 5 ft longer
than the pole. The distance between the points where the
wires are fixed to the ground is equal to the length of one
guy wire. How tall is the flagpole (to the nearest inch)?

Length of a Shadow A man is walking away from
a lamppost with a light source 6 m above the ground. The
man is 2 m tall. How long is the man’s shadow when he is
10 m from the lamppost? [Hint: Use similar triangles.]

/

b
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~
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50.

51.

54.

55.

56.

Height of a Tree A woodcutter determines the height of
a tall tree by first measuring a smaller one 125 ft away, then
moving so that his eyes are in the line of sight along the tops
of the trees, and measuring how far he is standing from the
small tree (see the figure). Suppose the small tree is 20 ft
tall, the man is 25 ft from the small tree, and his eye level is
5 ft above the ground. How tall is the taller tree?

125 ft ———>

} 25 ft }‘

Buying a Cottage A group of friends decides to buy a
vacation home for $120,000, sharing the cost equally. If
they can find one more person to join them, each person’s
contribution will drop by $6000. How many people are in
the group?

. Mixture Problem What quantity of a 60% acid solution

must be mixed with a 30% solution to produce 300 mL of a
50% solution?

. Mixture Problem A jeweler has five rings, each weigh-

ing 18 g, made of an alloy of 10% silver and 90% gold.

He decides to melt down the rings and add enough silver to
reduce the gold content to 75%. How much silver should
he add?

Mixture Problem A pot contains 6 L of brine at a con-
centration of 120 g/L. How much of the water should be
boiled off to increase the concentration to 200 g/L?

Mixture Problem The radiator in a car is filled with a
solution of 60% antifreeze and 40% water. The manufac-
turer of the antifreeze suggests that, for summer driving,
optimal cooling of the engine is obtained with only 50%
antifreeze. If the capacity of the radiator is 3.6 L, how much
coolant should be drained and replaced with water to reduce
the antifreeze concentration to the recommended level?

Mixture Problem A health clinic uses a solution of
bleach to sterilize petri dishes in which cultures are grown.
The sterilization tank contains 100 gal of a solution of 2%
ordinary household bleach mixed with pure distilled water.
New research indicates that the concentration of bleach
should be 5% for complete sterilization. How much of the
solution should be drained and replaced with bleach to
increase the bleach content to the recommended level?

58.

59.

60.

61.

62.

63.

64.

65.

66.
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. Mixture Problem A bottle contains 750 mL of fruit

punch with a concentration of 50% pure fruit juice. Jill
drinks 100 mL of the punch and then refills the bottle with
an equal amount of a cheaper brand of punch. If the concen-
tration of juice in the bottle is now reduced to 48%, what
was the concentration in the punch that Jill added?

Mixture Problem A merchant blends tea that sells for
$3.00 a pound with tea that sells for $2.75 a pound to pro-
duce 80 1b of a mixture that sells for $2.90 a pound. How
many pounds of each type of tea does the merchant use in
the blend?

Sharing a Job  Candy and Tim share a paper route. It
takes Candy 70 min to deliver all the papers, and it takes
Tim 80 min. How long does it take the two when they work
together?

Sharing a Job  Stan and Hilda can mow the lawn in
40 min if they work together. If Hilda works twice as fast
as Stan, how long does it take Stan to mow the lawn alone?

Sharing a Job  Betty and Karen have been hired to paint
the houses in a new development. Working together the
women can paint a house in two-thirds the time that it takes
Karen working alone. Betty takes 6 h to paint a house

alone. How long does it take Karen to paint a house working
alone?

Sharing a Job  Next-door neighbors Bob and Jim use
hoses from both houses to fill Bob’s swimming pool. They
know it takes 18 h using both hoses. They also know that
Bob’s hose, used alone, takes 20% less time than Jim’s hose
alone. How much time is required to fill the pool by each
hose alone?

Sharing a Job  Henry and Irene working together can
wash all the windows of their house in 1 h 48 min. Working
alone, it takes Henry 13 h more than Irene to do the job.
How long does it take each person working alone to wash
all the windows?

Sharing a Job  Jack, Kay, and Lynn deliver advertis-

ing flyers in a small town. If each person works alone,

it takes Jack 4 h to deliver all the flyers, and it takes Lynn

1 h longer than it takes Kay. Working together, they can de-
liver all the flyers in 40% of the time it takes Kay working
alone. How long does it take Kay to deliver all the flyers
alone?

Distance, Speed, and Time Wendy took a trip from
Davenport to Omaha, a distance of 300 mi. She traveled part
of the way by bus, which arrived at the train station just in
time for Wendy to complete her journey by train. The bus
averaged 40 mi/h and the train 60 mi/h. The entire trip took
5% h. How long did Wendy spend on the train?

Distance, Speed, and Time Two cyclists, 90 mi apart,
start riding toward each other at the same time. One cycles
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twice as fast as the other. If they meet 2 h later, at what aver-
age speed is each cyclist traveling?

Distance, Speed, and Time A pilot flew a jet from
Montreal to Los Angeles, a distance of 2500 mi. On the
return trip the average speed was 20% faster than the out-
bound speed. The round-trip took 9 h 10 min. What was the
speed from Montreal to Los Angeles?

Distance, Speed, and Time A woman driving a car

14 ft long is passing a truck 30 ft long. The truck is traveling
at 50 mi/h. How fast must the woman drive her car so that
she can pass the truck completely in 6 s, from the position
shown in figure (a) to the position shown in figure (b)?
[Hint: Use feet and seconds instead of miles and hours.]

I ’ 50 mi/h
| A — > 73.
|
(a)
D
|
, |

: ; | 50 mi/h
E ) : —

|

(b)

Distance, Speed, and Time A salesman drives from
Ajax to Barrington, a distance of 120 mi, at a steady speed.
He then increases his speed by 10 mi/h to drive the 150 mi
from Barrington to Collins. If the second leg of his trip took
6 min more time than the first leg, how fast was he driving
between Ajax and Barrington?

Distance, Speed, and Time Kiran drove from Tortula to
Cactus, a distance of 250 mi. She increased her speed by

10 mi/h for the 360-mi trip from Cactus to Dry Junction. If
the total trip took 11 h, what was her speed from Tortula to
Cactus?

Distance, Speed, and Time It took a crew 2 h 40 min to
row 6 km upstream and back again. If the rate of flow of the
stream was 3 km/h, what was the rowing speed of the crew
in still water?

Speed of a Boat Two fishing boats depart a harbor at
the same time, one traveling east, the other south. The

74.

75.

eastbound boat travels at a speed 3 mi/h faster than the
southbound boat. After two hours the boats are 30 mi apart.
Find the speed of the southbound boat.

Dimensions of a Box A large plywood box has a volume
of 180 ft*. Its length is 9 ft greater than its height, and its
width is 4 ft less than its height. What are the dimensions of
the box?

Radius of a Sphere A jeweler has three small solid
spheres made of gold, of radius 2 mm, 3 mm, and 4 mm. He
decides to melt these down and make just one sphere out of
them. What will the radius of this larger sphere be?

Dimensions of a Box A box with a square base and no
top is to be made from a square piece of cardboard by cut-
ting 4-in. squares from each corner and folding up the sides,
as shown in the figure. The box is to hold 100 in®. How big
a piece of cardboard is needed?

4 inI

E in.
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Dimensions of a Can A cylindrical can has a volume of
407 cm® and is 10 cm tall. What is its diameter? [Hint: Use
the volume formula listed on the inside back cover of this
book.]

!

10 cm

v

Radius of a Tank A spherical tank has a capacity of 750
gallons. Using the fact that one gallon is about 0.1337 ft*,
find the radius of the tank (to the nearest hundredth of a
foot).

Dimensions of a Lot A city lot has the shape of a right
triangle whose hypotenuse is 7 ft longer than one of the
other sides. The perimeter of the lot is 392 ft. How long is
each side of the lot?

Construction Costs The town of Foxton lies 10 mi
north of an abandoned east-west road that runs through
Grimley, as shown in the figure. The point on the abandoned
road closest to Foxton is 40 mi from Grimley. County
officials are about to build a new road connecting the two
towns. They have determined that restoring the old road
would cost $100,000 per mile, whereas building a new
road would cost $200,000 per mile. How much of the
abandoned road should be used (as indicated in the figure)
if the officials intend to spend exactly $6.8 million? Would
it cost less than this amount to build a new road connecting
the towns directly?

Foxton

Abandoned road
< 40 mi >

Distance, Speed, and Time A boardwalk is parallel to
and 210 ft inland from a straight shoreline. A sandy beach
lies between the boardwalk and the shoreline. A man is
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standing on the boardwalk, exactly 750 ft across the sand
from his beach umbrella, which is right at the shoreline. The
man walks 4 ft/s on the boardwalk and 2 ft/s on the sand.
How far should he walk on the boardwalk before veering off
onto the sand if he wishes to reach his umbrella in exactly

4 min 45 s?

///
—

i

81.

82.

Boardwalk

Volume of Grain  Grain is falling from a chute onto
the ground, forming a conical pile whose diameter is
always three times its height. How high is the pile (to the
nearest hundredth of a foot) when it contains 1000 ft* of
grain?

TV Monitors Two television monitors sitting beside each
other on a shelf in an appliance store have the same screen
height. One has a conventional screen, which is 5 in. wider
than it is high. The other has a wider, high-definition screen,
which is 1.8 times as wide as it is high. The diagonal mea-
sure of the wider screen is 14 in. more than the diagonal
measure of the smaller. What is the height of the screens,
correct to the nearest 0.1 in.?
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Dimensions of a Structure A storage bin for corn
consists of a cylindrical section made of wire mesh, sur-
mounted by a conical tin roof, as shown in the figure.
The height of the roof is one-third the height of the entire
structure. If the total volume of the structure is 14007 ft*
and its radius is 10 ft, what is its height? [Hint: Use

the volume formulas listed on the inside front cover of

this book.]
1
"

10 ft

Comparing Areas A wire 360 in. long is cut into two
pieces. One piece is formed into a square and the other into
a circle. If the two figures have the same area, what are the
lengths of the two pieces of wire (to the nearest tenth of an
inch)?

An Ancient Chinese Problem This problem is taken
from a Chinese mathematics textbook called Chui-chang
suan-shu, or Nine Chapters on the Mathematical Art, which
was written about 250 B.cC.

A 10-ft-long stem of bamboo is broken in such a way

that its tip touches the ground 3 ft from the base of the
stem, as shown in the figure. What is the height of the
break?

[Hint: Use the Pythagorean Theorem.]

Discovery « Discussion

86. Historical Research Read the biographical notes on

Pythagoras (page 54), Euclid (page 532), and Archimedes
(page 748). Choose one of these mathematicians and find
out more about him from the library or on the Internet.
Write a short essay on your findings. Include both biograph-
ical information and a description of the mathematics for
which he is famous.

. A Babylonian Quadratic Equation The ancient

Babylonians knew how to solve quadratic equations. Here
is a problem from a cuneiform tablet found in a Babylonian
school dating back to about 2000 B.C.

I'have a reed, I know not its length. I broke from it one
cubit, and it fit 60 times along the length of my field. I
restored to the reed what I had broken off, and it fit 30
times along the width of my field. The area of my field
is 375 square nindas. What was the original length of the
reed?

Solve this problem. Use the fact that 1 ninda = 12 cubits.
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@ Equations through the Ages

DISCOVERY Equations have been used to solve problems throughout recorded history, in
PROJECT every civilization. (See, for example, Exercise 85 on page 74.) Here is a problem
from ancient Babylon (ca. 2000 B.C.).

I found a stone but did not weigh it. After I added a seventh, and then added an
eleventh of the result, I weighed it and found it weighed 1 mina. What was the
original weight of the stone?

The answer given on the cuneiform tablet is 3 mina, 8 sheqel, and 223 se, where
1 mina = 60 shegel, and 1 sheqel = 180 se.

In ancient Egypt, knowing how to solve word problems was a highly prized
secret. The Rhind Papyrus (ca. 1850 B.C.) contains many such problems (see
page 716). Problem 32 in the Papyrus states

A quantity, its third, its quarter, added together become 2. What is the quantity?

The answer in Egyptian notation is 1 + 4 + 76, where the bar indicates
“reciprocal,” much like our notation 4.

The Greek mathematician Diophantus (ca. 250 A.D., see page 20) wrote the
book Arithmetica, which contains many word problems and equations. The
Indian mathematician Bhaskara (12th century A.D., see page 144) and the Chi-
nese mathematician Chang Ch’iu-Chien (6th century A.D.) also studied and
wrote about equations. Of course, equations continue to be important today.

1. Solve the Babylonian problem and show that their answer is correct.
2. Solve the Egyptian problem and show that their answer is correct.

3. The ancient Egyptians and Babylonians used equations to solve practical
problems. From the examples given here, do you think that they may have
enjoyed posing and solving word problems just for fun?

T ‘&:\ 4. Solve this problem from 12th-century India.
= \);\ A peacock is perched at the top of a 15-cubit pillar, and a snake’s hole is at the foot
| < of the pillar. Seeing the snake at a distance of 45 cubits from its hole, the peacock
° B pounces obliquely upon the snake as it slithers home. At how many cubits from the
f‘ 45 '} snake’s hole do they meet, assuming that each has traveled an equal distance?

5. Consider this problem from 6th-century China.

If a rooster is worth 5 coins, a hen 3 coins, and three chicks together one coin, how
many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

This problem has several answers. Use trial and error to find at least one
answer. Is this a practical problem or more of a riddle? Write a short essay
to support your opinion.

6. Write a short essay explaining how equations affect your own life in today’s
world.
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X dx + 7 =19
1 =19V
2 15=19V
3 1919V
4 23 =19 X
5 27 =19 X

1.7

Inequalities

Some problems in algebra lead to inequalities instead of equations. An inequality
looks just like an equation, except that in the place of the equal sign is one of the sym-
bols, <, >, =, or =. Here is an example of an inequality:

dx +7 =19

The table in the margin shows that some numbers satisfy the inequality and some
numbers don’t.

To solve an inequality that contains a variable means to find all values of the vari-
able that make the inequality true. Unlike an equation, an inequality generally has
infinitely many solutions, which form an interval or a union of intervals on the
real line. The following illustration shows how an inequality differs from its corre-
sponding equation:

Solution Graph
i —tt—t—t—t———>
Equation: 4x + 7 =19 x=23 ] :
Inequality: 4x + 7 =19 x=3 : g b

To solve inequalities, we use the following rules to isolate the variable on one side
of the inequality sign. These rules tell us when two inequalities are equivalent (the
symbol <= means “is equivalent to”). In these rules the symbols A, B, and C stand for
real numbers or algebraic expressions. Here we state the rules for inequalities in-
volving the symbol =, but they apply to all four inequality symbols.

Rules for Inequalities

Rule Description

1.A=sB & A+C=B+C Adding the same quantity to each side of an inequality
gives an equivalent inequality.

2. A=sB & A-C=B-C Subtracting the same quantity from each side of an in-
equality gives an equivalent inequality.

3. IfC>0, then A=B < CA=CB Multiplying each side of an inequality by the same posi-
tive quantity gives an equivalent inequality.

4. fC <0, then A=B << CA=CB Multiplying each side of an inequality by the same nega-

5, fA>0 and B >0,

then A<B <

0
A

=

6. fA=B and C=D,
then A+C=B-+D

&=

tive quantity reverses the direction of the inequality.

Taking reciprocals of each side of an inequality involving
positive quantities reverses the direction of the inequality.

Inequalities can be added.



Multiplying by the negative number —¢
reverses the direction of the inequality.

Figure 1

W

Figure 2

Y
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Pay special attention to Rules 3 and 4. Rule 3 says that we can multiply (or divide)
each side of an inequality by a positive number, but Rule 4 says that if we multiply
each side of an inequality by a negative number, then we reverse the direction of the
inequality. For example, if we start with the inequality

3<5
and multiply by 2, we get
6 <10
but if we multiply by —2, we get
—6>—10

Linear Inequalities

An inequality is linear if each term is constant or a multiple of the variable.

Example 1 Solving a Linear Inequality
Solve the inequality 3x < 9x + 4 and sketch the solution set.

Solution
3x< 9% + 4

3x =9 <9x +4 — 9% Subtract 9x

—6x <4 Simplify
(—%)(—6)6) > (—%)(4) Multiply by — £ (or divide by —&)
x> —3 Simplify

The solution set consists of all numbers greater than — 3. In other words the
solution of the inequality is the interval (— 2 oo). It is graphed in Figure 1. ]

Example 2 Solving a Pair of Simultaneous Inequalities
Solve the inequalities 4 = 3x — 2 < 13.

Solution The solution set consists of all values of x that satisfy both of the
inequalities 4 = 3x — 2 and 3x — 2 < 13. Using Rules 1 and 3, we see that the
following inequalities are equivalent:

4=3x—-2<13

6=3x<15 Add 2
2=x<5 Divide by 3
Therefore, the solution set is [2, 5), as shown in Figure 2. ]

Nonlinear Inequalities

To solve inequalities involving squares and other powers of the variable, we use fac-
toring, together with the following principle.



78 CHAPTER 1 Fundamentals

(_007 2) (2’ 3) (37 OO)
0 2 3
Figure 3
Test value Test value Test value
x=1 X= 2% X=4

—F——e -9 >
0 2 3

Figure 4

The Sign of a Product or Quotient

If a product or a quotient has an even number of negative factors, then its
value is positive.

If a product or a quotient has an odd number of negative factors, then its
value is negative.

Example 3 A Quadratic Inequality
Solve the inequality x> — 5x + 6 < 0.
Solution First we factor the left side.
x—=2)x—=3)=0

We know that the corresponding equation (x — 2)(x — 3) = 0 has the solutions 2
and 3. As shown in Figure 3, the numbers 2 and 3 divide the real line into three in-
tervals: (—o00,2), (2,3), and (3, 00). On each of these intervals we determine the
signs of the factors using test values. We choose a number inside each interval and
check the sign of the factors x — 2 and x — 3 at the value selected. For instance, if we
use the test value x = 1 for the interval (—o0, 2) shown in Figure 4, then substitution
in the factors x — 2 and x — 3 gives

x—2=1-2=-1<0

and x—3=1—-3=-2<0

So both factors are negative on this interval. (The factors x — 2 and x — 3 change sign
only at 2 and 3, respectively, so they maintain their signs over the length of each in-
terval. That is why using a single test value on each interval is sufficient.)

Using the test values x = 25 and x = 4 for the intervals (2, 3) and (3, co) (see Fig-
ure 4), respectively, we construct the following sign table. The final row of the table
is obtained from the fact that the expression in the last row is the product of the two
factors.

Interval (—00,2) | (2,3) (3, )
Sign of x — 2 - + +
Sign of x — 3 - - +
Sign of (x — 2)(x — 3) + - +

If you prefer, you can represent this information on a real number line, as in the
following sign diagram. The vertical lines indicate the points at which the real line is
divided into intervals:
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3
Signof x — 2 - + +
Signof x — 3 - - +
Sign of (x — 2)(x — 3) + — +

We read from the table or the diagram that (x — 2)(x — 3) is negative on the in-
terval (2, 3). Thus, the solution of the inequality (x — 2)(x — 3) = Ois

Y

0 2 3 {x|2=x=3}=[23]

Figure 5 We have included the endpoints 2 and 3 because we seek values of x such that

the product is either less than or equal to zero. The solution is illustrated in
Figure 5. ]

Example 3 illustrates the following guidelines for solving an inequality that can be
factored.

Guidelines for Solving Nonlinear Inequalities

1. Move All Terms to One Side. If necessary, rewrite the inequality so
that all nonzero terms appear on one side of the inequality sign. If the
nonzero side of the inequality involves quotients, bring them to a common
denominator.

2. Factor. Factor the nonzero side of the inequality.

3. Find the Intervals. Determine the values for which each factor is zero.
These numbers will divide the real line into intervals. List the intervals
determined by these numbers.

4. Make a Table or Diagram. Use test values to make a table or diagram of
the signs of each factor on each interval. In the last row of the table deter-
mine the sign of the product (or quotient) of these factors.

5. Solve. Determine the solution of the inequality from the last row of the
sign table. Be sure to check whether the inequality is satisfied by some or all
of the endpoints of the intervals (this may happen if the inequality involves
=or=).

@ The factoring technique described in these guidelines works only if all nonzero
terms appear on one side of the inequality symbol. If the inequality is not written in
this form, first rewrite it, as indicated in Step 1. This technique is illustrated in the ex-
amples that follow.
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@ It is tempting to multiply both

sides of the inequality by 1 — x (as you Example 4 An Inequality Involving a Quotient

would if this were an equation). But 1+ x
this doesn’t work because we don’t Solve: 1 —x =
know if 1 — x is positive or negative,
so we can’t tell if the inequality needs Solution First we move all nonzero terms to the left side, and then we simplify
to be reversed. (See Exercise 110.) using a common denominator.

1 +x

=1
I —x

1 +x —-1=0 Subtract 1 (to move all
1—x o terms to LHS)

1+x 1-—x

Terms to one side

=0 Common denominator 1 — x

1—x 1-—x

1+x—1+«x

1— =0 Combine the fractions
- X

220
. implify

The numerator is zero when x = 0 and the denominator is zero when x = 1, so we
construct the following sign diagram using these values to define intervals on the

real line.
0 1
Sign of 2x - + +
Make a diagram )
Signofl — x + + -
. . 2x
Signof 77—/ — + —

Solve From the diagram we see that the solution setis {x| 0 = x < 1} = [0,1). We
include the endpoint 0 because the original inequality requires the quotient to be
greater than or equal to 1. However, we do not include the other endpoint 1, since

@ the quotient in the inequality is not defined at 1. Always check the endpoints of so-
lution intervals to determine whether they satisfy the original inequality.
5 X > The solution set [0, 1) is illustrated in Figure 6.
Figure 6 Example 5 Solving an Inequality with Three Factors
. . 2
Solve the inequality x < P
X —
Solution After moving all nonzero terms to one side of the inequality, we use a
common denominator to combine the terms.
Terms to one side X - 2 <0 Subtract
x—1 x =1
x(x — 1) 2
- <0 Common denominator x — 1
x—1 x—1
x*—x—2
— <0 Combine fractions
x— 1
(x+ D(x—2)
Factor — <0 Factor humerator

x—1



Find the intervals

Make a diagram

Figure 7

These properties hold when x is re-
placed by any algebraic expression.
(In the figures we assume that ¢ > 0.)

\ |
\ ¢ <

-C X

0
< fxl

Figure 8

2 2

[« —

0 3 05 7

Figure 9
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The factors in this quotient change sign at —1, 1, and 2, so we must examine the

intervals (—oo, —1), (=1, 1), (1,2), and (2, 00). Using test values, we get the

following sign diagram.

Signof x + 1 - +

Signof x — 2 - -

Signof x — 1 - -
. (x+1Dx—2)

Sign of a1 +

Since the quotient must be negative, the solution is

(=00, —1) U (1,2)

as illustrated in Figure 7.

Absolute Value Inequalities

We use the following properties to solve inequalities that involve absolute value.

+ o+ o+ 4

Y

Properties of Absolute Value Inequalities

Inequality
1. |x|<c
2. |x|=c
3 |x|>c
4. ]x| =46

Equivalent form Graph
—c<x<c ;
=@ 0 c
=CENEQ ¢
=@ 0 c
x<<—c or c<x : >
=@ 0 c
X=-—Cc O C=X 1 >
=@ 0 c

These properties can be proved using the definition of absolute value. To prove
Property 1, for example, note that the inequality | x| < ¢ says that the distance from
x to 0 is less than ¢, and from Figure 8 you can see that this is true if and only if x is

between —c and c.

Example 6 Solving an Absolute Value Inequality

Solve the inequality |x — 5| < 2.

Solution 1

The inequality | x — 5| < 2 is equivalent to

—2<x—-5<2

3<x <7 Add 5

The solution set is the open interval (3, 7).

Property 1

Solution 2 Geometrically, the solution set consists of all numbers x whose dis-

tance from 5 is less than 2. From Figure 9 we see that this is the interval (3,7).
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Y

-2 0 3
Figure 10
Identify the variable

Express all unknown quantities in
terms of the variable

Set up the model

Solve

Example 7 Solving an Absolute Value Inequality
Solve the inequality | 3x + 2| = 4.

Solution By Property 4 the inequality | 3x + 2| = 4 is equivalent to

3x+2=4 or 3x+2=-4
3x=2 3x = -6 Subtract 2
x=13 x= -2 Divide by 3

So the solution set is
{x[x=-2 or x2§} = (—o0, 2] U [%,oo)

The set is graphed in Figure 10. ]

Modeling with Inequalities

Modeling real-life problems frequently leads to inequalities because we are often in-
terested in determining when one quantity is more (or less) than another.

Example 8 Carnival Tickets
A carnival has two plans for tickets.
Plan A: $5 entrance fee and 25¢ each ride
Plan B: $2 entrance fee and 50¢ each ride
How many rides would you have to take for plan A to be less expensive than plan B?

Solution We are asked for the number of rides for which plan A is less
expensive than plan B. So let

x = number of rides

The information in the problem may be organized as follows.

In Words In Algebra
Number of rides X
Cost with plan A 5+ 0.25x
Cost with plan B 2 + 0.50x
Now we set up the model.
cost with cost with
plan A plan B

5+ 0.25x <2+ 0.50x
3 + 0.25x < 0.50x
3 <0.25x

12 <x

Subtract 2
Subtract 0.25x
Divide by 0.25

So if you plan to take more than 12 rides, plan A is less expensive. ]



5730 —386

Identify the variable

Express all unknown quantities in
terms of the variable

Set up the model
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Example 9 Fahrenheit and Celsius Scales

The instructions on a box of film indicate that the box should be stored at a temper-
ature between 5 °C and 30°C. What range of temperatures does this correspond to
on the Fahrenheit scale?

Solution The relationship between degrees Celsius (C) and degrees Fahrenheit
(F) is given by the equation C = %(F — 32). Expressing the statement on the box
in terms of inequalities, we have

5<C<30
So the corresponding Fahrenheit temperatures satisfy the inequalities
5 <3(F—32)<30

%-5<F—32<%-30 Multiply by 2

I9<F—-32<54 Simplify
9+32<F<54+ 32 Add 22
41 < F <86 Simplify
The film should be stored at a temperature between 41 °F and 86 °F. ]

Example 10 Concert Tickets

A group of students decide to attend a concert. The cost of chartering a bus to take
them to the concert is $450, which is to be shared equally among the students. The
concert promoters offer discounts to groups arriving by bus. Tickets normally cost
$50 each but are reduced by 10¢ per ticket for each person in the group (up to the
maximum capacity of the bus). How many students must be in the group for the
total cost per student to be less than $54?

Solution We are asked for the number of students in the group. So let
x = number of students in the group

The information in the problem may be organized as follows.

In Words In Algebra
Number of students in group X
450
Bus cost per student Y
Ticket cost per student 50 — 0.10x
Now we set up the model.
bus cost ticket cost s4
per student per student
450

+ (50 — 0.10x) < 54
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450
Solve ~ 4 —0.10x <0 Subtract 54
450 — 4x — 0.10x?
. <0 Common denominator
4500 — 40x — x?
. <0 Multiply by 10
(90 + x)(50 — x)
. <0 Factor numerator
-90 0 50
Sign of 90 + x . + + n
Sign of 50 — x + + + _
Sign of x — — + n
90 + x)(50 — x
Sign of Q0+ x)(50 — x) + — + _

X

The sign diagram shows that the solution of the inequality is (—90, 0) U (50, co).
Because we cannot have a negative number of students, it follows that the group
must have more than 50 students for the total cost per person to be less than $54. =

Exercises

1-6 ® Let S = {~2, —1,0,3, 1, V2,2, 4}. Determine which gy L _2x 13 _2 gy, _L_473x _1

elements of § satisfy the inequality. 6 12 3 2 5 4

1.3-2x=3 2.2x—1=x

3 l<ox—4=7 4 —2=3—x<2 29'—62. ® Solve the.nonlinear inequality. Express the solution
using interval notation and graph the solution set.

s.is% 6. x2+2<4 29, (x +2)(x — 3) <0 30 (x—S)(x+4)=0
3. x(2x+7) =0 32. x(2 -3x) =0

7-28 m Solve the linear inequality. Express the solution using 33 x2—3x— 180 34, >+5x+6>0

interval notation and graph the solution set. 35 2% 4y =1 36, 1< x40

TSl 8. dxrll=s 37. 3x2 — 3x < 242 + 4 38, 5x2 + 3x=3x2 + 2

9 T-x=53 10.5 = 3r =16 39. x2> 3(x + 6) 40. x>+ 2x >3

11. 2x + 1 <0 12. 0<5—2x 4L 2 <4 4. 32=9

13.13x+i156x+8 14.26*x22)]c+9 43, —2=4

15.?)c—§>2l 16.§x+11<1§—2x M. (x+ 20— 1)x—3)=0

17. 35 +2<ex—1 18.5 = 5x=0+x 45. 3 — dx >0 46. 16x = x°

19. 4 — 3x = —(1 + 8x) 20. 2(7x — 3) = 12x + 16 ‘=3 x4 6

2. 2=x+5<4 2. 5=3x—4=14 7. =0 8. - <0

23, —1<2x—-5<7 24. 1 <3x+4=16 4y x4+ 1

. 49. >2 50. 2 <
25, —2<8—-2x=-1 26. 3=3x+7=3 2x + 3 x—3




51. =3 52. =1
x—5 3—x
4
53 S < 54— >3x
X x+1
2 2 3 4
55. 1+ == 56. - —=1
x+1 X x—1
6 6 5
57. ~ 2= 58. = = +4
x—1 x 2 x+1
+2 -1 1
59. o 60. =0
x+3 x—2 x+1 x+2
61. x* > x? 62. x° > x2

63-76 ® Solve the absolute value inequality. Express the
answer using interval notation and graph the solution set.

63. |x| =4 64. |3x| <15

65. |2x| >7 66. 3|x| =1

67. |[x—5]|=3 68. |x+1|=1

69. [2x — 3| =04 70. |5x — 2| <6

x—2 x + 1

71. 3 ‘<2 2.1 ‘24
73. |x + 6] < 0.001 74.3 - |2x+ 4| =1
75.8—|2x—1|=6 76. 7|x+2] +5>4

77-80 ®m A phrase describing a set of real numbers is given.

Express the phrase as an inequality involving an absolute value.

77. All real numbers x less than 3 units from 0
78. All real numbers x more than 2 units from 0
79. All real numbers x at least 5 units from 7

80. All real numbers x at most 4 units from 2

81-86 ®m A set of real numbers is graphed. Find an inequality
involving an absolute value that describes the set.

L T e B S B E—
-5-4-3-2-101 2 3 45
82. 1 >
-5-4-3-2-101 2 3 45
83. F—t—o t 1t o >
—5-4-3-2-10 2 3 45
84, —+———t——t————————————>
-5-4-3-2-101 2 3 4 5
85, —+—+—+—4——t——t—p———t———>

5-4-32-101 2 3 4 5

|
T 2%

5-4-3-2-101 2 3 4 5

Y

86.
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87-90 ®m Determine the values of the variable for which the ex-
pression is defined as a real number.

87. V16 — 9x? 88. V3x?—5x+2

89 <%)m 90, YL =%
T\x?-5x— 14 N2+«

91. Solve the inequality for x, assuming that a, b, and ¢ are posi-
tive constants.

(@) a(bx — ¢) = be b) as=bx+c<2a

92. Suppose that a, b, ¢, and d are positive numbers such that

Show that %< a

Applications

93. Temperature Scales Use the relationship between C and
F given in Example 9 to find the interval on the Fahrenheit
scale corresponding to the temperature range 20 = C = 30.

94. Temperature Scales What interval on the Celsius scale
corresponds to the temperature range 50 = F' = 95?

95. Car Rental Cost A car rental company offers two plans
for renting a car.

Plan A:  $30 per day and 10¢ per mile
Plan B:  $50 per day with free unlimited mileage

For what range of miles will plan B save you money?

96. Long-Distance Cost A telephone company offers two
long-distance plans.

Plan A:  $25 per month and 5¢ per minute
Plan B:  $5 per month and 12¢ per minute

For how many minutes of long-distance calls would plan B
be financially advantageous?

97. Driving Cost It is estimated that the annual cost of
driving a certain new car is given by the formula

C = 0.35m + 2200

where m represents the number of miles driven per year and
C is the cost in dollars. Jane has purchased such a car, and
decides to budget between $6400 and $7100 for next year’s
driving costs. What is the corresponding range of miles that
she can drive her new car?

98. Gas Mileage The gas mileage g (measured in mi/gal) for
a particular vehicle, driven at v mi/h, is given by the formula
g =10 4 0.9v — 0.01v2, as long as v is between 10 mi/h
and 75 mi/h. For what range of speeds is the vehicle’s
mileage 30 mi/gal or better?
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99.

100.

101.

102.
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Gravity The gravitational force F exerted by the earth on
an object having a mass of 100 kg is given by the equation

4,000,000
F = T
where d is the distance (in km) of the object from the center
of the earth, and the force F'is measured in newtons (N).

For what distances will the gravitational force exerted by
the earth on this object be between 0.0004 N and 0.01 N?

Bonfire Temperature In the vicinity of a bonfire, the
temperature 7 in °C at a distance of x meters from the
center of the fire was given by

600,000
X2 + 300

At what range of distances from the fire’s center was the
temperature less than 500°C?

Stopping Distance For a certain model of car the
distance d required to stop the vehicle if it is traveling at
v mi/h is given by the formula
2
v
d=v+ —
20
where d is measured in feet. Kerry wants her stopping
distance not to exceed 240 ft. At what range of speeds can
she travel?

Manufacturer’s Profit If a manufacturer sells x units of
a certain product, his revenue R and cost C (in dollars) are
given by:

R = 20x
C = 2000 + 8x + 0.0025x*
Use the fact that
profit = revenue — cost

to determine how many units he should sell to enjoy a
profit of at least $2400.

103.

104.

106.

107.

108.

. Theater Tour Cost

Air Temperature As dry air moves upward, it expands
and in so doing cools at a rate of about 1°C for each
100-meter rise, up to about 12 km.

(a) If the ground temperature is 20 °C, write a formula for
the temperature at height 4.

(b) What range of temperatures can be expected if a plane
takes off and reaches a maximum height of 5 km?

Airline Ticket Price A charter airline finds that on its
Saturday flights from Philadelphia to London, all 120
seats will be sold if the ticket price is $200. However, for
each $3 increase in ticket price, the number of seats sold
decreases by one.

(a) Find a formula for the number of seats sold if the
ticket price is P dollars.

(b) Over a certain period, the number of seats sold for this
flight ranged between 90 and 115. What was the corre-
sponding range of ticket prices?

A riverboat theater offers bus tours
to groups on the following basis. Hiring the bus costs the
group $360, to be shared equally by the group members.
Theater tickets, normally $30 each, are discounted by 25¢
times the number of people in the group. How many mem-
bers must be in the group so that the cost of the theater tour
(bus fare plus theater ticket) is less than $39 per person?

Fencing a Garden A determined gardener has 120 ft
of deer-resistant fence. She wants to enclose a rectangular
vegetable garden in her backyard, and she wants the area
enclosed to be at least 800 ft>. What range of values is
possible for the length of her garden?

Thickness of a Laminate A company manufactures
industrial laminates (thin nylon-based sheets) of thickness
0.020 in, with a tolerance of 0.003 in.

(a) Find an inequality involving absolute values that de-
scribes the range of possible thickness for the laminate.

(b) Solve the inequality you found in part (a).

Range of Height The average height of adult males is
68.2 in, and 95% of adult males have height £ that satisfies
the inequality

‘h—@l

=2
29

Solve the inequality to find the range of heights.



Discovery - Discussion

109. Do Powers Preserve Order? Ifa < b,isa’ < b?*?
(Check both positive and negative values for a and b.) If
a < b, is a®> < b*? Based on your observations, state a
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example, x = —1 lies in this interval but does not satisfy
the original inequality. Explain why this method doesn’t
work (think about the sign of x). Then solve the inequality
correctly.

general rule about the relationship between a” and b" when 111. Using Distances to Solve Absolute Value Inequali-

a < b and n is a positive integer.

110. What’s Wrong Here? It is tempting to try to solve an
inequality like an equation. For instance, we might try to
solve 1 < 3/x by multiplying both sides by x, to get x < 3,
so the solution would be (—o0, 3). But that’s wrong; for

ties Recall that |a — b| is the distance between a and b
on the number line. For any number x, whatdo |x — 1|
and | x — 3| represent? Use this interpretation to solve the
inequality |x — 1| < |x — 3| geometrically. In general,
if a < b, what is the solution of the inequality

|x —a| < |x—b]|?

The Cartesian plane is named in honor
of the French mathematician René
Descartes (1596-1650), although
another Frenchman, Pierre Fermat
(1601-1665), also invented the prin-
ciples of coordinate geometry at the
same time. (See their biographies on
pages 112 and 652.)

Although the notation for a point (a, b)
is the same as the notation for an open

interval (a, b), the context should make
clear which meaning is intended.

The coordinate plane is the link between algebra and geometry. In the coordinate plane
we can draw graphs of algebraic equations. The graphs, in turn, allow us to “see” the
relationship between the variables in the equation. In this section we study the coordi-
nate plane.

The Coordinate Plane

Just as points on a line can be identified with real numbers to form the coordinate line,
points in a plane can be identified with ordered pairs of numbers to form the coordi-
nate plane or Cartesian plane. To do this, we draw two perpendicular real lines that
intersect at 0 on each line. Usually one line is horizontal with positive direction to the
right and is called the x-axis; the other line is vertical with positive direction upward
and is called the y-axis. The point of intersection of the x-axis and the y-axis is the
origin 0O, and the two axes divide the plane into four quadrants, labeled I, 11, I1I, and
IV in Figure 1. (The points on the coordinate axes are not assigned to any quadrant.)

VA

3)

v
=]
\

Figure 1 Figure 2

Any point P in the coordinate plane can be located by a unique ordered pair of
numbers (a, b), as shown in Figure 1. The first number a is called the x-coordinate
of P; the second number b is called the y-coordinate of P. We can think of the coor-
dinates of P as its “address,” because they specify its location in the plane. Several
points are labeled with their coordinates in Figure 2.
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Coordinates as Addresses

The coordinates of a point in the
xy-plane uniquely determine its lo-
cation. We can think of the coordi-
nates as the “address” of the point.
In Salt Lake City, Utah, the ad-
dresses of most buildings are in
fact expressed as coordinates. The
city is divided into quadrants with
Main Street as the vertical (North-
South) axis and S. Temple Street as
the horizontal (East-West) axis. An
address such as

1760 W 2100 S

indicates a location 17.6 blocks
west of Main Street and 21 blocks
south of S. Temple Street. (This is
the address of the main post office
in Salt Lake City.) With this logical
system it is possible for someone
unfamiliar with the city to locate
any address immediately, as easily
as one locates a point in the coordi-
nate plane.

500 North St.

S.Temple St. @

4th South St.

/jt
- i

Toara WPIOr
IS ureN

9th South St.

1S 159 00LT
1S 1S9M 006
1S 1S9M 00€

A

N

Post Ofﬁceﬁl
1760 W 2100 S

/\/

13th South St.

17th South St.

98 158 UL

21st South St.

Example 1 Graphing Regions in the Coordinate Plane

Describe and sketch the regions given by each set.
@ {(x.y)|x=0} (b) {(x.y) [y =1}

Solution

© {(xy) ||yl <1}

(a) The points whose x-coordinates are 0 or positive lie on the y-axis or to the right
of it, as shown in Figure 3(a).

(b) The set of all points with y-coordinate 1 is a horizontal line one unit above the
x-axis, as in Figure 3(b).

(c¢) Recall from Section 1.7 that

ly| <1 if and only if -1<y<l1

So the given region consists of those points in the plane whose y-coordinates lie
between — 1 and 1. Thus, the region consists of all points that lie between (but
not on) the horizontal lines y = 1 and y = — 1. These lines are shown as broken
lines in Figure 3(c) to indicate that the points on these lines do not lie in the set.

y y Y
1 1 o
t #O E t #O t t ~ 0 p
1 il ks
(@ x=0 b)y=1 ©yl <1
Figure 3 [

The Distance and Midpoint Formulas

We now find a formula for the distance d(A, B) between two points A(x,,y,) and
B(x,,y,) in the plane. Recall from Section 1.1 that the distance between points a and
b on a number line is d(a, b) = |b — a|. So, from Figure 4 we see that the distance
between the points A(x, y,) and C(x,, y,) on a horizontal line must be | x, — x, |, and
the distance between B(x,, y,) and C(x,, y,) on a vertical line must be |y, — y; |.

Y2

yl”A(xn)ﬁ)

Figure 4
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Since triangle ABC is a right triangle, the Pythagorean Theorem gives

d(A,B) = \/|x2 X |2 + [y —» ‘2 = \/(x2 - x,)2 + (- )’1)2

Distance Formula

The distance between the points A(x,, y;) and B(x,, y,) in the plane is
d(A,B) = \/(x2 —x)’+ (=)’

Example 2 Applying the Distance Formula
Which of the points P(1, —2) or Q(8,9) is closer to the point A(5, 3)?

Solution By the Distance Formula, we have

dP,A) = V(5 - 172+ [3— (—2)P= V& +5 =V
d(Q.4) = V(5 8 + (3 - 97 = V(=3) + (-6 = V45

This shows that d(P, A) < d(Q, A), so P is closer to A (see Figure 5). ]

Now let’s find the coordinates (x,y) of the midpoint M of the line segment that
joins the point A(x;, y,) to the point B(x,, y,). In Figure 6 notice that triangles APM
and MQOB are congruent because d(A, M) = d(M, B) and the corresponding angles
are equal.

VA
Midpoint
M(x,y) AQ
ei _ \
Alxy, yi) 2T ¥ ‘
P

<

Figure 6

It follows that d(A, P) = d(M, Q) and so

X — X =X — X
x1+x2

Solving this equation for x, we get 2x = x; + x,, and so x =
Nty
5

. Similarly,
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Midpoint Formula

The midpoint of the line segment from A(x;, y,) to B(x,, y,) is

<x1+x2 }’1+}’2>
2 72

Example 3 Applying the Midpoint Formula

Show that the quadrilateral with vertices P(1,2), Q(4,4), R(5,9), and §(2,7) is a
parallelogram by proving that its two diagonals bisect each other.

y Solution If the two diagonals have the same midpoint, then they must bisect
R each other. The midpoint of the diagonal PR is

8

S <1+52+9>_<311)

27 2 T2

4 0 and the midpoint of the diagonal QS is

P <4+24+7>:(311)

> 27 2 )
0 4 X

so each diagonal bisects the other, as shown in Figure 7. (A theorem from elemen-
Figure 7 tary geometry states that the quadrilateral is therefore a parallelogram.) ]

Graphs of Equations in Two Variables

An equation in two variables, such as y = x*> + 1, expresses a relationship between

Fundamental Principle of two quantities. A point (x, y) satisfies the equation if it makes the equation true when

Analytic Geometry the values for x and y are substituted into the equation. For example, the point (3, 10)

A point (x, y) lies on the graph of an satisfies the equation y = x? + 1 because 10 = 3? + 1, but the point (1, 3) does not,
equation if and only if its coordinates because 3 # 12 + 1.

satisfy the equation.

The Graph of an Equation

The graph of an equation in x and y is the set of all points (x, y) in the coor-
dinate plane that satisfy the equation.

The graph of an equation is a curve, so to graph an equation we plot as many points
as we can, then connect them by a smooth curve.

Example 4 Sketching a Graph by Plotting Points
Sketch the graph of the equation 2x — y = 3.
Solution We first solve the given equation for y to get

y=2x—3
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Figure 8

A detailed discussion of parabolas and
their geometric properties is presented

in Chapter 10.

—
//

L Y

Figure 9
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Figure 10
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This helps us calculate the y-coordinates in the following table.

X y=2x—3 (x,y)

-1 -5 (—1,-5)
0 -3 (0, -3)
1 ~1 (1,-1)
2 1 (2,1)
3 3 (3.3)
4 5 (4.5)

Of course, there are infinitely many points on the graph, and it is impossible to plot
all of them. But the more points we plot, the better we can imagine what the graph
represented by the equation looks like. We plot the points we found in Figure §;
they appear to lie on a line. So, we complete the graph by joining the points by a
line. (In Section 1.10 we verify that the graph of this equation is indeed a line.) =

Example 5 Sketching a Graph by Plotting Points
Sketch the graph of the equation y = x> — 2.

Solution We find some of the points that satisfy the equation in the following
table. In Figure 9 we plot these points and then connect them by a smooth curve. A
curve with this shape is called a parabola.

x y=x"—2 (x.y)
-3 7 (-3.7)
-2 2 (—2.2)
-1 -1 (-1,-1)
0 -2 0, -2)
1 -1 (1,-1)
2 2 (2,2)
3 7 (3.7)

Example 6 Graphing an Absolute Value Equation
Sketch the graph of the equation y = |x]|.

Solution We make a table of values:

x y = |x| (x,y)
-3 3 (-3.3)
-2 2 (—2.2)
~1 1 (-1,1)
0 0 (0,0)
1 1 (1,1)
2 2 (2,2)
3 3 (3.3)

In Figure 10 we plot these points and use them to sketch the graph of the equation.
]
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Intercepts

The x-coordinates of the points where a graph intersects the x-axis are called the
x-intercepts of the graph and are obtained by setting y = 0 in the equation of the
graph. The y-coordinates of the points where a graph intersects the y-axis are called
the y-intercepts of the graph and are obtained by setting x = 0 in the equation of the

graph.
Definition of Intercepts
Intercepts How to find them Where they are on the graph
x-intercepts: y
The x-coordinates of points where the Sety = 0 and
graph of an equation intersects the x-axis solve for x

0 X

y-intercepts: Y
The y-coordinates of points where the Setx = 0 and
graph of an equation intersects the y-axis solve for y

% X

Example 7 Finding Intercepts
Find the x- and y-intercepts of the graph of the equation y = x> — 2.

Solution To find the x-intercepts, we set y = 0 and solve for x. Thus

y=x2-2 0=x>—-2 Sety=0
x2=2 Add 2 to each side
x=*V2 Take the square root

x-intercepts
The x-intercepts are V2 and — V2.
To find the y-intercepts, we set x = 0 and solve for y. Thus
y=0*-2 Set x =0
y-intercept y= -2

The y-intercept is —2.
The graph of this equation was sketched in Example 5. It is repeated in Figure 11
Figure 11 with the x- and y-intercepts labeled. m

Circles

So far we have discussed how to find the graph of an equation in x and y. The con-
verse problem is to find an equation of a graph, that is, an equation that represents a
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given curve in the xy-plane. Such an equation is satisfied by the coordinates of the
points on the curve and by no other point. This is the other half of the fundamental
principle of analytic geometry as formulated by Descartes and Fermat. The idea is
that if a geometric curve can be represented by an algebraic equation, then the rules
of algebra can be used to analyze the curve.

As an example of this type of problem, let’s find the equation of a circle with
radius r and center (h, k). By definition, the circle is the set of all points P(x, y) whose
distance from the center C(h, k) is r (see Figure 12). Thus, P is on the circle if and
only if d(P, C) = r. From the distance formula we have

Vi —h2+ -k =r

(x = h)?*+ (y — k)?=r? Square each side

This is the desired equation.

Equation of a Circle

An equation of the circle with center (h, k) and radius r is
(c—hP+(—k?=r>
This is called the standard form for the equation of the circle. If the center

of the circle is the origin (0, 0), then the equation is

24y =2

Example 8 Graphing a Circle
Graph each equation.
(@) x* +y*=25 (b) x =2+ (+1)=25
Solution

(a) Rewriting the equation as x> + y* = 52, we see that this is an equation of the
circle of radius 5 centered at the origin. Its graph is shown in Figure 13.

(b) Rewriting the equation as (x — 2)* + (y + 1)* = 5% we see that this is an
equation of the circle of radius 5 centered at (2, —1). Its graph is shown in
Figure 14.

yA

=Y

(x =22+ (y+1)2=25

Figure 13 Figure 14 [ |
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Figure 15

(x =32+ (y—1%>=53

Figure 16

Completing the square is used in many
contexts in algebra. In Section 1.5 we
used completing the square to solve
quadratic equations.

@ We must add the same numbers to
each side to maintain equality.

Example 9 Finding an Equation of a Circle

(a) Find an equation of the circle with radius 3 and center (2, —5).

(b) Find an equation of the circle that has the points P(1, 8) and Q(5, —6) as the
endpoints of a diameter.

Solution
(a) Using the equation of a circle with r = 3, h = 2, and k = —5, we obtain
x=2P+(O+5)?=9
The graph is shown in Figure 15.

(b) We first observe that the center is the midpoint of the diameter PQ, so by the
Midpoint Formula the center is

(1 ;L 5’8;6) _ 61)

The radius 7 is the distance from P to the center, so by the Distance Formula

rP=0B-1)7+(1-8)2=2"+(-7)7=53

Therefore, the equation of the circle is
(x—=3)7+(y—1)?*=53
The graph is shown in Figure 16. ]
Let’s expand the equation of the circle in the preceding example.
(x—=3)7+(y—1)?*=53 Standard form
xX—6x+9+y2—2y+1=53 Expand the squares
x? — 6x + y? — 2y = 43 Subtract 10 to get expanded form

Suppose we are given the equation of a circle in expanded form. Then to find its cen-
ter and radius we must put the equation back in standard form. That means we must
reverse the steps in the preceding calculation, and to do that we need to know what to
add to an expression like x> — 6x to make it a perfect square—that is, we need to
complete the square, as in the next example.

Example 10 Identifying an Equation of a Circle

Show that the equation x> + y? + 2x — 6y + 7 = 0 represents a circle, and find the
center and radius of the circle.

Solution We first group the x-terms and y-terms. Then we complete the square

within each grouping. That is, we complete the square for x> + 2x by adding

(3-2)* = 1, and we complete the square for y> — 6y by adding [3+(—6)]> = 9.
(x* + 2x ) + (y* — 6y )= -7 Croup terms

(*+2x+ 1)+ (P —6y+9)=-7+1+9 Complete the square by
adding 1 and 9 to each side

x+ 12+ (y—-3)7=

|
w

Factor and simplify
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Comparing this equation with the standard equation of a circle, we see that h = —1,
k=3,and r = V3, so the given equation represents a circle with center (—1, 3)
and radius V3. ]
Symmetry
Figure 17 shows the graph of y = x°. Notice that the part of the graph to the left of
(=x,y) A S e . . .
the y-axis is the mirror image of the part to the right of the y-axis. The reason is
that if the point (x, y) is on the graph, then so is (—x, y), and these points are reflec-
tions of each other about the y-axis. In this situation we say the graph is symmetric
with respect to the y-axis. Similarly, we say a graph is symmetric with respect to
the x-axis if whenever the point (x, y) is on the graph, then so is (x, —y). A graph is
symmetric with respect to the origin if whenever (x, y) is on the graph, so is
Figure 17 (—x, —y).
Definition of Symmetry
Type of How to test What the graph looks like
symmetry for symmetry (figures in this section) Geometric meaning
Symmetry with respect The equation is Graph is unchanged
to the x-axis unchanged when y when reflected in the
is replaced by —y X-axis
(Figures 13, 18)
Symmetry with respect The equation is YA Graph is unchanged
to the y-axis unchanged when x when reflected in the
is replaced by —x (=x,y) (x,) y-axis
0 X
(Figures 9, 10, 11, 13, 17)
Symmetry with respect The equation is y Graph is unchanged
to the origin unchanged when (x,y) when rotated 180°
x is replaced by —x about the origin

and y by —y

S

=Y

(_X, _y)

(Figures 13, 19)
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The remaining examples in this section show how symmetry helps us sketch the
graphs of equations.
Example 11 Using Symmetry to Sketch a Graph

Test the equation x = y* for symmetry and sketch the graph.

Solution Ifyis replaced by —y in the equation x = y% we get

X = (—y)2 Replace y by —y

X = y2 Simplify
and so the equation is unchanged. Therefore, the graph is symmetric about the
x-axis. But changing x to —x gives the equation —x = y?, which is not the same as
the original equation, so the graph is not symmetric about the y-axis.

We use the symmetry about the x-axis to sketch the graph by first plotting points
just for y > 0 and then reflecting the graph in the x-axis, as shown in Figure 18.

y x=y’ (x, y)

0 0 (0,0)

1 1 (1,1)

2 4 (4,2)

3 9 9,3)
Figure 18

Example 12 Using Symmetry to Sketch a Graph

Test the equation y = x* — 9x for symmetry and sketch its graph.

Solution If we replace x by —x and y by —y in the equation, we get
—y = (=x)® = 9(—x)  Replace xby —xand yby —y
—y=—x’+ 9% Simplify
y=x>—9x Multiply by —1

and so the equation is unchanged. This means that the graph is symmetric with
respect to the origin. We sketch it by first plotting points for x > 0 and then using
symmetry about the origin (see Figure 19).

X y=x>—9x (x, ¥)
0 0 (0,0)
-8 (1,-8)
B 1.5 ~10.125 (1.5, —10.125)
f (2.5, -6.875) 10 (2.~ 10)
(1.5, -10.125) 2.5 —6.875 (2.5, —6.875)
3 0 (3.0)
4 28 (4,28)
Figure 19
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BEE: M Exercises

1. Plot the given points in a coordinate plane: 9. (—3,-6),(4,18)

(2.3), (=2.3), (4,5), (4, =5), (=4,5), (~4,=5) 10, (-1,1),(5,9)

2. Find the coordinates of the points shown in the figure. 11. (6, -2), (~6.2)

74 12. (0, —6), (5,0)

|
C
C

13. Draw the rectangle with vertices A(1, 3), B(5, 3), C(1, —3),
and D(5, —3) on a coordinate plane. Find the area of the

eD B rectangle.
Fl Aiy 14. Draw the parallelogram with vertices A(1, 2), B(5, 2),
E 0 X C(3,6), and D(7, 6) on a coordinate plane. Find the area
H of the parallelogram.

15. Plot the points A(1,0), B(5,0), C(4,3), and D(2,3), on a
coordinate plane. Draw the segments AB, BC, CD, and DA.
What kind of quadrilateral is ABCD, and what is its area?

3
L

3-6 ® A pair of points is graphed.

16. Plot the points P(5, 1), 0(0,6), and R(—=5,1),0n a
coordinate plane. Where must the point S be located
so that the quadrilateral PORS is a square? Find the area
of this square.

(a) Find the distance between them.

(b) Find the midpoint of the segment that joins them.

3. y 4. y
17-26 m Sketch the region given by the set.
17. {(x.y) | x = 3}
TN 1//’
0 x 0 " 18. {(x,y) [y <3}
19. {(xy)[y=2}
2. {(5y)|x = —1}
5. yA 6. y 21 {(xy) |1 <x <2}
2. {xy)[0=y=4}
\\E 1
N 1 23. {(x,y)‘|x|>4}
0 N, X 0 X
AN _— 24. {(xy)|lyl =2}
N S
25. {(x,y)|x = landy < 3}

26. {(x,y)||x| =2and |y| =3}
7-12 m A pair of points is graphed.
27. Which of the points A(6,7) or B(—5, 8) is cl to th
(a) Plot the points in a coordinate plane. origliil‘?o ¢ points A(6,7) or B(=5,8) is closer to the
(b) Find the distance between them. '

(¢) Find the midpoint of the segment that joins them. 28. Which of the points C(—6, 3) or D(3, 0) is closer to the
point E(—2,1)?
7. (0,8), (6, 16)
29. Which of the points P(3, 1) or Q(—1, 3) is closer to the
8. (—2,5),(10,0) point R(—1, —1)?
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30.

31.

32.

33.

34.

35.

36.

37.

38.
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(a) Show that the points (7, 3) and (3, 7) are the same
distance from the origin.

(b) Show that the points (a, b) and (b, a) are the same
distance from the origin.

Show that the triangle with vertices A(0, 2), B(—3, —1),
and C(—4, 3) is isosceles.

Find the area of the triangle shown in the figure.
YA
4+ C
2+
A B
-2 0 2 4 6 g X
_2 £

Refer to triangle ABC in the figure.

(a) Show that triangle ABC is a right triangle by using the
converse of the Pythagorean Theorem (see page 54).

(b) Find the area of triangle ABC.

Show that the triangle with vertices A(6, —7), B(11, —3),
and C(2, —2) is a right triangle by using the converse of the
Pythagorean Theorem. Find the area of the triangle.

Show that the points A(—2,9), B(4,6), C(1,0), and
D(—5,3) are the vertices of a square.

Show that the points A(—1,3), B(3, 11), and C(5, 15) are
collinear by showing that d(A, B) + d(B, C) = d(A, C).

Find a point on the y-axis that is equidistant from the points
(5,=5)and (1, 1).

Find the lengths of the medians of the triangle with vertices
A(1,0), B(3,6), and C(8,2). (A median is a line segment
from a vertex to the midpoint of the opposite side.)

39.

40.

41.

42.

Plot the points P(—1, —4), O(1, 1), and R(4,2), on a coor-
dinate plane. Where should the point S be located so that the
figure PORS is a parallelogram?

If M(6, 8) is the midpoint of the line segment AB, and if A
has coordinates (2, 3), find the coordinates of B.

(a) Sketch the parallelogram with vertices A(—2, —1),
B(4,2),C(7,7), and D(1, 4).

(b) Find the midpoints of the diagonals of this
parallelogram.

(¢) From part (b) show that the diagonals bisect each other.
The point M in the figure is the midpoint of the line

segment AB. Show that M is equidistant from the vertices
of triangle ABC.

VA
B(0, b)
M
C(0,0) Ala,0) x

43-46 ® Determine whether the given points are on the graph
of the equation.

43.
44.

45.

x—2y—1=0; (0,0),(1,0),(~1,—1)
Yo+ 1) =1; (1,1),(13). (=1, 3)
Pty =4 (0,-2),(1,-2), (2 —2)

1 1

46. x2 + y2 = 1; (0,1), (%,%), (?,%)

47-50 ® An equation and its graph are given. Find the x- and
y-intercepts.

47. y = 4x — x* 48.

<
9




49, x* +y2—xy =16 50. x>+ y* — x3yr =64

y |
X
2
0]2 X

51-70 ® Make a table of values and sketch the graph of the
equation. Find the x- and y-intercepts and test for symmetry.

5. y=—x+4 52. y=3x+3

53. 2x —y=06 54. x+y=3

55. y=1—x? 56. y=x*+2

57. 4y = x* 58. 8y = x°

59. y=x>—9 60. y =9 — x?

61. xy=2 62. y=Vx+4
63. y= V4 —x? 64. y = —\V4 — x?
65. x +y>=4 66. x = y3

67. y =16 — x* 68. x = |y

69. y=4— | x| 70. y = |4 — x|

71-76 m Test the equation for symmetry.

71,y =x* + x2 72. x =yt —y?

73. 22+ ay =1 74. x*tyt+ 2B =1

75. y =x* + 10x 76. y = x* + | x|

77-80 m Complete the graph using the given symmetry property.

77. Symmetric with respect
to the y-axis

78. Symmetric with respect
to the x-axis

yA yA

(e
=Y
[en]
=
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79. Symmetric with respect
to the origin

80. Symmetric with respect
to the origin

YA YA

81-86 ® Find an equation of the circle that satisfies the given
conditions.

81. Center (2, —1); radius 3

82. Center (—1, —4); radius 8

83. Center at the origin; passes through (4, 7)

84. Endpoints of a diameter are P(—1, 1) and O(5,9)
85. Center (7, —3); tangent to the x-axis

86. Circle lies in the first quadrant, tangent to both x-and y-axes;
radius 5

87-88 m Find the equation of the circle shown in the figure.
87. 88.

89-94 m Show that the equation represents a circle, and find the
center and radius of the circle.

89. x>+ y?—4x+10y+13=0
90. x>+ y>*+6y+2=0

91. x2+y2—%x+%y=é

92. x>+ y+ix+2y+%=0
93. 2x2 4+ 2y> —3x =0

94. 3x>+3y2+6x—y=0
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95-96 m Sketch the region given by the set.
95. {(x,y)|x*+y* =1}
96. {(x,y)|x* + y* >4}

97. Find the area of the region that lies outside the circle
x> + y? = 4 but inside the circle

xX2+y?—4y—12=0

98. Sketch the region in the coordinate plane that satisfies both
the inequalities x* + y> <9 and y = | x|. What is the area
of this region?

Applications

99. Distances in a City A city has streets that run north
and south, and avenues that run east and west, all equally
spaced. Streets and avenues are numbered sequentially, as
shown in the figure. The walking distance between points
A and B is 7 blocks—that is, 3 blocks east and 4 blocks
north. To find the straight-line distances d, we must use
the Distance Formula.

(a) Find the straight-line distance (in blocks) between A
and B.

(b) Find the walking distance and the straight-line dis-
tance between the corner of 4th St. and 2nd Ave. and
the corner of 11th St. and 26th Ave.

(¢) What must be true about the points P and Q if the
walking distance between P and Q equals the straight-
line distance between P and Q?

N 7th Ave.
B
W—F E ; 6th Ave.
S // 5th Ave.
I
S 4th Ave.
L °
// v
4 3rd Ave.
e n—— 2nd Ave.
3 blocks
Ist Ave.
A 4 & & &
2 © B g =
- & & JF @

100. Halfway Point Two friends live in the city described in
Exercise 99, one at the corner of 3rd St. and 7th Ave., the
other at the corner of 27th St. and 17th Ave. They frequently
meet at a coffee shop halfway between their homes.

(a) At what intersection is the coffee shop located?

(b) How far must each of them walk to get to the coffee
shop?

101. Orbit of a Satellite A satellite is in orbit around the

moon. A coordinate plane containing the orbit is set up
with the center of the moon at the origin, as shown in the
graph, with distances measured in megameters (Mm). The
equation of the satellite’s orbit is

_32 2
=3 ¥y
25 16

=1

(a) From the graph, determine the closest and the farthest
that the satellite gets to the center of the moon.

(b) There are two points in the orbit with y-coordinates
2. Find the x-coordinates of these points, and deter-
mine their distances to the center of the moon.

NASA

Discovery ¢ Discussion

102. Shifting the Coordinate Plane Suppose that each
point in the coordinate plane is shifted 3 units to the right
and 2 units upward.

(a) The point (5, 3) is shifted to what new point?

(b) The point (a, b) is shifted to what new point?

(¢) What point is shifted to (3,4)?

(d) Triangle ABC in the figure has been shifted to triangle
A'B'C’. Find the coordinates of the points A’, B’,
and C'.




103.

104.

105.

106.
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Reflecting in the Coordinate Plane Suppose that the

y-axis acts as a mirror that reflects each point to the right

of it into a point to the left of it.

(a) The point (3, 7) is reflected to what point?

(b) The point (a, b) is reflected to what point?

(c) What point is reflected to (—4, —1)?

(d) Triangle ABC in the figure is reflected to triangle
A'B'C’. Find the coordinates of the points A’, B,
and C'.

YA
A A(3,3)

c' | cu,—4)

Completing a Line Segment  Plot the points M(6, 8)
and A(2, 3) on a coordinate plane. If M is the midpoint of
the line segment AB, find the coordinates of B. Write a
brief description of the steps you took to find B, and your
reasons for taking them.

Completing a Parallelogram  Plot the points P(0, 3),
0(2,2), and R(5, 3) on a coordinate plane. Where should
the point S be located so that the figure PORS is a parallel-
ogram? Write a brief description of the steps you took and
your reasons for taking them.

Circle, Point, or Empty Set? Complete the squares in
the general equation x> + ax + y> + by + ¢ = 0 and sim-
plify the result as much as possible. Under what conditions
on the coefficients a, b, and ¢ does this equation represent
a circle? A single point? The empty set? In the case that
the equation does represent a circle, find its center and
radius.

107.

108.

Do the Circles Intersect?

(a) Find the radius of each circle in the pair, and the dis-
tance between their centers; then use this information
to determine whether the circles intersect.

M (x =27+ -1)7=9%
(x—6)2+(y—4)72=16

(i) x>+ (y — 22 =4
(x=35)7+@-14)?%*=9
(i) (x =32+ (y+1)*=1;
(x=2+(—-272=25

(b) How can you tell, just by knowing the radii of two
circles and the distance between their centers, whether
the circles intersect? Write a short paragraph describ-
ing how you would decide this and draw graphs to
illustrate your answer.

Making a Graph Symmetric The graph shown in the
figure is not symmetric about the x-axis, the y-axis, or the
origin. Add more line segments to the graph so that it
exhibits the indicated symmetry. In each case, add as little
as possible.

(a) Symmetry about the x-axis

(b) Symmetry about the y-axis

(¢c) Symmetry about the origin

4

Graphing Calculators; Solving Equations
and Inequalities Graphically

In Sections 1.5 and 1.7 we solved equations and inequalities algebraically. In the pre-
ceding section we learned how to sketch the graph of an equation in a coordinate
plane. In this section we use graphs to solve equations and inequalities. To do this, we
must first draw a graph using a graphing device. So, we begin by giving a few guide-
lines to help us use graphing devices effectively.
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(a,d) y=d (b.d)
XxX=a x=b
(a,c) y=c (b, )

Figure 1

The viewing rectangle [a, b] by [c, d]

Using a Graphing Calculator

A graphing calculator or computer displays a rectangular portion of the graph of an
equation in a display window or viewing screen, which we call a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important
to choose the viewing rectangle with care. If we choose the x-values to range from a
minimum value of Xmin = a to a maximum value of Xmax = b and the y-values to
range from a minimum value of Ymin = ¢ to a maximum value of Ymax = d, then
the displayed portion of the graph lies in the rectangle

[a,b] X [e,d] ={(x,y) |la=x=b,c=y=d}

as shown in Figure 1. We refer to this as the [a, b] by [ ¢, d] viewing rectangle.

The graphing device draws the graph of an equation much as you would. It plots
points of the form (x, y) for a certain number of values of x, equally spaced between
a and b. If the equation is not defined for an x-value, or if the corresponding y-value
lies outside the viewing rectangle, the device ignores this value and moves on to the
next x-value. The machine connects each point to the preceding plotted point to form
a representation of the graph of the equation.

Example 1 Choosing an Appropriate Viewing Rectangle
Graph the equation y = x* + 3 in an appropriate viewing rectangle.

Solution Let’s experiment with different viewing rectangles. We’ll start with the
viewing rectangle [ —2,2] by [ =2, 2], so we set

Xmin= —2 Ymin = —2

Xmax = 2 Xmax = 2

The resulting graph in Figure 2(a) is blank! This is because x* = 0, sox* + 3 =3
for all x. Thus, the graph lies entirely above the viewing rectangle, so this viewing
rectangle is not appropriate. If we enlarge the viewing rectangle to [ —4, 4] by
[—4,4], as in Figure 2(b), we begin to see a portion of the graph.

Now let’s try the viewing rectangle [ —10, 10] by [ =35, 30]. The graph in
Figure 2(c) seems to give a more complete view of the graph. If we enlarge the
viewing rectangle even further, as in Figure 2(d), the graph doesn’t show clearly
that the y-intercept is 3.

So, the viewing rectangle [ —10, 10] by [ —5, 30] gives an appropriate represen-
tation of the graph.

2 4 30 1000
\V
-2 2 —4 4
=50 50
-2 —4 =5 —100
(@) (b) (©) (d)
Figure 2 Graphs of y = x> + 3 [ ]
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Alan Turing (1912-1954) was at
the center of two pivotal events of
the 20th century—World War II
and the invention of computers. At
the age of 23 Turing made his mark
on mathematics by solving an im-
portant problem in the foundations
of mathematics that was posed by
David Hilbert at the 1928 Interna-
tional Congress of Mathematicians
(see page 708). In this research he
invented a theoretical machine,
now called a Turing machine,
which was the inspiration for mod-
ern digital computers. During
World War II Turing was in charge
of the British effort to decipher se-
cret German codes. His complete
success in this endeavor played a
decisive role in the Allies’ victory.
To carry out the numerous logical
steps required to break a coded
message, Turing developed deci-
sion procedures similar to modern
computer programs. After the war
he helped develop the first elec-
tronic computers in Britain. He also
did pioneering work on artificial
intelligence and computer models
of biological processes. At the age
of 42 Turing died of poisoning after
eating an apple that had mysteri-
ously been laced with cyanide.
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Example 2 Two Graphs on the Same Screen

Graph the equations y = 3x> — 6x + 1 and y = 0.23x — 2.25 together in the

103

viewing rectangle [ —1,3] by [ —2.5, 1.5]. Do the graphs intersect in this viewing

rectangle?

Solution Figure 3(a) shows the essential features of both graphs. One is

a parabola and the other is a line. It looks as if the graphs intersect near the
point (1,—2). However, if we zoom in on the area around this point as shown in
Figure 3(b), we see that although the graphs almost touch, they don’t actually
intersect.

15 ~1.85
-1 / 3 y
0.75 \_. 1.25
25 2.5
(a) (b)

Figure 3

You can see from Examples 1 and 2 that the choice of a viewing rectangle makes
a big difference in the appearance of a graph. If you want an overview of the essen-

tial features of a graph, you must choose a relatively large viewing rectangle to

ob-

tain a global view of the graph. If you want to investigate the details of a graph, you

must zoom in to a small viewing rectangle that shows just the feature of interest.

Most graphing calculators can only graph equations in which y is isolated on one
side of the equal sign. The next example shows how to graph equations that don’t

have this property.

Example 3 Graphing a Circle

Graph the circle x* + y? = 1.

Solution We first solve for y, to isolate it on one side of the equal sign.

2

y'=1-—x Subtract

y==x Take square roots

Therefore, the circle is described by the graphs of two equations:

2 2

y=VI1—-x and y=—-VI1—x

The first equation represents the top half of the circle (because y = 0), and the
second represents the bottom half of the circle (because y = 0). If we graph the
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1N

first equation in the viewing rectangle [ —2,2] by [ —2, 2], we get the semicircle
shown in Figure 4(a). The graph of the second equation is the semicircle in
Figure 4(b). Graphing these semicircles together on the same viewing screen,
we get the full circle in Figure 4(c).

2 2

-2
(@)

The graph in Figure 4(c) looks
somewhat flattened. Most graphing
calculators allow you to set the scales
on the axes so that circles really look
like circles. On the TI-82 and TI-83,
from the menu, choose
ZSquare to set the scales appropri-
ately. (On the TI-86 the command is
Zsq.)

“Algebra is a merry science,” Uncle
Jakob would say. “We go hunting for a
little animal whose name we don’t
know, so we call it x. When we bag our
game we pounce on it and give it its
right name.”

ALBERT EINSTEIN

N
N

2 -2 2 -2
-2 -2
(b) ()
Figure 4 Graphing the equation x> + y? = 1 [

Solving Equations Graphically
In Section 1.5 we learned how to solve equations. To solve an equation like
3x—5=0

we used the algebraic method. This means we used the rules of algebra to isolate x
on one side of the equation. We view x as an unknown and we use the rules of alge-
bra to hunt it down. Here are the steps in the solution:

3x—5=0
3x=5  Add5
x=3 Divide by 3

So the solution is x = 3.
‘We can also solve this equation by the graphical method. In this method we view
x as a variable and sketch the graph of the equation

y=3x—15

Different values for x give different values for y. Our goal is to find the value of x for
which y = 0. From the graph in Figure 5 we see that y = 0 when x = 1.7. Thus, the
solution is x = 1.7. Note that from the graph we obtain an approximate solution.

Figure 5

We summarize these methods in the following box.



The Discovery Project on page 283
describes a numerical method for
solving equations.

The quadratic formula is discussed on
page 49.
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Solving an Equation

Algebraic method Graphical method
Use the rules of algebra to isolate Move all terms to one side and
the unknown x on one side of the set equal to y. Sketch the graph
equation. to find the value of x where y = 0.
Example: 2x = 6 — x Example: 2x = 6 — x
3x=06 Add x 0=6—3x
x=2 Divide by 3 Sety = 6 — 3x and graph.
The solution is x = 2. v
y=6—3x

From the graph the solution is x = 2.

The advantage of the algebraic method is that it gives exact answers. Also, the pro-
cess of unraveling the equation to arrive at the answer helps us understand the alge-
braic structure of the equation. On the other hand, for many equations it is difficult or
impossible to isolate x.

The graphical method gives a numerical approximation to the answer. This is an ad-
vantage when a numerical answer is desired. (For example, an engineer might find an
answer expressed as x =~ 2.6 more immediately useful than x = V/7.) Also, graphing
an equation helps us visualize how the solution is related to other values of the variable.

Example 4 Solving a Quadratic Equation Algebraically
and Graphically

Solve the quadratic equations algebraically and graphically.

(@ x>—4x+2=0 (b) x2—4x+4=0 (©) x> —4x+6=0

Solution 1: Algebraic

We use the quadratic formula to solve each equation.

—(—4) = V(-4 —4-1-2 4+
2 2

There are two solutions, x = 2 + V2 and x = 2 — V2.

—(—4) = V(-4 —4-1-4 4+\0
2 2

=2=*V2

(@) x =

(b) x =

There is just one solution, x = 2.

__(_4)i\/m_4ivj8
(C)X_ 2 B 2

There is no real solution.
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10

=5
(@y=x’—4x+2

Figure 6

Intersection
X=2.2727723 Y=-1.818182

—25

Figure 7

Solution 2: Graphical

We graph the equations y = x> —4x + 2,y =x> —4x+ 4,andy = x> —4x + 6
in Figure 6. By determining the x-intercepts of the graphs, we find the following
solutions.

(a) x=06andx =34

b) x=2

(c) There is no x-intercept, so the equation has no solution.

10

The graphs in Figure 6 show visually why a quadratic equation may have two
solutions, one solution, or no real solution. We proved this fact algebraically in Sec-
tion 1.5 when we studied the discriminant.

Example 5 Another Graphical Method
Solve the equation algebraically and graphically: 5 — 3x = 8x — 20
Solution 1: Algebraic
5—3x=8x—20

—3x =8x — 25 Subtract 5
—11x = =25 Subtract 8x

X 2137 Divide by —11 and simplify

="
Solution 2: Graphical
We could move all terms to one side of the equal sign, set the result equal to y, and

graph the resulting equation. But to avoid all this algebra, we graph two equations
instead:

yi=5-—3x and y, = 8x — 20

The solution of the original equation will be the value of x that makes y, equal to y,;
that is, the solution is the x-coordinate of the intersection point of the two graphs.

Using the feature or the intersect command on a graphing calculator,
we see from Figure 7 that the solution is x = 2.27. ]

In the next example we use the graphical method to solve an equation that is
extremely difficult to solve algebraically.
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Example 6 Solving an Equation in an Interval
Solve the equation
23— 6x? + 9x = Vi
in the interval [1, 6].

Solution We are asked to find all solutions x that satisfy 1 = x = 6, so we will
graph the equation in a viewing rectangle for which the x-values are restricted
to this interval.

= 6x>+ 9x = Vx
=62+ 9%—Vx=0 Subtract Vx

We can also use the ze ro command Figure 8 shows the graph of the equation y = x* — 6x*> + 9x — V/x in the viewing
to find the solutions, as shown in rectangle [1, 6] by [—5, 5]. There are two x-intercepts in this viewing rectangle;
Figures 8(a) and 8(b). zooming in we see that the solutions are x =~ 2.18 and x = 3.72.
5 5
: \// | 6 ! \\}/ | °
" Zero " Zero
[ X=2.1767162  Y=0 [ X=3.7200502 Y=0
=5 =5
Figure 8 (@) (b) =

The equation in Example 6 actually has four solutions. You are asked to find the
other two in Exercise 57.

Example 7 Intensity of Light

Two light sources are 10 m apart. One is three times as intense as the other. The
light intensity L (in lux) at a point x meters from the weaker source is given by

L0, W
x* (10 — x)?

(See Figure 9.) Find the points at which the light intensity is 4 lux.

=—————-———— |

Figure 9

Solution We need to solve the equation

10, 30

4 +—
x* (10 — x)?
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_ 10 20
Y2 = X2 * (10 —><)2
10
Yy =4 i
0
Figure 10
10
-1 5
-2
Figure 11

xX2=5x+6=<0

5
bl
-3 + A + + 3
AR

-3
Figure 12
y=37x>+13x— 19
v, =2.0 — 1.4x

15
—6 6

—15
Figure 13

x*—=5x24+8=0

The graphs of
10 30

»w=—5+t

=4 d —
I . X (10 — x)?

are shown in Figure 10. Zooming in (or using the intersect command) we find
two solutions, x = 1.67431 and x = 7.1927193. So the light intensity is 4 lux at the
points that are 1.67 m and 7.19 m from the weaker source. ]

Solving Inequalities Graphically
Inequalities can be solved graphically. To describe the method we solve
X —5%+6=0

This inequality was solved algebraically in Section 1.7, Example 3. To solve the
inequality graphically, we draw the graph of

y=x*=-5x+6

Our goal is to find those values of x for which y = 0. These are simply the x-values
for which the graph lies below the x-axis. From Figure 11 we see that the solution of
the inequality is the interval [2, 3].

Example 8 Solving an Inequality Graphically
Solve the inequality 3.7x* + 1.3x — 1.9 = 2.0 — 1.4x.

Solution We graph the equations

y, =37x>+ 13x — 19 and v, =20 — 14x

in the same viewing rectangle in Figure 12. We are interested in those values of

x for which y, = y,; these are points for which the graph of y, lies on or above the
graph of y,. To determine the appropriate interval, we look for the x-coordinates of
points where the graphs intersect. We conclude that the solution is (approximately)
the interval [—1.45, 0.72]. [

Example 9 Solving an Inequality Graphically

Solve the inequality x* — 5x* = —8.

Solution We write the inequality as
X —5x*+8=0
and then graph the equation
y=x%—5x2+38
in the viewing rectangle [—6, 6] by [—15, 15], as shown in Figure 13. The solution
of the inequality consists of those intervals on which the graph lies on or above the

x-axis. By moving the cursor to the x-intercepts we find that, correct to one decimal
place, the solution is [— 1.1, 1.5] U [4.6, c0). n
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BEE:M Exercises

1-6 ®m Use a graphing calculator or computer to decide which
viewing rectangle (a)—(d) produces the most appropriate graph
of the equation.
Ly=x*+2
(@) [-2.2]by[-2,2]
(b) [0, 4]by [0, 4]
(c) [—8,8]by[—4,40]
(d) [—40, 40] by [—80, 800]
2. y=x24+7x+6

(@) [=5,5]by[-5, 5]

(b) [0, 10] by [—20, 100]

(c) [—15, 8]by[—20, 100]

(d) [—10, 3] by [—100, 20]
3. y=100 — x?

(@) [—4,4]by[—4, 4]

(b) [—10, 10]by [—10, 10]

(c) [—15,15]by[—30, 110]

(d) [—4, 4]by[—30, 110]
4. y = 2x* — 1000

(a) [—10, 10] by [—10, 10]
(b) [—10, 10] by [—100, 100]
(c) [—10, 10] by [-1000, 1000]
(d) [—25,25]by [—1200, 200]
5.y=10+25x — x>

(a) [~4,4]by[-4,4]

(b) [—10, 10] by [—10, 10]

(¢) [—20,20] by [—100, 100]

(d) [—100, 100] by [—200, 200]
6. y="V8x — x?

(a) [—4,4]by[—4,4]

(b) {—5, 5]by [0, 100]
(c¢) [—10, 10] by [—10, 40]
(d) [-2, 10]by[-2, 6]

7-18 ®m Determine an appropriate viewing rectangle for
the equation and use it to draw the graph.

7. y = 100x> 8. y = —100x2

9.y =4+ 6x— x* 10. y=03x>+1.7x — 3
11. y = V256 — x? 12. y= Vi2x — 17

13. y=0.01x* — x>+ 5 14. y =x(x + 6)(x — 9)

15. y = x*— 4x? 16, y = ——
yorem YT 25

17. y=1+ |x — 1| 18. y =2x — |x*> — 5]

19. Graph the circle x* + y* = 9 by solving for y and graphing
two equations as in Example 3.

20. Graph the circle (y — 1)* + x* = 1 by solving for y and
graphing two equations as in Example 3.

21. Graph the equation 4x? + 2y* = 1 by solving for y and
graphing two equations corresponding to the negative and
positive square roots. (This graph is called an ellipse.)

22. Graph the equation y> — 9x* = 1 by solving for y and graph-
ing the two equations corresponding to the positive and neg-
ative square roots. (This graph is called a hyperbola.)

23-26 m Do the graphs intersect in the given viewing rectangle?
If they do, how many points of intersection are there?

23 y= -3+ 6x— Ly=\V7— 5% [—4 4]by[-1,3]
24. y = V49 — x% y = Y41 — 3x); [~8,8]by[~1,8]

25. y=6—4x —x%y=3x+18; [—6,2]by[-5,20]

26. y=x>—4x,y=x+5; [—4,4]by[—15,15]

27-36 ® Solve the equation both algebraically and graphically.
27. x—4=5x+12 28. 4x — 3 =6+ 2x

2 1 4 6 5
O W T T axr4
31. x> —32=0 3R2.x3+16=0

33. 163" = 625 34. 265 — 243 =0

35 (x—5)—80=0 36. 6(x + 2)° = 64

37-44 m Solve the equation graphically in the given interval.
State each answer correct to two decimals.

37.x*=Tx+ 12=0; [0,6]
38. x2—0.75x + 0.125 = 0; [—2,2]

39. 3 —6x*+ 1lx—6=0; [—1,4]

40. 16x° + 16x2 =x + 1; [-2,2]

4. x— Vx+1=0; [-1,5]

2.1+ Ve=V1+s% [-1.5)

43. x'P—x=0; [-3,3]

4. x'P+ xP—x=0; [-1,5]

45-48 m Find all real solutions of the equation, correct to two
decimals.

45. x° —2x" —x—1=0
47, x(x — 1)(x + 2) = ix

46. x* —8x*+2=0
48. x* =16 — x°
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49-56 m Find the solutions of the inequality by drawing appro-
priate graphs. State each answer correct to two decimals.

49.
50.
51.
52.
53.
54.
55.
56.
57.

x?=3x—-10=0
0.5x% + 0.875x = 0.25
P Hllx=6x"+6
16x° + 24x* > —9x — 1
x'/3<x
V0522 + 1 =2|x|
(x+ 1) <(x— 1)
(x+1)y2=x?

In Example 6 we found two solutions of the equation
x> — 6x% + 9x = V/x, the solutions that lie between 1
and 6. Find two more solutions, correct to two decimals.

Applications

58.

. How Far Can You See?

Estimating Profit An appliance manufacturer estimates
that the profit y (in dollars) generated by producing x cook-
tops per month is given by the equation

y = 10x + 0.5x% — 0.001x* — 5000

where 0 = x = 450.
(a) Graph the equation.

(b) How many cooktops must be produced to begin
generating a profit?

(c) For what range of values of x is the company’s profit
greater than $15,000?

If you stand on a ship in a calm
sea, then your height x (in ft) above sea level is related to the
farthest distance y (in mi) that you can see by the equation

2
X
=15+ (2
J * (5280>

(a) Graph the equation for 0 = x = 100.
(b) How high up do you have to be to be able to see 10 mi?

Discovery - Discussion

60.

61.

62.

63.

Equation Notation on Graphing Calculators When
you enter the following equations into your calculator, how
does what you see on the screen differ from the usual way
of writing the equations? (Check your user’s manual if
you’re not sure.)

@ y=|x|

(b) y = Vx
X

(0 Y=1_1

@ y=x+Va+2

Enter Equations Carefully A student wishes to graph
the equations
_ 13 d _ X
yer an YT ¥4

on the same screen, so he enters the following information
into his calculator:

Y, =X*1/3 Y, =X/X + 4

The calculator graphs two lines instead of the equations he
wanted. What went wrong?

Algebraic and Graphical Solution Methods Write a
short essay comparing the algebraic and graphical methods
for solving equations. Make up your own examples to illus-
trate the advantages and disadvantages of each method.

How Many Solutions? This exercise deals with the
family of equations

X =3x=k
(a) Draw the graphs of

vy, =x3—3x and v, =k

in the same viewing rectangle, in the cases k = —4,
—2,0, 2, and 4. How many solutions of the equation
x> — 3x = k are there in each case? Find the solutions
correct to two decimals.

(b) For what ranges of values of k does the equation have
one solution? two solutions? three solutions?
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In this section we find equations for straight lines lying in a coordinate plane. The
equations will depend on how the line is inclined, so we begin by discussing the con-
cept of slope.

The Slope of a Line

We first need a way to measure the “steepness” of a line, or how quickly it rises
(or falls) as we move from left to right. We define run to be the distance we move to
the right and rise to be the corresponding distance that the line rises (or falls). The
slope of a line is the ratio of rise to run:
| rise
slope = —
P run
Figure 1 shows situations where slope is important. Carpenters use the term pitch for
the slope of a roof or a staircase; the term grade is used for the slope of a road.

Slope of a ramp Pitch of a roof Grade of a road

1 1 8
Slope = 5 Slope = 3 Slope = 155

Figure 1

If a line lies in a coordinate plane, then the run is the change in the x-coordinate
and the rise is the corresponding change in the y-coordinate between any two points
on the line (see Figure 2). This gives us the following definition of slope.

YA Ay
S )
I
|
-+ q I -
/ : Rise: Rise:

1 At change in 1 | change in
| [ y-coordinate y-coordinate
| | (positive) (negative)
I

1 I _
I
0 |

\ x
Figure 2
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René Descartes (1596-1650) was
born in the town of La Haye in
southern France. From an early age
Descartes liked mathematics be-
cause of “the certainty of its results
and the clarity of its reasoning.” He
believed that in order to arrive at
truth, one must begin by doubting
everything, including one’s own
existence; this led him to formulate
perhaps the most well-known sen-
tence in all of philosophy: “I think,
therefore I am.” In his book Dis-
course on Method he described
what is now called the Cartesian
plane. This idea of combining alge-
bra and geometry enabled mathe-
maticians for the first time to “see”
the equations they were studying.
The philosopher John Stuart Mill
called this invention “the greatest
single step ever made in the
progress of the exact sciences.”
Descartes liked to get up late and
spend the morning in bed thinking
and writing. He invented the coor-
dinate plane while lying in bed
watching a fly crawl on the ceiling,
reasoning that he could describe the
exact location of the fly by knowing
its distance from two perpendicular
walls. In 1649 Descartes became
the tutor of Queen Christina of
Sweden. She liked her lessons at
5 o’clock in the morning when,
she said, her mind was sharpest.
However, the change from his usual
habits and the ice-cold library
where they studied proved too
much for him. In February 1650,
after just two months of this, he
caught pneumonia and died.

Slope of a Line

The slope m of a nonvertical line that passes through the points A(x,, y,) and
B (va Y 2) is

rise Y, — )
run x2 - .xl

The slope of a vertical line is not defined.

The slope is independent of which two points are chosen on the line. We can see that
this is true from the similar triangles in Figure 3:

TV YN

Xy — Xy x,z - .x’l

YA

B(x,, y,)

Y2 = y (rise)
Alxy, yp)
foz - X (run)*ﬁ
Alxi,yi) vy
P _
) X
Figure 3

Figure 4 shows several lines labeled with their slopes. Notice that lines with pos-
itive slope slant upward to the right, whereas lines with negative slope slant down-
ward to the right. The steepest lines are those for which the absolute value of the slope
is the largest; a horizontal line has slope zero.

YA

N\
N

=
/

Figure 4
Lines with various slopes
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Example 1 Finding the Slope of a Line
through Two Points

Find the slope of the line that passes through the points P(2, 1) and Q(8, 5).

Solution Since any two different points determine a line, only one line passes
through these two points. From the definition, the slope is
_=n_5-1_4_2

n—-x 8—-2 6 3
This says that for every 3 units we move to the right, the line rises 2 units. The line
is drawn in Figure 5. ]

Equations of Lines

Now let’s find the equation of the line that passes through a given point P(x, y,) and
has slope m. A point P(x,y) with x # x; lies on this line if and only if the slope of the
line through P, and P is equal to m (see Figure 6), that is,

Y =N

X — X

This equation can be rewritten in the formy — y; = m(x — x;); note that the equation
is also satisfied when x = x; and y = y,. Therefore, it is an equation of the given line.

Point-Slope Form of the Equation of a Line

An equation of the line that passes through the point (x;, y,) and has slope m is

y =y =mx — x)

Example 2 Finding the Equation of a Line with Given Point
and Slope

(a) Find an equation of the line through (1, —3) with slope — 3.
(b) Sketch the line.

Solution

(a) Using the point-slope form with m = —3, x; = 1, and y, = —3, we obtain an
equation of the line as

y+3= —%(x - 1) From point-slope equation
2y+6=—x+1 Multiply by 2
x+2y+5=0 Rearrange

(b) The fact that the slope is —3 tells us that when we move to the right 2 units, the
line drops 1 unit. This enables us to sketch the line in Figure 7. ]
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We can use either point, (—1,2) or
(3, —4), in the point-slope equation.
We will end up with the same final
answer.

Figure 8

Slope  y-intercept

Example 3 Finding the Equation of a Line
through Two Given Points

Find an equation of the line through the points (—1,2) and (3, —4).

Solution The slope of the line is
-4-2 6 3

"T3o(-n T 4 2
Using the point-slope form with x; = —1 and y; = 2, we obtain
y—2=—-3x+1) From point-slope equation
2y —4=-3x—-3 Multiply by 2
3x+2y—1=0 Rearrange

Suppose a nonvertical line has slope m and y-intercept b (see Figure 8). This
means the line intersects the y-axis at the point (0, b), so the point-slope form of the

equation of the line, with x = 0 and y = b, becomes

y—>b=m(x—0)

This simplifies to y = mx + b, which is called the slope-intercept form of the equa-

tion of a line.

Slope-Intercept Form of the Equation of a Line

An equation of the line that has slope m and y-intercept b is

y=mx+b

Example 4 Lines in Slope-Intercept Form

(a) Find the equation of the line with slope 3 and y-intercept —2.
(b) Find the slope and y-intercept of the line 3y — 2x =1.

Solution

(a) Since m = 3 and b = —2, from the slope-intercept form of the equation of a
line we get

y=3x—2
(b) We first write the equation in the form y = mx + b:
3y —2x=1
3y=2x+1  Add2x
y=2%x+1  Diideby?

From the slope-intercept form of the equation of a line, we see that the slope is
m= % and the y-intercept is b = 1.
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If a line is horizontal, its slope is m = 0, so its equation is y = b, where b is the
y-intercept (see Figure 9). A vertical line does not have a slope, but we can write its
equation as x = a, where a is the x-intercept, because the x-coordinate of every point
on the line is a.

Vertical and Horizontal Lines

An equation of the vertical line through (a, b) is x = a.
An equation of the horizontal line through (a, b) is y = b.

Example 5 Vertical and Horizontal Lines

(a) The graph of the equation x = 3 is a vertical line with x-intercept 3.

(b) The graph of the equation y = —2 is a horizontal line with y-intercept —2.

The lines are graphed in Figure 10. ]

A linear equation is an equation of the form
Ax+ By +C=0

where A, B, and C are constants and A and B are not both 0. The equation of a line
is a linear equation:

= A nonvertical line has the equationy = mx + bor —mx + y — b = 0, which is a
linear equation with A = —m, B = 1,and C = —b.

= A vertical line has the equation x = a or x — @ = 0, which is a linear equation
withA=1,B=0,and C = —a.

Conversely, the graph of a linear equation is a line:

= [f B # 0, the equation becomes

__A _¢C
Y7 7B B
and this is the slope-intercept form of the equation of a line (with m = —A/B and
b= —C/B).
= [f B = 0, the equation becomes
Ax+C=0
or x = —C/A, which represents a vertical line.

We have proved the following.

General Equation of a Line

The graph of every linear equation
Ax + By+ C=0 (A, B not both zero)

is a line. Conversely, every line is the graph of a linear equation.
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Figure 11

2x —3y—12=0

Figure 12

Figure 13

Example 6 Graphing a Linear Equation
Sketch the graph of the equation 2x — 3y — 12 = 0.

Solution 1  Since the equation is linear, its graph is a line. To draw the graph, it is
enough to find any two points on the line. The intercepts are the easiest points to find.

x-intercept:  Substitute y = 0,to get2x — 12 = 0,s0x = 6
y-intercept:  Substitute x = 0,to get =3y — 12 = 0,s0y = —4
With these points we can sketch the graph in Figure 11.
Solution 2 We write the equation in slope-intercept form:
2x =3y —12=0
2x — 3y =12 Add 12
—3y=—-2x+ 12 Subtract 2x
y=3x—4 Divide by —3

This equation is in the form y = mx + b, so the slope is m =  and the y-intercept
is b = —4. To sketch the graph, we plot the y-intercept, and then move 3 units to
the right and 2 units up as shown in Figure 12. ]

Parallel and Perpendicular Lines

Since slope measures the steepness of a line, it seems reasonable that parallel lines
should have the same slope. In fact, we can prove this.

Parallel Lines

Two nonvertical lines are parallel if and only if they have the same slope.

B Proof Letthe lines/, and [, in Figure 13 have slopes m, and m,. If the lines
are parallel, then the right triangles ABC and DEF are similar, so

_dB,C)  dEF)
T dA, ) dp,F) ™

my

Conversely, if the slopes are equal, then the triangles will be similar, so
£/ BAC = £ EDF and the lines are parallel. u

Example 7 Finding the Equation of a Line Parallel
to a Given Line

Find an equation of the line through the point (5, 2) that is parallel to the line
4x + 6y + 5= 0.

Solution First we write the equation of the given line in slope-intercept form.
4x+6y+5=0
6y = —4x — 5 Subtract 4x + 5

y = —%x — g Divide by ©
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So the line has slope m = —3. Since the required line is parallel to the given line, it
also has slope m = —32. From the point-slope form of the equation of a line, we get

y—2= —%(x -35) Slope m = —, point (5,2)
3y —6=—-2x+ 10 Multiply by 3
2% + 3y —16=0 Rearrange

Thus, the equation of the required line is 2x + 3y — 16 = 0. ]

The condition for perpendicular lines is not as obvious as that for parallel lines.

Perpendicular Lines

Two lines with slopes m; and m, are perpendicular if and only if m;m, = —1,
that is, their slopes are negative reciprocals:
1

m, = ———
2 m,

Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope).

B Proof InFigure 14 we show two lines intersecting at the origin. (If the lines
intersect at some other point, we consider lines parallel to these that intersect at the
origin. These lines have the same slopes as the original lines.)

If the lines [, and I, have slopes m, and m,, then their equations are y = mx and
y = m,x. Notice that A(1,m,) lies on /; and B(1,m,) lies on l,. By the Pythagorean
Theorem and its converse (see page 54), OA L OB if and only if

[d(0,A)]? + [d(0,B)]* = [d(A, B) ]’
By the Distance Formula, this becomes

(12 + m3) + (1> + m3)

(1= 1)+ (my — my)?
2+m%+m%=m%—2m1m2+m%
2 = _2m1m2

mym, = -1 |

Example 8 Perpendicular Lines

Show that the points P(3,3), O(8, 17), and R(11, 5) are the vertices of a right
triangle.

Solution The slopes of the lines containing PR and QR are, respectively,

5-3 1 5-17
my = =— and m, = = —4
11-3 4 11 -8
Since mm, = —1, these lines are perpendicular and so POR is a right triangle. It is

sketched in Figure 15.
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Figure 16
y=05x+b

Fundamentals

Example 9 Finding an Equation of a Line Perpendicular
to a Given Line

Find an equation of the line that is perpendicular to the line 4x + 6y + 5 = 0 and
passes through the origin.

Solution In Example 7 we found that the slope of the line 4x + 6y + 5 =0
is —2. Thus, the slope of a perpendicular line is the negative reciprocal, that is, 3.
Since the required line passes through (0,0), the point-slope form gives

y=0=3(x-0)

3
y=2x u

Example 10 Graphing a Family of Lines

Use a graphing calculator to graph the family of lines
y=05x+b

forb = —2, —1, 0, 1, 2. What property do the lines share?

Solution The lines are graphed in Figure 16 in the viewing rectangle [ —6, 6] by
[—6, 6]. The lines all have the same slope, so they are parallel. ]

Applications: Slope as Rate of Change

When a line is used to model the relationship between two quantities, the slope of the
line is the rate of change of one quantity with respect to the other. For example, the

graph in Figure 17(a) gives the amount of gas in a tank that is being filled. The slope
between the indicated points is

6 gallons .
m=———= 2 gal/min

3 minutes
The slope is the rate at which the tank is being filled, 2 gallons per minute. In
Figure 17(b), the tank is being drained at the rate of 0.03 gallon per minute, and the
slope is —0.03.

yA yA
_ 18 ) 1B~
< <

15 15

2 d 2 3 gal { T~
g 12 g 12
4 / 6 5 9 100 min
5 0 4 & o
£ e e E 6
= 3 min —'g
S 7 ‘ ‘ > 3

Ol 123456789 0 20 100 200 X

Time (min) Time (min)
(a) Tank filled at 2 gal/min (b) Tank drained at 0.03 gal/min
Slope of line is 2 Slope of line is —0.03

Figure 17
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The next two examples give other situations where the slope of aline is arate of change.

Example 11 Slope as Rate of Change

A dam is built on a river to create a reservoir. The water level w in the reservoir is
given by the equation

w =45t + 28

where  is the number of years since the dam was constructed, and w is measured
in feet.

(a) Sketch a graph of this equation.
(b) What do the slope and w-intercept of this graph represent?

Solution

(a) This equation is linear, so its graph is a line. Since two points determine a line,
we plot two points that lie on the graph and draw a line through them.

When ¢ = 0, thenw = 4.5(0) + 28 = 28, so (0,28) is on the line.
When ¢ = 2, thenw = 4.5(2) + 28 = 37, s0(2,37) is on the line.

The line determined by these points is shown in Figure 18.

wA ‘ ‘ ‘ i
_ ~
+w=4.5t+ 2
/’/7
/{//
10
o A
Figure 18

(b) The slope is m = 4.5; it represents the rate of change of water level with
respect to time. This means that the water level increases 4.5 ft per year.
The w-intercept is 28, and occurs when ¢ = 0, so it represents the water level
when the dam was constructed. ]

Example 12 Linear Relationship between Temperature
and Elevation

(a) Asdry air moves upward, it expands and cools. If the ground temperature is
20°C and the temperature at a height of 1 km is 10°C, express the temperature
T (in °C) in terms of the height 4 (in kilometers). (Assume that the relationship
between T and £ is linear.)

(b) Draw the graph of the linear equation. What does its slope represent?
(c) What is the temperature at a height of 2.5 km?
Solution

(a) Because we are assuming a linear relationship between T and #, the equation
must be of the form

T=mh+b
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where m and b are constants. When i = 0, we are given that 7 = 20, so

20 = m(0) + b
b =20
Thus, we have
T =mh + 20

When 4 = 1, we have T = 10 and so
TA 10 = m(1) + 20
m=10—-20= —10

20
The required expression is

T=—-10h + 20
10 T=—10h + 20

(b) The graph is sketched in Figure 19. The slope is m = —10°C/km, and this
0 h represents the rate of change of temperature with respect to distance above
the ground. So the temperature decreases 10°C per kilometer of height.

(c) Ataheight of & = 2.5 km, the temperature is
Figure 19 T=—10(2.5) + 20 = =25 + 20 = —5°C [ ]

EBT M Exercises

1-8 ® Find the slope of the line through P and Q. 10. (a) Sketch lines through (0, 0) with slopes 1, 0, %, 2,and —1.
1. P(0,0), O(4,2) P(0,0), 0(2, —6) (b) Sketch lines through (0, 0) with slopes 3,3, —4, and 3.
3. P(2,2),0(-10,0) P(1,2),0(3,3) 11-14 = Find an equation for the line whose graph is sketched.
5. P(2,4), 0(4,3) P(2,-5),0(—4.3) 11. VA 12. VA
7. P(1,-3),0(-1.6) P(—1, —4),0(6,0)

9. Find the slopes of the lines [}, [, I;, and /, in the figure 3 2
below. 1 -
o 1 3 \3x .
YA ) -3 0 2 ;
/
I 1,
/ 13. vA 14 YA
/ \\
1 : / \
X / A 1
—~ 2 0 2/ * 0 3 x 2N\ |0 5
14 — /, \\
-2 \\ R B N N —3——
A / \
/ \
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15-34 ® Find an equation of the line that satisfies the given
conditions.

19. Through (2, 1) and (1, 6)

15. Through (2, 3); slope 1

16. Through (—2,4); slope —1

17. Through (1,7); slope 3

18. Through (-3, —5); slope —1
(

20. Through (—1, —2) and (4, 3)

21. Slope 3; y-intercept —2

22. Slope 2; y-intercept 4

23. x-intercept 1; y-intercept —3
24. x-intercept
25. Through (4,5);

26. Through (4,5);

—8; y-intercept 6
parallel to the x-axis
parallel to the y-axis
27. Through (1, —6); parallel to the line x + 2y = 6
28. y-intercept 6; parallel to the line 2x + 3y + 4 =0
29. Through (—1,2);
30. Through (2,6);

31. Through (—1, —2);
2x+5y+8=0

parallel to the line x = 5
perpendicular to the liney = 1

perpendicular to the line

32. Through (%, —%); perpendicular to the line 4x — 8y = 1

33. Through (1,7);
(2,5)and (—2,1)

34. Through (=2, —11); perpendicular to the line passing
through (1, 1) and (5, —1)

parallel to the line passing through

35. (a) Sketch the line with slope 3 that passes through the
point (=2, 1).
(b) Find an equation for this line.
36. (a) Sketch the line with slope —2 that passes through the
point (4, —1).

(b) Find an equation for this line.

37-40 m Use a graphing device to graph the given family of
llnes in the same viewing rectangle. What do the lines have in
common?

37.y=—2x+b forb=0,*1,+3,+6

38. y=mx—3 form =0, £0.25, £0.75, £1.5
39. y = m(x — 3) form =0, £0.25, £0.75, *1.5
40. y =2 + m(x + 3) form =0, £0.5, *1, £2, =6
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41-52 m Find the slope and y-intercept of the line and draw

its graph.

41. x+y=3 42, 3x —2y =12

43. x+3y=0 44. 2x — 5y =0

45. 3x—y+1=0 46. —3x—5y +30=0
47. y =4 48. 4y +8=0

49. 3x —4y =12 50. x=—5

51. 3x +4y—1=0 52. 4x + 5y =10

53. Use slopes to show that A(1, 1), B(7,4), C(5, 10), and

54.

5S.

56.

57.

58.

59.

60.

D(—1,7) are vertices of a parallelogram.

Use slopes to show that A(=3, —1), B(3,3), and C(—9, 8)

are vertices of a right triangle.

Use slopes to show that A(1, 1), B(11, 3),
D(0, 6) are vertices of a rectangle.

C(10,8), and

Use slopes to determine whether the given points are
collinear (lie on a line).

(a) (1,1),(3,9), (6,21)
(b) (_ 1, 3)1 (1$ 7), (41 15)
Find an equation of the perpendicular bisector of the line
segment joining the points A(1,4) and B(7, —2).
Find the area of the triangle formed by the coordinate axes
and the line

2y +3x —6=0

(a) Show that if the x- and y-intercepts of a line are
nonzero numbers a and b, then the equation of the
line can be written in the form

.Y
a b
This is called the two-intercept form of the equation of

a line.

(b) Use part (a) to find an equation of the line whose
x-intercept is 6 and whose y-intercept is —8.

(a) Find an equation for the line tangent to the circle
x? 4 y? = 25 at the point (3, —4). (See the figure.)

(b) At what other point on the circle will a tangent line be
parallel to the tangent line in part (a)?
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Applications
61. Grade of a Road West of Albuquerque, New Mexico,

62.

63.

64.

65.

Route 40 eastbound is straight and makes a steep descent
toward the city. The highway has a 6% grade, which means
that its slope is — 155. Driving on this road you notice from
elevation signs that you have descended a distance of

1000 ft. What is the change in your horizontal distance?

6% grade

1000 ft

Global Warming Some scientists believe that the average
surface temperature of the world has been rising steadily.
The average surface temperature is given by

T =0.02r + 8.50

where T is temperature in °C and ¢ is years since 1900.

(a) What do the slope and T-intercept represent?

(b) Use the equation to predict the average global surface
temperature in 2100.

Drug Dosages If the recommended adult dosage for a
drug is D (in mg), then to determine the appropriate dosage
¢ for a child of age a, pharmacists use the equation

¢ =00417D(a + 1)

Suppose the dosage for an adult is 200 mg.

(a) Find the slope. What does it represent?

(b) What is the dosage for a newborn?

Flea Market The manager of a weekend flea market
knows from past experience that if she charges x dollars for

a rental space at the flea market, then the number y of spaces
she can rent is given by the equation y = 200 — 4x.

(a) Sketch a graph of this linear equation. (Remember that
the rental charge per space and the number of spaces
rented must both be nonnegative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept
of the graph represent?

Production Cost A small-appliance manufacturer finds
that if he produces x toaster ovens in a month his production
cost is given by the equation

y = 6x + 3000

(where y is measured in dollars).
(a) Sketch a graph of this linear equation.
(b) What do the slope and y-intercept of the graph represent?

66.

67.

68.

69.

Temperature Scales The relationship between the
Fahrenheit (F) and Celsius (C) temperature scales is given
by the equation F = 2C + 32.
(a) Complete the table to compare the two scales at the
given values.
(b) Find the temperature at which the scales agree.
[Hint: Suppose that a is the temperature at which the
scales agree. Set F' = a and C = a. Then solve for a.]

€ I

-30°
-20°
-10°
00

50°

68°

86°

Crickets and Temperature Biologists have observed

that the chirping rate of crickets of a certain species is re-

lated to temperature, and the relationship appears to be very

nearly linear. A cricket produces 120 chirps per minute at

70°F and 168 chirps per minute at 80°F.

(a) Find the linear equation that relates the temperature ¢
and the number of chirps per minute 7.

(b) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

Depreciation A small business buys a computer for
$4000. After 4 years the value of the computer is expected
to be $200. For accounting purposes, the business uses lin-
ear depreciation to assess the value of the computer at a
given time. This means that if V is the value of the computer
at time ¢, then a linear equation is used to relate V and .

(a) Find a linear equation that relates V and .

(b) Sketch a graph of this linear equation.

(¢) What do the slope and V-intercept of the graph
represent?

(d) Find the depreciated value of the computer 3 years from
the date of purchase.

Pressure and Depth At the surface of the ocean, the wa-
ter pressure is the same as the air pressure above the water,
15 1b/in®. Below the surface, the water pressure increases by
4.34 1b/in for every 10 ft of descent.

(a) Find an equation for the relationship between pressure
and depth below the ocean surface.

(b) Sketch a graph of this linear equation.

(¢) What do the slope and y-intercept of the graph
represent?



(d) At what depth is the pressure 100 Ib/in*?

70. Distance, Speed, and Time Jason and Debbie leave
Detroit at 2:00 p.M. and drive at a constant speed, traveling
west on [-90. They pass Ann Arbor, 40 mi from Detroit, at
2:50 pM.

(a) Express the distance traveled in terms of the time
elapsed.

(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?
71. Cost of Driving The monthly cost of driving a car

depends on the number of miles driven. Lynn found that in

May her driving cost was $380 for 480 mi and in June her
cost was $460 for 800 mi. Assume that there is a linear

72.
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relationship between the monthly cost C of driving a car

and the distance driven d.

(a) Find a linear equation that relates C and d.

(b) Use part (a) to predict the cost of driving 1500 mi per
month.

(¢) Draw the graph of the linear equation. What does the
slope of the line represent?

(d) What does the y-intercept of the graph represent?

(e) Why is a linear relationship a suitable model for this
situation?

Manufacturing Cost The manager of a furniture factory

finds that it costs $2200 to manufacture 100 chairs in one

day and $4800 to produce 300 chairs in one day.

(a) Assuming that the relationship between cost and the
number of chairs produced is linear, find an equation
that expresses this relationship. Then graph the equation.

(b) What is the slope of the line in part (a), and what does it
represent?

(c) What is the y-intercept of this line, and what does it
represent?

Discovery « Discussion

73.

74.

What Does the Slope Mean? Suppose that the graph of
the outdoor temperature over a certain period of time is a
line. How is the weather changing if the slope of the line is
positive? If it’s negative? If it’s zero?

Collinear Points Suppose you are given the coordinates
of three points in the plane, and you want to see whether
they lie on the same line. How can you do this using slopes?
Using the Distance Formula? Can you think of another
method?

When scientists talk about a mathematical model for a real-world phenomenon, they
Mathematical models are discussed in often mean an equation that describes the relationship between two quantities. For in-
more detail in Focus on Modeling, stance, the model may describe how the population of an animal species varies with
which begins on page 239. time or how the pressure of a gas varies as its temperature changes. In this section we
study a kind of modeling called variation.

Direct Variation

Two types of mathematical models occur so often that they are given special names.
The first is called direct variation and occurs when one quantity is a constant mul-
tiple of the other, so we use an equation of the form y = kx to model this dependence.
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Direct Variation

If the quantities x and y are related by an equation
y =kx

for some constant k # 0, we say that y varies directly as x, or y is directly
proportional to x, or simply y is proportional to x. The constant £ is called
the constant of proportionality.

Recall that the graph of an equation of the form y = mx + b is a line with slope m
and y-intercept b. So the graph of an equation y = kx that describes direct variation
is a line with slope k and y-intercept O (see Figure 1).

Example 1 Direct Variation

During a thunderstorm you see the lightning before you hear the thunder
because light travels much faster than sound. The distance between you and
the storm varies directly as the time interval between the lightning and the
thunder.

(a) Suppose that the thunder from a storm 5400 ft away takes 5 s to reach you.
Determine the constant of proportionality and write the equation for the
variation.

(b) Sketch the graph of this equation. What does the constant of proportionality
represent?

(c) If the time interval between the lightning and thunder is now 8 s, how far away
is the storm?

Solution

(a) Let d be the distance from you to the storm and let ¢ be the length of the time
interval. We are given that d varies directly as 7, so

d =kt

where k is a constant. To find k, we use the fact that t = 5 when d = 5400.
Substituting these values in the equation, we get

5400 = k(5) Substitute
5400
k= 5 = 1080 Solve for k

Substituting this value of & in the equation for d, we obtain
d = 1080z

as the equation for d as a function of 7.

(b) The graph of the equation d = 1080z is a line through the origin with slope
1080 and is shown in Figure 2. The constant £ = 1080 is the approximate speed
of sound (in ft/s).
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(c) When r = 8, we have
d = 10808 = 8640

So, the storm is 8640 ft = 1.6 mi away. ]

Inverse Variation

Another equation that is frequently used in mathematical modeling is y = k/x, where
k is a constant.

Inverse Variation

If the quantities x and y are related by the equation

Y=

for some constant k # 0, we say that y is inversely proportional to x, or y
varies inversely as x.

The graph of y = k/x for x > 0 is shown in Figure 3 for the case k > 0. It gives a
picture of what happens when y is inversely proportional to x.

Example 2 Inverse Variation

Boyle’s Law states that when a sample of gas is compressed at a constant
temperature, the pressure of the gas is inversely proportional to the volume of
the gas.

(a) Suppose the pressure of a sample of air that occupies 0.106 m? at 25°C is
50 kPa. Find the constant of proportionality, and write the equation that
expresses the inverse proportionality.

(b) If the sample expands to a volume of 0.3 m?, find the new pressure.

Solution

(a) Let P be the pressure of the sample of gas and let V be its volume. Then, by the
definition of inverse proportionality, we have

where k is a constant. To find k£ we use the fact that P = 50 when V = 0.106.
Substituting these values in the equation, we get

_k
0.106

k = (50)(0.106) = 5.3 Solve for k

50 Substitute
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Putting this value of & in the equation for P, we have

53
P ="
Vv
(b) When V = 0.3, we have

53

P=—=1717
0.3

So, the new pressure is about 17.7 kPa. ]

Joint Variation

A physical quantity often depends on more than one other quantity. If one quantity is
proportional to two or more other quantities, we call this relationship joint variation.

Joint Variation

If the quantities x, y, and z are related by the equation
z = kxy

where k is a nonzero constant, we say that z varies jointly as x and y, or z is
jointly proportional to x and y.

In the sciences, relationships between three or more variables are common, and
any combination of the different types of proportionality that we have discussed is
possible. For example, if

z=k£
y

we say that z is proportional to x and inversely proportional to y.

Example 3 Newton’s Law of Gravitation

Newton’s Law of Gravitation says that two objects with masses m,; and m,

attract each other with a force F that is jointly proportional to their masses and
inversely proportional to the square of the distance r between the objects. Express
Newton’s Law of Gravitation as an equation.

Solution Using the definitions of joint and inverse variation, and the traditional
notation G for the gravitational constant of proportionality, we have
mym
F=gMm -

r2

If m; and m, are fixed masses, then the gravitational force between them is
F = C/r? (where C = Gm;my, is a constant). Figure 4 shows the graph of this
equation for r > 0 with C = 1. Observe how the gravitational attraction decreases
with increasing distance.



EREB Exercises

1-12 = Write an equation that expresses the statement.
1. T varies directly as x.

. P is directly proportional to w.

. v is inversely proportional to z.

. w is jointly proportional to m and n.

. y is proportional to s and inversely proportional to .

. P varies inversely as 7.

. z is proportional to the square root of y.

L N SN Ut A W

. A is proportional to the square of ¢ and inversely propor-
tional to the cube of x.

9. Vis jointly proportional to /, w, and A.
10. S is jointly proportional to the squares of » and 6.
11. R is proportional to i and inversely proportional to P and .
12. A is jointly proportional to the square roots of x and y.
13-22 m Express the statement as an equation. Use the given
information to find the constant of proportionality.
13. yis directly proportional to x. If x = 6, then y = 42.
14. z varies inversely as #. If t = 3, then z = 5.

15. M varies directly as x and inversely as y. If x =2 and y = 6,
then M = 5.

16. S varies jointly as p and g. If p = 4 and g = 5, then
S = 180.

17. Wis inversely proportional to the square of . If » = 6, then
W = 10.
18. tis jointly proportional to x and y and inversely proportional

tor. If x =2,y =3,and r = 12, then t = 25.

19. Cis jointly proportional to /, w,and h. If | =w = h = 2,
then C = 128.

20. H is jointly proportional to the squares of / and w. If [ = 2
andw = %, then H = 36.

21. sis inversely proportional to the square root of 7. If s = 100,
then r = 25.

22. M is jointly proportional to a, b, and ¢, and inversely pro-
portional to d. If a and d have the same value, and if b and ¢
are both 2, then M = 128.

Applications

23. Hooke’s Law Hooke’s Law states that the force needed to
keep a spring stretched x units beyond its natural length is
directly proportional to x. Here the constant of proportional-

24.

25.
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ity is called the spring constant.

(a) Write Hooke’s Law as an equation.

(b) If a spring has a natural length of 10 cm and a force of
40 N is required to maintain the spring stretched to a
length of 15 cm, find the spring constant.

(¢) What force is needed to keep the spring stretched to a
length of 14 cm?

|

ALY

&
AAAAAAAAAD A

Law of the Pendulum  The period of a pendulum (the

time elapsed during one complete swing of the pendulum)

varies directly with the square root of the length of the

pendulum.

(a) Express this relationship by writing an equation.

(b) In order to double the period, how would we have to
change the length /?

O

Printing Costs The cost C of printing a magazine is

jointly proportional to the number of pages p in the maga-

zine and the number of magazines printed .

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if the printing cost
is $60,000 for 4000 copies of a 120-page magazine.

(¢) How much would the printing cost be for 5000 copies
of a 92-page magazine?
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26.

27.

28.

29.

30.

CHAPTER 1 Fundamentals

Boyle’s Law The pressure P of a sample of gas is directly
proportional to the temperature 7" and inversely proportional
to the volume V.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality if 100 L of gas
exerts a pressure of 33.2 kPa at a temperature of
400 K (absolute temperature measured on the Kelvin
scale).

(c) If the temperature is increased to 500 K and the
volume is decreased to 80 L, what is the pressure of
the gas?

Power from a Windmill The power P that can be ob-

tained from a windmill is directly proportional to the cube

of the wind speed s.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality for a windmill that
produces 96 watts of power when the wind is blowing
at 20 mi/h.

(¢) How much power will this windmill produce if the
wind speed increases to 30 mi/h?

Power Needed to Propel a Boat The power P (mea-
sured in horse power, hp) needed to propel a boat is directly
proportional to the cube of the speed s. An 80-hp engine is
needed to propel a certain boat at 10 knots. Find the power
needed to drive the boat at 15 knots.

Loudness of Sound The loudness L of a sound (mea-
sured in decibels, dB) is inversely proportional to the square
of the distance d from the source of the sound. A person

10 ft from a lawn mower experiences a sound level of

70 dB; how loud is the lawn mower when the person is

100 ft away?

Stopping Distance The stopping distance D of a car
after the brakes have been applied varies directly as the
square of the speed s. A certain car traveling at 50 mi/h can

31.

32.

33.

34.

stop in 240 ft. What is the maximum speed it can be travel-
ing if it needs to stop in 160 ft?

A Jet of Water The power P of a jet of water is jointly
proportional to the cross-sectional area A of the jet and to
the cube of the velocity v. If the velocity is doubled and the
cross-sectional area is halved, by what factor will the power
increase?

Aerodynamic Lift The lift L on an airplane wing at take-
off varies jointly as the square of the speed s of the plane
and the area A of its wings. A plane with a wing area of
500 ft? traveling at 50 mi/h experiences a lift of 1700 Ib.
How much lift would a plane with a wing area of 600 ft>
traveling at 40 mi/h experience?

Lift

——

Drag Force on a Boat The drag force F on a boat is
jointly proportional to the wetted surface area A on the hull
and the square of the speed s of the boat. A boat experiences
a drag force of 220 Ib when traveling at 5 mi/h with a wet-
ted surface area of 40 ft>. How fast must a boat be traveling
if it has 28 ft? of wetted surface area and is experiencing a
drag force of 175 1b?

Skidding in a Curve A car is traveling on a curve that
forms a circular arc. The force F needed to keep the car
from skidding is jointly proportional to the weight w of the
car and the square of its speed s, and is inversely propor-
tional to the radius r of the curve.

(a) Write an equation that expresses this variation.

(b) A car weighing 1600 Ib travels around a curve at
60 mi/h. The next car to round this curve weighs 2500 1b



36.

37.

and requires the same force as the first car to keep from
skidding. How fast is the second car traveling?

-

. Electrical Resistance The resistance R of a wire varies

directly as its length L and inversely as the square of its

diameter d.

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if a wire 1.2 m long
and 0.005 m in diameter has a resistance of 140 ohms.

(¢) Find the resistance of a wire made of the same material
that is 3 m long and has a diameter of 0.008 m.

Kepler’s Third Law Kepler’s Third Law of planetary mo-
tion states that the square of the period 7 of a planet (the
time it takes for the planet to make a complete revolution
about the sun) is directly proportional to the cube of its
average distance d from the sun.

(a) Express Kepler’s Third Law as an equation.

(b) Find the constant of proportionality by using the fact
that for our planet the period is about 365 days and the
average distance is about 93 million miles.

(¢) The planet Neptune is about 2.79 X 10° mi from the
sun. Find the period of Neptune.

Radiation Energy The total radiation energy E emitted

by a heated surface per unit area varies as the fourth power

of its absolute temperature 7. The temperature is 6000 K at

the surface of the sun and 300 K at the surface of the earth.

(a) How many times more radiation energy per unit area is
produced by the sun than by the earth?

(b) The radius of the earth is 3960 mi and the radius of the
sun is 435,000 mi. How many times more total radia-
tion does the sun emit than the earth?

. Value of a Lot The value of a building lot on Galiano

Island is jointly proportional to its area and the quantity of
water produced by a well on the property. A 200 ft by 300 ft
lot has a well producing 10 gallons of water per minute, and
is valued at $48,000. What is the value of a 400 ft by 400 ft lot
if the well on the lot produces 4 gallons of water per minute?

. Growing Cabbages In the short growing season of the

Canadian arctic territory of Nunavut, some gardeners find it

40.

41.

42,
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possible to grow gigantic cabbages in the midnight sun.
Assume that the final size of a cabbage is proportional to the
amount of nutrients it receives, and inversely proportional

to the number of other cabbages surrounding it. A cabbage
that received 20 oz of nutrients and had 12 other cabbages
around it grew to 30 Ib. What size would it grow to if it
received 10 oz of nutrients and had only 5 cabbage
“neighbors™?

Heat of a Campfire The heat experienced by a hiker at a
campfire is proportional to the amount of wood on the fire,
and inversely proportional to the cube of his distance from
the fire. If he is 20 ft from the fire, and someone doubles the
amount of wood burning, how far from the fire would he
have to be so that he feels the same heat as before?

=

Frequency of Vibration The frequency f of vibration of
a violin string is inversely proportional to its length L. The
constant of proportionality k is positive and depends on the
tension and density of the string.

(a) Write an equation that represents this variation.

(b) What effect does doubling the length of the string have
on the frequency of its vibration?

Spread of a Disease The rate r at which a disease
spreads in a population of size P is jointly proportional to
the number x of infected people and the number P — x who
are not infected. An infection erupts in a small town with
population P = 5000.
(a) Write an equation that expresses r as a function of x.
(b) Compare the rate of spread of this infection when
10 people are infected to the rate of spread when 1000
people are infected. Which rate is larger? By what
factor?
(c) Calculate the rate of spread when the entire population
is infected. Why does this answer make intuitive sense?

Discovery ¢ Discussion

43.

Is Proportionality Everything? A great many laws of
physics and chemistry are expressible as proportionalities.
Give at least one example of a function that occurs in the
sciences that is not a proportionality.
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BEN review

Concept Check

1.

10.

11.

Define each term in your own words. (Check by referring to
the definition in the text.)

(b) A rational number
(d) A real number

(a) An integer

(¢) An irrational number

. State each of these properties of real numbers.

(a) Commutative Property
(b) Associative Property
(c) Distributive Property

. What is an open interval? What is a closed interval? What

notation is used for these intervals?

. What is the absolute value of a number?

. (a) In the expression a*, which is the base and which is the

exponent?

(b) What does a* mean if x = n, a positive integer?

(¢c) Whatifx =0?

(d) Whatif x is a negative integer: x = —n, where n is a
positive integer?

(e) What if x = m/n, a rational number?

(f) State the Laws of Exponents.

. (a) What does Va = b mean?

(b) Why is Va® = |a|?
(¢) How many real nth roots does a positive real number
have if n is odd? If n is even?

. Explain how the procedure of rationalizing the denominator

works.

. State the Special Product Formulas for (@ + )% (a — b)?,

(a + b)* and (a — b)*.

. State each Special Factoring Formula.

(a) Difference of squares (b) Difference of cubes

(¢) Sum of cubes
What is a solution of an equation?

How do you solve an equation involving radicals? Why is it
important to check your answers when solving equations of
this type?

13.

14.
15.
16.
17.
18.
19.
20.

21.

22.

23.

24.
25.

26.

27.

. How do you solve an equation

(a) algebraically? (b) graphically?
Write the general form of each type of equation.

(a) A linear equation (b) A quadratic equation

What are the three ways to solve a quadratic equation?
State the Zero-Product Property.

Describe the process of completing the square.

State the quadratic formula.

What is the discriminant of a quadratic equation?
State the rules for working with inequalities.

How do you solve

(a) alinear inequality?

(b) anonlinear inequality?

(a) How do you solve an equation involving an absolute
value?

(b) How do you solve an inequality involving an absolute

value?

(a) Describe the coordinate plane.

(b) How do you locate points in the coordinate plane?
State each formula.

(a) The Distance Formula

(b) The Midpoint Formula

Given an equation, what is its graph?

How do you find the x-intercepts and y-intercepts of a
graph?

Write an equation of the circle with center (h, k) and
radius r.

Explain the meaning of each type of symmetry. How do you
test for it?

(a) Symmetry with respect to the x-axis
(b) Symmetry with respect to the y-axis
(c) Symmetry with respect to the origin



28. Define the slope of a line.

29. Write each form of the equation of a line.

(a) The point-slope form
(b) The slope-intercept form

30. (a) What is the equation of a vertical line?

(b) What is the equation of a horizontal line?

31. What is the general equation of a line?

Exercises

32

33
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. Given lines with slopes m,; and m,, explain how you can tell
if the lines are

(a) parallel (b) perpendicular

. Write an equation that expresses each relationship.

(a) y is directly proportional to x.
(b) yis inversely proportional to x.

(¢) zisjointly proportional to x and y.

1-4 = State the property of real numbers being used.
1. 3x + 2y =2y + 3x

2. (a+ b)a—>b)=(a—b)a+D)

3. 4a + b) =4a + 4b

4. A+ 1D)x+y)=A+ Dx+(A+ 1)y

5-6 m Express the interval in terms of inequalities, and then
graph the interval.

5. [-2,6) 6. (—00,4]

7-8 m Express the inequality in interval notation, and then
graph the corresponding interval.

7. x=5 8. -1 <x=5

9-18 ® Evaluate the expression.

9. 13— |-9|| 10. 1—|1—[—1]]
11. 273 — 372 12. V-125

13. 216715 14. 64°°

15. % 16. Va\/324

17. 2172812 18. V2150

19-28 = Simplify the expression.

x(2x)*
19, *20 20. (@) (@hy ()"
=
N32 —1.\2 ris*\e
21. (Bxy?)’(Gx"'y) 22. ( i, )

23. V(dy)ht 24. V'

25.

wn

27.

29
30
31

32

9x3y 1/2
y—z
gr1/2g3

2r st

X293\ 127 13y \2
= () ()
X7y y
b3\ 2
28. (“ fﬂ‘)
2a’b

. Write the number 78,250,000,000 in scientific notation.

. Write the number 2.08 X 10~in ordinary decimal notation.

. If a = 0.00000293, b =~ 1.582 X 10™'%, and
¢ =~ 2.8064 X 10'2, use a calculator to approximate
the number ab/c.

. If your heart beats 80 times per minute and you live to
be 90 years old, estimate the number of times your heart
beats during your lifetime. State your answer in scientific
notation.

33-48 m Factor the expression completely.

33

35.

37
39

41.
43.
45.
47.

48

. 12x%y* — 3xy® + 9xdy? 34. x> —9x + 18
x2+3x—10 36. 6x2 +x — 12
LA =13t - 12 38 x'—2x7 + 1
. 25 — 16t* 40. 2y — 32y?
X1 4. y' -2 —y+2
x 2= oxl2 4 (32 44. a*b* + ab’
4> — 8x?+3x—6 46. 8x3 + y°
(2 +2) + 2x(x? + 2)2 + Va2 + 2

L33 = 2x2 4+ 18x — 12

49-64 ®m Perform the indicated operations and simplify.

49
50
51

. (2x + 1)(Bx —2) = 5(4x — 1)
.2y = T7)2y +7)
L1+ )2 -x) - B -x)(3 +x)
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52.

53.

55.

57.

58.

60.

61.

63.

64.

CHAPTER 1 Fundamentals

Vax(Vx + D2Vx — 1)
2-2x-3
2(x —2) + —2)? 54.X7
Flx=2) +xx = 2) 2x2 + 5x + 3
X>+2x—3 3x+12 -1
> . 56. —
x“+ 8x + 16 x— 1 t“—1
x2—2x—15;x2—x—12
x>—6x+5 xr-1
2 1 3 1 2
—+ —_— 59. -
x x—2 (x—2)? x—1 x*—-1
1 | 2
x+2 -4 x?-x-2
1_1 r__1
x 2 62.x x+1
x—2 1 1
—+
x x+1
V6
————— (rationalize the denominator
\/§+\f2( )
Vx+h— Vx L
T — (rationalize the numerator)

65-80 m Find all real solutions of the equation.

65.

67.

69.
71.
73.
75.

77.

78.
79.
81.

82.

Tx—6=4x+9 66. 8 —2x =14 +x
x+1 3x

= 68. (x +2)>=(x —4)
x—1 3x-6 (x+2)7=(x—4)
xX2—9x+14=0 70. x>+ 24x + 144 =0
22+ x=1 72. 3x2+5x—2=0
453 - 25x =0 74, 3 —2x*—5x+10=0
) 1 2
3x*+4x—1=0 76. — =3

x x—1

X 1 8
+ =
x—2 x+2 x*—-14

x*—8%?=-9=0

[x—=7] =4 80. [2x—5| =9

The owner of a store sells raisins for $3.20 per pound

and nuts for $2.40 per pound. He decides to mix the raisins
and nuts and sell 50 1b of the mixture for $2.72 per

pound. What quantities of raisins and nuts should he use?

Anthony leaves Kingstown at 2:00 p.M. and drives

to Queensville, 160 mi distant, at 45 mi/h. At 2:15 p.M.
Helen leaves Queensville and drives to Kingstown

at 40 mi/h. At what time do they pass each other on
the road?

83.

84.

85.

86.

A woman cycles 8 mi/h faster than she runs. Every
morning she cycles 4 mi and runs 23 mi, for a total of
one hour of exercise. How fast does she run?

The hypotenuse of a right triangle has length 20 cm.
The sum of the lengths of the other two sides is 28 cm.
Find the lengths of the other two sides of the triangle.

Abbie paints twice as fast as Beth and three times as fast
as Cathie. If it takes them 60 min to paint a living room
with all three working together, how long would it take
Abbie if she works alone?

A homeowner wishes to fence in three adjoining garden
plots, one for each of her children, as shown in the
figure. If each plot is to be 80 ft* in area, and she has

88 ft of fencing material at hand, what dimensions
should each plot have?

87-94 m Solve the inequality. Express the solution using inter-
val notation and graph the solution set on the real number line.

87. 3x — 2> —11
88 —1<2x+5=3
89. x> +4x—12>0
90. x>=1

o, L%

X 4
92.m<0
93. [x—5| =3
9. |x — 4] <0.02

E% 95-98 m Solve the equation or inequality graphically.
95. x?—4x=2x+7

96.

Vitd=x-5



97, 4x — 3 = x?

98, x3 —4x?—5x>2

99-100 = Two points P and Q are given.

(a) Plot P and Q on a coordinate plane.

(b) Find the distance from P to Q.

(c) Find the midpoint of the segment PQ.

(d) Sketch the line determined by P and Q, and find its
equation in slope-intercept form.

(e) Sketch the circle that passes through Q and has center P,
and find the equation of this circle.

99. P(2,0), Q(—5.12)  100. P(7,—1), Q(2,—11)

101-102 = Sketch the region given by the set.

101. {(x,y)| 4<x<4 and -2<y<2}

102. {(x,y)|x=4 or y=2}

103. Which of the points A(4, 4) or B(5, 3) is closer to the point
c(—1,-3)?

104. Find an equation of the circle that has center (2, —5) and
radius V2.

105. Find an equation of the circle that has center (—5, —1) and
passes through the origin.

106. Find an equation of the circle that contains the points

P(2,3) and Q(—1, 8) and has the midpoint of the segment
PQ as its center.

107-110 = Determine whether the equation represents a circle,
a point, or has no graph. If the equation is that of a circle, find its
center and radius.

107. x>+ y2+2x—6y+9=0
108. 2x> + 2y —2x + 8y =1
109. x>+ y2 + 72 = 12x

110. x>+ y?> —6x— 10y + 34 =0

111-118 = Test the equation for symmetry and sketch
its graph.

111. y =2 — 3x
112. 2x—y+1=0

113. x + 3y =21

D]
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114. x =2y + 12
115. y =16 — x?
116. 8x +y2 =0
17. x = Vy
118. y = - V1 — x?

119-122 = Use a graphing device to graph the equation in an
appropriate viewing rectangle.

119. y = x> — 6x

120. y = V5 —x

121. y = x> — 4x2 — 5x

2

122. % +yi=1

123. Find an equation for the line that passes through the points
(=1,—6) and (2, —4).

124. Find an equation for the line that passes through the point
(6, —3) and has slope —3.

125. Find an equation for the line that has x-intercept 4 and
y-intercept 12.

126. Find an equation for the line that passes through the point
(1,7) and is perpendicular to the line x — 3y + 16 = 0.

127. Find an equation for the line that passes through the origin
and is parallel to the line 3x + 15y = 22.

128. Find an equation for the line that passes through the point

(5,2) and is parallel to the line passing through (—1, —3)
and (3,2).

129-130 = Find equations for the circle and the line in the

figure.
A
X

129.
v

(—5,12)




134

130.

131.

132.

CHAPTER 1

Fundamentals

Hooke’s Law states that if a weight w is attached to a
hanging spring, then the stretched length s of the spring
is linearly related to w. For a particular spring we have

s = 03w + 2.5

where s is measured in inches and w in pounds.

(a) What do the slope and s-intercept in this equation
represent?

(b) How long is the spring when a 5-1b weight is attached?

Margarita is hired by an accounting firm at a salary of
$60,000 per year. Three years later her annual salary
has increased to $70,500. Assume her salary increases
linearly.
(a) Find an equation that relates her annual salary
S and the number of years 7 that she has worked for
the firm.

(b) What do the slope and S-intercept of her salary
equation represent?

(c) What will her salary be after 12 years with the firm?

133.

134.

135.

136.

137.

138.

Suppose that M varies directly as z, and M = 120 when
z = 15. Write an equation that expresses this variation.

Suppose that z is inversely proportional to y, and that
z = 12 when y = 16. Write an equation that expresses z
in terms of y.

The intensity of illumination / from a light varies inversely
as the square of the distance d from the light.

(a) Write this statement as an equation.

(b) Determine the constant of proportionality if it is
known that a lamp has an intensity of 1000 candles
at a distance of 8 m.

(¢) What is the intensity of this lamp at a distance of
20 m?

The frequency of a vibrating string under constant tension
is inversely proportional to its length. If a violin string

12 inches long vibrates 440 times per second, to what
length must it be shortened to vibrate 660 times per
second?

The terminal velocity of a parachutist is directly propor-
tional to the square root of his weight. A 160-1b parachutist
attains a terminal velocity of 9 mi/h. What is the terminal
velocity for a parachutist weighing 240 1b?

The maximum range of a projectile is directly proportional
to the square of its velocity. A baseball pitcher throws a
ball at 60 mi/h, with a maximum range of 242 ft. What is
his maximum range if he throws the ball at 70 mi/h?
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10.

11.

12.

13.

. (a) Graph the intervals (=5, 3] and (2, c0) on the real number line.

(b) Express the inequalities x = 3 and —1 = x < 4 in interval notation.
(c) Find the distance between —7 and 9 on the real number line.

. Evaluate each expression.

_2\4 _ 4 —4 Lﬂ g = —3/4
(a) (-3) (b) =3* (03 @ (e (5 (f) 16

. Write each number in scientific notation.

(a) 186,000,000,000 (b) 0.0000003965

. Simplify each expression. Write your final answer without negative exponents.

3x32y3\ 2
(a) V200 — V32 (b) 3a*b®)(4ab?)? (c) (ﬁ)
X7y
y_x
x> +3x+2 x? 5% ar 1l Xy
d 55— = f
S - o 2 xt2 ()1_1
y X
V10
. Rationalize the denominator and simplify: 5 —2

. Perform the indicated operations and simplify.

(@) 3(x + 6) + 42x —5) (b) (x+3)4x —5) (c) (Va+ Vb)(Va— Vb)

(d) (2x + 3)? (e) (x +2)°

. Factor each expression completely.
(a) 4x* —25 (b) 2x? + 5x — 12 (c) x> —3x? —4x+ 12
(d) x* + 27x (e) 3x¥ —ox'2 4 6x7 12 (f) xPy — 4xy

. Find all real solutions.

2x _2x—1 L _
st (c) x*—x—12=0
(d) 2x>+4x+1=0 (e) V3—Vx+5=2 (f) x*—3x24+2=0

(g) 3|x— 4] =10

(@) x+5=14—ix (b)

. Mary drove from Amity to Belleville at a speed of 50 mi/h. On the way back, she

drove at 60 mi/h. The total trip took 4 h of driving time. Find the distance between
these two cities.

A rectangular parcel of land is 70 ft longer than it is wide. Each diagonal between oppo-
site corners is 130 ft. What are the dimensions of the parcel?

Solve each inequality. Write the answer using interval notation, and sketch the solution
on the real number line.

(a) 4<5-3x=17 (b) x(x — 1)(x +2) >0
2x — 3
() |[x—4]<3 (d)x+151

A bottle of medicine is to be stored at a temperature between 5 °C and 10 °C. What
range does this correspond to on the Fahrenheit scale? [Note: Fahrenheit (F') and
Celsius (C) temperatures satisfy the relation C = 3(F — 32).]

For what values of x is the expression \/6x — x? defined as a real number?
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16.

17.

18.

19.

20.

21.

22.

. Solve the equation and the inequality graphically.
(@ x**—9x—1=0 (b) x> = 1= |x+1]
. (a) Plot the points P(0, 3), O(3,0), and R(6, 3) in the coordinate plane. Where must the
point S be located so that PORS is a square?
(b) Find the area of PORS.

(a) Sketch the graph of y = x> — 4.
(b) Find the x- and y-intercepts of the graph.
(c) Is the graph symmetric about the x-axis, the y-axis, or the origin?

Let P(—3,1) and Q(5,6) be two points in the coordinate plane.

(a) Plot P and Q in the coordinate plane.

(b) Find the distance between P and Q.

(c) Find the midpoint of the segment PQ.

(d) Find the slope of the line that contains P and Q.

(e) Find the perpendicular bisector of the line that contains P and Q.

(f) Find an equation for the circle for which the segment PQ is a diameter.

Find the center and radius of each circle and sketch its graph.

(@ x*+y*=25 (b) x—2+(y+1)2=9 (c) x*+6x+y*—2y+6=0
Write the linear equation 2x — 3y = 15 in slope-intercept form, and sketch its graph.
What are the slope and y-intercept?

Find an equation for the line with the given property.

(a) It passes through the point (3, —6) and is parallel to the line 3x +y — 10 = 0.

(b) It has x-intercept 6 and y-intercept 4.

A geologist uses a probe to measure the temperature 7 (in °C) of the soil at various

depths below the surface, and finds that at a depth of x cm, the temperature is given by
the linear equation 7' = 0.08x — 4.

(a) What is the temperature at a depth of one meter (100 cm)?

(b) Sketch a graph of the linear equation.

(c) What do the slope, the x-intercept, and 7-intercept of the graph of this equation
represent?

The maximum weight M that can be supported by a beam is jointly proportional to its

width w and the square of its height 4, and inversely proportional to its length L.

(a) Write an equation that expresses this proportionality.

(b) Determine the constant of proportionality if a beam 4 in. wide, 6 in. high, and 12 ft
long can support a weight of 4800 Ib.

(c) If a 10-ft beam made of the same material is 3 in. wide and 10 in. high, what is the
maximum weight it can support?
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If you had difficulty with any of these problems, you may wish to review the section of
this chapter indicated below.

If you had trouble with

this test problem Review this section
1 Section 1.1
2, 3, 4(a), 4(b), 4(c) Section 1.2
4(d), 4(e), 4(f), 5 Section 1.4
6,7 Section 1.3
8 Section 1.5
9,10 Section 1.6
11,12, 13 Section 1.7
14 Section 1.9
15, 16, 17(a), 17(b) Section 1.8
17(c), 17(d) Section 1.10
17(e), 17(f), 18 Section 1.8
19, 20, 21 Section 1.10

22 Section 1.11
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Stanford University News Service

George Polya (1887-1985) is fa-
mous among mathematicians for
his ideas on problem solving. His
lectures on problem solving at
Stanford University attracted over-
flow crowds whom he held on the
edges of their seats, leading them
to discover solutions for them-
selves. He was able to do this be-
cause of his deep insight into the
psychology of problem solving.
His well-known book How To
Solve It has been translated into 15
languages. He said that Euler (see
page 288) was unique among great
mathematicians because he ex-
plained how he found his results.
Polya often said to his students and
colleagues, “Yes, I see that your
proof is correct, but how did you
discover it?” In the preface to How
To Solve It, Polya writes, “A great
discovery solves a great problem
but there is a grain of discovery in
the solution of any problem. Your
problem may be modest; but if it
challenges your curiosity and
brings into play your inventive fac-
ulties, and if you solve it by your
own means, you may experience
the tension and enjoy the triumph
of discovery.”

138

There are no hard and fast rules that will ensure success in solving problems. How-
ever, it is possible to outline some general steps in the problem-solving process and
to give principles that are useful in solving certain problems. These steps and prin-
ciples are just common sense made explicit. They have been adapted from George
Polya’s insightful book How To Solve It.

1. Understand the Problem

The first step is to read the problem and make sure that you understand it. Ask your-
self the following questions:

What is the unknown?
What are the given quantities?
What are the given conditions?

For many problems it is useful to
draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities, we often use letters such as a, b, c,
m, n, x, and y, but in some cases it helps to use initials as suggestive symbols, for in-
stance, V for volume or ¢ for time.

2. Think of a Plan

Find a connection between the given information and the unknown that enables you
to calculate the unknown. It often helps to ask yourself explicitly: “How can I relate
the given to the unknown?”” If you don’t see a connection immediately, the following
ideas may be helpful in devising a plan.

= Try to recognize something familiar
Relate the given situation to previous knowledge. Look at the unknown and try to
recall a more familiar problem that has a similar unknown.

= Try to recognize patterns

Certain problems are solved by recognizing that some kind of pattern is occurring.
The pattern could be geometric, or numerical, or algebraic. If you can see regularity
or repetition in a problem, then you might be able to guess what the pattern is and
then prove it.

= Use analogy

Try to think of an analogous problem, that is, a similar or related problem, but one
that is easier than the original. If you can solve the similar, simpler problem, then it
might give you the clues you need to solve the original, more difficult one. For
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instance, if a problem involves very large numbers, you could first try a similar prob-
lem with smaller numbers. Or if the problem is in three-dimensional geometry, you
could look for something similar in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

= Introduce something extra

You may sometimes need to introduce something new—an auxiliary aid—to make
the connection between the given and the unknown. For instance, in a problem for
which a diagram is useful, the auxiliary aid could be a new line drawn in the diagram.
In a more algebraic problem the aid could be a new unknown that relates to the orig-
inal unknown.

= Take cases

You may sometimes have to split a problem into several cases and give a different ar-
gument for each case. For instance, we often have to use this strategy in dealing with
absolute value.

= Work backward

Sometimes it is useful to imagine that your problem is solved and work backward,
step by step, until you arrive at the given data. Then you may be able to reverse your
steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation 3x — 5 = 7,
we suppose that x is a number that satisfies 3x — 5 = 7 and work backward. We add
5 to each side of the equation and then divide each side by 3 to get x = 4. Since each
of these steps can be reversed, we have solved the problem.

= Establish subgoals

In a complex problem it is often useful to set subgoals (in which the desired situation
is only partially fulfilled). If you can attain or accomplish these subgoals, then you
may be able to build on them to reach your final goal.

= Indirect reasoning

Sometimes it is appropriate to attack a problem indirectly. In using proof by contra-
diction to prove that P implies Q, we assume that P is true and Q is false and try to
see why this cannot happen. Somehow we have to use this information and arrive at
a contradiction to what we absolutely know is true.

= Mathematical induction

In proving statements that involve a positive integer n, it is frequently helpful to use
the Principle of Mathematical Induction, which is discussed in Section 11.5.

3. Carry Out the Plan

In Step 2, a plan was devised. In carrying out that plan, you must check each stage of
the plan and write the details that prove each stage is correct.
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Try a special case

Understand the problem

Introduce notation

State what is given

Identify the unknown

4. Look Back

Having completed your solution, it is wise to look back over it, partly to see if any er-
rors have been made and partly to see if you can discover an easier way to solve the
problem. Looking back also familiarizes you with the method of solution, and this
may be useful for solving a future problem. Descartes said, “Every problem that I
solved became a rule which served afterwards to solve other problems.”

We illustrate some of these principles of problem solving with an example. Fur-
ther illustrations of these principles will be presented at the end of selected chapters.

Problem Average Speed

A driver sets out on a journey. For the first half of the distance she drives at the
leisurely pace of 30 mi/h; during the second half she drives 60 mi/h. What is her
average speed on this trip?

= Thinking about the problem

It is tempting to take the average of the speeds and say that the average speed
for the entire trip is
30 + 60

= 45 mi/h
2 mi

But is this simple-minded approach really correct?

Let’s look at an easily calculated special case. Suppose that the total dis-
tance traveled is 120 mi. Since the first 60 mi is traveled at 30 mi/h, it takes
2 h. The second 60 mi is traveled at 60 mi/h, so it takes one hour. Thus, the
total time is 2 + 1 = 3 hours and the average speed is

120 .
T = 40 mi/h

So our guess of 45 mi/h was wrong.

Solution We need to look more carefully at the meaning of average speed. It is
defined as

distance traveled

average speed = —/————
time elapsed

Let d be the distance traveled on each half of the trip. Let #; and #, be the times

taken for the first and second halves of the trip. Now we can write down the infor-

mation we have been given. For the first half of the trip, we have

d
(1) 30 = —
b
and for the second half, we have
d
(2) 60 = —
153
Now we identify the quantity we are asked to find:
total distance  2d

average speed for entire trip = — S
otal ime 1 2



Connect the given with
the unknown

Bettmann /Corbis

Don’t feel bad if you don’t solve
these problems right away. Prob-
lems 2 and 6 were sent to Albert
Einstein by his friend Wertheimer.
Einstein (and his friend Bucky) en-
joyed the problems and wrote back
to Wertheimer. Here is part of his
reply:
Your letter gave us a lot of
amusement. The first intelli-
gence test fooled both of us
(Bucky and me). Only on work-
ing it out did I notice that no
time is available for the downhill
run! Mr. Bucky was also taken
in by the second example, but I
was not. Such drolleries show us
how stupid we are!

(See Mathematical Intelligencer,
Spring 1990, page 41.)
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To calculate this quantity, we need to know ¢, and #,, so we solve Equations 1 and 2
for these times:
d d

t = — th = ——
30 2760

Now we have the ingredients needed to calculate the desired quantity:

d 2d 2d
average speed = =
a7 Lt d d
— + [
30 60
60(2d)
= .~ Multiply numerator and
60<d + d) denominator by 60
30 60
120d 120d
2d +d 3d
So, the average speed for the entire trip is 40 mi/h. |

Problems

1. Distance, Time, and Speed A man drives from home to work at a speed of
50 mi/h. The return trip from work to home is traveled at the more leisurely pace of
30 mi/h. What is the man’s average speed for the round-trip?

2. Distance, Time, and Speed An old car has to travel a 2-mile route, uphill and
down. Because it is so old, the car can climb the first mile—the ascent—no faster than
an average speed of 15 mi/h. How fast does the car have to travel the second mile—on
the descent it can go faster, of course—in order to achieve an average speed of 30 mi/h
for the trip?

3. A Speeding Fly A car and a van are parked 120 mi apart on a straight road. The
drivers start driving toward each other at noon, each at a speed of 40 mi/h. A fly starts
from the front bumper of the van at noon and flies to the bumper of the car, then imme-
diately back to the bumper of the van, back to the car, and so on, until the car and the
van meet. If the fly flies at a speed of 100 mi/h, what is the total distance it travels?

4. Comparing Discounts Which price is better for the buyer, a 40% discount or two
successive discounts of 20%?

5. Cutting up a Wire A piece of wire is bent as shown in the figure. You can see
that one cut through the wire produces four pieces and two parallel cuts produce seven
pieces. How many pieces will be produced by 142 parallel cuts? Write a formula for the
number of pieces produced by rn parallel cuts.

6. Amoeba Propagation An amoeba propagates by simple division; each split takes
3 minutes to complete. When such an amoeba is put into a glass container with a nutri-
ent fluid, the container is full of amoebas in one hour. How long would it take for the
container to be filled if we start with not one amoeba, but two?
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10.

11.

12.

13.

. Running Laps Two runners start running laps at the same time, from the same start-

ing position. George runs a lap in 50 s; Sue runs a lap in 30 s. When will the runners
next be side by side?

. Batting Averages Player A has a higher batting average than player B for the first

half of the baseball season. Player A also has a higher batting average than player B for
the second half of the season. Is it necessarily true that player A has a higher batting
average than player B for the entire season?

. Coffee and Cream A spoonful of cream is taken from a pitcher of cream and put

into a cup of coffee. The coffee is stirred. Then a spoonful of this mixture is put into
the pitcher of cream. Is there now more cream in the coffee cup or more coffee in the
pitcher of cream?

A Melting Ice Cube An ice cube is floating in a cup of water, full to the brim, as
shown in the sketch. As the ice melts, what happens? Does the cup overflow, or does the
water level drop, or does it remain the same? (You need to know Archimedes’ Principle:
A floating object displaces a volume of water whose weight equals the weight of the
object.)

Wrapping the World A red ribbon is tied tightly around the earth at the equator.
How much more ribbon would you need if you raised the ribbon 1 ft above the equator
everywhere? (You don’t need to know the radius of the earth to solve this problem.)

Irrational Powers Prove that it’s possible to raise an irrational number to an irra-
tional power and get a rational result. [Hint: The number a = V/2V2 s either rational
or irrational. If a is rational, you are done. If a is irrational, consider a\/i.]

Babylonian Square Roots The ancient Babylonians developed the following pro-
cess for finding the square root of a number N. First they made a guess at the square
root—let’s call this first guess r;. Noting that

they concluded that the actual square root must be somewhere between r, and N/r,, so
their next guess for the square root, r,, was the average of these two numbers:

_l< +E)
r2—2 T "

Continuing in this way, their next approximation was given by

1( +N)
ra = —\ r —
3 2 2 r
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and so on. In general, once we have the nth approximation to the square root of N, we
find the (n + 1)st using
(= 2)
7, =—|r —
n+1 2 n r,

Use this procedure to find V72, correct to two decimal places.

A Perfect Cube Show that if you multiply three consecutive integers and then add
the middle integer to the result, you get a perfect cube.

Number Patterns Find the last digit in the number 3*°. [Hint: Calculate the first
few powers of 3, and look for a pattern.]

Number Patterns Use the techniques of solving a simpler problem and looking for
a pattern to evaluate the number

3999999999999

Right Triangles and Primes Prove that every prime number is the leg of exactly
one right triangle with integer sides. (This problem was first stated by Fermat; see
page 652.)

An Equation with No Solution Show that the equation x> + y*> = 4z + 3 has no
solution in integers. [Hint: Recall that an even number is of the form 2» and an odd
number is of the form 2n + 1. Consider all possible cases for x and y even or odd.]

Ending Up Where You Started A woman starts at a point P on the earth’s surface
and walks 1 mi south, then 1 mi east, then 1 mi north, and finds herself back at P, the
starting point. Describe all points P for which this is possible (there are infinitely many).

Volume of a Truncated Pyramid The ancient Egyptians, as a result of their
pyramid-building, knew that the volume of a pyramid with height /4 and square base of
side lengthais V = %haz. They were able to use this fact to prove that the volume of a
truncated pyramid is V = 1h(a®> + ab + b?), where h is the height and b and a are the
lengths of the sides of the square top and bottom, as shown in the figure. Prove the trun-
cated pyramid volume formula.

=

a a

Area of a Ring Find the area of the region between the two concentric circles shown
in the figure.
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Bhaskara (born 1114) was an In-
dian mathematician, astronomer,
and astrologer. Among his many
accomplishments was an ingenious
proof of the Pythagorean Theorem
(see Problem 22). His important
mathematical book Lilavati [The
Beautiful] consists of algebra prob-
lems posed in the form of stories
to his daughter Lilavati. Many of
the problems begin “Oh beautiful
maiden, suppose . . .” The story is
told that using astrology, Bhaskara
had determined that great misfor-
tune would befall his daughter if
she married at any time other than
at a certain hour of a certain day.
On her wedding day, as she was
anxiously watching the water
clock, a pearl fell unnoticed from
her headdress. It stopped the flow
of water in the clock, causing her to
miss the opportune moment for
marriage. Bhaskara’s Lilavati was
written to console her.

Entrance =

= Exit

22,

23.

24.

25.

26.

27.

Bhaskara’s Proof The Indian mathematician Bhaskara sketched the two figures
shown here and wrote below them, “Behold!” Explain how his sketches prove the
Pythagorean Theorem.

An Interesting Integer The number 1729 is the smallest positive integer that can be
represented in two different ways as the sum of two cubes. What are the two ways?

Simple Numbers
(a) Use a calculator to find the value of the expression

V3i+2v2 - V3-2V2

The number looks very simple. Show that the calculated value is correct.

(b) Use a calculator to evaluate

V2 + V6
2+ V3
Show that the calculated value is correct.

The Impossible Museum Tour A museum is in the shape of a square with six
rooms to a side; the entrance and exit are at diagonally opposite corners, as shown in the
figure to the left. Each pair of adjacent rooms is joined by a door. Some very efficient
tourists would like to tour the museum by visiting each room exactly once. Can you find
a path for such a tour? Here are examples of attempts that failed.

Oops! Missed this room.

~N

==\ DM LN
J

(| ™

NS
TP TR

7

Oops! No exit.

Here is how you can prove that the museum tour is not possible. Imagine that the rooms

are colored black and white like a checkerboard.

(a) Show that the room colors alternate between white and black as the tourists walk
through the museum.

(b) Use part (a) and the fact that there are an even number of rooms in the museum to
conclude that the tour cannot end at the exit.

Coloring the Coordinate Plane Suppose that each point in the coordinate plane is
colored either red or blue. Show that there must always be two points of the same color
that are exactly one unit apart.

The Rational Coordinate Forest Suppose that each point (x, y) in the plane, both
of whose coordinates are rational numbers, represents a tree. If you are standing at the
point (0, 0), how far could you see in this forest?
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28. A Thousand Points A thousand points are graphed in the coordinate plane. Explain
why it is possible to draw a straight line in the plane so that half of the points are on
one side of the line and half are on the other. [Hint: Consider the slopes of the lines
determined by each pair of points.]

29. Graphing a Region in the Plane Sketch the region in the plane consisting of all
points (x, y) such that

x| + [y] =1
30. The Graph of an Equation Graph the equation
xly =y —=5x2+57%=0

[Hint: Factor.]
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2.1
2.2
w3

2.4
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What Is a Function? 2.6 Modeling with Functions
Graphs of Functions 2.7 Combining Functions
Increasing and Decreasing Functions; 2.8 One-to-One Functions and

Average Rate of Change
Transformations of Functions
Quadratic Functions;

Their Inverses

Maxima and Minima

Galen Rowell /Corbis

Chapter Overview

Perhaps the most useful mathematical idea for modeling the real world is the concept
of function, which we study in this chapter. To understand what a function is, let’s
look at an example.

If a rock climber drops a stone from a high cliff, what happens to the stone? Of
course the stone falls; how far it has fallen at any given moment depends upon how
long it has been falling. That’s a general description, but it doesn’t tell us exactly
when the stone will hit the ground.

d@t) = 1612

General description: The stone falls. Function: In 7 seconds the stone falls 1672 ft.

What we need is a rule that relates the position of the stone to the time it has fallen.
Physicists know that the rule is: In ¢ seconds the stone falls 16¢? feet. If we let d(t)
stand for the distance the stone has fallen at time ¢, then we can express this rule as

d(t) = 16t*

This “rule” for finding the distance in terms of the time is called a function. We say
that distance is a function of time. To understand this rule or function better, we can
make a table of values or draw a graph. The graph allows us to easily visualize how
far and how fast the stone falls.

147
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: : d(t) A

Time ¢ Distance d(t) 250

0 0 200

1 16

2 64 150

3 144 100 /

4 256 50 /;

of 1 2 3 41

You can see why functions are important. For example, if a physicist finds the
“rule” or function that relates distance fallen to elapsed time, then she can predict
when a missile will hit the ground. If a biologist finds the function or “rule” that re-
lates the number of bacteria in a culture to the time, then he can predict the number
of bacteria for some future time. If a farmer knows the function or “rule” that relates
the yield of apples to the number of trees per acre, then he can decide how many trees
per acre to plant to maximize the yield.

In this chapter we will learn how functions are used to model real-world situations
and how to find such functions.

In this section we explore the idea of a function and then give the mathematical
definition of function.

Functions All Around Us

In nearly every physical phenomenon we observe that one quantity depends on an-
other. For example, your height depends on your age, the temperature depends on the
date, the cost of mailing a package depends on its weight (see Figure 1). We use the
term function to describe this dependence of one quantity on another. That is, we say
the following:

= Height is a function of age.

= Temperature is a function of date.

= Cost of mailing a package is a function of weight.

The U.S. Post Office uses a simple rule to determine the cost of mailing a package

based on its weight. But it’s not so easy to describe the rule that relates height to age
or temperature to date.

°F
7 30 2 w (ounces) | Postage (dollars)
6 60 INA /\'\/\ \A O<ws<1 0.37
Height e L /N Y N l<w<2 0.60
i 40
(in fo) 3 [ Daily high temperature 2<ws3 0.83
2 — 0 Columbia, MO, April 1995/ 3<ws<4 1.06
1 — J l l 4<w<s 1.29
of 5 10 15 20 25 0775 10 15 20 25 30 Date L2=®S6 1.52
Age (in years)
Height is a function of age. Temperature is a function of date. Postage is a function of weight.

Figure 1
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Can you think of other functions? Here are some more examples:

= The area of a circle is a function of its radius.
= The number of bacteria in a culture is a function of time.
= The weight of an astronaut is a function of her elevation.

= The price of a commodity is a function of the demand for that commodity.

The rule that describes how the area A of a circle depends on its radius r is given
by the formula A = 7r7%. Even when a precise rule or formula describing a function
is not available, we can still describe the function by a graph. For example, when you
turn on a hot water faucet, the temperature of the water depends on how long the wa-
ter has been running. So we can say

= Temperature of water from the faucet is a function of time.

Figure 2 shows a rough graph of the temperature 7 of the water as a function of the
time ¢ that has elapsed since the faucet was turned on. The graph shows that the ini-
tial temperature of the water is close to room temperature. When the water from the
hot water tank reaches the faucet, the water’s temperature 7 increases quickly. In the
next phase, 7'is constant at the temperature of the water in the tank. When the tank is
drained, T decreases to the temperature of the cold water supply.

T (°F)

110

100

80
70 \\
60
50

e

Graph of water temperature 7" as >

a function of time ¢

We have previously used letters to
stand for numbers. Here we do some-
thing quite different. We use letters to
represent rules.

0 t

Definition of Function

A function is a rule. In order to talk about a function, we need to give it a name. We
will use letters such as f, g, A, . . . to represent functions. For example, we can use the
letter f to represent a rule as follows:

“f” is the rule “square the number”

When we write f(2), we mean “apply the rule f to the number 2.” Applying the rule
gives f(2) = 2% = 4. Similarly, f(3) =3*=09, f(4) = 4> = 16, and in general
flx) = x2

Definition of Function

A function f is a rule that assigns to each element x in a set A exactly one
element, called f(x), in a set B.
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The key on your calculator is a
good example of a function as a
machine. First you input x into the dis-
play. Then you press the key labeled
. (On most graphing calculators, the
order of these operations is reversed.)
If x < 0, then x is not in the domain

of this function; that is, x is not an
acceptable input and the calculator will
indicate an error. If x = 0, then an
approximation to \V/x appears in the
display, correct to a certain number of
decimal places. (Thus, the key on
your calculator is not quite the same

as the exact mathematical function f
defined by f(x) = Vx.)

x — 3 square | [B—> x2
input output
3——> square —>9

—2 ——> square  — 4

Figure 5
Machine diagram

‘We usually consider functions for which the sets A and B are sets of real numbers.
The symbol f(x) is read “f of x” or “f at x” and is called the value of f at x, or the
image of x under f. The set A is called the domain of the function. The range of f is
the set of all possible values of f(x) as x varies throughout the domain, that is,

range of f = {f(x)|x € A}

The symbol that represents an arbitrary number in the domain of a function f is
called an independent variable. The symbol that represents a number in the range
of fis called a dependent variable. So if we write y = f(x), then x is the indepen-
dent variable and y is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 3). If x is in the domain
of the function f, then when x enters the machine, it is accepted as an input and the
machine produces an output f(x) according to the rule of the function. Thus, we can
think of the domain as the set of all possible inputs and the range as the set of all pos-
sible outputs.

x —gg f > i)

input { =~ output

Another way to picture a function is by an arrow diagram as in Figure 4. Each
arrow connects an element of A to an element of B. The arrow indicates that f(x) is
associated with x, f(a) is associated with a, and so on.

Figure 3
Machine diagram of f

A B
* f(x)
* fla)
Figure 4
Arrow diagram of f f
Example 1 The Squaring Function

The squaring function assigns to each real number x its square x>. It is defined by
flx) = x*

(a) Evaluate f(3), f(—2), and f(\V5).

(b) Find the domain and range of f.

(c) Draw a machine diagram for f.

Solution

(a) The values of f are found by substituting for x in f(x) = x°.

) =F=9  f-2)=(2F=4 (V) =(V3)=5

(b) The domain of f is the set R of all real numbers. The range of f consists of all
values of f(x), that is, all numbers of the form x?. Since x* = 0 for all real
numbers x, we can see that the range of fis {y|y = 0} = [0, ).

(c) A machine diagram for this function is shown in Figure 5. ]



A piecewise-defined function is defined
by different formulas on different parts
of its domain. The function C of
Example 3 is piecewise defined.

Expressions like the one in part (d) of
Example 4 occur frequently in calculus;
they are called difference quotients,

and they represent the average change
in the value of f between x = a and
x=a+h.
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Evaluating a Function

In the definition of a function the independent variable x plays the role of a “place-
holder.” For example, the function f(x) = 3x* + x — 5 can be thought of as

D=3 e s

To evaluate f at a number, we substitute the number for the placeholder.

Example 2 Evaluating a Function

Let f(x) = 3x* + x — 5. Evaluate each function value.

@ f(—2) (b) £(0) © f(4) @ f(3)

Solution To evaluate f at a number, we substitute the number for x in the
definition of f.

@ f(=2) =3-(=2)" +(=2) =5=5

(b) f(0)=3-0>+0—-5= -5

() f(4)=3-4>+4—5=47

@ fG)=3-Cf+2-5=-7¢ .

Example 3 A Piecewise Defined Function

A cell phone plan costs $39 a month. The plan includes 400 free minutes and
charges 20¢ for each additional minute of usage. The monthly charges are a
function of the number of minutes used, given by

) = {% if 0 = x = 400
39 + 0.2(x — 400) if x > 400
Find C(100),C(400),and C(480).

Solution Remember that a function is a rule. Here is how we apply the rule
for this function. First we look at the value of the input x. If 0 = x = 400, then
the value of C(x) is 39. On the other hand, if x > 400, then the value of C(x) is
39 + 0.2(x — 400).

Since 100 = 400, we have C(100)

9
9
Since 480 > 400, we have C(480) = 39 + 0.2(480 — 400) = 55.

3
3

Since 400 = 400, we have C(400)

Thus, the plan charges $39 for 100 minutes, $39 for 400 minutes, and $55 for 480
minutes. [

Example 4 Evaluating a Function

If f(x) = 2x* 4+ 3x — 1, evaluate the following.

@ fla) b) f(~a)
© fla+h) ) w h#0
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The weight of an object on or near the
earth is the gravitational force that the
earth exerts on it. When in orbit around
the earth, an astronaut experiences the
sensation of “weightlessness” because
the centripetal force that keeps her

in orbit is exactly the same as the
gravitational pull of the earth.

Solution
@) f(a) =2a*+ 3a — 1
) f(—a) =2(—a)*+3(—a) — 1 =2a*> —3a — 1
() fla+h)=2a+h)*+3a+hn) —1
=2(a’ + 2ah + h*) + 3(a + h) — 1
=2a*> + 4ah + 2h* + 3a + 3h — 1
(d) Using the results from parts (c) and (a), we have
fla + h) — f(a) _(2a2+4ah+2h2+3a+3h—1)—(2a2+3a— 1)
h h

dah + 21* + 3h
h

=4a +2n+3

Example5 The Weight of an Astronaut

If an astronaut weighs 130 pounds on the surface of the earth, then her
weight when she is 4 miles above the earth is given by the function

3960 \2
n =130 22
w(h) 30(3960 n h>

(a) What is her weight when she is 100 mi above the earth?

(b) Construct a table of values for the function w that gives her weight at heights
from 0 to 500 mi. What do you conclude from the table?

Solution

(a) We want the value of the function w when & = 100; that is, we must calculate
w(100).

3960

w(100) = 130(3960 T 100

2
) ~ 123.67
So at a height of 100 mi, she weighs about 124 1b.

(b) The table gives the astronaut’s weight, rounded to the nearest pound, at
100-mile increments. The values in the table are calculated as in part (a).

h w(h)
0 130
100 124
200 118
300 112
400 107
500 102

The table indicates that the higher the astronaut travels, the less she weighs.



Domains of algebraic expressions
are discussed on page 35.
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The Domain of a Function

Recall that the domain of a function is the set of all inputs for the function. The do-
main of a function may be stated explicitly. For example, if we write

flx) = x%, 0=x=5

then the domain is the set of all real numbers x for which 0 = x = 5. If the function
is given by an algebraic expression and the domain is not stated explicitly, then by
convention the domain of the function is the domain of the algebraic expression—that
is, the set of all real numbers for which the expression is defined as a real number.
For example, consider the functions

flx) = glx) = Vax

The function f is not defined at x = 4, so its domain is {x | x # 4}. The function g is
not defined for negative x, so its domain is {x | x # 0}.

Example 6 Finding Domains of Functions

Find the domain of each function.

1
@ flx) = 57— (b) g(x) = V9 —x? (c) h(r) =

t
Vit + 1
Solution
(a) The function is not defined when the denominator is 0. Since

fx) = 21 -

2—x xx—1)

we see that f(x) is not defined when x = 0 or x = 1. Thus, the domain of f is
{x|x#0,x# 1}
The domain may also be written in interval notation as
(00,0) U (0,1) U (1, 0)

(b) We can’t take the square root of a negative number, so we must have
9 — x? = 0. Using the methods of Section 1.7, we can solve this inequality
to find that —3 = x = 3. Thus, the domain of g is

{x| -3=x=3}=[-3,3]

(c) We can’t take the square root of a negative number, and we can’t divide by 0,
so we must have r + 1 > 0, that is, # > —1. So the domain of /4 is

{t1]t>—1} = (—1, ) -

Four Ways to Represent a Function

To help us understand what a function is, we have used machine and arrow diagrams.
We can describe a specific function in the following four ways:

= verbally (by a description in words)

= algebraically (by an explicit formula)
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= visually (by a graph)
= numerically (by a table of values)

A single function may be represented in all four ways, and it is often useful to go
from one representation to another to gain insight into the function. However, certain
functions are described more naturally by one method than by the others. An exam-

ple of a verbal description is

P(1) is “the population of the world at time ¢”

The function P can also be described numerically by giving a table of values (see
Table 1 on page 386). A useful representation of the area of a circle as a function of

its radius is the algebraic formula

A(r) = mr?

The graph produced by a seismograph (see the box) is a visual representation of the
vertical acceleration function a(t) of the ground during an earthquake. As a final ex-
ample, consider the function C(w), which is described verbally as “the cost of mail-
ing a first-class letter with weight w.” The most convenient way of describing this
function is numerically—that is, using a table of values.

We will be using all four representations of functions throughout this book. We

summarize them in the following box.

Four Ways to Represent a Function

Verbal Algebraic
Using words: Using a formula:
P(2) is “the population of the world at time ¢” A(r) = mr?
Relation of population P and time # Area of a circle
Visual Numerical
Using a graph: Using a table of values:
(cmlsz;l w (ounces) C(w) (dollars)
100 O<w=1 0.37
I<w=2 0.60
50 2<w=3 0.83
3<w=+4 1.06

0 £(s) 4<w=>5

Source: Calif. Dept. of
Mines and Geology

1.29

Vertical acceleration during an earthquake Cost of mailing a first-class letter




IFXB Exercises

1-4 m Express the rule in function notation. (For example,
the rule “square, then subtract 5 is expressed as the function
f(x) =x*—5.)

1. Add 3, then multiply by 2

2. Divide by 7, then subtract 4

3. Subtract 5, then square

4. Take the square root, add 8, then multiply by §

5-8 m Express the function (or rule) in words.

x—4

flx) = -4

7. h(x) =x*+2

X
6. g(x) = 3

8. k(x) = Vx+2

9-10 ® Draw a machine diagram for the function.

3
9. f(x) = Vx—1 10. f(x) = p—y
X —
11-12 ® Complete the table.
11. f(x) =2(x — 1)? 12. g(x) = | 2x + 3]
x f(x) x g9(x)
-1 -3
0 -2
1 0
2 1
3 3

13-20 = Evaluate the function at the indicated values.

13. f(x) =2x+ I;
F(1). £(=2). £). f(a). f(=a). f(a + b)
14. f(x) = x* + 2x;

15, g() = 1
9(2),9(=2),9(3). g(a), gla = 1), g(=1)
16. h(t) = 1 +
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17. f(x) = 2x> + 3x — 4;
F0). £(2), (=2). f(V2), f(x + 1), f(—x)

18. f(x) = x* — 4%

19. f(x) =2|x—1;
F(=2). £0). £(3). £(2). f(x + 1), f(x* + 2)

I,

20. f(x) =

520, 51,10, 550, 16 1( L)

21-24 m Evaluate the piecewise defined function at the
indicated values.

22 ifx <0
2. fx) = {x-i—l ifx=0

f(=2), f(=1), £(0), £(1), £(2)

5 ifx=2
2. f(x) = {2x—3 ifx>2

f(=3). £(0). £(2). £(3). £(5)

x> +2x ifx=-—1
23. f(x) = qx if—1<x=1

-1 ifx>1
F(=4), f(=3). £(=1), £(0), £(25)

3x ifx <0
24. f(x) =qx + 1 if0=x=2
(x—2)* ifx>2
£(=5). £(0). £(1). £(2). £(5)
25-28 m Use the function to evaluate the indicated expressions
and simplify.
25. f(x) =x*+ 15 flx +2), f(x) + £(2)
26. f(x) =3x — 1; f(2x),2f(x)
27. f(x) = x + 4 f(x?), (f(x))?
28. f(x) = 6x — 18; f(%)@

29-36 ® Find f(a), f(a + h), and the difference quotient

h —
w, where h # 0.

9. f(x) =3x+2 30. f(x) =x*+1
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1
31 f(x) = 5 32 40 =

2
3.4 = 34, f(x) = ﬁ
35. f(x) =3 — 5x + 47 36. f(x) =x*

37-58 m Find the domain of the function.

37. f(x) = 2x 38. f(x) =x*+1
39. f(x) =2x, —1=x=5
40. f(x)=x*+1, 0=x=5
1 1
41. f(x) = T_3 42. f(x) = =6
x+ 2 x*
43. f(x) = x2 — 1 44. f(x) = m
45. f(x) = Vx —5 46. f(x) = Vx+9
47. f(t) = Vi — 1 48. g(x) = V7 - 3x
49. h(x) = V2x =5 50. G(x) = Vx* -9
V2 +x Vx
SLg) == S
53. g(x) = Vx? — 6x 54. g(x) = Vx* —2x — 8
2
55, f(x) = ——— 56. f(x) = ———
Vx—4 V6 —x
(X + 1)2 X
57. = 58. = =
R 0=V

Applications

59. Production Cost The cost C in dollars of producing
x yards of a certain fabric is given by the function

C(x) = 1500 + 3x + 0.02x> + 0.0001x>
(a) Find C(10) and C(100).
(b) What do your answers in part (a) represent?
(c) Find C(0). (This number represents the fixed costs.)

60. Area of a Sphere The surface area S of a sphere is a
function of its radius r given by

S(r) = 4mr?
(a) Find $(2) and S(3).
(b) What do your answers in part (a) represent?

61. How Far Can You See? Due to the curvature of the
earth, the maximum distance D that you can see from the

62.

63.

top of a tall building or from an airplane at height % is given
by the function

D(h) = V2rh + h?

where r = 3960 mi is the radius of the earth and D and / are

measured in miles.

(a) Find D(0.1) and D(0.2).

(b) How far can you see from the observation deck of
Toronto’s CN Tower, 1135 ft above the ground?

(¢) Commercial aircraft fly at an altitude of about 7 mi.
How far can the pilot see?

Torricelli's Law A tank holds 50 gallons of water, which
drains from a leak at the bottom, causing the tank to empty
in 20 minutes. The tank drains faster when it is nearly full
because the pressure on the leak is greater. Torricelli’s
Law gives the volume of water remaining in the tank after
t minutes as

20

(a) Find V(0) and V(20).
(b) What do your answers to part (a) represent?
(c) Make a table of values of V(¢) fort = 0, 5, 10, 15, 20.

2
V(z):50<1—i> 0=r=20

Blood Flow As blood moves through a vein or an artery,
its velocity v is greatest along the central axis and decreases
as the distance r from the central axis increases (see the
figure). The formula that gives v as a function of r is called
the law of laminar flow. For an artery with radius 0.5 cm,
we have

o(r) = 18,500(0.25 — r?)
(a) Find v(0.1) and v(0.4).

(b) What do your answers to part (a) tell you about the flow
of blood in this artery?

(c) Make a table of values of v(r) for r = 0, 0.1, 0.2, 0.3,
0.4,0.5.

0=r=05



64.

65.

66.

67.

68.

Pupil Size When the brightness x of a light source is in-
creased, the eye reacts by decreasing the radius R of the
pupil. The dependence of R on x is given by the function

RGx) = [13 + 7x%4
* 1+ 4x%4
(a) Find R(1), R(10), and R(100).
(b) Make a table of values of R(x).

Relativity According to the Theory of Relativity, the
length L of an object is a function of its velocity v with
respect to an observer. For an object whose length at rest
is 10 m, the function is given by

l}2
L(U) =10 1 - )
c

where c is the speed of light.

(a) Find L(0.5¢), L(0.75¢), and L(0.9¢).

(b) How does the length of an object change as its velocity
increases?

Income Tax In a certain country, income tax 7 is assessed
according to the following function of income x:

0 if 0 = x = 10,000
T(x) = 40.08x if 10,000 < x = 20,000
1600 + 0.15x  if 20,000 < x

(a) Find 7(5,000), 7(12,000), and 7(25,000).
(b) What do your answers in part (a) represent?

Internet Purchases An Internet bookstore charges $15
shipping for orders under $100, but provides free shipping
for orders of $100 or more. The cost C of an order is a func-
tion of the total price x of the books purchased, given by

) {x + 15 ifx <100
x) =
X if x = 100

(a) Find C(75), C(90), C(100), and C(105).
(b) What do your answers in part (a) represent?

Cost of a Hotel Stay A hotel chain charges $75 each

night for the first two nights and $50 for each additional

night’s stay. The total cost 7 is a function of the number

of nights x that a guest stays.

(a) Complete the expressions in the following piecewise
defined function.

T(x) = {

fo=x=2
ifx>2

69.

70.

71.

72.
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(b) Find 7(2), T(3), and 7(5).
(¢) What do your answers in part (b) represent?

Speeding Tickets In a certain state the maximum speed

permitted on freeways is 65 mi/h and the minimum is 40.

The fine F for violating these limits is $15 for every mile

above the maximum or below the minimum.

(a) Complete the expressions in the following piecewise
defined function, where x is the speed at which you are

driving.
if 0 < x <40
F(x) = if40 = x =65
if x > 65

(b) Find F(30), F(50), and F(75).
(¢) What do your answers in part (b) represent?

Height of Grass A home owner mows the lawn every
Wednesday afternoon. Sketch a rough graph of the height of
the grass as a function of time over the course of a four-
week period beginning on a Sunday.

Temperature Change You place a frozen pie in an oven
and bake it for an hour. Then you take it out and let it cool
before eating it. Sketch a rough graph of the temperature of
the pie as a function of time.

Daily Temperature Change Temperature readings 7
(in °F) were recorded every 2 hours from midnight to noon
in Atlanta, Georgia, on March 18, 1996. The time ¢ was
measured in hours from midnight. Sketch a rough graph
of T as a function of 7.

58
57
53
50
51
57
61

N O 0B~ NDO

—_ =
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73. Population Growth The population P (in thousands) Discovery ¢ Discussion
of San Jose, California, from 1988 to 2000 is shown in the ) o ) ]
table. (Midyear estimates are given.) Draw a rough graph 74. Examples of Functions At the beginning of this section

of P as a function of time 7.

we discussed three examples of everyday, ordinary func-
tions: Height is a function of age, temperature is a function

of date, and postage cost is a function of weight. Give three
other examples of functions from everyday life.

t P
1988 733
1990 782
1992 800
1994 817
1996 838
1998 861
2000 895

75. Four Ways to Represent a Function In the box on
page 154 we represented four different functions verbally,
algebraically, visually, and numerically. Think of a function
that can be represented in all four ways, and write the four
representations.

Figure 1

The height of the graph above the
point x is the value of f(x).

The most important way to visualize a function is through its graph. In this section
we investigate in more detail the concept of graphing functions.

Graphing Functions

The Graph of a Function

If f is a function with domain A, then the graph of f is the set of ordered
pairs

{(x.f(x) | x € A}

In other words, the graph of f is the set of all points (x, y) such that y = f(x);
that is, the graph of f is the graph of the equation y = f(x).

The graph of a function f gives a picture of the behavior or “life history” of the
function. We can read the value of f(x) from the graph as being the height of the
graph above the point x (see Figure 1).

A function f of the form f(x) = mx + b is called a linear function because its
graph is the graph of the equation y = mx + b, which represents a line with slope m
and y-intercept b. A special case of a linear function occurs when the slope is m = 0.
The function f(x) = b, where b is a given number, is called a constant function be-
cause all its values are the same number, namely, b. Its graph is the horizontal line
y = b. Figure 2 shows the graphs of the constant function f(x) = 3 and the linear
function f(x) = 2x + 1.
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Figure 2 The constant function f(x) = 3 The linear function f(x) = 2x + 1

Example 1 Graphing Functions
Sketch the graphs of the following functions.
(@) f(x) =x? () g(x) = x° (¢) h(x) = Vx

Solution We first make a table of values. Then we plot the points given by the
table and join them by a smooth curve to obtain the graph. The graphs are sketched
in Figure 3.
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Figure 3 @) flx)= x> (b) glx) = x° (© hix)=\/x "

A convenient way to graph a function is to use a graphing calculator, as in the next
example.
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¥
V||

-1
(a) Even powers of x

2 XxT X

-2
(b) Odd powers of x

Figure 4
A family of power functions f(x) = x"

Temperature function

Example 2 A Family of Power Functions
(a) Graph the functions f(x) = x" forn = 2, 4, and 6 in the viewing
rectangle [—2, 2] by [—1, 3].
(b) Graph the functions f(x) = x" forn = 1, 3, and 5 in the viewing rectangle
(c) What conclusions can you draw from these graphs?

Solution The graphs for parts (a) and (b) are shown in Figure 4.

(c) We see that the general shape of the graph of f(x) = x" depends on whether n
is even or odd.

If n is even, the graph of f(x) = x" is similar to the parabola y = x?.
If n is odd, the graph of f(x) = x" is similar to that of y = x°. [

Notice from Figure 4 that as n increases the graph of y = x" becomes flatter near
0 and steeper when x > 1. When 0 < x < 1, the lower powers of x are the “bigger”
functions. But when x > 1, the higher powers of x are the dominant functions.

Getting Information from the Graph of a Function

The values of a function are represented by the height of its graph above the x-axis.
So, we can read off the values of a function from its graph.

Example 3 Find the Values of a Function from a Graph
The function T graphed in Figure 5 gives the temperature between noon and 6 P.M.
at a certain weather station.
(a) Find T(1), T(3), and T(5).
(b) Which is larger, T(2) or 7(4)?

T (°F) A
40
N\
30 7 N
20 / \\
Figure 5 0 1 2 3 4 5 6 x

Hours from noon

Solution

(a) T(1) is the temperature at 1:00 p.M. It is represented by the height of the
graph above the x-axis at x = 1. Thus, 7(1) = 25. Similarly, 7(3) = 30 and
7(5) = 10.

(b) Since the graph is higher at x = 2 than at x = 4, it follows that 7(2) is larger
than 7(4). [
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The graph of a function helps us picture the domain and range of the function on

the x-axis and y-axis as shown in Figure 6.

Range

Figure 6
Domain and range of f

=Y

Domain

i Example 4 Finding the Domain and Range from a Graph
(a) Use a graphing calculator to draw the graph of f(x) = V4 — x2
(b) Find the domain and range of f.
Solution
(a) The graph is shown in Figure 7.
Range = [0, 2]
]
Figure 7 N —
Graph of f(x) = V4 — x* Domain = [-2, 2]

(b) From the graph in Figure 7 we see that the domain is [—2, 2] and the range
is [0, 2]. ]

Graphing Piecewise Defined Functions

A piecewise defined function is defined by different formulas on different parts of its
domain. As you might expect, the graph of such a function consists of separate pieces.

Example 5 Graph of a Piecewise Defined Function

Sketch the graph of the function.
x? ifx=1

1) = {2x+1 ifx > 1

Solution Ifx = 1, then f(x) = x?, so the part of the graph to the left of x = 1
coincides with the graph of y = x% which we sketched in Figure 3. If x > 1, then
f(x) = 2x + 1, so the part of the graph to the right of x = 1 coincides with the
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On many graphing calculators the
graph in Figure 8 can be produced
by using the logical functions in the
calculator. For example, on the TI-83
the following equation gives the
required graph:

Y, = (X = DXA2 + (X > 1)(2X + 1)

S

5

] ‘
-1

(To avoid the extraneous vertical line
between the two parts of the graph,
put the calculator in Dot mode.)

line y = 2x + 1, which we graphed in Figure 2. This enables us to sketch the graph
in Figure 8.

The solid dot at (1, 1) indicates that this point is included in the graph; the open
dot at (1, 3) indicates that this point is excluded from the graph.

Figure 8

2 .
_)x ifx=1
f(x)_{2x+1 ifx > 1

Example 6 Graph of the Absolute Value Function

Sketch the graph of the absolute value function f(x) = |x]|.

Solution Recall that

x| = X ifx=0
—x ifx<0

Using the same method as in Example 5, we note that the graph of f coincides with
the line y = x to the right of the y-axis and coincides with the line y = —x to the
left of the y-axis (see Figure 9).

Figure 9
Graph of f(x) = | x| =

The greatest integer function is defined by

[x]] = greatest integer less than or equal to x

For example, 2] = 2, [[2.3] = 2,[1.999] = 1, [[0.002] = 0, [-3.5] = —4,
[-0.5] = —1.

Example 7 Graph of the Greatest Integer Function
Sketch the graph of f(x) = [x].

Solution The table shows the values of f for some values of x. Note that f(x) is
constant between consecutive integers so the graph between integers is a horizontal
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Cost of a long-distance call
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line segment as shown in Figure 10.

x [x]
—2=x<-11| -2
—l=x< 0] —1

0=x< 1 0
Il=x< 2 1
3

2=x< 2

Figure 10
The greatest integer function, y = [x] [ |

The greatest integer function is an example of a step function. The next exam-
ple gives a real-world example of a step function.

Example 8 The Cost Function for Long-Distance Phone Calls

The cost of a long-distance daytime phone call from Toronto to Mumbai, India, is
69 cents for the first minute and 58 cents for each additional minute (or part of a
minute). Draw the graph of the cost C (in dollars) of the phone call as a function of
time ¢ (in minutes).

Solution Let C(¢) be the cost for 7 minutes. Since ¢ > 0, the domain of the
function is (0, c0). From the given information, we have

C(r) = 0.69 ifo<r=1

C(r) = 0.69 + 0.58 = 1.27 ifl<tr=2

C(r) = 0.69 + 2(0.58) = 1.85 if2<tr=3

C(r) = 0.69 + 3(0.58) = 2.43 if3<r=4

and so on. The graph is shown in Figure 11. ]

The Vertical Line Test

The graph of a function is a curve in the xy-plane. But the question arises:
Which curves in the xy-plane are graphs of functions? This is answered by the fol-
lowing test.

The Vertical Line Test

A curve in the coordinate plane is the graph of a function if and only if no
vertical line intersects the curve more than once.
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We can see from Figure 12 why the Vertical Line Test is true. If each vertical line
X = a intersects a curve only once at (a, b), then exactly one functional value is
defined by f(a) = b. But if a line x = a intersects the curve twice, at (a, b) and at
(a, ¢), then the curve can’t represent a function because a function cannot assign two
different values to a.

VA ‘ YA |
r=a x=al
1 1
i (a, )
A /\/
! (a, b) / ! (a, b)
! !
| |
0 a i ;( 0 a i ;C
1 1
Graph of a function Not a graph of a function
Figure 12

Vertical Line Test

Example 9 Using the Vertical Line Test

Using the Vertical Line Test, we see that the curves in parts (b) and (c) of Figure 13
represent functions, whereas those in parts (a) and (d) do not.

0y S y y
|
|
0 ! X 0 X 0 X
1
(a) (b) (©)
Figure 13

Equations That Define Functions

Any equation in the variables x and y defines a relationship between these variables.
For example, the equation

y—xt=
defines a relationship between y and x. Does this equation define y as a function of x?
To find out, we solve for y and get

y=x

We see that the equation defines a rule, or function, that gives one value of y for each
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value of x. We can express this rule in function notation as
flx) =%

But not every equation defines y as a function of x, as the following example
shows.

Example 10 Equations That Define Functions

Does the equation define y as a function of x?

(@ y—x*=2
(b) x>+ y*=4
Solution

(a) Solving for y in terms of x gives
y—x*=2
y=x*+2 Add x*

The last equation is a rule that gives one value of y for each value of x, so it
defines y as a function of x. We can write the function as f(x) = x* + 2.

(b) We try to solve for y in terms of x:
x2+yr=4
y2 =4 — x? Subtract X

y==*xV4—x2

The last equation gives two values of y for a given value of x. Thus, the equa-
tion does not define y as a function of x. ]

Take square roots

The graphs of the equations in Example 10 are shown in Figure 14. The Vertical
Line Test shows graphically that the equation in Example 10(a) defines a function but
the equation in Example 10(b) does not.

YA YA
— x> +y*=4
, \ o —
l<k
]
S (] R i

Figure 14 (2) (b)
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The following table shows the graphs of some functions that you will see fre-
quently in this book.

Some Functions and Their Graphs

Linear functions

y y
fx)=mx +b
b ———
b
x /| x
fx)y=»n flx)y=mx+b
Power functions y y y y
flx) = x"
X X
X X
flx) = x? flx) = x° flx) = x* flx)=x°

Root functions

o |

Reciprocal functions

y
flx)=1/x"
X
1
f="2
Absolute value function Greatest integer function
y y .

fx) = | x| fx) = [x] —




IF¥H Exercises

1-22 m Sketch the graph of the function by first making a table

of values.
L f(x) =2 2. f(x) = -3
3. f(x) =2x— 4 4. f(x) =6 — 3x
5 fx) = —x+3, -3=x=3
-3
6.f(x):x2 , 0=x=5
7. f(x) = —x? 8. fx) =x*—4
9. g(x) = x*— 8 10. g(x) = 4x* — x*
11. g(x) = Vx + 4 12. g(x) = V—x
13F()—l 14. F(x) = !
SV X - A x+4
15. H(x) = | 2x| 16. H(x) = |x + 1|
17. G(x) = |x| + x 18. G(x) = |x| — x
19. f(x) = |2x — 2| 20. f(x) = |x—|
X
2 Ed
21 g(x) = — 22. g(x) = —;
x x
23. The graph of a function & is given.

24.

(a) Find h(—2), h(0), h(2), and h(3).

(b) Find the domain and range of /.

y

(98]

N
~~——

=Y

The graph of a function g is given.

(a) Find g(—4), g(—2), ¢(0), g(2), and g(4).

(b) Find the domain and range of g.

T
Tl
g ™\
\
\
-3 0 / ] X
/

SECTION 2.2 Graphs of Functions

25. Graphs of the functions f and g are given.
(a) Which is larger, f(0) or g(0)?
(b) Which is larger, f(—3) or g(—3)?
(c) For which values of x is f(x) = g(x)?

YA

[\

26. The graph of a function f is given.
(a) Estimate f(0.5) to the nearest tenth.
(b) Estimate f(3) to the nearest tenth.
(¢) Find all the numbers x in the domain of f for which

flx) =L

e
b)
=Y

%% 27-36 ®m A function f is given.
(a) Use a graphing calculator to draw the graph of f.
(b) Find the domain and range of f from the graph.

27. f(x) =x—1 28. f(x) =2(x + 1)

29. f(x) =4 30. f(x) = —x*

31 f(x) =4 —x* 32 f(x) =x"+4

33, f(x) = V16 — 2 34. f(x) = V25 — »2
35 f(x) = Va— 1 36. f(x) = Vx+2
37-50 m Sketch the graph of the piecewise defined function.

0 ifx<2

37. flx) = {1 ifx=2

167
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1 ifx =1
38. flx) = {x+1 ifx>1

3 ifx <2
39. fx) = {x—l ifx=2

1 —x ifx< =2
40. f(x) = {5 ifx=—2

X ifx=0

41. =
=1 itx>o0

2x+3 ifx<—1

{
2. f(x) = {3 —x  ifx=—1

-1 ifx<-—1
1 f-l=x=1
-1 ifx>1

43. f(x) =

-1 ifx< -1
44. f(x) = qx if—-1l=x=1
1 ifx>1

2 ifx= -1
45 f(x) = {xz ifx > —1
1—x2 ifx=2
46. f(x) = {x ifx>2
_Jo if|x| =2
47. f(x)_{3 if [x] > 2

2 -
48. 1(x) _{x %f|x| =1

4 ifx <=2
49. f(x) ={x2 if—2=x=2
—x+6 ifx>2
—X ifx=20
50. f(x) =99 —x* f0<x=3
x—3 ifx>3

51-52 m Use a graphing device to draw the graph of
the piecewise defined function. (See the margin note on

page 162.)
+2
st 5 - {7
2x — x?
52. f(x) = {(x )

ifx=—1
ifx > —1

ifx>1
ifx=1

53-54 m The graph of a piecewise defined function is given.
Find a formula for the function in the indicated form.

53.

YA
o]
ifx < —2
0 . flx) = if—2=x=2
2 | X ifx>2
54.
YA
9)
ifx = —1
, flx) = if—1<x=2
0 x ifx >2

55-56 ®m Determine whether the curve is the graph of a function
of x.

ss.@ (b) v

0 X 0 X
(©) (d) YA

0 X

56. (a) y (b) y
0 X 0 X

(©) y (d) y
0 X 0 X
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57-60 ®m Determine whether the curve is the graph of a function
x. If it is, state the domain and range of the function.

57. YA 58. YA
2 /o)
\l /o 2 x 0 3 x
L/
59. YA 60. YA
\ 2
I\
1
AN , /[ .
0 \\ 3 0 2 X

61-72 ®m Determine whether the equation defines y as a function
of x. (See Example 10.)

61 x>+ 2y =4 62. 3x + 7y =21
63. x =y? 64. x>+ (y — 1) =
65. x +y>*=9 66. x> +y=9

67. x>y +y=1 68. Vx+y=12
69. 2|x| +y=0 70. 2x + |y| =0
71. x=y* 72. x =y*

73-78 m A family of functions is given. In parts (a) and
(b) graph all the given members of the family in the viewing
rectangle indicated. In part (c) state the conclusions you can
make from your graphs.
73. f(x) =x*+ ¢

(@) ¢=0,2,4,6; [-5,5]by[—10,10]

() ¢ =0, -2, —4,—6; [—5,5]by[—10, 10]

(¢) How does the value of ¢ affect the graph?
74. f(x) = (x — ¢)?

(@ ¢=0,1,2,3; [-5,5]by[—10, 10]

() ¢c=0,—-1,-2,-3; [=5,5]by[—10, 10]

(c) How does the value of ¢ affect the graph?
75. f(x) = (x — ¢)®

(@) ¢=0,2,4,6; [—10,10]by[—10, 10]

(b) ¢ =0, -2, —4, —6; [—10, 10]by[—10, 10]

(¢c) How does the value of ¢ affect the graph?
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76. f(x) = cx?

@) c=1,%2,4; [-5,5by[—10, 10]

(b) c=1,—-1,—1 -2; [-5,5]by[—10, 10]

(c) How does the value of c affect the graph?
77. f(x) = x°

@ c =304 [~1.4by[-1.3]

) ¢ =155 [-3,3]by[-2,2]

(¢) How does the value of ¢ affect the graph?
78. f(x) = 1/x"

(@ n=1,3; [-3,3]by[—3,3]

(b) n=2,4; [—-3,3]by[—3,3]

(¢) How does the value of n affect the graph?

79-82 ® Find a function whose graph is the given curve.
79. The line segment joining the points (—2, 1) and (4, —6)
80. The line segment joining the points (—3, —2) and (6, 3)
81. The top half of the circle x> + y> =9

82. The bottom half of the circle x> + y> =9

Applications

83. Weight Function The graph gives the weight of a certain
person as a function of age. Describe in words how this
person’s weight has varied over time. What do you think
happened when this person was 30 years old?

A
200

Weight 150
(pounds) 100

50 /

10 20 30 40 50 60 70
Age (years)

=]

84. Distance Function The graph gives a salesman’s dis-
tance from his home as a function of time on a certain day.
Describe in words what the graph indicates about his travels
on this day.

Distance
from home
(miles)

NOON 2 4

Time (hours)
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85.

86.

87.

CHAPTER 2 Functions

Hurdle Race Three runners compete in a 100-meter hur-
dle race. The graph depicts the distance run as a function of
time for each runner. Describe in words what the graph tells
you about this race. Who won the race? Did each runner
finish the race? What do you think happened to runner B?

¥ (m) A

A B C
100 +

4

0 20

1(s)

Power Consumption The figure shows the power con-
sumption in San Francisco for September 19, 1996 (P is
measured in megawatts; ¢ is measured in hours starting at
midnight).

(a) What was the power consumption at 6 A.M.? At 6 P.M.?
(b) When was the power consumption the lowest?

(¢) When was the power consumption the highest?

PMW)
800 s
My

600 /

X / N
400 4
200

0 3 6 9 12 15 18 21 rt(h

Source: Pacific Gas & Electric

Earthquake The graph shows the vertical acceleration

of the ground from the 1994 Northridge earthquake in Los

Angeles, as measured by a seismograph. (Here ¢ represents

the time in seconds.)

(a) At what time ¢ did the earthquake first make noticeable
movements of the earth?

(b) At what time ¢ did the earthquake seem to end?

(c) At what time # was the maximum intensity of the earth-
quake reached?

a
(cm/s?)
100 +
50 +
] 017(s)
-50 +
Source: Calif. Dept. of

Mines and Geology

88.

89.

90.

Utility Rates Westside Energy charges its electric
customers a base rate of $6.00 per month, plus 10¢ per
kilowatt-hour (kWh) for the first 300 kWh used and
6¢ per kWh for all usage over 300 kWh. Suppose a
customer uses x kWh of electricity in one month.

(a) Express the monthly cost E as a function of x.
(b) Graph the function E for 0 = x = 600.

Taxicab Function A taxi company charges $2.00 for the
first mile (or part of a mile) and 20 cents for each succeed-
ing tenth of a mile (or part). Express the cost C (in dollars)
of a ride as a function of the distance x traveled (in miles)
for 0 < x < 2, and sketch the graph of this function.

Postage Rates The domestic postage rate for first-class
letters weighing 12 oz or less is 37 cents for the first ounce
(or less), plus 23 cents for each additional ounce (or part of
an ounce). Express the postage P as a function of the weight
x of aletter, with 0 < x = 12, and sketch the graph of this
function.

Discovery - Discussion

91.

92.

93.

¥ 94.

When Does a Graph Represent a Function? For every
integer n, the graph of the equation y = x" is the graph

of a function, namely f(x) = x". Explain why the graph of
x = y*is not the graph of a function of x. Is the graph of

x = y* the graph of a function of x? If so, of what function
of x is it the graph? Determine for what integers n the graph
of x = y" is the graph of a function of x.

Step Functions In Example 8 and Exercises 89 and 90
we are given functions whose graphs consist of horizontal
line segments. Such functions are often called step
functions, because their graphs look like stairs. Give
some other examples of step functions that arise in
everyday life.

Stretched Step Functions Sketch graphs of the func-
tions f(x) = [x], g(x) = [2x], and h(x) = [[3x] on separate
graphs. How are the graphs related? If  is a positive integer,
what does the graph of k(x) = [[nx] look like?

Graph of the Absolute Value of a Function

(a) Draw the graphs of the functions f(x) = x* + x — 6
and g(x) = |x* + x — 6. How are the graphs of f and
g related?

(b) Draw the graphs of the functions f(x) = x* — 6x* and

g(x) = |x* — 6x?|. How are the graphs of f and ¢

related?

(c) In general, if g(x) = |f(x)|, how are the graphs

of f and g related? Draw graphs to illustrate your

answer.
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@ Relations and Functions

DISCOVERY A function f can be represented as a set of ordered pairs (x, y) where

PROJECT x is the input and y = f(x) is the output. For example, the function that
squares each natural number can be represented by the ordered pairs
{(1,1),(2,4),(3,9), .. .}

A relation is any collection of ordered pairs. If we denote the ordered pairs
in a relation by (x, y) then the set of x-values (or inputs) is the domain and the
set of y-values (or outputs) is the range. With this terminology a function is a
relation where for each x-value there is exactly one y-value (or for each input
there is exactly one output). The correspondences in the figure below are
relations—the first is a function but the second is not because the input 7 in
A corresponds to two different outputs, 15 and 17, in B.

A B A B
* 10 = °15
17
® 20 o 18
*30 *19
Function Not a function

We can describe a relation by listing all the ordered pairs in the relation or
giving the rule of correspondence. Also, since a relation consists of ordered pairs
we can sketch its graph. Let’s consider the following relations and try to decide

y which are functions.

3 ¢ (a) The relation that consists of the ordered pairs {(1, 1), (2, 3), (3,3), (4,2)}.
D280 O (b) The relation that consists of the ordered pairs {(1,2), (1,3), (2,4), (3,2)}.

1 °

(c) The relation whose graph is shown to the left.

(d) The relation whose input values are days in January 2005 and whose output
values are the maximum temperature in Los Angeles on that day.

|
—_
(=)
—_
w 4+
=Y

(e) The relation whose input values are days in January 2005 and whose output
values are the persons born in Los Angeles on that day.

The relation in part (a) is a function because each input corresponds to exactly
one output. But the relation in part (b) is not, because the input 1 corresponds
to two different outputs (2 and 3). The relation in part (c) is not a function
because the input 1 corresponds to two different outputs (1 and 2). The relation
in (d) is a function because each day corresponds to exactly one maximum
temperature. The relation in (e) is not a function because many persons (not just
one) were born in Los Angeles on most days in January 2005.

1. LetA ={1,2,3,4}and B = {—1, 0, 1}. Is the given relation a function from
A to B?
(a) {(1,0),(2,-1),(3,0), (4, 1)}
(b) {(1,0), (2, =1),(3,0), (3, —1), (4,0)}
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{ CENTRAL |
{WIRELESS |

0B
() ]

3]
25 )
(3]

(+J
=
]

60"
56"
50"

2. Determine if the correspondence is a function.

(a) 4 B (b) 4 B
o A °A

B B B

oC oC

oD D

. The following data were collected from members of a college precalculus

class. Is the set of ordered pairs (x, y) a function?

(a) (b) (c)

X y X y X y
Height | Weight Age | ID Number Year of Number of
) graduation graduates

72 in. 180 1b 19 82-4090

60 in. 204 1b 21 80-4133 2005 2

60 in. 120 1b 40 66-8295 2006 12

63 in. 145 1b 21 64-9110 2007 18

70 in. 184 1b 21 20-6666 2008 7

2009 1

. An equation in x and y defines a relation, which may or may not be a function

(see page 164). Decide whether the relation consisting of all ordered pairs of
real numbers (x, y) satisfying the given condition is a function.

(@ y=x* (b)x=y> (c)x=y (d) 2x+7y=11

. In everyday life we encounter many relations which may or may not define

functions. For example, we match up people with their telephone number(s),

baseball players with their batting averages, or married men with their wives.

Does this last correspondence define a function? In a society in which each

married man has exactly one wife the rule is a function. But the rule is not a

function. Which of the following everyday relations are functions?

(a) xis the daughter of y (x and y are women in the United States)

(b) xis taller than y (x and y are people in California)

(c) x has received dental treatment from y (x and y are millionaires in the
United States)

(d) xis adigit (0 to 9) on a telephone dial and y is a corresponding letter
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Increasing and Decreasing Functions;
Average Rate of Change

Functions are often used to model changing quantities. In this section we learn how
to determine if a function is increasing or decreasing, and how to find the rate at
which its values change as the variable changes.

Increasing and Decreasing Functions

It is very useful to know where the graph of a function rises and where it falls.
The graph shown in Figure 1 rises, falls, then rises again as we move from left
to right: It rises from A to B, falls from B to C, and rises again from C to D. The

function f is said to be increasing when its graph rises and decreasing when its
graph falls.

YA fis decreasing. D
f is increasing. B :
|
| |
| |
| |
|
! ! fis increasing.
A | | 1
| | |
| | | |
1 1 1 1 >
0 a b c d X
Figure 1

fis increasing on [a, b] and [c, d].
fis decreasing on [b, c].

We have the following definition.

Definition of Increasing and Decreasing Functions

f is increasing on an interval 1 if f(x;) < f(x,) whenever x; < x, in I.

f is decreasing on an interval [ if f(x;) > f(x,) whenever x; < x, in .

YA YA

\ NS
:f( 2) 1:
. " )

0 3% 5 5 0 5% 3 X

fis increasing fis decreasing
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Figure 2

Example 1 Intervals on which a Function Increases
and Decreases

The graph in Figure 2 gives the weight W of a person at age x. Determine the inter-
vals on which the function W is increasing and on which it is decreasing.

W (Ib)

200 ~
150

100 //

50

Weight as a function of age 0l 10 20 30 40 50 60 70 80 x(yr)

Some graphing calculators, such as the
TI-82, do not evaluate x2B [entered as
x™(2/3)] for negative x. To graph a
function like f(x) = x**, we enter it as
yi = (x~(1/3))*2 because these calcu-
lators correctly evaluate powers of the
form x(1/n). Newer calculators, such
as the TI-83 and TI-86, do not have this
problem.

Solution The function is increasing on [0, 25] and [35, 40]. It is decreasing

on [40, 50]. The function is constant (neither increasing nor decreasing) on

[25, 35] and [50, 80]. This means that the person gained weight until age 25,

then gained weight again between ages 35 and 40. He lost weight between ages

40 and 50. |

Example 2 Using a Graph to Find Intervals where a
Function Increases and Decreases
(a) Sketch the graph of the function f(x) = x*°.
(b) Find the domain and range of the function.

(c) Find the intervals on which f increases and decreases.

Solution
(a) We use a graphing calculator to sketch the graph in Figure 3.
(b) From the graph we observe that the domain of fis R and the range is [0, o).

(c) From the graph we see that f is decreasing on (—o0, 0] and increasing on

[0, 00). |
10
Figure 3 —20 ‘ 20
Graph of f(x) = x> -1

Average Rate of Change

We are all familiar with the concept of speed: If you drive a distance of 120 miles in
2 hours, then your average speed, or rate of travel, is % = 60 mi/h.



s (mi)

200

150 mi
100

T
I S R AT

Figure 4
Average speed
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Now suppose you take a car trip and record the distance that you travel every few
minutes. The distance s you have traveled is a function of the time #:

s(¢) = total distance traveled at time ¢

We graph the function s as shown in Figure 4. The graph shows that you have trav-
eled a total of 50 miles after 1 hour, 75 miles after 2 hours, 140 miles after 3 hours,
and so on. To find your average speed between any two points on the trip, we divide
the distance traveled by the time elapsed.

Let’s calculate your average speed between 1:00 pM. and 4:00 p.M. The time
elapsed is 4 — 1 = 3 hours. To find the distance you traveled, we subtract the distance
at 1:00 p.M. from the distance at 4:00 p.M., that is, 200 — 50 = 150 mi. Thus, your av-
erage speed is
distance traveled 150 mi

average speed = = 50 mi/h

time elapsed ~ 3h
The average speed we have just calculated can be expressed using function notation:

s(4) —s(1) 200 — 50
4 —1 3

average speed = = 50 mi/h

Note that the average speed is different over different time intervals. For example,
between 2:00 p.M. and 3:00 p.M. we find that

s(3) —s(2) 140 — 75
3—-2 1

average speed = = 65 mi/h

Finding average rates of change is important in many contexts. For instance, we
may be interested in knowing how quickly the air temperature is dropping as a storm
approaches, or how fast revenues are increasing from the sale of a new product. So
we need to know how to determine the average rate of change of the functions that
model these quantities. In fact, the concept of average rate of change can be defined
for any function.

Average Rate of Change

The average rate of change of the function y = f(x)betweenx = aandx = bis

changeiny  f(b) — f(a)
change in x . b-ua

average rate of change =

The average rate of change is the slope of the secant line between x = a and
x = bonthe graph of f, thatis, the line that passes through (a, f(a))and (b, f(b)).

ftb) — fla)
b

—da

average rate of change =
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Example 3 Calculating the Average Rate of Change

For the function f(x) = (x — 3)? whose graph is shown in Figure 5, find the
average rate of change between the following points:

(a) x=1landx =3 (b) x=4andx =7
Solution
_ @) — (1) "
(a) Average rate of change = 3o Definition
3-3)2—-(1-3)?
= ( )3 — (1 ) Use f(x) = (x — 3)?
Figure 5 :0—4 _ s
flx) = (x = 3)? 2
7) — f(4
(b) Average rate of change = % Definition
7 —3)— (4 —3)?
= ( )7 — El ) Use f(x) = (x — 3)*
16 — 1
= =5
3

Example 4 Average Speed of a Falling Object

If an object is dropped from a tall building, then the distance it has fallen
after ¢ seconds is given by the function d(r) = 16t Find its average speed
(average rate of change) over the following intervals:

(a) Between 1sand5s (b) Betweent =agandt=a + h
luti
Solution d(s) — d(1)
(a) Average rate of change = Ts5-1 Definition
16(5)* — 16(1)*
= M Use d(t) = 16t7
5—-1
400 — 16
=——=96ft/s
4
d(a + h) — d(a)
(b) Average rate of change = —————— Definition
(a+h)—a
16(a + h)* — 16(a)?
= ( ) @) Use d(t) = 16t
(a+h)—a
16(a* + 2ah + h* — a?)
= h Expand and factor 16
16(2ah + h?)
= T Simplify numerator
16h(2a + h)
= T Factor h

= 16(2a + h) Simplify
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The average rate of change calculated in Example 4(b) is known as a difference quo-
tient.In calculus we use difference quotients to calculate instantaneous rates of change.
An example of an instantaneous rate of change is the speed shown on the speedometer
of your car. This changes from one instant to the next as your car’s speed changes.

Tirae Temperature (°F) Example 5 Average Rate of Temperature Change
8:00 AM. 38 The table gives the outdoor temperatures observed by a science student on a spring
9:00 A.M. 40 day. Draw a graph of the data, and find the average rate of change of temperature
10:00 A.M. 44 between the following times:
11:00 A.m. 50
12:00 NOON 56 (a) 8:00 a.M. and 9:00 A.Mm.
1:00 P.M. 62 (b) 1:00 PM. and 3:00 P.M.
2:00 .M. 66
3:00 P.M. 67 (c) 4:00 M. and 7:00 p.Mm.
4:00 P.M. 64
5:00 .M. 58 . . J—
6:00 .M. 55 Solution A graph of the temperature data is shown in Figure 6. Let 7 represent
7:00 P.M. 51 time, measured in hours since midnight (so that 2:00 p.M., for example, corresponds
to t = 14). Define the function F' by
F(r) = temperature at time ¢
°F A
70 temperature at 9 A.M. — temperature at 8 A.M.
(a) Average rate of change = 9_3
60 -

50
40 A

~ _FO) - F8)

9-38

30

40 -38

Figure 6

10

12

14 16 18 h T 9-38 =2
The average rate of change was 2 °F per hour.

temperature at 3 .M. — temperature at 1 P.M.

(b) Average rate of change =

15— 13
_F(15) — F(13)

15 — 13
6162 _

2

The average rate of change was 2.5°F per hour.

temperature at 7 p.M. — temperature at 4 P.M.

(c) Average rate of change =

19 — 16
 F(19) — F(16)

19 — 16
L U

3

The average rate of change was about —4.3°F per hour during this time interval.
The negative sign indicates that the temperature was dropping. ]
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Mathematics in
the Modern World

Computers

For centuries machines have
been designed to perform specific
tasks. For example, a washing ma-
chine washes clothes, a weaving
machine weaves cloth, an adding
machine adds numbers, and so on.
The computer has changed all that.

The computer is a machine that
does nothing—until it is given in-
structions on what to do. So your
computer can play games, draw
pictures, or calculate 7 to a million
decimal places; it all depends on
what program (or instructions) you
give the computer. The computer
can do all this because it is able to
accept instructions and logically
change those instructions based on
incoming data. This versatility
makes computers useful in nearly
every aspect of human endeavor.

The idea of a computer was de-
scribed theoretically in the 1940s
by the mathematician Allan Turing
(see page 103) in what he called a
universal machine. In 1945 the
mathematician John Von Neu-
mann, extending Turing’s ideas,
built one of the first electronic
computers.

Mathematicians continue to
develop new theoretical bases for
the design of computers. The heart
of the computer is the “chip,”
which is capable of processing log-
ical instructions. To get an idea of
the chip’s complexity, consider
that the Pentium chip has over 3.5
million logic circuits!

The graphs in Figure 7 show that if a function is increasing on an interval, then the
average rate of change between any two points is positive, whereas if a function is de-
creasing on an interval, then the average rate of change between any two points is
negative.

YA YA
y = flx)
Slope < 0
0 a b ox 0 a b ox

f increasing
Average rate of change positive

f decreasing
Average rate of change negative

Figure 7

Example 6 Linear Functions Have Constant Rate
of Change

Let f(x) = 3x — 5. Find the average rate of change of f between the following
points.
(a) x=0andx =1

(b) x=3andx =7 (c) x=aandx=a+h

What conclusion can you draw from your answers?

Solution

(1) — £(0)

3-1=-5)—(3-0-5
(a) Average rate of change = = ( )~ ( )

1-0 1
_() () _,
1
J) = F3) _(3+7-5) = (3:3-5)

b) A te of ch = =
(b) Average rate of change — 4

a+h)— fla 3a+h)—5]—[3a—-5

(c) Average rate ofchange=f((a+})l) _fc(l ) = = ) h] [ ]
_3a+3h—-5-3a+5_ 3 _

h h

It appears that the average rate of change is always 3 for this function. In fact,
part (c) proves that the rate of change between any two arbitrary points x = a and
x=a+ his 3. ]

3

As Example 6 indicates, for a linear function f(x) = mx + b, the average rate of
change between any two points is the slope m of the line. This agrees with what we
learned in Section 1.10, that the slope of a line represents the rate of change of y with
respect to x.
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IEXEM Exercises

1-4 ® The graph of a function is given. Determine the intervals 14.

on which the function is (a) increasing and (b) decreasing.

1. y 2. yA
\ N
> X
0 X
3. YA 4. YA 15.
1 1 / \
0 x \' [ »
A% 5-12 = A function fis given.
(a) Use a graphing device to draw the graph of f. 16
(b) State approximately the intervals on which f is increasing )
and on which f is decreasing.
5. f(x) = x*P
6. f(x) =4 — x*
7. f(x) = x* — 5x
8. f(x) = x* — 4x
9. f(x) =2x* —3x* — 12x
10. f(x) = x* — 1627
1. f(x) =x*+2x* —x -2
12 f(x) =x* =4 + 26 + 4x = 3 17.
18.
13-16 ® The graph of a function is given. Determine the 19.
average rate of change of the function between the indicated
values of the variable. 20.
13. YA 21.
5 — 2.
z
e 23.
2
” 24.
1 25.
0 4 X
26.

Increasing and Decreasing Functions; Average Rate of Change

17-28 ® A function is given. Determine the average rate of

YA

N
/
AT

/ .
/o 5 X
AY
6
N
\ ~
\
\ N
NP
0 J

I
\
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change of the function between the given values of the variable.

Jx) =3x—-2; x=2,x=3

gx) =5+13x;, x=1,x=5

h(t) =t +2t; t=—1,t=4

fiz)=1-32% z=-2,z2=0
fx) =x—4x% x=0,x=10
fx)=x+x% x=-1,x=3

fix) =3x% x=2,x=2+h

fx)=4—-x% x=1lx=1+h
g(x):l; x=1lx=a

x
g(x) = 2 x=0,x=h
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; t=a,t=a-+h

~ N

27. f(t) =

28. f(t) = Vi; t=at=a+h

29-30 ®m A linear function is given.

(a) Find the average rate of change of the function between
x=aandx=a + h.

(b) Show that the average rate of change is the same as the
slope of the line.

29. f(x) =3x+3 30. g(x) = —4x + 2

Applications

31. Changing Water Levels The graph shows the depth
of water W in a reservoir over a one-year period, as a
function of the number of days x since the beginning of
the year.

(a) Determine the intervals on which the function W is
increasing and on which it is decreasing.

(b) What was the average rate of change of W between
x =100 and x = 200?

W (ft)
100
N\
75

~—o

0 100 200 300 x(days)

32. Population Growth and Decline The graph shows the
population P in a small industrial city from 1950 to 2000.
The variable x represents the number of years since 1950.

(a) Determine the intervals on which the function P is
increasing and on which it is decreasing.

(b) What was the average rate of change of P between
x =20 and x = 40?

(c) Interpret the value of the average rate of change that
you found in part (b).

P
(thousands)
50 ’—ﬁ‘v
40
20 \

10

0 10 20 30 40 50x (years)

33. Population Growth and Decline The table gives the
population in a small coastal community for the period
1997-2006. Figures shown are for January 1 in each year.

(a) What was the average rate of change of population
between 1998 and 2001?

(b) What was the average rate of change of population
between 2002 and 2004?

(c) For what period of time was the population increasing?
(d) For what period of time was the population decreasing?

Year Population
1997 624
1998 856
1999 1,336
2000 1,578
2001 1,591
2002 1,483
2003 994
2004 826
2005 801
2006 745

34. Running Speed A man is running around a circular track
200 m in circumference. An observer uses a stopwatch to
record the runner’s time at the end of each lap, obtaining the
data in the following table.

(a) What was the man’s average speed (rate) between 68 s
and 152 s?

(b) What was the man’s average speed between 263 s and
41287

(c) Calculate the man’s speed for each lap. Is he slowing
down, speeding up, or neither?

Time (s) Distance (m)

32 200

68 400
108 600
152 800
203 1000
263 1200
335 1400
412 1600

35. CD Player Sales The table shows the number of CD play-
ers sold in a small electronics store in the years 1993-2003.

(a) What was the average rate of change of sales between
1993 and 2003?



SECTION 2.3 Increasing and Decreasing Functions; Average Rate of Change 181

(b) What was the average rate of change of sales between (b) Describe the differences between the way the three
1993 and 19947 runners ran the race.

(¢) What was the average rate of change of sales between

1994 and 19967 d(m) 4
(d) Between which two successive years did CD player 100
sales increase most quickly? Decrease most quickly? = /]
A v
01/ c/
Year CD players sold / // /
[/
1993 512 s
1994 520 0 5 10 £(s)
1995 413
1996 410 38. Changing Rates of Change: Concavity The two tables
1997 468 and graphs give the distances traveled by a racing car during
1998 510 two different 10-s portions of a race. In each case, calculate
1999 590 the average speed at which the car is traveling between the
2000 607 observed data points. Is the speed increasing or decreasing?
2001 732 In other words, is the car accelerating or decelerating on
2002 612 each of these intervals? How does the shape of the graph tell
2003 584 you whether the car is accelerating or decelerating? (The
first graph is said to be concave up and the second graph
concave down.)
36. Book Collection Between 1980 and 2000, a rare book @ [ rine | Distance d(f)
collector purchased books for his collection at the rate of (s) (ft)
40 books per year. Use this information to complete the 800
following table. (Note that not every year is given in the 0 0 600
table.) 2 34
4 70 400
6 196 200
8 490
Year Number of books 10 964 246 810 1(s)
1980 420
1981 460 ®) Time Distance
1982
1985 (s) (ft)
1990 30 5208
1992 32 5734
1995 34 6022
1997 36 6204
1998 38 6352
1999 40 6448
2000 1220

39. Functions That Are Always Increasing or Decreasing
Sketch rough graphs of functions that are defined for all real
numbers and that exhibit the indicated behavior (or explain
Discovery - Discussion why the behavior is impossible).

37. 100-meter Race A 100-m race ends in a three-way tie (@) fis always increasing, and f(x) > 0 for all x

for first place. The graph shows distance as a function of (b) fis always decreasing, and f(x) > 0 for all x
time for each of the three winners. (c) fisalways increasing, and f(x) < 0 for all x

(a) Find the average speed for each winner. (d) fisalways decreasing, and f(x) < O for all x
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m Transformations of Functions

Recall that the graph of the function f
is the same as the graph of the equation

y = f(x).

In this section we study how certain transformations of a function affect its graph.
This will give us a better understanding of how to graph functions. The transforma-
tions we study are shifting, reflecting, and stretching.

Vertical Shifting

Adding a constant to a function shifts its graph vertically: upward if the constant is
positive and downward if it is negative.

Example 1 Vertical Shifts of Graphs

Use the graph of f(x) = x* to sketch the graph of each function.
(@) g(x) = x*+ 3 (b) h(x) =x*—2
Solution The function f(x) = x* was graphed in Example 1(a), Section 2.2. It is
sketched again in Figure 1.
(a) Observe that
glx) =x*+3=fx) +3

So the y-coordinate of each point on the graph of ¢ is 3 units above the cor-
responding point on the graph of f. This means that to graph ¢g we shift the
graph of fupward 3 units, as in Figure 1.

g4(x) =x%+3

Figure 1
(b) Similarly, to graph & we shift the graph of f downward 2 units, as shown. ]

In general, suppose we know the graph of y = f(x). How do we obtain from it the
graphs of
y=flx) +c and y=f(x) —¢ (c>0)

The y-coordinate of each point on the graph of y = f(x) + ¢ is ¢ units above the
y-coordinate of the corresponding point on the graph of y = f(x). So, we obtain the
graphof y = f(x) + ¢ simply by shifting the graph of y = f(x) upward c units. Sim-
ilarly, we obtain the graph of y = f(x) — c¢ by shifting the graph of y = f(x) down-
ward c units.
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Vertical Shifts of Graphs

Suppose ¢ > 0.
To graph y = f(x) + c, shift the graph of y = f(x) upward ¢ units.
To graph y = f(x) — c, shift the graph of y = f(x) downward c units.

Example 2 Vertical Shifts of Graphs

Use the graph of f(x) = x> — 9x, which was sketched in Example 12, Section 1.8,
to sketch the graph of each function.

(@) g(x) =x*—9x + 10 () h(x) =x* —9x — 20

Solution The graph of f is sketched again in Figure 2.
(a) To graph g we shift the graph of f upward 10 units, as shown.
(b) To graph h we shift the graph of f downward 20 units, as shown.

f(x) = x2 — 9x

4(x) =x2 =9 + 10

h(x) = x2 — 9x — 20
Figure 2 (9 = =9

Horizontal Shifting

Suppose that we know the graph of y = f(x). How do we use it to obtain the
graphs of

y=f(x +¢) and y=flx —¢) (¢ >0)

The value of f(x — ¢) at x is the same as the value of f(x) at x — ¢. Since x — c is
¢ units to the left of x, it follows that the graph of y = f(x — ¢) is just the graph of
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y = f(x) shifted to the right ¢ units. Similar reasoning shows that the graph of
y = f(x + ¢) is the graph of y = f(x) shifted to the left ¢ units. The following box
summarizes these facts.

Horizontal Shifts of Graphs

Suppose ¢ > 0.
To graph y = f(x — c¢), shift the graph of y = f(x) to the right ¢ units.
To graph y = f(x + c¢), shift the graph of y = f(x) to the left ¢ units.

di y=fx—o

y = flx

Example 3 Horizontal Shifts of Graphs
Use the graph of f(x) = x* to sketch the graph of each function.
(@) g(x) = (x +4)? (b) h(x) = (x — 2)?

Solution
(a) To graph g, we shift the graph of f to the left 4 units.
(b) To graph h, we shift the graph of f to the right 2 units.

The graphs of g and # are sketched in Figure 3.

o) = (x+ 42 f(x) =

h(x) = (x—2)2

Figure 3 [ |

Example 4 Combining Horizontal and Vertical Shifts
Sketch the graph of f(x) = Vx — 3 + 4.

Solution We start with the graph of y = V/x (Example 1(c), Section 2.2)
and shift it to the right 3 units to obtain the graph of y = Vx — 3. Then we shift
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the resulting graph upward 4 units to obtain the graph of f(x) = Vx — 3 + 4
shown in Figure 4.

y f(x) =~/x—3 + 4

4+ (3,4 —

Figure 4

Reflecting Graphs

Suppose we know the graph of y = f(x). How do we use it to obtain the graphs of
y= —f(x) and y = f(—x)? The y-coordinate of each point on the graph of
y = —f(x) is simply the negative of the y-coordinate of the corresponding point on
the graph of y = f(x). So the desired graph is the reflection of the graph of y = f(x)
in the x-axis. On the other hand, the value of y = f(—x) at x is the same as the value
of y = f(x) at —x and so the desired graph here is the reflection of the graph of
y = f(x) in the y-axis. The following box summarizes these observations.

Reflecting Graphs

To graph y = —f(x), reflect the graph of y = f(x) in the x-axis.
To graph y = f(—x), reflect the graph of y = f(x) in the y-axis.

yA

g V= flx)
y = f(x)

0 X g
v =—fl) y=§)

Example 5 Reflecting Graphs

Sketch the graph of each function.
@ f(x) = —x’ (b) g(x) = V—x

Solution

(a) We start with the graph of y = x* The graph of f(x) = —x? is the graph of
y = x? reflected in the x-axis (see Figure 5).
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/ f(x) = x2
4(x) = Bx2

Figure 7

(b) We start with the graph of y = Vx (Example 1(c) in Section 2.2). The graph
of g(x) = V/—x s the graph of y = Vx reflected in the y-axis (see Figure 6).
Note that the domain of the function g(x) = V—xis {x|x = 0}.

Figure 6

Vertical Stretching and Shrinking

Suppose we know the graph of y = f(x). How do we use it to obtain the graph of
y = cf(x)? The y-coordinate of y = cf(x) at x is the same as the corresponding
y-coordinate of y = f(x) multiplied by c. Multiplying the y-coordinates by c¢ has the
effect of vertically stretching or shrinking the graph by a factor of c.

Vertical Stretching and Shrinking of Graphs

To graph y = c¢f(x):
If ¢ > 1, stretch the graph of y = f(x) vertically by a factor of c.
If 0 < ¢ < 1, shrink the graph of y = f(x) vertically by a factor of c.

y
y = flx)
X 0‘\ X
y = cflx)
0<c<l1

Example 6 Vertical Stretching and Shrinking of Graphs

Use the graph of f(x) = x? to sketch the graph of each function.
(@ g(x) = 3x? (b) h(x) = 3x?
Solution

(a) The graph of g is obtained by multiplying the y-coordinate of each point on
the graph of f by 3. That is, to obtain the graph of g we stretch the graph of
f vertically by a factor of 3. The result is the narrower parabola in Figure 7.

(b) The graph of /£ is obtained by multiplying the y-coordinate of each point on

the graph of f by % That is, to obtain the graph of & we shrink the graph of
f vertically by a factor of 3. The result is the wider parabola in Figure 7. ]

We illustrate the effect of combining shifts, reflections, and stretching in the fol-
lowing example.
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Example 7 Combining Shifting, Stretching,
and Reflecting

Sketch the graph of the function f(x) = 1 — 2(x — 3)%

Solution Starting with the graph of y = x?, we first shift to the right 3 units to
get the graph of y = (x — 3)2 Then we reflect in the x-axis and stretch by a factor
of 2 to get the graph of y = —2(x — 3) Finally, we shift upward 1 unit to get the
graph of f(x) = 1 — 2(x — 3)? shown in Figure 8.

X

f(x) =1-2(x— 3)?

=—2(x—3)?
Figure 8 y=-26=3)

Horizontal Stretching and Shrinking

Now we consider horizontal shrinking and stretching of graphs. If we know the graph
of y = f(x), then how is the graph of y = f(cx) related to it? The y-coordinate of
y = f(cx)atxis the same as the y-coordinate of y = f(x) at cx. Thus, the x-coordinates
in the graph of y = f(x) correspond to the x-coordinates in the graph of y = f(cx)
multiplied by c. Looking at this the other way around, we see that the x-coordinates in
the graphof y = f(cx) are the x-coordinates in the graph of y = f(x) multiplied by 1/c.
In other words, to change the graph of y = f(x) to the graph of y = f(cx), we must
shrink (or stretch) the graph horizontally by a factor of 1/c, as summarized in the fol-
lowing box.

Horizontal Shrinking and Stretching of Graphs

To graph y = f(cx):
If ¢ > 1, shrink the graph of y = f(x) horizontally by a factor of 1 Jc.
If 0 < ¢ < 1, stretch the graph of y = f(x) horizontally by a factor of 1/c.
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The Granger Collection

Sonya Kovalevsky (1850-1891) is
considered the most important
woman mathematician of the 19th
century. She was born in Moscow
to an aristocratic family. While a
child, she was exposed to the prin-
ciples of calculus in a very unusual
fashion—her bedroom was tempo-
rarily wallpapered with the pages
of a calculus book. She later wrote
that she “spent many hours in front
of that wall, trying to understand
it” Since Russian law forbade
women from studying in universi-
ties, she entered a marriage of con-
venience, which allowed her to
travel to Germany and obtain a
doctorate in mathematics from the
University of Gottingen. She even-
tually was awarded a full pro-
fessorship at the University of
Stockholm, where she taught for
eight years before dying in an
influenza epidemic at the age of 41.
Her research was instrumental in
helping put the ideas and applica-
tions of functions and calculus on a
sound and logical foundation. She
received many accolades and
prizes for her research work.

Example 8 Horizontal Stretching and Shrinking of Graphs
The graph of y = f(x) is shown in Figure 9. Sketch the graph of each function.

@ y = f(2x) ) vy = f(3x)
y
1
Figure 9 ' ' ' 0 j ' —

y = fx)

Solution Using the principles described in the preceding box, we obtain the
graphs shown in Figures 10 and 11.

y
1
4 0\ 1 2 x
Figure 10 Figure 11
y = f(2x) y = f(3%) u

Even and Odd Functions

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is
called an even function. For instance, the function f(x) = x? is even because

f=x) = (=x)* = (=1)%* = x* = f(x)

The graph of an even function is symmetric with respect to the y-axis (see Figure 12).
This means that if we have plotted the graph of f for x = 0, then we can obtain the
entire graph simply by reflecting this portion in the y-axis.

If f satisfies f(—x) = — f(x) for every number x in its domain, then f is called an
odd function. For example, the function f(x) = x* is odd because

f=2) = (=) = (=1) = =2 = —f(x)

The graph of an odd function is symmetric about the origin (see Figure 13). If we
have plotted the graph of f for x = 0, then we can obtain the entire graph by rotating

VA
7t fla) = °

—X

Figure 12 Figure 13

f(x) = x?is an even function. f(x) = x*is an odd function.
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SECTION 2.4 Transformations of Functions 189

this portion through 180° about the origin. (This is equivalent to reflecting first in the
x-axis and then in the y-axis.)

Even and Odd Functions

Let f be a function.
fisevenif f(—x) = f(x) for all x in the domain of f.

fisodd if f(—x) = —f(x) for all x in the domain of f

y YA
fl=x)= =+ flx) . (x)
—X Q / X X f(—x) 0 X X
The graph of an even function is The graph of an odd function is
symmetric with respect to the y-axis. symmetric with respect to the origin.

Example 9 Even and Odd Functions

Determine whether the functions are even, odd, or neither even nor odd.

(@) flx)=x"+x ) glx) =1—x* (©) h(x) =2x — x*
Solution
@ f(=x) = (=x)" + (~x)

=—x—x=—(x"+x)

= —f(x)

Therefore, fis an odd function.

() g(=x) = 1 = (=x)* = 1 —x* = g(x)
So g is even.

(©) h(=x) =2(=x) — (—x)* = —2x — x?

Since A(—x) # h(x) and h(—x) # —h(x), we conclude that & is neither even
nor odd. |

The graphs of the functions in Example 9 are shown in Figure 14. The graph of f
is symmetric about the origin, and the graph of ¢ is symmetric about the y-axis. The
graph of / is not symmetric either about the y-axis or the origin.

flx)=x>+x 2.5 2.5

/|

PN NS

-2.5 -25  gkx)=1-x* -2.5

(a)

(b) (c)
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XY Exercises

1-10 = Suppose the graph of fis given. Describe how the graph 14. y
of each function can be obtained from the graph of f. g
L (@ y=fx) -5 () y=f(x—5)
2. @ y=flx+7) () y=fx)+7
3. (@ y=flx+2) ) y=flx) +; ) fix) =1 x|
4. (@ y = —f(x) ) y=f(—x)
5. (a) y = —2f(x) (b) y = —3f(x) 0 X
6. @ y=—f(x) +5 (b) y=3f(x) =5
T.@y=fx-4+5 () y=flx+4) - 15
8. @y=2fx+2)—2 (b) y=2f(x—2)+2 ' Y
_ _ (1
9. (a) y = f(4x) ®) y = f(ix) ) = NE
10. (@) y = —f(2x) (b) y=f(2x) -1
11-16 ® The graphs of f and g are given. Find a formula for the 0 X
function g. T .
11. y ™
\ \ / /
\ \ "/ 16 y
\ N/ /
RN flo) = 22\
N / |\ /
0 x 0 X
/ \
12. y g
[
9
/ 4 | 17-18 m The graph of y = f(x) is given. Match each equation
/ with its graph.
[ flx) =2
[ 17. (@) y = f(x — 4) () y=f(x) +3
Fs X © ¥ = 2f(x +6) @ y = —fv)
/0 X
: @
13. y
9
/
fx) = x| +—t
. —6 =3 X
0 X 34V%




18. (a) y = 3f(x)
©y=fx—4)+3

(b) y=—flx+4)
d) y = f(—x)

19. The graph of f is given. Sketch the graphs of the following

functions.
(@ y=fx—2) () y=f(x) —2
(©) y=2f(x) @ y=—f(x) +3
(€ y=f(-x) ® y=3f(x—1)
YA
\f
\
0 f

20. The graph of g is given. Sketch the graphs of the following
functions.

(@ y=gk+1) (b) y= g(X+1)
(© y=gx-2) @ y=gx) -
(e y=—g(x) +2 ®) y=29(x)

YA

0 X

1
21. (a) Sketch the graph of f(x) = < by plotting points.

(b) Use the graph of f to sketch the graphs of the following

functions.
. 1 . 1
(i) y=--— i) y = —
X x—1
(iii) 2 (iv) I+ 1
iii =— i =
Y x+ 2 V3 x—3
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22. (a) Sketch the graph of g(x) = Vx by plotting points.

(b) Use the graph of g to sketch the graphs of the following
functions.

() y=vVx—-2
(iii) y =1 — Va

() y=Vx+2+2
(iv) y = 2Vx

23-26 m Explain how the graph of g is obtained from the graph
of f.
23. (a) f(x) =x% g(x) = (x + 2)?

)
(x)

24. (a) f(x) =% g(x) = (x — 4)°
x )

25. (a) f(x) = Vx, g(x) =2Vx

(b) f(x) = Vx, g(x) =3Vx -2
26. (a) f(x) = |x|, g(x) =3]x|+1
b) fix) = [x], gx)=—|x+1]

27-32 m A function f is given, and the indicated transforma-
tions are applied to its graph (in the given order). Write the
equation for the final transformed graph.

27. f(x) = x? shift upward 3 units and shift 2 units to the
right

28. f(x) = x*; shift downward 1 unit and shift 4 units to
the left

29. f(x) = V; shift 3 units to the left, stretch vertically by a

factor of 5, and reflect in the x-axis

30. f(x) = Vx; reflect in the y-axis, shrink vertically by a fac-
tor of 5, and shift upward 2 unit

31. f(x) = |x|; shift to the right 5 unit, shrink vertically by a
factor of 0.1, and shift downward 2 units

32. f(x) = |x]|; shift to the left 1 unit, stretch vertically by a
factor of 3, and shift upward 10 units

33-48 m Sketch the graph of the function, not by plotting
points, but by starting with the graph of a standard function and
applying transformations.

33 f(x) = (x — 2)? 34, f(x) = (x+7)°

35. f(x) = —(x + 1)? 36. f(x)=1—x*

37. f(x) =x*+2 38. f(x) = —x°

39y =1+ Vix 4. y=2-Vx+1
4l y=3Vx +4 -3 2. y=3 -2 — 1)
43. y =5+ (x + 3)? 4. y=1ix — 1

45. y = |x| — 1 46. y = |x — 1|

47. y=|x+2]| +2 48. y =2 — | x|
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49-52 m Graph the functions on the same screen using the 55. YA 56. YA
given viewing rectangle. How is each graph related to the graph
in part (a)? |
49. Viewing rectangle [—8, 8] by [—2, 8] I/ \\ [
1 1
@ y=Va () y=Vx+5 ; . h .
© y=2Vx+5 @ y=4+2Vx+5 0 X 0 .
50. Viewing rectangle [—8, 8] by [—6, 6]
(@ y=|x] (b) y = —[x]|
(© y=-3|x| (d y=-3x-5]
.. 57-58 m Use the graph of f(x) = [x] described on pages
51. Vi tangle [—4, 6] by [—4, 4 . .
fewing re;)c angle 6]by[ 1} p 162163 to graph the indicated function.
(@ y=x (b) y=3x
(€ y=—jx° @ y=—jx—4)° 57. y = [2x] 58. y = [ix]
52. Viewing rectangle[—6, 6]by [4, 4] E% 59. If f(x) = V2x — x? graph the following functions in the
@) y= b (b) y = 1 viewing rectangle [—5, 5] by [—4, 4]. How is each graph re-
Vax Vx +3 lated to the graph in part (a)?
© y=—2 @y-—L 3 @ y = fx) (b) y = f(2x) (©) y = f(x)
2Vx +3 2Vx+3
Y — 1/ 2 . . .
53. The graph of g is given. Use it to graph each of the A ©0- If. 7 (x) 2x — x°, graph the following .functlons in the
following functions. v1;:w1gg re;tangle l[l—.S, 5] bzl [);4, 4]. How is each graph
related to the graph in part (a)?
@ v = g(2x) ) v = g(kx) s
@ y = f(x) M) y=f(-x) (©y=—-f(-x)
4 @ y=f(=20) (@ y=f(-)
. g 61-68 ® Determine whether the function f is even, odd, or
' _ neither. If fis even or odd, use symmetry to sketch its graph.
0 >
* 61 f(x) = x2 62. f(x) = x73
63. f(x) =x*+x 64. f(x) = x* — 4x?
65. f(x) =x*—x 66. f(x) =3x> 4+ 2x* + 1
54. The graph of & is given. Use it to graph each of the
following functions. 67. f(x) =1 — Vkx 68. f(x) = x + 1
(@) y = h(3x) () y = h(3x) *
69. The graphs of f(x) = x> — 4and g(x) = |x> — 4]
y are shown. Explain how the graph of ¢ is obtained from
I the graph of f.
-3
—t o 3 -

55-56 ® The graph of a function defined for x = 0 is given.
Complete the graph for x < 0 to make

(a) an even function
(b) an odd function




70. The graph of f(x) = x* — 4x?is shown. Use this graph to
sketch the graph of g(x) = | x* — 4x?].

71-72 m Sketch the graph of each function.
71. (a) f(x) = 4x — x* (b) g(x) = |4x — x?|
72. (a) f(x) = x° (b) g(x) = [x*]

Applications

73. Sales Growth The annual sales of a certain company
can be modeled by the function f(t) = 4 + 0.01¢%, where
t represents years since 1990 and f(7) is measured in
millions of dollars.
(a) What shifting and shrinking operations must be per-
formed on the function y = ¢ to obtain the function
y = £(1)?

(b) Suppose you want 7 to represent years since 2000 in-

stead of 1990. What transformation would you have to
apply to the function y = f() to accomplish this? Write

the new function y = ¢(r) that results from this trans-
formation.
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74.

193

Changing Temperature Scales The temperature on a
certain afternoon is modeled by the function

Clr) =42+ 2

where 7 represents hours after 12 noon (0 < ¢ = 6), and C
is measured in °C.

(a) What shifting and shrinking operations must be per-
formed on the function y = ¢ to obtain the function
y = C(1)?

(b) Suppose you want to measure the temperature in °F
instead. What transformation would you have to
apply to the function y = C(¢) to accomplish this?
(Use the fact that the relationship between Celsius and
Fahrenheit degrees is given by F = 2C + 32.) Write
the new function y = F(¢) that results from this
transformation.

Discovery ¢ Discussion

75.

76.

71.

Sums of Even and Odd Functions If f and g are both
even functions, is f + ¢ necessarily even? If both are odd, is
their sum necessarily odd? What can you say about the sum
if one is odd and one is even? In each case, prove your
answer.

Products of Even and Odd Functions Answer the same
questions as in Exercise 75, except this time consider the
product of f and g instead of the sum.

Even and Odd Power Functions What must be true
about the integer 7 if the function

flx) = x"

is an even function? If it is an odd function? Why do you
think the names “even” and “odd” were chosen for these
function properties?

m Quadratic Functions; Maxima and Minima

A maximum or minimum value of a function is the largest or smallest value of the
function on an interval. For a function that represents the profit in a business, we
would be interested in the maximum value; for a function that represents the amount
of material to be used in a manufacturing process, we would be interested in the min-
imum value. In this section we learn how to find the maximum and minimum values
of quadratic and other functions.
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Completing the square is discussed
in Section 1.5.

fx) =2(x—-3)72+5

Vertex is (3,5)

Graphing Quadratic Functions Using the
Standard Form

A quadratic function is a function f of the form
f(x) = ax* + bx + ¢

where a, b, and ¢ are real numbers and a # 0.

In particular, if we take a = 1 and b = ¢ = 0, we get the simple quadratic func-
tion f(x) = x* whose graph is the parabola that we drew in Example 1 of Section 2.2.
In fact, the graph of any quadratic function is a parabola; it can be obtained from the
graph of f(x) = x? by the transformations given in Section 2.4.

Standard Form of a Quadratic Function

A quadratic function f(x) = ax® + bx + c¢ can be expressed in the standard
form

f(x) =alx — h)?* + k

by completing the square. The graph of f is a parabola with vertex (A, k); the
parabola opens upward if a > 0 or downward if a < 0.

YA YA
Vertex (h, k)

k L
kT Vertex (h, k) /.\
VR

fx)=alx —h?>+k a<0

0 i X
fx)=alx —h>+k a>0

Example 1 Standard Form of a Quadratic Function

Let f(x) = 2x* — 12x + 23.
(a) Express f in standard form.
(b) Sketch the graph of f.

Solution

(a) Since the coefficient of x? is not 1, we must factor this coefficient from the
terms involving x before we complete the square.

flx) =2x* — 12x + 23
=2(x* — 6x) + 23
=2(x*—6x+9)+23—-2-9

Factor 2 from the x-terms

Complete the square: Add 9 inside
parentheses, subtract 2 - 9 outside

=2(x—3)*+5 Factor and simplify

The standard form is f(x) = 2(x — 3)* + 5.
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(b) The standard form tells us that we get the graph of f by taking the parabola
y = x?, shifting it to the right 3 units, stretching it by a factor of 2, and moving
it upward 5 units. The vertex of the parabola is at (3, 5) and the parabola opens
upward. We sketch the graph in Figure 1 after noting that the y-intercept is
f(0) = 23.

Vertex (3, D)

Figure 1

Maximum and Minimum Values
of Quadratic Functions

If a quadratic function has vertex (4, k), then the function has a minimum value at the
vertex if it opens upward and a maximum value at the vertex if it opens downward.
For example, the function graphed in Figure 1 has minimum value 5 when x = 3,
since the vertex (3, 5) is the lowest point on the graph.

Maximum or Minimum Value of a Quadratic Function

Let f be a quadratic function with standard form f(x) = a(x — h)* + k. The
maximum or minimum value of f occurs at x = A.

If a > 0, then the minimum value of f is f(h) = k.

If a < 0, then the maximum value of fis f(h) = k.

VA YA
Maximum
k__
k__
Minimum
| > 0 X
0 i X

fx)=alx —h?>+ka>0 fx)=alx —h)?>+ka<0
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Minimum
value 4

| >
T

0 3 X

Figure 2

Example 2 Minimum Value of a Quadratic Function

Consider the quadratic function f(x) = 5x* — 30x + 49.
(a) Express f in standard form.
(b) Sketch the graph of f.

(¢) Find the minimum value of f.
Solution
(a) To express this quadratic function in standard form, we complete the square.
f(x) = 5x* — 30x + 49
= 5(x* — 6x) + 49
=5*—6x+9)+49 —5-9
=5(x—-3)+4

Factor 5 from the x-terms
Complete the square: Add 9 inside
parentheses, subtract 5 + 9 outside

Factor and simplify

(b) The graph is a parabola that has its vertex at (3, 4) and opens upward, as
sketched in Figure 2.

(c) Since the coefficient of x? is positive, f has a minimum value. The minimum
value is f(3) = 4. u

Example 3 Maximum Value of a Quadratic Function

Consider the quadratic function f(x) = —x* + x + 2.
(a) Express f in standard form.

(b) Sketch the graph of f.

(c) Find the maximum value of f.

Solution

(a) To express this quadratic function in standard form, we complete the square.
y=—x>+x+2

—(x*—x)+2

Factor —1from the x-terms

Complete the square: Add 1
=—(-x+i+2-(-Di inside parentheses, subtract

(—1)% outside
=—(x—3P+% Factor and simplify

(b) From the standard form we see that the graph is a parabola that opens down-
ward and has vertex (%, %). As an aid to sketching the graph, we find the inter-
cepts. The y-intercept is f(0) = 2. To find the x-intercepts, we set f(x) = 0 and
factor the resulting equation.

—xX>+x+2=0
—(x*=x—-2)=0
—(x=2)x+1)=0
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Thus, the x-intercepts are x = 2 and x = — 1. The graph of f is sketched in

Figure 3.

Yhi19
<2’ 4

) 9
) Maximum value Z

. -1 0 1 2 x
Figure 3
Graph of f(x) = —x* + x + 2

(c) Since the coefficient of x? is negative, f has a maximum value, which is

fG) =% =

Expressing a quadratic function in standard form helps us sketch its graph as well
as find its maximum or minimum value. If we are interested only in finding the max-
imum or minimum value, then a formula is available for doing so. This formula is ob-
tained by completing the square for the general quadratic function as follows:

f(x) = ax*+ bx + ¢

b
a(x2 + ax> + c Factor a from the x-terms

Complete the square:

Add L inside parentheses,

|
Q
7N
=
[\S)
+
\
=
_|_
N
QN‘G.;
N———
_l’_
o
|
Q
7N
~
il
gl
~

subtract a <b—) outside

4a°

Factor

Il

::
A/

=

+
::‘w
~_
[iv]

+

[}

|
RN

This equation is in standard form with # = —b/(2a) and k = ¢ — b*/(4a). Since
the maximum or minimum value occurs at x = i, we have the following result.

Maximum or Minimum Value of a Quadratic Function

The maximum or minimum value of a quadratic function
f(x) = ax* + bx + c occurs at

If a > 0, then the minimum value is f <— by
a

b
If a < 0, then the maximum value is f <— 2).
a
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The minimum value
occurs at x = —2.

-6
The maximum value
occurs at x = 1.

40

15 70

The maximum gas
mileage occurs at 42 mi/h.

D]
(]

Example 4 Finding Maximum and Minimum Values
of Quadratic Functions
Find the maximum or minimum value of each quadratic function.
(@) f(x) =x*+ 4x (b) g(x) = —2x* +4x — 5
Solution

(a) This is a quadratic function with @ = 1 and b = 4. Thus, the maximum or
minimum value occurs at

b 4
L A — )

X=—-——=
2a 2-1

Since a > 0, the function has the minimum value
f(=2) = (=2)* +4(-2) = —4

(b) This is a quadratic function with @ = —2 and b = 4. Thus, the maximum or
minimum value occurs at

S R S
T Ta T 272
Since a < 0, the function has the maximum value
f(1) = —2(1)2 +4(1) - 5=-3 [

Many real-world problems involve finding a maximum or minimum value for a
function that models a given situation. In the next example we find the maximum
value of a quadratic function that models the gas mileage for a car.

Example 5 Maximum Gas Mileage for a Car

Most cars get their best gas mileage when traveling at a relatively modest speed.
The gas mileage M for a certain new car is modeled by the function
1,
M(s)=—gs + 3s — 31, 15=s=70
where s is the speed in mi/h and M is measured in mi/gal. What is the car’s best gas
mileage, and at what speed is it attained?

Solution The function M is a quadratic function with @ = —5 and b = 3. Thus,

its maximum value occurs when

b 3
§=—-——== N =42
2a 2(—2)
The maximum is M(42) = —35(42)% + 3(42) — 31 = 32. So the car’s best gas
mileage is 32 mi/gal, when it is traveling at 42 mi/h. ]

Using Graphing Devices to Find Extreme Values

The methods we have discussed apply to finding extreme values of quadratic func-
tions only. We now show how to locate extreme values of any function that can be
graphed with a calculator or computer.
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If there is a viewing rectangle such that the point (a, f(a)) is the highest point on
the graph of f within the viewing rectangle (not on the edge), then the number f(a)
is called a local maximum value of f (see Figure 4). Notice that f(a) = f(x) for all
numbers x that are close to a.

YA

Local maximum
value f(a)

Local minimum
value f(b)

QA - ———

=Y

|
|
|
b

Figure 4

Similarly, if there is a viewing rectangle such that the point (b, f(b)) is the lowest
point on the graph of f within the viewing rectangle, then the number f(b) is called
a local minimum value of f. In this case, f(b) = f(x) for all numbers x that are
close to b.

Example 6 Finding Local Maxima and Minima
from a Graph

Find the local maximum and minimum values of the function f(x) = x* — 8x + 1,
correct to three decimals.

20 Solution The graph of f is shown in Figure 5. There appears to be one local
maximum between x = —2 and x = —1, and one local minimum between x = 1
and x = 2.

Let’s find the coordinates of the local maximum point first. We zoom in to
enlarge the area near this point, as shown in Figure 6. Using the feature
on the graphing device, we move the cursor along the curve and observe how the
y-coordinates change. The local maximum value of y is 9.709, and this value occurs
—20 when x is —1.633, correct to three decimals.

We locate the minimum value in a similar fashion. By zooming in to the viewing
rectangle shown in Figure 7, we find that the local minimum value is about —7.709,
and this value occurs when x = 1.633.

Figure 5
Graph of f(x) = x* — 8x + 1

9.71

1.7

—1.7

—7.71

Figure 6 Figure 7 [ ]
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The maximum and minimum commands on a TI-82 or TI-83 calculator provide
another method for finding extreme values of functions. We use this method in the
next example.

Example 7 A Model for the Food Price Index

A model for the food price index (the price of a representative “basket” of foods)
between 1990 and 2000 is given by the function

I(t) = —0.01137° + 0.0681* + 0.198¢ + 99.1

where 7 is measured in years since midyear 1990, so 0 = ¢ = 10, and I(¢) is scaled
so that /(3) = 100. Estimate the time when food was most expensive during the
period 1990-2000.

Solution The graph of I as a function of ¢ is shown in Figure 8(a). There appears
to be a maximum between 1 = 4 and ¢t = 7. Using the max i mum command, as
shown in Figure 8(b), we see that the maximum value of 7 is about 100.38, and it
occurs when ¢t = 5.15, which corresponds to August 1995.

102 102

- Maximum
X=5.1514939 Y=100.38241

—_—— e 10
96 96
(@ (b)
Figure 8 [ |
X Exercises
1-4 ® The graph of a quadratic function f is given.
(a) Find the coordinates of the vertex.
(b) Find the maximum or minimum value of f.
1 f(x) = —x*+6x—5 2. f(x) = =32 —2x + 6 3 f(x) =2x* —4x — 1 4, f(x) =3+ 6x— 1
y y
’ Y | \ |
RN \ | | |
\T, \ L
2\ U \
\ 0 X 0 X
\
1 \ \ \
0 X 0 X
\ / \




5-18 ® A quadratic function is given.

(a) Express the quadratic function in standard form.
(b) Find its vertex and its x- and y-intercept(s).

(c) Sketch its graph.

5. f(x) = x> — 6x 6. f(x) = x* + 8
f(x) = 2x* + 6x 8. f(x) = —x*+ 10x
(x):x2+4x+3 10. f(x) =x*—2x+2
11 f(x) = —x*+ 6x + 4 12. f(x) = —x* —4x + 4
13, f(x) =2x* + 4x + 3 14. f(x) = —3x* + 6x — 2
15. f(x) =2x> = 20x + 57 16. f(x) =2x* +x— 6
17. f(x) = —4x> — 16x +3 18, f(x) = 6x> + 12x — 5

19-28 ® A quadratic function is given.

(a) Express the quadratic function in standard form.
(b) Sketch its graph.

(¢) Find its maximum or minimum value.

19. f(x) =2x—x? 20. f(x) = x + x*
fix) =x*+2x—1 22. f(x) =x*—8x + 8
23. f(x)=—x2—3x+3 24, f(x) =1 — 6x — x*
25. g(x) =3x — 12x + 13 26. g(x) = 2x* + 8x + 11
x)=1-x—-x" 28. h(x) = 3 — 4x — 4x?

29-38 ® Find the maximum or minimum value of the function.

x)=x*+x+1 0. f(x) =14 3x —x*
3L f(r) = 100 — 497 — 7% 32 f(r) = 10 + 407 + 113
(s) =s*— 125+ 16 34. g(x) = 100x* — 1500x

2

35 h(x) = ix +2x — 6 36. f(x) = —% +2x+7

37. f(x) =3 —x —3x% 38. g(x) = 2x(x —4) +7

39. Find a function whose graph is a parabola with vertex
(1, —2) and that passes through the point (4, 16).

40. Find a function whose graph is a parabola with vertex (3, 4)

and that passes through the point (1, —8).

41-44 m Find the domain and range of the function.
41, f(x) = —x*+ 4x -3 2. f(x) =x*—2x—3
43. f(x) =2x* + 6x — 7 44, f(x) = —3x* + 6x + 4

45-46 ®m A quadratic function is given.

(a) Use a graphing device to find the maximum or minimum
value of the quadratic function f, correct to two decimal
places.

(b) Find the exact maximum or minimum value of f, and
compare with your answer to part (a).
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45. f(x) = x> + 1.79x — 3.21
fx)=1+x—V2x?

47-50 = Find all local maximum and minimum values of the
function whose graph is shown.

47. 48.

—

ury
T
—

49. 50.

S~ —_

r! 51-58 ® Find the local maximum and minimum values of

the function and the value of x at which each occurs. State each
answer correct to two decimal places.

51 f(x) =x° —x 52. f(x) =3 +x+x*—x°
53. g(x) = x* — 2x3 — 1142 g(x) = x° — 8x* + 20x

55. U(x) = xV6 — x 56. U(x) = xVx — x*
1 —x? 1
57. V(x) = 58. V(x) = 5
) x? () X +ax+1
Applications

59. Height of a Ball If a ball is thrown directly upward with a
velocity of 40 ft/s, its height (in feet) after 7 seconds is given
by y = 40t — 16¢>. What is the maximum height attained by
the ball?

60. Path of a Ball A ball is thrown across a playing field.
Its path is given by the equation y = —0.005x> + x + 5,



202

61.

62.

64.

65.

CHAPTER 2 Functions

where x is the distance the ball has traveled horizontally,

and y is its height above ground level, both measured

in feet.

(a) What is the maximum height attained by the ball?

(b) How far has it traveled horizontally when it hits the
ground?

Revenue A manufacturer finds that the revenue generated
by selling x units of a certain commodity is given by the
function R(x) = 80x — 0.4x%, where the revenue R(x)

is measured in dollars. What is the maximum revenue,

and how many units should be manufactured to obtain this
maximum?

Sales A soft-drink vendor at a popular beach analyzes his
sales records, and finds that if he sells x cans of soda pop in
one day, his profit (in dollars) is given by

P(x) = —0.001x? + 3x — 1800

What is his maximum profit per day, and how many cans
must he sell for maximum profit?

. Advertising The effectiveness of a television com-

mercial depends on how many times a viewer watches it.
After some experiments an advertising agency found
that if the effectiveness E is measured on a scale of

0 to 10, then

E(n) = 3n — g1’

where 7 is the number of times a viewer watches a given
commercial. For a commercial to have maximum effective-
ness, how many times should a viewer watch it?

Pharmaceuticals When a certain drug is taken orally,
the concentration of the drug in the patient’s bloodstream
after + minutes is given by C(t) = 0.06¢ — 0.0002¢%, where
0 = t = 240 and the concentration is measured in mg/L.
‘When is the maximum serum concentration reached, and
what is that maximum concentration?

Agriculture The number of apples produced by each tree
in an apple orchard depends on how densely the trees are
planted. If n trees are planted on an acre of land, then each
tree produces 900 — 9n apples. So the number of apples
produced per acre is

A(n) = n(900 — 9n)

3 66.

[ M

am 67.

Y 68.

How many trees should be planted per acre in order to
obtain the maximum yield of apples?

Migrating Fish A fish swims at a speed v relative to the
water, against a current of 5 mi/h. Using a mathematical
model of energy expenditure, it can be shown that the total
energy E required to swim a distance of 10 mi is given by
_ 5 10
E(v) = 2.73v -

Biologists believe that migrating fish try to minimize the
total energy required to swim a fixed distance. Find the
value of v that minimizes energy required.

NOTE This result has been verified; migrating fish swim
against a current at a speed 50% greater than the speed of the
current.

Highway Engineering A highway engineer wants to
estimate the maximum number of cars that can safely travel
a particular highway at a given speed. She assumes that each
car is 17 ft long, travels at a speed s, and follows the car in
front of it at the “safe following distance” for that speed.
She finds that the number N of cars that can pass a given
point per minute is modeled by the function

88s

2

s

17 + 17| —
<20)

At what speed can the greatest number of cars travel the
highway safely?

N(s) =

Volume of Water Between 0°C and 30°C, the volume V
(in cubic centimeters) of 1 kg of water at a temperature 7 is
given by the formula

V = 999.87 — 0.06426T + 0.008504372 — 0.00006797T"

Find the temperature at which the volume of 1 kg of water is
a minimum.
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69. Coughing When a foreign object lodged in the trachea 71. Minimizing a Distance When we seek a minimum or
(windpipe) forces a person to cough, the diaphragm thrusts maximum value of a function, it is sometimes easier to work
upward causing an increase in pressure in the lungs. At the with a simpler function instead.
same time, the trachea contracts, causing the expelled air to (a) Suppose g(x) = Vf(x), where f(x) = 0 for all x.
move faster and increasing the pressure on the foreign ob- Explain why the local minima and maxima of f and ¢
ject. According to a mathematical model of coughing, the occur at the same values of x.
velocity v of the airstream through an average-sized person’s (b) Let g(x) be the distance between the point (3,0) and

trachea is related to the radius r of the trachea (in centime-

the point (x,x?) on the graph of the parabola y = x>
ters) by the function point (x,x) grap p y

Express ¢ as a function of x.

o(r) = 3.2(1 = r)r?, 1=r=1 (¢) Find the minimum value of the function ¢ that you
found in part (b). Use the principle described in part (a)
to simplify your work.

Determine the value of r for which v is a maximum.

72. Maximum of a Fourth-Degree Polynomial Find the

Dlscovery - Discussion maximum value of the function

70. Maxima and Minima In Example 5 we saw a real-world Fx) = 3 + 4x® — x*
situation in which the maximum value of a function is im- )
portant. Name several other everyday situations in which a [Hint: Lett = x".]

maximum or minimum value is important.

PEX Modeling with Functions

Many of the processes studied in the physical and social sciences involve under-
standing how one quantity varies with respect to another. Finding a function that de-
scribes the dependence of one quantity on another is called modeling. For example,
a biologist observes that the number of bacteria in a certain culture increases with
time. He tries to model this phenomenon by finding the precise function (or rule) that
relates the bacteria population to the elapsed time.

In this section we will learn how to find models that can be constructed using geo-
metric or algebraic properties of the object under study. (Finding models from data is
studied in the Focus on Modeling at the end of this chapter.) Once the model is found,
we use it to analyze and predict properties of the object or process being studied.

Modeling with Functions

We begin with a simple real-life situation that illustrates the modeling process.

Example 1 Modeling the Volume of a Box

A breakfast cereal company manufactures boxes to package their product. For
aesthetic reasons, the box must have the following proportions: Its width is 3 times
its depth and its height is 5 times its depth.

(a) Find a function that models the volume of the box in terms of its depth.
(b) Find the volume of the box if the depth is 1.5 in.

(c) For what depth is the volume 90 in®?

(d) For what depth is the volume greater than 60 in®?



204 CHAPTER 2 Functions

® Thinking About the Problem

Let’s experiment with the problem. If the depth is 1 in, then the width is 3 in.
and the height is 5 in. So in this case, the volume is V=1 X 3 X 5 =15 in.
The table gives other values. Notice that all the boxes have the same shape,
and the greater the depth the greater the volume.

Depth Volume A
1 I X3X5=15
2 2X6X10=120 Sy
3 3 X9 X 15 =405
4 4 X 12 X 20 = 960

Solution

(a) To find the function that models the volume of the box, we use the following
steps.

®m Express the Model in Words
We know that the volume of a rectangular box is

volume = depth X width X height

2 Choose the Variable

There are three varying quantities—width, depth, and height. Since the function
we want depends on the depth, we let

x = depth of the box

Then we express the other dimensions of the box in terms of x.

In Words In Algebra
Depth X
Width 3x
Height S5x

400 ® Set up the Model
The model is the function V that gives the volume of the box in terms of the depth .
volume = depth X width X height
V(x) = x+3x+5x
V(x) = 15x°

The volume of the box is modeled by the function V(x) = 15x°. The function Vis
Figure 1 graphed in Figure 1.
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Figure 2

400

15x% =90

Figure 3

15x3 > 60
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® Use the Model

We use the model to answer the questions in parts (b), (c), and (d).
(b) If the depth is 1.5 in., the volume is V(1.5) = 15(1.5)* = 50.625 in’.
(c) We need to solve the equation V(x) = 90 or

15x3 = 90
=6
x= V6~ 182in.

The volume is 90 in* when the depth is about 1.82 in. (We can also solve this
equation graphically, as shown in Figure 2.)

(d) We need to solve the inequality V(x) > 60 or
15x° > 60
X >4
x> VA= 159

The volume will be greater than 60 in® if the depth is greater than 1.59 in. (We can
also solve this inequality graphically, as shown in Figure 3.) ]

The steps in Example 1 are typical of how we model with functions. They are
summarized in the following box.

Guidelines for Modeling with Functions

1. Express the Model in Words. Identify the quantity you want to model
and express it, in words, as a function of the other quantities in the problem.

2. Choose the Variable. Identify all the variables used to express the func-
tion in Step 1. Assign a symbol, such as x, to one variable and express the
other variables in terms of this symbol.

3. Set up the Model. Express the function in the language of algebra by
writing it as a function of the single variable chosen in Step 2.

4. Use the Model. Use the function to answer the questions posed in the
problem. (To find a maximum or a minimum, use the algebraic or graphical
methods described in Section 2.5.)

Example 2 Fencing a Garden

A gardener has 140 feet of fencing to fence in a rectangular vegetable garden.
(a) Find a function that models the area of the garden she can fence.

(b) For what range of widths is the area greater than or equal to 825 ft*?

(c) Can she fence a garden with area 1250 ft>?

(d) Find the dimensions of the largest area she can fence.
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® Thinking About the Problem

If the gardener fences a plot with width 10 ft, then the length must be 60 ft,
because 10 + 10 + 60 + 60 = 140. So the area is

A = width X length = 1060 = 600 ft*

The table shows various choices for fencing the garden. We see that as the
width increases, the fenced area increases, then decreases.

Width Length Area
10 60 600
20 50 1000 width
30 40 1200
40 30 1200
50 20 1000 length
60 10 600

Solution

(a) The model we want is a function that gives the area she can fence.

= Express the Model in Words

We know that the area of a rectangular garden is

area = width X length

5 Choose the Variable

There are two varying quantities—width and length. Since the function we want
depends on only one variable, we let

x = width of the garden

Then we must express the length in terms of x. The perimeter is fixed at 140 ft, so
the length is determined once we choose the width. If we let the length be [ as in
Figure 4, then 2x + 2/ = 140, so [ = 70 — x. We summarize these facts.

In Words In Algebra
Width x
Length 70 — x

= Set up the Model

The model is the function A that gives the area of the garden for any width x.

area width X length

A(x) = x(70 — x)
A(x) = 70x — x?

The area she can fence is modeled by the function A(x) = 70x — x*




Maximum values of quadratic functions

are discussed on page 195.

Figure 5
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® Use the Model

We use the model to answer the questions in parts (b)—(d).

(b) We need to solve the inequality A(x) = 825. To solve graphically, we graph
y = 70x — x> and y = 825 in the same viewing rectangle (see Figure 5). We see
that 15 = x = 55.

(c) From Figure 6 we see that the graph of A(x) always lies below the line y = 1250,
so an area of 1250 ft* is never attained.

(d) We need to find the maximum value of the function A(x) = 70x — x. Since this

is a quadratic function with a = —1 and b = 70, the maximum occurs at
b 70
YT T2 -

So the maximum area that she can fence has width 35 ft and length 70 — 35 = 35 ft.

1500 1500
I T y = 1250
AN
y = 70x — x* 1/y="170x — x*
— 75 =5 ——t—t—t+—+—+—%75

-100 Figure 6 —100 n

Example3 Maximizing Revenue from Ticket Sales

A hockey team plays in an arena with a seating capacity of 15,000 spectators.
With the ticket price set at $14, average attendance at recent games has been 9500.
A market survey indicates that for each dollar the ticket price is lowered, the
average attendance increases by 1000.

(a) Find a function that models the revenue in terms of ticket price.

(b) What ticket price is so high that no one attends, and hence no revenue is
generated?

(c) Find the price that maximizes revenue from ticket sales.

® Thinking About the Problem

With a ticket price of $14, the revenue is 9500 X $14 = $133,000. If the
ticket price is lowered to $13, attendance increases to 9500 + 1000 = 10,500,
so the revenue becomes 10,500 X $13 = $136,500. The table shows the rev-
enue for several ticket prices. Note that if the ticket price is lowered, revenue
increases, but if the ticket price is lowered too much, revenue decreases.

Price Attendance Revenue
$15 8,500 $127,500
$14 9,500 $133,500
$13 10,500 $136,500
$12 11,500 $138,500
$11 12,500 $137,500
$10 13,500 $135,500

$9 14,500 $130,500
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Solution
(a) The model we want is a function that gives the revenue for any ticket price.

= Express the Model in Words

We know that

revenue = ticket price X attendance

5 Choose the Variable

There are two varying quantities—ticket price and attendance. Since the function
we want depends on price, we let

x = ticket price

Next, we must express the attendance in terms of x.

In Words In Algebra

Ticket price X

Amount ticket price is lowered 14 —x

Increase in attendance 1000(14 — x)

Attendance 9500 + 1000(14 — x) = 23,500 — 1000x

B Get up the Model

The model is the function R that gives the revenue for a given ticket price x.

revenue = ticket price X attendance

R(x) = x(23,500 — 1000x)
R(x) = 23,500x — 1000x2
150,000 ® Use the Model

We use the model to answer the questions in parts (b) and (c).

(b) We want to find the ticket price x for which R(x) = 23,500x — 1000x* = 0.
We can solve this quadratic equation algebraically or graphically. From the
graph in Figure 7 we see that R(x) = 0 when x = 0 or x = 23.5. So, according

=5 25
A \ to our model, the revenue would drop to zero if the ticket price is $23.50 or
250,000 higher. (Of course, revenue is also zero if the ticket price is zero!)
) (c) Since R(x) = 23,500x — 1000x? is a quadratic function with @ = —1000 and
Figure 7 b = 23,500, the maximum occurs at
Maximum values of quadratic functions _ _ ﬂ _ 23,500 = 11.75
are discussed on page 195. . 2a 2(—1000) '

So a ticket price of $11.75 yields the maximum revenue. At this price the
revenue is

R(11.75) = 23,500(11.75) — 1000(11.75)* = $138,062.50
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Example 4 Minimizing the Metal in a Can

A manufacturer makes a metal can that holds 1 L (liter) of oil. What radius
minimizes the amount of metal in the can?

® Thinking About the Problem

To use the least amount of metal, we must minimize the surface area of the can,

that is, the area of the top, bottom, and the sides. The area of the top and

bottom is 2777%and the area of the sides is 277h (see Figure 8), so the surface
@ area of the can is

o= T S = 2mr? + 2mrh
(Mﬂh ﬁ The radius and height of the can must be chosen so that the volume is exactly
e 1 L, or 1000 cm’. If we want a small radius, say r = 3, then the height must be
@ just tall enough to make the total volume 1000 cm®. In other words, we must
have

Figure 8 m(3)*h = 1000 Volume of the can is rh

1000

h=——=354cm Solve for h
9

Now that we know the radius and height, we can find the surface area of
the can:

surface area = 2m(3)* + 27(3)(35.4) =~ 729.1 cm®

If we want a different radius, we can find the corresponding height and surface
area in a similar fashion.

Solution The model we want is a function that gives the surface area of the can.

= Express the Model in Words
We know that for a cylindrical can

surface area = area of top and bottom + area of sides

® Choose the Variable

There are two varying quantities—radius and height. Since the function we want
depends on the radius, we let

r = radius of can

Next, we must express the height in terms of the radius r. Since the volume of a
cylindrical canis V = 7r*h and the volume must be 1000 cm?®, we have

r’h = 1000 Volume of can is 1000 c¢m®

1000

’7T}"2

h Solve for h
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We can now express the areas of the top, bottom, and sides in terms of » only.

In Words In Algebra
Radius of can r

Height of can 1:??

Area of top and bottom 2arr?

Area of sides (27rrh) 27'rr( 1;)?20 )

. Set up the Model

The model is the function S that gives the surface area of the can as a function of the

radius r.
surface area = area of top and bottom =+ area of sides
1000
) 1000
S(r) = 2mr* + 2ar 5
T
2000
S(r) = 2mr? + ——
0 ‘ ‘ 15
® Use the Model
Figure 9 We use the model to find the minimum surface area of the can. We graph S in
S = 2mr? + 2000 Figure 9 and zoom in on the minimum point to find that the minimum value of
S is about 554 cm?® and occurs when the radius is about 5.4 cm. ]

IEX Exercises

1-18 = In these exercises you are asked to find a function that 6. Perimeter A rectangle has an area of 16 m% Find a func-
models a real-life situation. Use the guidelines for modeling tion that models its perimeter P in terms of the length x of
described in the text to help you. one of its sides.
1. Area A rectangular building lot is three times as long as it 7. Area Find a function that models the area A of an equilat-
is wide. Find a function that models its area A in terms of its eral triangle in terms of the length x of one of its sides.
width w.

8. Area Find a function that models the surface area S of a

2. Area A poster is 10 inches longer than it is wide. Find a cube in terms of its volume V.

function that models its area A in terms of its width w.
9. Radius Find a function that models the radius r of a circle

3. Volume A rectangular box has a square base. Its height is in terms of its area A.

half the width of the base. Find a function that models its
volume V in terms of its width w. 10. Area Find a function that models the area A of a circle in

. . . . . . terms of its circumference C.
4. Volume The height of a cylinder is four times its radius.

Find a function that models the volume V of the cylinder in 11. Area A rectangular box with a volume of 60 ft’ has a
terms of its radius r. square base. Find a function that models its surface area S in

. . . f the length x of ide of i .
5. Area A rectangle has a perimeter of 20 ft. Find a function terms of the length x of one side of its base

that models its area A in terms of the length x of one of its 12. Length A woman 5 ft tall is standing near a street lamp
sides. that is 12 ft tall, as shown in the figure. Find a function that



models the length L of her shadow in terms of her distance d
from the base of the lamp.

T

5t

T

13. Distance Two ships leave port at the same time. One sails
south at 15 mi/h and the other sails east at 20 mi/h. Find a
function that models the distance D between the ships in
terms of the time 7 (in hours) elapsed since their departure.

14. Product The sum of two positive numbers is 60. Find a
function that models their product P in terms of x, one of the
numbers.

15. Area An isosceles triangle has a perimeter of 8 cm. Find a
function that models its area A in terms of the length of its
base b.

16. Perimeter A right triangle has one leg twice as long as
the other. Find a function that models its perimeter P in
terms of the length x of the shorter leg.

17. Area A rectangle is inscribed in a semicircle of radius 10,
as shown in the figure. Find a function that models the area
A of the rectangle in terms of its height /.

h A h

10—

18. Height The volume of a cone is 100 in’. Find a function
that models the height % of the cone in terms of its radius r.
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19-36 ® In these problems you are asked to find a function that
models a real-life situation, and then use the model to answer
questions about the situation. Use the guidelines on page 205 to
help you.

19. Maximizing a Product Consider the following problem:
Find two numbers whose sum is 19 and whose product is as
large as possible.

(a) Experiment with the problem by making a table like the
one below, showing the product of different pairs of
numbers that add up to 19. Based on the evidence in
your table, estimate the answer to the problem.

First number | Second number | Product
1 18 18
17 34
3 16 48

(b) Find a function that models the product in terms of one
of the two numbers.

(c) Use your model to solve the problem, and compare with
your answer to part (a).

20. Minimizing a Sum Find two positive numbers whose
sum is 100 and the sum of whose squares is a minimum.

21. Maximizing a Product Find two numbers whose sum is
—24 and whose product is a maximum.

22. Maximizing Area Among all rectangles that have a
perimeter of 20 ft, find the dimensions of the one with the
largest area.

23. Fencing a Field Consider the following problem: A
farmer has 2400 ft of fencing and wants to fence off a
rectangular field that borders a straight river. He does not
need a fence along the river (see the figure). What are the
dimensions of the field of largest area that he can fence?
(a) Experiment with the problem by drawing several dia-
grams illustrating the situation. Calculate the area of
each configuration, and use your results to estimate the
dimensions of the largest possible field.

(b) Find a function that models the area of the field in terms
of one of its sides.

(¢) Use your model to solve the problem, and compare with
your answer to part (a).

=0

X A X
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24.

25.

26.
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Dividing a Pen A rancher with 750 ft of fencing wants to

enclose a rectangular area and then divide it into four pens

with fencing parallel to one side of the rectangle (see the

figure).

(a) Find a function that models the total area of the four
pens.

(b) Find the largest possible total area of the four pens.

Fencing a Garden Plot A property owner wants to fence

a garden plot adjacent to a road, as shown in the figure. The

fencing next to the road must be sturdier and costs $5 per

foot, but the other fencing costs just $3 per foot. The garden

is to have an area of 1200 ft*.

(a) Find a function that models the cost of fencing the
garden.

(b) Find the garden dimensions that minimize the cost of
fencing.

(¢) If the owner has at most $600 to spend on fencing, find
the range of lengths he can fence along the road.

Maximizing Area A wire 10 cm long is cut into two

pieces, one of length x and the other of length 10 — x,

as shown in the figure. Each piece is bent into the shape

of a square.

(a) Find a function that models the total area enclosed by
the two squares.

(b) Find the value of x that minimizes the total area of the
two squares.

10 cm

10 — x

R

27.

28.

29.

30.

Stadium Revenue A baseball team plays in a stadium
that holds 55,000 spectators. With the ticket price at $10,
the average attendance at recent games has been 27,000.
A market survey indicates that for every dollar the ticket
price is lowered, attendance increases by 3000.

(a) Find a function that models the revenue in terms of
ticket price.

(b) What ticket price is so high that no revenue is
generated?

(¢) Find the price that maximizes revenue from ticket
sales.

Maximizing Profit A community bird-watching society
makes and sells simple bird feeders to raise money for its
conservation activities. The materials for each feeder cost
$6, and they sell an average of 20 per week at a price of
$10 each. They have been considering raising the price,

so they conduct a survey and find that for every dollar
increase they lose 2 sales per week.

(a) Find a function that models weekly profit in terms of
price per feeder.

(b) What price should the society charge for each
feeder to maximize profits? What is the maximum
profit?

Light from a Window A Norman window has the
shape of a rectangle surmounted by a semicircle, as shown
in the figure. A Norman window with perimeter 30 ft is to
be constructed.
(a) Find a function that models the area of the

window.

(b) Find the dimensions of the window that admits the
greatest amount of light.

Volume of a Box A box with an open top is to be
constructed from a rectangular piece of cardboard with
dimensions 12 in. by 20 in. by cutting out equal squares
of side x at each corner and then folding up the sides
(see the figure).

(a) Find a function that models the volume of the box.



(b) Find the values of x for which the volume is greater
than 200 in®.

(¢) Find the largest volume that such a box can have.

| 20in. |

Eg 31. Area of a Box An open box with a square base is to have

BN

)

33.

34.

a volume of 12 ft*.

(a) Find a function that models the surface area of the
box.

(b) Find the box dimensions that minimize the amount of
material used.

. Inscribed Rectangle Find the dimensions that give the

largest area for the rectangle shown in the figure. Its base is
on the x-axis and its other two vertices are above the x-axis,
lying on the parabolay = 8 — x2.

YA

y=8—x

(x,y)

IBE:

Minimizing Costs A rancher wants to build a rectangular

pen with an area of 100 m?.

(a) Find a function that models the length of fencing
required.

(b) Find the pen dimensions that require the minimum
amount of fencing.

Minimizing Time A man stands at a point A on the
bank of a straight river, 2 mi wide. To reach point B,

7 mi downstream on the opposite bank, he first rows
his boat to point P on the opposite bank and then walks
the remaining distance x to B, as shown in the figure.
He can row at a speed of 2 mi/h and walk at a speed of
5 mi/h.

(a) Find a function that models the time needed for
the trip.
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(b) Where should he land so that he reaches B as soon as

possible?
7 mi
i X

/, ’____)_____~

/ // B

/ /
g gz
A

Eg 35. Bird Flight A bird is released from point A on an island,

=)

5 mi from the nearest point B on a straight shoreline. The
bird flies to a point C on the shoreline, and then flies along
the shoreline to its nesting area D (see the figure). Suppose
the bird requires 10 kcal/mi of energy to fly over land and
14 kcal/mi to fly over water (see Example 9 in Section 1.6).
(a) Find a function that models the energy expenditure of
the bird.
(b) If the bird instinctively chooses a path that minimizes
its energy expenditure, to what point does it fly?

Island
A
>

5 mi

~

——— —p——-o

D
& | Nesting area | )
12 mi

. Area of a Kite A kite frame is to be made from six pieces

of wood. The four pieces that form its border have been cut
to the lengths indicated in the figure. Let x be as shown in
the figure.

(a) Show that the area of the kite is given by the function
Ax) = x(V25 — 2% + V144 — x?)

(b) How long should each of the two crosspieces be to
maximize the area of the kite?
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2.7

The sum of f and ¢ is defined by
(f +9)x) = fx) + g(x)

The name of the new function is

“f + ¢g.” So this + sign stands for the
operation of addition of functions.

The + sign on the right side, however,
stands for addition of the numbers f(x)
and g(x).

Combining Functions

In this section we study different ways to combine functions to make new functions.

Sums, Differences, Products, and Quotients

Two functions f and g can be combined to form new functions f + ¢, f — ¢, fg, and
f/g in a manner similar to the way we add, subtract, multiply, and divide real num-
bers. For example, we define the function f + g by

(f +9)x) = flx) + g(x)

The new function f + ¢ is called the sum of the functions f and g; its value at x is
f(x) + g(x). Of course, the sum on the right-hand side makes sense only if both f(x)
and g(x) are defined, that is, if x belongs to the domain of f and also to the domain of
g. So, if the domain of fis A and the domain of ¢ is B, then the domain of f + ¢ is the
intersection of these domains, that is, A N B. Similarly, we can define the difference
f — g, the product fg, and the quotient f/g of the functions f and g. Their domains
are A N B, but in the case of the quotient we must remember not to divide by 0.

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions f + g,
f — g, fg, and f/g are defined as follows.

(f + 9)x) = f(x) + g(x) Domain A N B
(f = 9)(x) = f(x) — g(x) Domain A N B
(fg)(x) (x)g( ) Domain A N B

(; (x) = Domain {x EA N B|g(x) # 0}

Example 1 Combinations of Functions and Their Domains

Let f(x) =

(a) Find the functions f + g, f — g, fg, and f/g and their domains.

(b) Find (f + ¢)(4), (f = 9)(4). (fg)(4). and (f/g)(4).

Solution

(a) The domain of fis {x|x # 2} and the domain of g is {x | x = 0}. The

intersection of the domains of f and ¢g is

{x|x=0andx # 2} = [0,2) U (2,00)

3 and g(x) = Vax.
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Thus, we have

To divide fractions, invert the (f + 9)x) = f(x) + g(x) = T —2 + Vax Domain {x|x = 0 and x # 2}
denominator and multiply: 1
Ux—2) 1)k —2) (f —g9)x) = flx) — glx) = a2 X Domain {x|x = O and x # 2}
Y VAl Vix
Vi vl (fg)(x) = f(x)g(x) = x2 Domain {x|x = O and x # 2}
1 1 x=
:x*Z'W (f>x :f(x): ! Domain {x |x > O and x # 2
| )Y " g T - 2)va " }
- (x — 2)Vax Note that in the domain of f/g we exclude 0 because g(0) = 0.
(b) Each of these values exist because x = 4 is in the domain of each function.
1 5
(f+9)4) = f4) +g(4) = — + V4d=1
4 -2 2
(F = 9)4) = 4) = g4) = 7= — VA= —>
= AN} )

4-2
ANy @ _ 1 1
($)o-0@ a3 )

The graph of the function f + g can be obtained from the graphs of f and g by
graphical addition. This means that we add corresponding y-coordinates, as illus-
trated in the next example.

YA Example 2 Using Graphical Addition

The graphs of f and g are shown in Figure 1. Use graphical addition to graph the
function f + g.

Solution We obtain the graph of f + ¢ by “graphically adding” the value of f(x)
y = flx) to g(x) as shown in Figure 2. This is implemented by copying the line segment PQ
on top of PR to obtain the point S on the graph of f + g.

- y4 y=(f+gx)
X
Figure 1 /\ y = glx)
S/ .
P
9y =)

S

1
L
A~
=
=

Figure 2

~
=Y

Graphical addition -
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Composition of Functions

Now let’s consider a very important way of combining two functions to get
a new function. Suppose f(x) = Vx and g(x) = x> + 1. We may define a function
h as

h(x) = fg(x)) = f(2 + 1) = Va2 + 1

The function / is made up of the functions f and g in an interesting way: Given a num-
ber x, we first apply to it the function g, then apply f to the result. In this case, f is the
rule “take the square root,” g is the rule “square, then add 1,” and % is the rule “square,
then add 1, then take the square root.” In other words, we get the rule / by applying
the rule g and then the rule f. Figure 3 shows a machine diagram for /4.

X — Y41 x> +1
input - l =~ - | | = output
Figure 3

The h machine is composed of the g machine (first)
and then the f machine.

In general, given any two functions f and g, we start with a number x in the do-
main of g and find its image g(x). If this number g(x) is in the domain of f, we can
then calculate the value of f(g(x)). The result is a new function i(x) = f(g(x)) ob-
tained by substituting ¢ into f. It is called the composition (or composite) of f and g
and is denoted by fe g (“f composed with g”).

Composition of Functions

Given two functions f and g, the composite function f ° g (also called the
composition of f and ¢g) is defined by

(fog)(x) = f(9(x))

The domain of f o g is the set of all x in the domain of g such that g(x) is in the do-
main of f. In other words, (f ° g)(x) is defined whenever both g(x) and f(g(x)) are
defined. We can picture f ° g using an arrow diagram (Figure 4).

feg

4

Figure 4
Arrow diagram for fog



In Example 3, fis the rule “square”
and ¢ is the rule “subtract 3.” The
function f o g first subtracts 3 and then
squares; the function g © f first squares
and then subtracts 3.
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Example 3 Finding the Composition of Functions
Let f(x) = x*and g(x) = x — 3.
(a) Find the functions f°¢g and g ° f and their domains.
(b) Find (f°¢)(5) and (g © £)(7).

Solution
(a) We have
(feg)x) = flg(x)) Definition of f o g

= f(x — 3) Definition of g
=(x—3) Definition of f

and (g° f)x) = g(f(x)) Definition of g f
= g(x?) Definition of f
=x*-3 Definition of g

The domains of both fo g and g © f are R.
(b) We have

(fog)(5) = f(9(5) = f2) =22 = 4
(g o)) =g(f(7)) = g(49) = 49 — 3 = 46

217

You can see from Example 3 that, in general, f o g # g ° f. Remember that the
notation f o g means that the function g is applied first and then f is applied

second.

Example 4 Finding the Composition of Functions

If f(x) = Vxand g(x) = V2 — x, find the following functions and
their domains.

@) feyg (b) gof () fof (d) gog

Solution
(a) (fe g)(X) = f(g(X)) Definition of f o g
= f(\/m) Definition of g
= \/ﬁ Definition of f
=V2—x
The domain of fogis {x|2 —x =0} = {x|x =2} = (—o00,2].
(b) (g°fHx) =g(f(x)) Definition of g o f
= g(\/i) Definition of £

=V2- Vx Definition of g

For Vx to be defined, we must have x = 0. For V2 — Vx to be defined, we
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The graphs of f and g of Example 4, as
wellas feg,geof, fof,andgeog, are
shown below. These graphs indicate
that the operation of composition can
produce functions quite different from
the original functions.

~
o
<

must have 2 — Vx = 0, that is, Vx = 2, or x = 4. Thus, we have 0 < x =< 4, so
the domain of g © f is the closed interval [0, 4].

© (f ° f)(x) = f(f(x)) Definition of f o £
= f(\/);) Definition of f

Definition of

The domain of f° fis [0, c0).
@ (g °9)(x) = glg(x)) Definition of g © g
(V2 —x) Definition of g
“V2—VI=x  Definionofg

This expression is defined when both2 —x =0and 2 — V2 — x = 0. The
first inequality means x = 2, and the second is equivalent to V2 — x = 2, or
2—x=4,orx= —2.Thus, =2 = x = 2,so the domainof gogis[—2,2]. =

I
Q@ @«

It is possible to take the composition of three or more functions. For instance, the
composite function f ° g ° h is found by first applying /&, then g, and then f as follows:

(fegeoh)x) = flg(h(x)))

Example5 A Composition of Three Functions
Find fogo hif f(x) = x/(x + 1), g(x) = x'®and h(x) = x + 3.

Solution
(fegeh)(x) = flg(h(x)) Definition of £ og o h
= f(g(x + 3)) Definition of h
= f((x + 3)") Definition of g
(x +3)"°
= m Definition of £ ]
X

So far we have used composition to build complicated functions from simpler
ones. But in calculus it is useful to be able to “decompose” a complicated function
into simpler ones, as shown in the following example.

Example 6 Recognizing a Composition of Functions
Given F(x) = Vx + 9, find functions f and g such that F = fog.

Solution Since the formula for F says to first add 9 and then take the fourth root,
we let

gx)=x+9 and  f(x) = Vx
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Then

(feg)x) = flg(x)) Definition of f © ¢
=f(x+9) Definition of g
=Vx+9  Definition of f
= F(x) .

Example 7 An Application of Composition of Functions
A ship is traveling at 20 mi/h parallel to a straight shoreline. The ship is 5 mi
from shore. It passes a lighthouse at noon.

(a) Express the distance s between the lighthouse and the ship as a function of d,
the distance the ship has traveled since noon; that is, find f so that s = f(d).

(b) Express d as a function of ¢, the time elapsed since noon; that is, find ¢ so that
d=¢(t).
(c) Find f°g. What does this function represent?

Solution We first draw a diagram as in Figure 5.

(a) We can relate the distances s and d by the Pythagorean Theorem. Thus, s can be
expressed as a function of d by

s=f(d) = V25 +d?

(b) Since the ship is traveling at 20 mi/h, the distance d it has traveled is a function
of t as follows:

Figure 5

distance = rate X time

d=g(t) = 20t
(c) We have
(feg)1) = flg(1) Definition of £ o g
= f(201) Definition of g

= V25 + (20t)>  Definition of £

The function f o g gives the distance of the ship from the lighthouse as a
function of time. ]

Exercises

1-6 ® Find f + ¢, f — ¢. fg, and f/g and their domains.
1 f(x) =x—3, g(x)=x?

2. f(x) = x>+ 2x, g(x) =3x*—1

3.f(x) = V4 — x4 gx)=VI+ax
4. f(

6 fx) = ——. glx) =

x+ 1 x+1

7-10 ® Find the domain of the function.

N 1
x)=m, g(x)=\/m 7. f(x) = Vx+ VI —x 8.g(x)=\/x+1—;
5. f(x) = % o) =~ i y 9. h(x) = (x — 3)"" 10 k(x) =~ x_+13
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11-12 = Use graphical addition to sketch the graph of f + g¢.
11.

YA
N
~ N\
F ‘
0 X
12. YA
LN\
\
o _
0 ,//.l] X

13-16 ® Draw the graphs of f, g, and f + g on a common
screen to illustrate graphical addition.

13. f(x) = V1 +x, gx)=VI1-—x
14. f(x) = x> g(x) = Vx
15. f(x) = x% g(x) = ix°

16. f(x) = V1 —x, g(x) =+/1—-—

17-22 ® Use f(x) = 3x — 5and g(x) = 2 — x” to evaluate the

expression.

17. (a) f(g(0)) (b) g(£(0))

18. (a) f(f(4)) () g(g(3))

19. () (fog)(—2) ) (g°f)(=2)
20. (a) (o £)(—1) b (9°9)(2)
21. (a) (fog)x) M) (g°f)x)
22. (a) (fof)(x) () (g°9)x)

23-28 m Use the given graphs of f and g to evaluate the
expression.

YA

23. f(9(2)) 24. ¢(f(0))
25. (g £)(4) 26. (f°¢)(0)
27. (g°g)(—2) 28. (fo f)(4)

29-40 = Find the functions feg,ge° f, fo f, and g ° g and their
domains.

29. f(x) =2x+3, gx)=4x—1

30. f(x) = 6x — 5, g(x) = %

3 f(x) =x% g(x) =x+ 1
32 f(x) =x>+2, gx) = Vi
33. f(x) = %, glx) =2x+ 4
34. f(x) =x% gx) = Vx—3
35. f(x) = |x], g(x)=2x+3

36. f(x) =x—4, g(x)=|x+4]

X

37. f(x) = T gx) =2x — 1

38. f(x) = L\[, g(x) = x* — 4x
x

39. f(x) = Vax, g(x) = Vx

0. f(0) =~ g =

41-44 ® Find fogoh.
41, f(x) =x—1, gx)=Vx, hx)=x—-1

42. f(x) = %, gx) =x% h(x) =x*+2

43. f(x) =x*+1, gx)=x—5, h(x) = Vx

4. f(x) = Vx, gx) =

45-50 ®m Express the function in the form f o g.
45. F(x) = (x — 9)°

46. F(x) = Vx + 1



X
47. G =
) x> +4
48. G(x) = —
- U x+3

49. H(x) = |1 — x*|

50. Hx) = V1 + Vx

51-54 m Express the function in the form fogo h.

51. F(x) = 21

52. F(x) = VVx — 1

53. G(x) = (4 + Vx)°

2
54. G(x) = T ViR
Applications

55-56 ®m Revenue, Cost, and Profit A print shop makes
bumper stickers for election campaigns. If x stickers are
ordered (where x < 10,000), then the price per sticker is
0.15 — 0.000002x dollars, and the total cost of producing
the order is 0.095x — 0.0000005x dollars.

55. Use the fact that

revenue = price peritem X number of items sold

to express R(x), the revenue from an order of x stickers, as a

product of two functions of x.
56. Use the fact that

profit = revenue — cost

to express P(x), the profit on an order of x stickers, as a dif-
ference of two functions of x.

57. Area of a Ripple A stone is dropped in a lake, creating
a circular ripple that travels outward at a speed of 60 cm/s.

(a) Find a function g that models the radius as a function
of time.

SECTION 2.7 Combining Functions 221

(b) Find a function f that models the area of the circle as
a function of the radius.

(¢) Find f°g. What does this function represent?

58. Inflating a Balloon A spherical balloon is being inflated.
The radius of the balloon is increasing at the rate of 1 cm/s.

(a) Find a function f that models the radius as a function of
time.

(b) Find a function g that models the volume as a function
of the radius.

(¢) Find g ° f. What does this function represent?

59. Area of a Balloon A spherical weather balloon is being
inflated. The radius of the balloon is increasing at the rate of
2 cm/s. Express the surface area of the balloon as a function
of time 7 (in seconds).

60. Multiple Discounts You have a $50 coupon from the
manufacturer good for the purchase of a cell phone. The
store where you are purchasing your cell phone is offering a
20% discount on all cell phones. Let x represent the regular
price of the cell phone.

(a) Suppose only the 20% discount applies. Find a function
f that models the purchase price of the cell phone as a
function of the regular price x.

(b) Suppose only the $50 coupon applies. Find a function ¢
that models the purchase price of the cell phone as a
function of the sticker price x.
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61.

62.
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(¢) If you can use the coupon and the discount, then the
purchase price is either f o g(x) or g © f(x), depending
on the order in which they are applied to the price. Find
both f o g(x) and g © f(x). Which composition gives the
lower price?

Multiple Discounts An appliance dealer advertises a
10% discount on all his washing machines. In addition, the
manufacturer offers a $100 rebate on the purchase of a
washing machine. Let x represent the sticker price of the
washing machine.

(a) Suppose only the 10% discount applies. Find a function
f that models the purchase price of the washer as a
function of the sticker price x.

(b) Suppose only the $100 rebate applies. Find a function
¢g that models the purchase price of the washer as a
function of the sticker price x.

(¢) Find fog and g ° f. What do these functions represent?
Which is the better deal?

Airplane Trajectory An airplane is flying at a speed
of 350 mi/h at an altitude of one mile. The plane passes
directly above a radar station at time ¢ = 0.

(a) Express the distance s (in miles) between the plane and
the radar station as a function of the horizontal distance
d (in miles) that the plane has flown.

(b) Express d as a function of the time ¢ (in hours) that the
plane has flown.

(¢) Use composition to express s as a function of 7.

d

| -
2
| -
2
| -
s
- g
I'mi, i
| P
| i
2

Discovery - Discussion

63. Compound Interest A savings account earns 5%
interest compounded annually. If you invest x dollars in
such an account, then the amount A(x) of the investment
after one year is the initial investment plus 5%; that is,
A(x) = x + 0.05x = 1.05x. Find

A°A
AcAcA
AcAcAcA

What do these compositions represent? Find a formula for
what you get when you compose n copies of A.

64. Composing Linear Functions
functions

The graphs of the

f(x) = mx + b,
g(x) = myx + b,

are lines with slopes m,; and m,, respectively. Is the graph of
fegaline? If so, what is its slope?

65. Solving an Equation for an Unknown Function
Suppose that

glx) =2x + 1
h(x) = 4x* + 4x + 7
Find a function f such that f e g = h. (Think about what op-

erations you would have to perform on the formula for g to
end up with the formula for 4.) Now suppose that

f(x) =3x+5
h(x) = 3x* + 3x + 2

Use the same sort of reasoning to find a function g such that
feg=nh
66. Compositions of Odd and Even Functions Suppose
that
h=feg
If g is an even function, is & necessarily even? If ¢ is odd, is

h odd? What if g is odd and f is odd? What if g is odd and f
is even?
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@ Iteration and Chaos

DISCOVERY The iterates of a function f at a point x, are f(x,), f(f(x,)), f(f(f(xo))), and so
PROJECT on. We write
x; = f(xg) The first iterate
X, = f(f(x0)) The second iterate

x5 = f(f(f(xo))) The third iterate

For example, if f(x) = x?, then the iterates of f at 2 are x; = 4, x, = 16,

X3 = 256, and so on. (Check this.) Iterates can be described graphically as in
Figure 1. Start with x, on the x-axis, move vertically to the graph of f, then
horizontally to the line y = x, then vertically to the graph of f, and so on. The
x-coordinates of the points on the graph of f are the iterates of f at x,.

y =X
T3 g
f(x%)
3 I — X
fix | I\Y o
Pl
Lol
ol
Ll
[
[
[
flxo) b
[
[
[
Lo

b % X, X4 X3 X

Figure 1

Iterates are important in studying the logistic function

; " f(x) = k(1 = x)
0 0.1 which models the population of a species with limited potential for growth (such
1 0.234 as rabbits on an island or fish in a pond). In this model the maximum population
? 0.46603 that the environment can support is 1 (that is, 100%). If we start with a fraction
3 0.64700 of that population, say 0.1 (10%), then the iterates of f at 0.1 give the population
4 0.59382 after each time interval (days, months, or years, depending on the species). The
S 0.62712 constant k depends on the rate of growth of the species being modeled; it is
6 0.60799 called the growth constant. For example, for k = 2.6 and x, = 0.1 the iterates
7 0.61968 shown in the table to the left give the population of the species for the first 12
8 0.61276 time intervals. The population seems to be stabilizing around 0.615 (that is,

13 8212‘9& 61.5% of maximum).

1 0: 61595 In the three graphs in Figure 2, we plot the iterates of f at 0.1 for different

12 0.61505 values of the growth constant k. For k = 2.6 the population appears to stabilize

at a value 0.615 of maximum, for kK = 3.1 the population appears to oscillate
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:For(N, 1, 20)
tK*X*(1-X)—> 2
:Pt-0n(N, Z, 2) (a) k=2.1 (b) k=32 (c) k=39
HYAEE 6
SEnld

between two values, and for k = 3.8 no obvious pattern emerges. This latter situ-
ation is described mathematically by the word chaos.

Duﬂuuuuuuuuuuuuuuu . o o

21 e ) 21

Figure 2

The following TI-83 program draws 1. Use the graphical procedure illustrated in Figure 1 to find the first five
the first graph in Figure 2. The other iterates of f(x) = 2x(1 — x) atx = 0.1.
graphs are obtained by choosing

. . _ 3 B
the appropriate value for K in the 2. Find the iterates of f(x) = x”atx = 1.

program. 3. Find the iterates of f(x) = 1 [xatx =2.

PROGRAM: ITERATE

:ClrDraw 4. Find the first six iterates of f(x) = 1/(1 — x) at x = 2. What is the 1000th
:2.6 K iterate of f at2?

AEEA R 5. Find the first 10 iterates of the logistic function at x = 0.1 for the given value

of k. Does the population appear to stabilize, oscillate, or is it chaotic?

. It’s easy to find iterates using a graphing calculator. The following steps show
how to find the iterates of f(x) = kx(1 — x) at 0.1 for k = 3 on a TI-83 cal-
culator. (The procedure can be adapted for any graphing calculator.)

Yi=K*X*(1—-X) Enter fas Y on the graph list

35K Store 3 in the variable K

0.1->X Store 0.1 in the variable X

Y —X Evaluate f'at X and store result back in X
0.27 Press and obtain first iterate
0.5913 Keep pressing to re-execute the
0.72499293 command and obtain successive iterates
0.59813454435

You can also use the program in the margin to graph the iterates and study them
visually.

Use a graphing calculator to experiment with how the value of k affects the
iterates of f(x) = kx(1 — x) at 0.1. Find several different values of k that make
the iterates stabilize at one value, oscillate between two values, and exhibit
chaos. (Use values of k between 1 and 4.) Can you find a value of k that makes
the iterates oscillate between four values?
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m One-to-One Functions and Their Inverses

/]

Figure 2
This function is not one-to-one because

f(-xl) = f(xz).

The inverse of a function is a rule that acts on the output of the function and produces
the corresponding input. So, the inverse “undoes” or reverses what the function has
done. Not all functions have inverses; those that do are called one-to-one.

One-to-One Functions

Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1.
Note that f never takes on the same value twice (any two numbers in A have differ-
ent images), whereas g does take on the same value twice (both 2 and 3 have the same
image, 4). In symbols, g(2) = ¢g(3) but f(x,) # f(x,) whenever x; # x,. Functions
that have this latter property are called one-fo-one.

Y,
] T

f g
Figure 1 f is one-to-one ¢ is not one-to-one

Definition of a One-to-one Function

A function with domain A is called a one-to-one function if no two elements
of A have the same image, that is,

f(x)) # f(x,) whenever x; # x,

An equivalent way of writing the condition for a one-to-one function is this:
If f(x,) = f(x,), thenx, = x,.

If a horizontal line intersects the graph of f at more than one point, then we see from
Figure 2 that there are numbers x, # x, such that f(x;) = f(x,). This means that f is
not one-to-one. Therefore, we have the following geometric method for determining
whether a function is one-to-one.

Horizontal Line Test

A function is one-to-one if and only if no horizontal line intersects its graph
more than once.
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Figure 3

f(x) = x* is one-to-one.

A

/

Figure 4

1 X

f(x) = x*is not one-to-one.

T

Figure 5

f(x) = x* (x = 0) is one-to-one.

Example 1 Deciding whether a Function Is One-to-One
Is the function f(x) = x* one-to-one?

Solution 1 If x; # x,, then x} # x3 (two different numbers cannot have the same
cube). Therefore, f(x) = x* is one-to-one.

Solution 2 From Figure 3 we see that no horizontal line intersects the graph
of f(x) = x> more than once. Therefore, by the Horizontal Line Test, f is
one-to-one. |

Notice that the function f of Example 1 is increasing and is also one-to-one. In
fact, it can be proved that every increasing function and every decreasing function is
one-to-one.

Example 2 Deciding whether a Function Is One-to-One

Is the function g(x) = x* one-to-one?

Solution 1 This function is not one-to-one because, for instance,
g(1) =1 and g(—1)=1
and so 1 and —1 have the same image.

Solution 2 From Figure 4 we see that there are horizontal lines that intersect
the graph of ¢ more than once. Therefore, by the Horizontal Line Test, g is not
one-to-one. |

Although the function g in Example 2 is not one-to-one, it is possible to restrict its

domain so that the resulting function is one-to-one. In fact, if we define
h(x) =x* x=0

then / is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.

Example 3 Showing That a Function Is One-to-One

Show that the function f(x) = 3x + 4 is one-to-one.

Solution
Suppose there are numbers x; and x, such that f(x,) = f(x,). Then

3x, +4=3x,+4 Suppose f(x;) = f(x,)

3x; = 3x, Subtract 4
X = X Divide by 3
Therefore, f is one-to-one. [

The Inverse of a Function

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.



@ Don’t mistake the —1 in f ! for
an exponent.

f~' does not mean

The reciprocal 1/f(x) is written as

(fe)

Figure 6

SECTION 2.8 One-to-One Functions and Their Inverses 227

Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Then its inverse
function f ' has domain B and range A and is defined by

i) =x & fx)=y

for any y in B.

This definition says that if f takes x into y, then f ' takes y back into x. (If f were
not one-to-one, then f~' would not be defined uniquely.) The arrow diagram in
Figure 6 indicates that f ! reverses the effect of f. From the definition we have

domain of f~' = range of f

range of f ! = domain of f

Example 4 Finding f_1 for Specific Values
If f(1) = 5, f(3) = 7,and f(8) = —10, find £~'(5), f(7), and £ '(—10).
Solution From the definition of f ! we have
f7'5) =1 because f(1)=5
f7'(7) =3  because  f(3) =7
f'(—=10) =8  because  f(8) = —10
Figure 7 shows how f ! reverses the effect of f in this case.

A B A B

[ ] [ ]

e (—1

Figure 7 f f .

By definition the inverse function f~! undoes what f does: If we start with x,

apply f, and then apply f !, we arrive back at x, where we started. Similarly, f undoes

what £~ ! does. In general, any function that reverses the effect of f in this way must
be the inverse of f. These observations are expressed precisely as follows.

Inverse Function Property

Let f be a one-to-one function with domain A and range B. The inverse func-
tion f ~! satisfies the following cancellation properties.

f7(f(x)) =x  foreveryxinA

f(f7'(x)) =x  foreveryxinB

Conversely, any function ' satisfying these equations is the inverse of f.
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These properties indicate that f is the inverse function of f !, so we say that f and
f " are inverses of each other.
Example 5 Verifying That Two Functions Are Inverses
Show that f(x) = x° and g(x) = x'? are inverses of each other.

Solution Note that the domain and range of both f and g is R. We have
g(f(x)) = g(x*) = () = x
fg0) = f'P) = (&'°) = x

So, by the Property of Inverse Functions, f and g are inverses of each other. These
equations simply say that the cube function and the cube root function, when com-
posed, cancel each other. ]

Now let’s examine how we compute inverse functions. We first observe from the
definition of ™! that

y=fx) < [y =x

So, if y = f(x) and if we are able to solve this equation for x in terms of y, then we
must have x = f~'(y). If we then interchange x and y, we have y = f~'(x), which is
the desired equation.

How to Find the Inverse of a One-to-One Function

1. Write y = f(x).
2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is y = f~!(x).

In Example 6 note how f~! reverses
the effect of f. The function f is the
rule “multiply by 3, then subtract 2,”

whereas f ! is the rule “add 2, then R )
divide by 3.” Example 6 Finding the Inverse of a Function

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x and
y first and then solve for y in terms of x.

Check Your Answer Find the inverse of the function f(x) = 3x — 2.

. lution Fi i = .
We use the Inverse Function Property. solutio First we write y f(x)

FE) = £ Gx - 2) y=3x—2
(Bx—2)+2 Then we solve this equation for x:
- 3 3x=y+2  Add2
3x
=—= +2
3 o X = J 3 Divide by 3
4 x+2 . .
fF'x) = f 3 Finally, we interchange x and y:
x+ 2
_ 3(x + 2) _, y =
3 3
=x+2-2=x V x+2

Therefore, the inverse function is f ~'(x) =

3



In Example 7 note how f ! reverses the

effect of f. The function f is the rule
“take the fifth power, subtract 3, then
divide by 2" whereas f ' is the rule
“multiply by 2, add 3, then take the
fifth root.”

Check Your Answer

We use the Inverse Function Property.

sy = 7 (552

)

=@ —-3+3)5

— (x5)|/5 = x

F(F0) = f(2x +3)')
[(2x +3)"°)P -3

2
2x+3-3
2
2
=?x=x v
y .
y=f"x)
2
y=flx)=yx =2
Figure 10
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Example 7 Finding the Inverse of a Function

5
x> =3
Find the inverse of the function f(x) = S
Solution  We first write y = (x* — 3)/2 and solve for x.
x =3
y = > Equation defining function
2y =x°—3 Multiply by 2
X=2y+3 Add 3

x =2y + 3)1/5 Take fifth roots

229

Then we interchange x and y to get y = (2x + 3)1/ >. Therefore, the inverse function

is f7(x) = (2x + 3)'.

The principle of interchanging x and y to find the inverse function also gives us a
method for obtaining the graph of f~' from the graph of f. If f(a) = b, then
f7'(b) = a. Thus, the point (a, b) is on the graph of f if and only if the point (b, a)
is on the graph of f~'. But we get the point (b, a) from the point (a, b) by reflecting
in the line y = x (see Figure 8). Therefore, as Figure 9 illustrates, the following is true.

The graph of f ! is obtained by reflecting the graph of fin the line y = x.

YA

=Y

Figure 8

_—

Figure 9

Example 8 Finding the Inverse of a Function

(a) Sketch the graph of f(x) = Vx — 2.

(b) Use the graph of f to sketch the graph of f~'.

(c) Find an equation for f'.

Solution

(a) Using the transformations from Section 2.4, we sketch the graph of

y = Vx — 2 by plotting the graph of the function y = Vx (Example 1(c) in

Section 2.2) and moving it to the right 2 units.

(b) The graph of ' is obtained from the graph of f in part (a) by reflecting it in

the line y = x, as shown in Figure 10.
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(c) Solve y = Vx — 2 for x, noting that y = 0.

Vx—2= y
x—2=y2 Square each side

x=y2+2 y=0 Add 2

In Example 8 note how f ! reverses the Interchange x and y:
effect of f. The function f is the rule

“subtract 2, then take the square root,”

whereas f l'is the rule “square, then Thus f_l(x) =x%+ 2, x=0
add 2.

y=x2+2, x=0

This expression shows that the graph of £ ! is the right half of the parabola
y = x + 2 and, from the graph shown in Figure 10, this seems reasonable.

IEX: M Exercises

1-6 ® The graph of a function f is given. Determine whether f 11. h(x) = x> — 2x 12. h(x) = x* + 8
is one-to-one. , 3. f(x) = x* + 5

1.
y/ Y 4 fx) =x*+5 0=x=2

1 1

/\ 15. f(x) = ; 16. f(x) = ;

0 X Q X
\ 17-18 ® Assume f is a one-to-one function.
17. (a) If f(2) = 7, find £~1(7).
(b) If f7'(3) = —1, find f(—1).
3, y 4. y 18. (a) If f(5) = 18, find £~'(18).

(b) If f~1(4) = 2, find £(2).
e / 19. If f(x) = 5 — 2x, find £'(3).
> 20. If g(x) = x> + 4x withx = —2, find ¢ '(5).

0 X / 0
21-30 = Use the Inverse Function Property to show that
fand g are inverses of each other.

21. f(x) =x—6, g(x)=x+6

X
> Y 6. y 2. f() = 3% gl) =3
+5
23, f(x) = 2x — 5, g(x) =~ 5
0 \j X 0.~ X
3 —
\ / 24. f(x) = 2 5 g(x) =3 — 4x
25. () = = glx) =+
. flx G T
7-16 m Determine whether the function is one-to-one. 26. f(x) =x° g(x)= x
7. f(x) = —2x + 4 8. f(x) =3x—2 27. f(x) =x*—4, x=0;

9. g(x) = Vx 10. g(x) = | x| glx) = Va+4, x=—4
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28. fx) =x*+ 1; gx)=(x—1)" 61. f(x) =2 +x 62. f(x)=2—1x
63. g(x) = Vx + 3 64. gx) = x>+ 1, x=0
29. f(x) = —— T x # 1, 9() . o 9(x) o
65-68 ® The given function is not one-to-one. Restrict its
g(x) = 1 +1. x#0 domain so that the resulting function is one-to-one. Find the
X ’ inverse of the function with the restricted domain. (There is
30. f(x) = V4— 2 0=x=2 more than one correct answer.)
gx)=V4—-x2 0=x=2 65. f(x) =4 —x* 66. g(x) = (x — 1)?

31-50 = Find the inverse function of f.

31, f(x) =2x + 1 32, fx) =6 —x
33. f(x) =4x + 7 34. f(x) =3 — 5x
X 1
35. f(x) == 36. f(x) =—, x>0
2 X
1 x—2
37. = 38. =
&)= ) =32
67. h(x) = (x + 2)?
1+3
39. f(x) = * 40. f(x) = 5 — 4x°
5 —2x y
41. f(x) = V2 + 5x Q2. fx)=x*+x, x=—3
43. f(x) =4 —x% x=0 44 f(x) = V2x— 1
45. f(x) = 4 + Vi 46. f(x) = (2 —x°)
47. fx) =1+ V1 +x
48. f(x) = V9 —x% 0=x=3
4 3 -10] x
49. f(x) =x* x=0 50. f(x) =1—x
51-54 m A function fis given. 69-70 m Use the graph of f to sketch the graph of £~
(a) Sketch the graph of f. 69. VA 70. Y
(b) Use the graph of f to sketch the graph of 7.
(¢) Find £~
1
51. f(x) =3x— 6 52, f(x) =16 —x% x=0 1/ X 7
53 f(x) = VX F 1 54, f(x) =0 — 1 0 | x /
kY . . 1
Al 55-60 ®m Draw the graph of f and use it to determine whether
the function is one-to-one. U X
55. f(x) =x* —x 56. f(x) = x>+ x
+12 Applications
57. f(x) = 58. f(x) = Vx® — 4x + 1 iy
x=6 71. Fee for Service For his services, a private investigator
59. f(x) = |x| — |x — 6] 60. f(x) = x-|x] requires a $500 retention fee plus $80 per hour. Let x repre-
sent the number of hours the investigator spends working on
E% 61-64 m A one-to-one function is given. a case.
(a) Find the inverse of the function. (a) Find a function f that models the investigator’s fee as a

(b) Graph both the function and its inverse on the same screen function of x.

to verify that the graphs are reflections of each other in the (b) Find f~'. What does f ' represent?
liney = x. (¢) Find f~!(1220). What does your answer represent?
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72.

73.

74.

75.

76.

717.

CHAPTER 2 Functions

Toricelli's Law A tank holds 100 gallons of water, which
drains from a leak at the bottom, causing the tank to empty
in 40 minutes. Toricelli’s Law gives the volume of water
remaining in the tank after f minutes as

V(1) = 100(1 - %)2

(a) Find V~!. What does V! represent?
(b) Find V~'(15). What does your answer represent?

Blood Flow As blood moves through a vein or artery, its
velocity v is greatest along the central axis and decreases as
the distance r from the central axis increases (see the figure
below). For an artery with radius 0.5 cm, v is given as a
function of r by

o(r) = 18,500(0.25 — r?)

(a) Find v~'. What does v™' represent?
(b) Find v~'(30). What does your answer represent?

Demand Function The amount of a commodity
sold is called the demand for the commodity. The
demand D for a certain commodity is a function of the
price given by

D(p) = —3p + 150

(a) Find D™'. What does D! represent?
(b) Find D"'(30). What does your answer represent?

Temperature Scales The relationship between the
Fahrenheit (F) and Celsius (C) scales is given by

F(C) =3C+ 32

(a) Find F~'. What does F ' represent?
(b) Find F~'(86). What does your answer represent?

Exchange Rates The relative value of currencies

fluctuates every day. When this problem was written, one

Canadian dollar was worth 0.8159 U.S. dollar.

(a) Find a function f that gives the U.S. dollar value f(x)
of x Canadian dollars.

(b) Find f~'. What does f~! represent?

(¢) How much Canadian money would $12,250 in U.S.
currency be worth?

Income Tax In a certain country, the tax on incomes
less than or equal to €20,000 is 10%. For incomes

78.

79.

more than €20,000, the tax is €2000 plus 20% of the amount

over €20,000.

(a) Find a function f that gives the income tax on an
income x. Express f as a piecewise defined function.

(b) Find f~'. What does f ' represent?

(¢) How much income would require paying a tax of
€10,000?

Multiple Discounts A car dealership advertises a 15%

discount on all its new cars. In addition, the manufacturer

offers a $1000 rebate on the purchase of a new car. Let x

represent the sticker price of the car.

(a) Suppose only the 15% discount applies. Find a function
f that models the purchase price of the car as a function
of the sticker price x.

(b) Suppose only the $1000 rebate applies. Find a function
¢g that models the purchase price of the car as a function
of the sticker price x.

(¢) Find a formula for H = feog.

(d) Find H~'. What does H ™! represent?

(e) Find H'(13,000). What does your answer
represent?

Pizza Cost Marcello’s Pizza charges a base price of $7
for a large pizza, plus $2 for each topping. Thus, if you
order a large pizza with x toppings, the price of your pizza is
given by the function f(x) = 7 + 2x. Find f~'. What does
the function f ' represent?

Discovery ¢ Discussion

80.

81.

Determining when a Linear Function Has an Inverse
For the linear function f(x) = mx + b to be one-to-one,
what must be true about its slope? If it is one-to-one, find its
inverse. Is the inverse linear? If so, what is its slope?

Finding an Inverse “In Your Head” In the margin notes
in this section we pointed out that the inverse of a function
can be found by simply reversing the operations that make
up the function. For instance, in Example 6 we saw that the
inverse of

fx)=3x -2 is

because the “reverse” of “multiply by 3 and subtract 2” is
“add 2 and divide by 3.” Use the same procedure to find the
inverse of the following functions.

2x + 1

@ f) =2 B ) =3 -
(© f(x)=VxP+2 ) f(x) =(2x —5)°

Now consider another function:

fx)=x*+2x+6
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Is it possible to use the same sort of simple reversal of oper-
ations to find the inverse of this function? If so, do it. If not,
explain what is different about this function that makes

this task difficult.

The Identity Function The function /(x) = x is called
the identity function. Show that for any function f we have
fol=f,Icf=fandfof ' =f"'of=I (This means
that the identity function / behaves for functions and
composition just like the number 1 behaves for real numbers
and multiplication.)

Solving an Equation for an Unknown Function In
Exercise 65 of Section 2.7 you were asked to solve equa-
tions in which the unknowns were functions. Now that we
know about inverses and the identity function (see Exercise
82), we can use algebra to solve such equations. For

BEX roview

Concept Check
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instance, to solve f o g = h for the unknown function f,
we perform the following steps:

feg=nh Problem: Solve for f
fegeg '=hog! Compose with g~ ' on the right
fo]:h0971 gogwil
f:hog71 fol=f

So the solution is f = i o g~". Use this technique to solve
the equation f o g = h for the indicated unknown function.
(a) Solve for f, where g(x) = 2x + 1 and

h(x) = 4x> + 4x + 7
(b) Solve for g, where f(x) = 3x + 5 and

h(x) = 3x> + 3x + 2

1.

Define each concept in your own words. (Check by referring
to the definition in the text.)

(a) Function

(b) Domain and range of a function

(¢) Graph of a function

(d) Independent and dependent variables

. Give an example of each type of function.

(a) Constant function
(b) Linear function

(¢) Quadratic function

. Sketch by hand, on the same axes, the graphs of the

following functions.
@ flx) =x
(¢) h(x) =x*

(b) g(x) = x2
@ jx) =x*

. (a) State the Vertical Line Test.

(b) State the Horizontal Line Test.

. How is the average rate of change of the function f between

two points defined?

. Define each concept in your own words.

(a) Increasing function
(b) Decreasing function

(¢) Constant function

10.

11.

. Suppose the graph of f is given. Write an equation for each

graph that is obtained from the graph of f as follows.
(a) Shift 3 units upward

(b) Shift 3 units downward

(¢) Shift 3 units to the right

(d) Shift 3 units to the left

(e) Reflect in the x-axis

(f) Reflect in the y-axis

(g) Stretch vertically by a factor of 3
(h) Shrink vertically by a factor of 4

(i) Stretch horizontally by a factor of 2
(j) Shrink horizontally by a factor of 1

. (a) What is an even function? What symmetry does its

graph possess? Give an example of an even function.

(b) What is an odd function? What symmetry does its graph
possess? Give an example of an odd function.

. Write the standard form of a quadratic function.

What does it mean to say that f(3) is a local maximum
value of f?

Suppose that f has domain A and g has domain B.
(a) What is the domain of f + g?

(b) What is the domain of fg?

(¢) What is the domain of f/g?
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12. How is the composite function f ¢ g defined?

13. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether
it is one-to-one?
(¢) Suppose f is a one-to-one function with domain A and

Exercises

range B. How is the inverse function ! defined? What
is the domain of f~'? What is the range of £~'?

(d) If you are given a formula for f, how do you find a
formula for f~1?

(e) If you are given the graph of f, how do you find the
graph of £~1?

L If f(x) = x* — 4x + 6, find £(0), f(2). f(=2). f(a), f(—a),
fx + 1), f(2x), and 2f(x) — 2.

2. If f(x) = 4 — V3x — 6, find f(5), f(9), f(a + 2), f(—x),
f(x?), and [f(x) %

3. The graph of a function f is given.
(a) Find f(—2) and f(2).
(b) Find the domain of f.
(¢) Find the range of f.

(d) On what intervals is f increasing? On what intervals is
f decreasing?

(e) Is f one-to-one?

v

4. Which of the following figures are graphs of functions?
Which of the functions are one-to-one?

(a) y (b) y

b Y (a) Y

=
=

]
=
(=)
=

5-6 ® Find the domain and range of the function.
5. f(x) = Vx + 3 6. F(1) =t>+2t+5

7-14 m Find the domain of the function.

2x + 1
7. =Tx + 15 8. =
fx) = 7 o) = 7
2
9. f(x) = Vx+ 4 10. f(x) = 3x — By
1 1 1 2x* +5x + 3
1. f(x) =~ + + 12. g(x) = 5=
1) x x+1 x+2 9(x) 2x* — 5x — 3
V2x + 1
13. hx) = V4 —x+ Vx*—1 14. fx) = ——
) W= Va2
15-32 m Sketch the graph of the function.
15. f(x) =1 — 2x
16. f(x) =3(x—5),2=x=8
17. f(r)=1-13¢ 18. g(r) = 1> — 2t
19. f(x) =x>—6x+ 6 20. f(x) =3 — 8x — 2x?
21. g(x) =1 — V&x 22. g(x) = —|x|
23. h(x) = 3x° 24, h(x) = Vx + 3
25. h(x) = Vx 26. H(x) = x* — 3x?
1 1
27. =— 28. G(x) = —
g(x) 2 (x) =)
1—x ifx<O0
29. =
fx) {1 ifx =0
1-2x ifx=0
30.£(x) = {2x—1 ifx>0
x+6 ifx<-2
31. =
f) {xz ifx= -2
—x ifx<0
32 f(x) =qx* if0 =x <2
1 if x=2

/m 33. Determine which viewing rectangle produces the most appro-

priate graph of the function f(x) = 6x* — 15x% + 4x — 1.
(i) [~2,2]by[-2,2] (i) [—8, 8] by [—8, 8]
Gii) [~4, 4]by [~12,12]  (iv) [=100, 100] by [—100, 100]



Eﬁ 34. Determine which viewing rectangle produces the most

[ M
a

am

[ D)

appropriate graph of the function f(x) = V100 — x°.
(i) [~4, 4]by[~4,4]

(i) [~ 10, 10] by [~ 10, 10]

(iii) [~ 10, 10] by [~ 10, 40]

(iv) [—100, 100] by [—100, 100]

35-38 m Draw the graph of the function in an appropriate
viewing rectangle.

35. f(x) = x* 4+ 25x + 173
36. f(x) = L.1x* — 9.6x* — l.4x + 3.2

3. f(x) = ﬁ
38. f(x) = |x(x + 2)(x + 4) ]

i 39. Find, approximately, the domain of the function

f(x) = VX2 —dx + 1.

@ 40. Find, approximately, the range of the function

fix) =x*—x*+x*+3x—6.

41-44 = Find the average rate of change of the function
between the given points.

41, f(x) =x*+3x; x=0,x=2

42. f(x) =

1
43. f(x)=;; x=3x=3+h

4. fx)=@x+1)% x=ax=a+h

45-46 m Draw a graph of the function f, and determine
the intervals on which f is increasing and on which f is
decreasing.

45. f(x) = x* — 4x?
46. f(x) = |x* — 16|

47. Suppose the graph of f is given. Describe how the graphs
of the following functions can be obtained from the graph
of f.
@ y=flx)+8
(© y=1+2f(x)
() y=f(-x)
(® y=—fx)

(b) y = f(x + 8)

@ y=flx—2)-2
) y=—f(—x)

(h) y=f"(x)
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48. The graph of fis given. Draw the graphs of the following

49.

50.

51.

53.

54.

functions.
@ y=fx—2) (b y=—fx)
(© y=3-f(x) (@ y=3f(x)—1
(e y=f"x) ) y=f(—x)

VA

L~
/ >
0 L X

Determine whether f is even, odd, or neither.
(@) f(x) =2x>—=3x*+2 b) f(x) =x* —x7

1 —x2

(© fix)= . @ fx) = T12

Determine whether the function in the figure is even, odd,
or neither.

(a) y (b) YA
e .
0 X 0 X

(¢) A (d) YA

o—
O
D
0 X o—s 0 ;
O
—

Express the quadratic function f(x) = x* + 4x + lin
standard form.

. Express the quadratic function f(x) = —2x* + 12x + 12

in standard form.

Find the minimum value of the function
g(x) = 2x* + 4x — 5.

Find the maximum value of the function
fx)=1-x—x%
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55. A stone is thrown upward from the top of a building. Its 63. If f(x) = x> — 3x + 2 and g(x) = 4 — 3x, find the
height (in feet) above the ground after 7 seconds is given by following functions.
h(t) = —16t* + 48t + 32. What maximum height does it @ f+g ®) f—g © fg
h? ‘ ‘ ‘
e @ flg (® fog ® gef

56. The profit P (in dollars) generated by selling x units of a

; Lo 64. If f(x) = 1 + x*and g(x) = Vx — 1, find the following.
certain commodity is given by @ fog () gef © (Fo9)2)

P(x) = —1500 + 12x — 0.0004x* @ (FofQ) (@ fogof () gofeg

What is the maximum profit, and how many units must be

it?
sold to generate it? 65-66 ® Find the functions fog,g° f, f° f, and g ° g and their

E% 57-58 ®m Find the local maximum and minimum values of the domains.
function and the values of x at which they occur. State each an- 65. f(x) =3x—1, ¢g(x) =2x — 2
swer correct to two decimal places. )
57. f(x) = 3.3 + 1.6x — 2.5x° 66. f(x) = Vx, g(x) = ——
58. f(x) = x?P(6 — x)'" 67. Find fog o h, where f(x) = VI — x,g(x) = 1 — x% and
59. The number of air conditioners sold by an appliance store h(x) =1+ V.
depends on the time of year. Sketch a rough graph of the 1
number of A/C units sold as a function of the time of year. 68. If T(x) = ————, find functions f, g, and & such that
1+ Vx

60. An isosceles triangle has a perimeter of 8 cm. Express the
area A of the triangle as a function of the length b of the
base of the triangle.

fegoh=T.

. . . . . 69-74 m Determine whether the function is one-to-one.
61. A rectangle is inscribed in an equilateral triangle with a

perimeter of 30 cm as in the figure. 69. f(x) =3+ x°
(a) Express the area A of the rectangle as a function of the 70. g(x) =2 — 2x + x?
length x shown in the figure. 1
(b) Find the dimensions of the rectangle with the largest 71. h(x) = o
area.
72. r(x) =2+ Vx +3
A% 73. p(x) =33 + 1.6x — 2.5¢°
A% 74. q(x) = 3.3 + 1.6x + 2.5
10
75-78 m Find the inverse of the function.
75. f(x) =3x—2
- " 2x + 1
fe—x — 76. f(x) = x3
62. A piece of wire 10 m long is cut into two pieces. One piece, 77. f(x) = (x + 1)
of length x, is bent into the shape of a square. The other s
piece is bent into the shape of an equilateral triangle. 78. flx) =1+ Vx -2
(a) Express the total area enclosed as a function of x. 79. (a) Sketch the graph of the function

o .. N
(b) For what value of x is this total area a minimum? ) = =4 x=0

10em (b) Use part (a) to sketch the graph of £~

(¢) Find an equation for f .

80. (a) Show that the function f(x) = 1 + V/x is one-to-one.
(b) Sketch the graph of f.
(¢) Use part (b) to sketch the graph of .
(d) Find an equation for ..
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K

. (a) Sketch the graph of the function f(x) = x°.

. Let f(x) = {

. Which of the following are graphs of functions? If the graph is that of a function, is it

one-to-one?
() y (b) \J ’

0 § X 0 X
(©) y (d) y

x + 1

. Let f(x) = :

X
(a) Evaluate f(3), f(5), and f(a — 1).
(b) Find the domain of f.

. Determine the average rate of change for the function f(¢) = ¢* — 2¢ between ¢ = 2 and

t=5.

3

(b) Use part (a) to graph the function g(x) = (x — 1)* — 2.

. (a) How is the graph of y = f(x — 3) + 2 obtained from the graph of f?

(b) How is the graph of y = f(—x) obtained from the graph of f?

. (a) Write the quadratic function f(x) = 2x*> — 8x + 13 in standard form.

(b) Sketch a graph of f.

(c) What is the minimum value of f?
1 —x* ifx=0

2x + 1 ifx>0

(a) Evaluate f(—2) and f(1).

(b) Sketch the graph of f.

. (a) If 1800 ft of fencing is available to build five adjacent pens, as shown in the

diagram to the left, express the total area of the pens as a function of x.
(b) What value of x will maximize the total area?

. If f(x) = x> + 1l and g(x) = x — 3, find the following.

(a) feog (b) gof
(c) flg(2))  (d) g(f(2)
(e) gegeoyg
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10. (a) If f(x) = V3 — x, find the inverse function f .
(b) Sketch the graphs of fand f~' on the same coordinate axes.

11. The graph of a function f is given.
(a) Find the domain and range of f.
(b) Sketch the graph of f =1
(c) Find the average rate of change of f between x = 2 and x = 6.

YA

=

AR 12. Let f(x) = 3x* — 14x2 + 5x — 3.
(a) Draw the graph of f in an appropriate viewing rectangle.
(b) Ts f one-to-one?
(c) Find the local maximum and minimum values of f and the values of x at which they
occur. State each answer correct to two decimal places.
(d) Use the graph to determine the range of f.

(e) Find the intervals on which f is increasing and on which f is decreasing.



Focus on Modeling
Fitting Lines to Data

A model is arepresentation of an object or process. For example, a toy Ferrari is amodel
of the actual car; a road map is a model of the streets and highways in a city. A model
usually represents just one aspect of the original thing. The toy Ferrari is not an actual
car, but it does represent what a real Ferrari looks like; a road map does not contain the
actual streets in a city, but it does represent the relationship of the streets to each other.

A mathematical model is a mathematical representation of an object or process.
Often a mathematical model is a function that describes a certain phenomenon. In
Example 12 of Section 1.10 we found that the function 7 = — 10k + 20 models the
atmospheric temperature 7 at elevation 4. We then used this function to predict the
temperature at a certain height. The figure below illustrates the process of mathemat-
ical modeling.

N Making a
mathematical model

Real world Using the model to make Mathematical model
predictions about the real world

Mathematical models are useful because they enable us to isolate critical aspects
of the thing we are studying and then to predict how it will behave. Models are used
extensively in engineering, industry, and manufacturing. For example, engineers use
computer models of skyscrapers to predict their strength and how they would behave
in an earthquake. Aircraft manufacturers use elaborate mathematical models to pre-
dict the aerodynamic properties of a new design before the aircraft is actually built.

How are mathematical models developed? How are they used to predict the be-
havior of a process? In the next few pages and in subsequent Focus on Modeling sec-
tions, we explain how mathematical models can be constructed from real-world data,
and we describe some of their applications.

Linear Equations as Models

The datain Table 1 were obtained by measuring pressure at various ocean depths. From
the table it appears that pressure increases with depth. To see this trend better, we make
a scatter plot as in Figure 1. It appears that the data lie more or less along a line. We
can try to fit a line visually to approximate the points in the scatter plot (see Figure 2),

Table 1
Depth Pressure y (Ib/in?) y (Ib/in?)
(ft) (Ib/in?) 30 T . 30 1 :
5 15.5 BT o o 257
8 20.3 201 0 °° 20+
12 20.7 15 © 15+°°
15 20.8 10 + 10 +
18 23.2
2 23.8 57T ST
25 24.9 R e . e — ., ——
30 203 0 5 10 15 20 25 30X (fo) 0 5 10 15 20 25 30X (f0)
Figure 1 Figure 2
Scatter plot Attempts to fit line to data visually
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but this method is not accurate. So how do we find the line that fits the data as best as
possible?

It seems reasonable to choose the line that is as close as possible to all the data
points. This is the line for which the sum of the distances from the data points to the
line is as small as possible (see Figure 3). For technical reasons it is better to find
the line where the sum of the squares of these distances is smallest. The resulting line
is called the regression line. The formula for the regression line is found using cal-

Figure 3

culus. Fortunately, this formula is programmed into most graphing calculators. Using
a calculator (see Figure 4(a)), we find that the regression line for the depth-pressure
data in Table 1 is

=Y

P = 045d + 14.7 Model

Distances from the points to the line

The regression line and the scatter plot are graphed in Figure 4(b).

LinReg
y=ax+b
a=.4500365586
b=14.71813307

Figure 4
Linear regression on a graphing  (a) Output of the L inRe g command (b) Scatter plot and regression
calculator on a TI-83 calculator line for depth-pressure data
Example 1 Olympic Pole Vaults

Table 2 gives the men’s Olympic pole vault records up to 2004.

(a) Find the regression line for the data.

(b) Make a scatter plot of the data and graph the regression line. Does the regres-

sion line appear to be a suitable model for the data?
(c) Use the model to predict the winning pole vault height for the 2008 Olympics.
Table 2

Year Gold medalist Height (m) Year Gold medalist Height (m)
1896 William Hoyt, USA 3.30 1956 Robert Richards USA 4.56
1900 Irving Baxter, USA 3.30 1960 Don Bragg, USA 4.70
1904 Charles Dvorak, USA 3.50 1964 Fred Hansen, USA 5.10
1906 Fernand Gonder, France 3.50 1968 Bob Seagren, USA 5.40
1908 A. Gilbert, E. Cook, USA 3.71 1972 W. Nordwig, E. Germany 5.64
1912 Harry Babcock, USA 3.95 1976 Tadeusz Slusarski, Poland 5.64
1920 Frank Foss, USA 4.09 1980 W. Kozakiewicz, Poland 5.78
1924 Lee Barnes, USA 3.95 1984 Pierre Quinon, France 5.75
1928 Sabin Carr, USA 4.20 1988 Sergei Bubka, USSR 5.90
1932 William Miller, USA 431 1992 M. Tarassob, Unified Team 5.87
1936 Earle Meadows, USA 4.35 1996 Jean Jalfione, France 5.92
1948 Guinn Smith, USA 4.30 2000 Nick Hysong, USA 5.90
1952 Robert Richards, USA 4.55 2004 Timothy Mack, USA 5.95
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Solution
L;Zgifb (a) Letx = year — 1900, so that 1896 corresponds to x = —4, 1900 to x = 0, and
a=.0265652857 so on. Using a calculator, we find the regression line:

b=3.400989881
y = 0.0266x + 3.40

(b) The scatter plot and the regression line are shown in Figure 5. The regression
line appears to be a good model for the data.

Output of the LinReg
function on the TI-83 Plus

Years since 1900

Figure 5
Scatter plot and regression line for pole-vault data

(c) The year 2008 corresponds to x = 108 in our model. The model gives
y = 0.0266(108) + 3.40 = 6.27 m |

If you are reading this after the 2008 Olympics, look up the actual record for
2008 and compare with this prediction. Such predictions are reasonable for points
close to our measured data, but we can’t predict too far away from the measured
data. Is it reasonable to use this model to predict the record 100 years from now?

Alexandr Satinsky/AFP/Getty Images

Example 2 Asbestos Fibers and Cancer
When laboratory rats are exposed to asbestos fibers, some of them develop lung tu-
mors. Table 3 lists the results of several experiments by different scientists.
(a) Find the regression line for the data.

(b) Make a scatter plot of the data and graph the regression line. Does the regres-
sion line appear to be a suitable model for the data?

Table 3
Asbestos exposure Percent that develop
(fibers/mL) lung tumors

50 2

400 6

" 500 5
2 900 10
3 1100 26
% 1600 42
= 1800 37
& 2000 28
< 3000 50
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Figure 6

Linear regression for the asbestos-

Solution

(a) Using a calculator, we find the regression line (see Figure 6(a)):
y = 0.0177x + 0.5405

(b) The scatter plot and the regression line are shown in Figure 6(b). The regres-
sion line appears to be a reasonable model for the data.

LinReg
y=ax+b
a=.0177212141
b=.5404689256

3100

(a) Output of the L inReg command

(b) Scatter plot and

tumor data on a TI-83 calculator reeression line [ ]
How Good Is the Fit?
For any given set of data it is always possible to find the regression line, even if the
data do not tend to lie along a line. Consider the three scatter plots in Figure 7.
YA o YA YA
=098 o0 r=0.84 r=0.09
o0 L] L]
° ° ° :Il ° ° .. °
... ° l. .- ¢ ° %°e ©
. ... ° .o ° . e 0o o ° .. .
o o o ooo o ° °
° l.u ¢ ° Co .
° ° .. o %o g°
> > = X ¢ >
Figure 7 * * *

The data in the first scatter plot appear to lie along a line. In the second plot they
also appear to display a linear trend, but it seems more scattered. The third does not
have a discernible trend. We can easily find the regression lines for each scatter plot
using a graphing calculator. But how well do these lines represent the data? The cal-
culator gives a correlation coefficient r, which is a statistical measure of how well
the data lie along the regression line, or how well the two variables are correlated.
The correlation coefficient is a number between —1 and 1. A correlation coefficient »
close to 1 or —1 indicates strong correlation and a coefficient close to 0 indicates very
little correlation; the slope of the line determines whether the correlation coefficient
is positive or negative. Also, the more data points we have, the more meaningful the
correlation coefficient will be. Using a calculator we find that the correlation co-
efficient between asbestos fibers and lung tumors in the rats of Example 2 is r = 0.92.
We can reasonably conclude that the presence of asbestos and the risk of lung tumors
in rats are related. Can we conclude that asbestos causes lung tumors in rats?

If two variables are correlated, it does not necessarily mean that a change in one
variable causes a change in the other. For example, the mathematician John Allen
Paulos points out that shoe size is strongly correlated to mathematics scores among
school children. Does this mean that big feet cause high math scores? Certainly
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not—both shoe size and math skills increase independently as children get older. So
it is important not to jump to conclusions: Correlation and causation are not the same
thing. Correlation is a useful tool in bringing important cause-and-effect relationships
to light, but to prove causation, we must explain the mechanism by which one vari-
able affects the other. For example, the link between smoking and lung cancer was ob-
served as a correlation long before science found the mechanism through which
smoking causes lung cancer.

Problems

1. Femur Length and Height Anthropologists use a linear model that relates femur
length to height. The model allows an anthropologist to determine the height of an indi-
vidual when only a partial skeleton (including the femur) is found. In this problem we
find the model by analyzing the data on femur length and height for the eight males
given in the table.

(a) Make a scatter plot of the data.
(b) Find and graph a linear function that models the data.
(c) An anthropologist finds a femur of length 58 cm. How tall was the person?

Femur length Height
(cm) (cm)
50.1 178.5
48.3 173.6
452 164.8
447 163.7
445 168.3
42.7 165.0
39.5 1554
38.0 155.8

2. Demand for Soft Drinks A convenience store manager notices that sales of soft
drinks are higher on hotter days, so he assembles the data in the table.

(a) Make a scatter plot of the data.
(b) Find and graph a linear function that models the data.
(c) Use the model to predict soft-drink sales if the temperature is 95 °F.

High temperature (°F) Number of cans sold
55 340
58 335
64 410
68 460
70 450
75 610
80 735
84 780

3. Tree Diameter and Age To estimate ages of trees, forest rangers use a linear model
that relates tree diameter to age. The model is useful because tree diameter is much eas-
ier to measure than tree age (which requires special tools for extracting a representative
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Year CO, level (ppm)
1984 344.3
1986 347.0
1988 351.3
1990 354.0
1992 356.3
1994 358.9
1996 362.7
1998 366.5
2000 369.4
Income Ulcer rate
$4,000 14.1
$6,000 13.0
$8,000 13.4
$12,000 12.4
$16,000 12.0
$20,000 12.5
$30,000 10.5
$45,000 9.4
$60,000 8.2

cross section of the tree and counting the rings). To find the model, use the data in the
table collected for a certain variety of oaks.

(a) Make a scatter plot of the data.
(b) Find and graph a linear function that models the data.

(c) Use the model to estimate the age of an oak whose diameter is 18 in.

Diameter (in.) Age (years)
2.5 15
4.0 24
6.0 32
8.0 56
9.0 49
9.5 76
12.5 90
15.5 89

. Carbon Dioxide Levels The table lists average carbon dioxide (CO,) levels in the

atmosphere, measured in parts per million (ppm) at Mauna Loa Observatory from 1984
to 2000.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the CO, level in the atmosphere in 2001.
Compare your answer with the actual CO, level of 371.1 measured in 2001.

. Temperature and Chirping Crickets Biologists have observed that the chirping

rate of crickets of a certain species appears to be related to temperature. The table shows
the chirping rates for various temperatures.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping rate at 100 °F.

Temperature Chirping rate
(°F) (chirps/min)
50 20
55 46
60 79
65 91
70 113
75 140
80 173
85 198
90 211

. Ulcer Rates The table in the margin shows (lifetime) peptic ulcer rates (per 100

population) for various family incomes as reported by the 1989 National Health
Interview Survey.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
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Model Airplanes

When we think of the word
“model,” we often think of a model
car or a model airplane. In fact, this
everyday use of the word model
corresponds to its use in mathemat-
ics. A model usually represents a
certain aspect of the original thing.
So a model airplane represents
what the real airplane looks like.
Before the 1980s airplane manu-
facturers built full scale mock-ups
of new airplane designs to test their
aerodynamic properties. Today,
manufacturers “build” mathemati-
cal models of airplanes, which are
stored in the memory of computers.
The aerodynamic properties of
“mathematical airplanes” corre-
spond to those of real planes, but
the mathematical planes can be
flown and tested without leaving
the computer memory!

Year Life expectancy
1920 54.1
1930 59.7
1940 62.9
1950 68.2
1960 69.7
1970 70.8
1980 73.7
1990 75.4
2000 76.9
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(c) Estimate the peptic ulcer rate for an income level of $25,000 according to the linear
model in part (b).

(d) Estimate the peptic ulcer rate for an income level of $80,000 according to the linear
model in part (b).

. Mosquito Prevalence The table lists the relative abundance of mosquitoes (as

measured by the mosquito positive rate) versus the flow rate (measured as a percentage
of maximum flow) of canal networks in Saga City, Japan.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the mosquito positive rate if the canal
flow is 70% of maximum.

Flow rate Mosquito positive
(%) rate (%)
0 22
10 16
40 12
60 11
90 6
100 2

. Noise and Intelligibility Audiologists study the intelligibility of spoken sentences

under different noise levels. Intelligibility, the MRT score, is measured as the percent of
a spoken sentence that the listener can decipher at a certain noise level in decibels (dB).
The table shows the results of one such test.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Find the correlation coefficient. Is a linear model appropriate?

(d) Use the linear model in part (b) to estimate the intelligibility of a sentence at a
94-dB noise level.

Noise level (dB) | MRT score (%)
80 99
84 91
88 84
92 70
96 47
100 23
104 11

. Life Expectancy The average life expectancy in the United States has been rising

steadily over the past few decades, as shown in the table.
(a) Make a scatter plot of the data.
(b) Find and graph the regression line.

(c) Use the linear model you found in part (b) to predict the life expectancy in the year
2004.

(d) Search the Internet or your campus library to find the actual 2004 average life ex-
pectancy. Compare to your answer in part (c).
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10. Heights of Tall Buildings The table gives the heights and number of stories for 11
tall buildings.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.

(c) What is the slope of your regression line? What does its value indicate?

Building Height (ft) Stories
Empire State Building, New York 1250 102
One Liberty Place, Philadelphia 945 61
Canada Trust Tower, Toronto 863 51
” Bank of America Tower, Seattle 943 76
:% Sears Tower, Chicago 1450 110
5 Petronas Tower I, Malaysia 1483 88
qE‘%’ Commerzbank Tower, Germany 850 60
g Palace of Culture and Science, Poland 758 42
z Republic Plaza, Singapore 919 66
Transamerica Pyramid, San Francisco 853 48
Taipei 101 Building, Taiwan 1679 101

11. Olympic Swimming Records The tables give the gold medal times in the men’s
and women’s 100-m freestyle Olympic swimming event.

(a) Find the regression lines for the men’s data and the women’s data.

(b) Sketch both regression lines on the same graph. When do these lines predict that the
women will overtake the men in the event? Does this conclusion seem reasonable?

MEN WOMEN

Year Gold medalist Time (s) Year Gold medalist Time (s)
1908 C. Daniels, USA 65.6 1912 F. Durack, Australia 82.2
1912 D. Kahanamoku, USA 63.4 1920 E. Bleibtrey, USA 73.6
1920 D. Kahanamoku, USA 61.4 1924 E. Lackie, USA 72.4
1924 J. Weissmuller, USA 59.0 1928 A. Osipowich, USA 71.0
1928 J. Weissmuller, USA 58.6 1932 H. Madison, USA 66.8
1932 Y. Miyazaki, Japan 58.2 1936 H. Mastenbroek, Holland 65.9
1936 F. Csik, Hungary 57.6 1948 G. Andersen, Denmark 66.3
1948 W. Ris, USA 57.3 1952 K. Szoke, Hungary 66.8
1952 C. Scholes, USA 57.4 1956 D. Fraser, Australia 62.0
1956 J. Henricks, Australia 554 1960 D. Fraser, Australia 61.2
1960 J. Devitt, Australia 55.2 1964 D. Fraser, Australia 59.5
1964 D. Schollander, USA 53.4 1968 J. Henne, USA 60.0
1968 M. Wenden, Australia 52.2 1972 S. Nielson, USA 58.59
1972 M. Spitz, USA 51.22 1976 K. Ender, E. Germany 55.65
1976 J. Montgomery, USA 49.99 1980 B. Krause, E. Germany 54.79
1980 J. Woithe, E. Germany 50.40 1984 (Tie) C. Steinseifer, USA 55.92
1984 R. Gaines, USA 49.80 N. Hogshead, USA 55.92
1988 M. Biondi, USA 48.63 1988 K. Otto, E. Germany 54.93
1992 A. Popov, Russia 49.02 1992 Z.Yong, China 54.64
1996 A. Popov, Russia 48.74 1996 L. Jingyi, China 54.50
2000 P. van den Hoogenband, 2000 I. DeBruijn, Netherlands 53.83

Netherlands 48.30 2004 J. Henry, Australia 53.84
2004 P. van den Hoogenband,

Netherlands 48.17
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12. Parent Height and Offspring Height In 1885 Sir Francis Galton compared the
height of children to the height of their parents. His study is considered one of the first
uses of regression. The table gives some of Galton’s original data. The term “midparent
height” means the average of the heights of the father and mother.

(a) Find a linear equation that models the data.

(b) How well does the model predict your own height (based on your parents’ heights)?

Midparent height Offspring height
(in.) (in.)
64.5 66.2
65.5 66.2
66.5 67.2
67.5 69.2
68.5 67.2
68.5 69.2
69.5 71.2
69.5 70.2
70.5 69.2
70.5 70.2
72.5 72.2
73.5 73.2

13. Shoe Size and Height Do you think that shoe size and height are correlated? Find
out by surveying the shoe sizes and heights of people in your class. (Of course, the data
for men and women should be separate.) Find the correlation coefficient.

14. Demand for Candy Bars In this problem you will determine a linear demand equa-
tion that describes the demand for candy bars in your class. Survey your classmates to
determine what price they would be willing to pay for a candy bar. Your survey form
might look like the sample to the left.

Would you buy a candy bar from the
vending machine in the hallway if the
price is as indicated?

. Voo ariVe (a) Make a table of the number of respondents who answered “yes” at each price level.
30¢ (b) Make a scatter plot of your data.
(c) Find and graph the regression line y = mp + b, which gives the number of
40¢ grap! g Yy p g
responents y who would buy a candy bar if the price were p cents. This is the de-
50¢ . . .
mand equation. Why is the slope m negative?
60 . . . ..
¢ (d) What is the p-intercept of the demand equation? What does this intercept tell you
o about pricing candy bars?
80¢
90¢
$1.00
$1.10
$1.20
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Complex Zeros and the Fundamental Theorem of Algebra
Rational Functions

J. L. Amos /SuperStock

Chapter Overview

Functions defined by polynomial expressions are called polynomial functions. For
example,
P(x) =2x"—x+1

is a polynomial function. Polynomial functions are easy to evaluate because they are
defined using only addition, subtraction, and multiplication. This property makes
them the most useful functions in mathematics.

The graphs of polynomial functions can increase and decrease several times. For
this reason they are useful in modeling many real-world situations. For example, a
factory owner notices that if she increases the number of workers, productivity in-
creases, but if there are too many workers, productivity begins to decrease. This sit-
uation is modeled by a polynomial function of degree 2 (a quadratic polynomial). In
many animal species the young experience an initial growth spurt, followed by a pe-
riod of slow growth, followed by another growth spurt. This phenomenon is modeled
by a polynomial function of degree 3 (a cubic polynomial).

Productivity 4 Length |
Number of workers Age
Productivity is modeled by Growth is modeled by
a polynomial of degree 2. a polynomial of degree 3.

The graphs of polynomial functions are beautiful, smooth curves that are used in de-
sign processes. For example, boat makers put together portions of the graphs of dif-
ferent cubic functions (called cubic splines) to design the natural curves for the hull

In this chapter we also study rational functions, which are quotients of polynomial
functions. We will see that rational functions also have many useful applications.

249
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n Polynomial Functions and Their Graphs

Before we work with polynomial functions, we must agree on some terminology.

Polynomial Functions

A polynomial function of degree r is a function of the form
Px)=ax"+a, x" '+ --- +ax+ a
where 7 is a nonnegative integer and a,, # 0.

The numbers ay, a;, a,, ... , a, are called the coefficients of the
polynomial.

The number q, is the constant coefficient or constant term.

The number a,, the coefficient of the highest power, is the leading
coefficient, and the term a,x" is the leading term.

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term —6.

Leading Degree 5
coefficient 3

Constant coefficient —6

3+ 6t =2+ X2+ T7x— 6
Leading term 3x°

Coefficients 3, 6, —2,1, 7, and —©

Here are some more examples of polynomials.

P(x) =3 Degree O
Ox) =4x -7 Degree 1
R(x) = x* + x Degree 2

S(x) = 2x* — 6x* — 10 Degree 3

If a polynomial consists of just a single term, then it is called a monomial. For
example, P(x) = x* and Q(x) = —6x> are monomials.
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Graphs of Polynomials

The graphs of polynomials of degree 0 or 1 are lines (Section 1.10), and the graphs of
polynomials of degree 2 are parabolas (Section 2.5). The greater the degree of the poly-
nomial, the more complicated its graph can be. However, the graph of a polynomial
function is always a smooth curve; that is, it has no breaks or corners (see Figure 1).
The proof of this fact requires calculus.

YA y y y
\/ smooth and smooth and
cusp . .
continuous continuous
"\O hole
break
corner

/ Y 7 g T T g
Not the graph of a Not the graph of a Graph of a polynomial Graph of a polynomial
polynomial function polynomial function function function

Figure 1

The simplest polynomial functions are the monomials P(x) = x”", whose graphs
are shown in Figure 2. As the figure suggests, the graph of P(x) = x” has the same
general shape as y = x* when 7 is even, and the same general shape as y = x* when
n is odd. However, as the degree n becomes larger, the graphs become flatter around
the origin and steeper elsewhere.

Yy vy

1+ 1+

0 T x ‘ 0 | x
(a) y=x (b) y=x? (c) y=x (d y=x* (e) y=x’

Figure 2
Graphs of monomials

Example 1 Transformations of Monomials

Sketch the graphs of the following functions.
(@) P(x) = —x° ®) O(x) = (x — 2)*
(¢) R(x) = —2x° + 4

Solution We use the graphs in Figure 2 and transform them using the techniques

of Section 2.4.

(a) The graph of P(x) = —x? is the reflection of the graph of y = x? in the x-axis,
as shown in Figure 3(a) on the following page.
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Mathematics in the
Modern World

Splines

A spline is a long strip of wood that
is curved while held fixed at certain
points. In the old days shipbuilders
used splines to create the curved
shape of a boat’s hull. Splines are
also used to make the curves of a
piano, a violin, or the spout of a
teapot.

K=" ¥

Mathematicians discovered that
the shapes of splines can be ob-
tained by piecing together parts of
polynomials. For example, the
graph of a cubic polynomial can be
made to fit specified points by ad-
justing the coefficients of the poly-
nomial (see Example 10, page 261).
Curves obtained in this way are
called cubic splines. In modern
computer design programs, such as
Adobe Illustrator or Microsoft
Paint, a curve can be drawn by fix-
ing two points, then using the
mouse to drag one or more anchor
points. Moving the anchor points
amounts to adjusting the coeffi-
cients of a cubic polynomial.

CHAPTER 3 Polynomial and Rational Functions

(b) The graph of Q(x) = (x — 2)*is the graph of y = x* shifted to the right 2 units,
as shown in Figure 3(b).

(c) We begin with the graph of y = x°. The graph of y = —2x° is obtained by
stretching the graph vertically and reflecting it in the x-axis (see the dashed
blue graph in Figure 3(c)). Finally, the graph of R(x) = —2x° + 4 is obtained
by shifting upward 4 units (see the red graph in Figure 3(c)).

(b) (©

Figure 3 [

End Behavior and the Leading Term

The end behavior of a polynomial is a description of what happens as x becomes
large in the positive or negative direction. To describe end behavior, we use the fol-
lowing notation:

X —> 00 means “x becomes large in the positive direction”

means “x becomes large in the negative direction”

For example, the monomial y = x? in Figure 2(b) has the following end behavior:

y—00 as x— o0 and y—00 as x— —oo

The monomial y = x? in Figure 2(c) has the end behavior

y—00 as x— o0 and y— —00 as x— —o0
For any polynomial, the end behavior is determined by the term that contains the
highest power of x, because when x is large, the other terms are relatively insignificant
in size. The following box shows the four possible types of end behavior, based on

the highest power and the sign of its coefficient.
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End Behavior of Polynomials

The end behavior of the polynomial P(x) = a,x" + a, x"~' + -+ - + a;x + a, is determined by the degree n and
the sign of the leading coefficient a,, as indicated in the following graphs.

P has odd degree P has even degree
y— ©as y— ®©as y—> ®as y— ©as
X —> 00 X —> —00 X — —00 X — 00
YA YA YA YA
T / \ S\
’ S ’ . oo e \
l' \~_¢' \~__¢’ ‘\ S & R
A} Sde
/ A 1 / \
0 X 0 X Y 0 I 0 X
\~-"¢ s\\ ',
~No’
y—>—0as y—>—®as y—>—®as y——0 as
X —> —00 X —> 00 X —> —00 X —> 0
Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative

Example 2 End Behavior of a Polynomial
Determine the end behavior of the polynomial
Px) = —2x* + 5x3 + 4x — 7

Solution The polynomial P has degree 4 and leading coefficient —2. Thus,
P has even degree and negative leading coefficient, so it has the following end
behavior:

y— —00 as X— 00 and y— —00 as x— —00

The graph in Figure 4 illustrates the end behavior of P.

30
— —® a6 Y
e e
Figure 4
P(x) = =2x* + 53 + 4x — 7 =50 ]

Example 3 End Behavior of a Polynomial

(a) Determine the end behavior of the polynomial P(x) = 3x°> — 5x* + 2x.

(b) Confirm that P and its leading term Q(x) = 3x° have the same end behavior by
graphing them together.
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Solution
(a) Since P has odd degree and positive leading coefficient, it has the following
end behavior:

y—00 as x— o0 and y— —00 as x— —0

(b) Figure 5 shows the graphs of P and Q in progressively larger viewing rectan-
gles. The larger the viewing rectangle, the more the graphs look alike. This
confirms that they have the same end behavior.

-1 -2 —50 -10,000
Figure 5 ™
P(x) = 3x° — 5x% + 2x
O(x) = 3x° To see algebraically why P and Q in Example 3 have the same end behavior, fac-
tor P as follows and compare with Q.
5 2
P(x) = 3x5<1 - ? + 3)64) O(x) = 3x7
When x is large, the terms 5/3x* and 2/3x* are close to 0 (see Exercise 79 on page 12).
x P(x) O(x) So for large x, we have
15| 2,261,280 2,278,125 P(x) = 3x°(1 — 0 — 0)=3x" = Q(x)

30 72,765,060 72,900,000 . .
50 | 936.875.100 | 937.500.000 So, when x is large, P and Q have approximately the same values. We can also see

this numerically by making a table like the one in the margin.
By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if P(¢) = 0. In other words,
the zeros of P are the solutions of the polynomial equation P(x) = 0. Note that if
P(c) = 0, then the graph of P has an x-intercept at x = ¢, so the x-intercepts of the
graph are the zeros of the function.

Real Zeros of Polynomials

If P is a polynomial and c is a real number, then the following are equivalent.

1. cisazeroof P.
2. x = cis a solution of the equation P(x) = 0.
3. x — cis a factor of P(x).

4. x = cis an x-intercept of the graph of P.
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To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 47). For example, to find the zeros of P(x) = x> + x — 6, we factor P
to get

P(x) = (x — 2)(x + 3)
From this factored form we easily see that

1. 2 is a zero of P.
2. x = 2is a solution of the equation x> + x — 6 = 0.
3. x — 2isafactorof x> + x — 6.

4. x = 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, —3.

The following theorem has many important consequences. (See, for instance,
the Discovery Project on page 283.) Here we use it to help us graph polynomial
functions.

Intermediate Value Theorem for Polynomials

If P is a polynomial function and P(a) and P(b) have opposite signs, then
there exists at least one value ¢ between a and b for which P(c) = 0.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.

One important consequence of this theorem is that between any two successive
zeros, the values of a polynomial are either all positive or all negative. That is, between
two successive zeros the graph of a polynomial lies entirely above or entirely below
the x-axis. To see why, suppose ¢, and ¢, are successive zeros of P. If P has both pos-
itive and negative values between c; and c,, then by the Intermediate Value Theorem
P must have another zero between ¢, and ¢,. But that’s not possible because ¢, and ¢,
are successive zeros. This observation allows us to use the following guidelines to
graph polynomial functions.

Guidelines for Graphing Polynomial Functions

1. Zeros. Factor the polynomial to find all its real zeros; these are the
x-intercepts of the graph.

2. Test Points. Make a table of values for the polynomial. Include test
points to determine whether the graph of the polynomial lies above or below
the x-axis on the intervals determined by the zeros. Include the y-intercept
in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch a
smooth curve that passes through these points and exhibits the required end
behavior.
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Mathematics in the
Modern World

Courtesy of Ford Motor Co.

Automotive Design

Computer-aided design (CAD) has
completely changed the way car
companies design and manufacture
cars. Before the 1980s automotive
engineers would build a full-scale
“nuts and bolts” model of a pro-
posed new car; this was really the
only way to tell whether the design
was feasible. Today automotive
engineers build a mathematical
model, one that exists only in the
memory of a computer. The model
incorporates all the main design
features of the car. Certain polyno-
mial curves, called splines, are used
in shaping the body of the car. The
resulting “mathematical car” can
be tested for structural stability,
handling, aerodynamics, suspen-
sion response, and more. All this
testing is done before a prototype is
built. As you can imagine, CAD
saves car manufacturers millions of
dollars each year. More impor-
tantly, CAD gives automotive engi-
neers far more flexibility in design;
desired changes can be created and
tested within seconds. With the
help of computer graphics, design-
ers can see how good the “mathe-
matical car” looks before they build
the real one. Moreover, the mathe-
matical car can be viewed from any
perspective; it can be moved, ro-
tated, or seen from the inside. These
manipulations of the car on the
computer monitor translate mathe-
matically into solving large sys-
tems of linear equations.

Example 4 Using Zeros to Graph a Polynomial Function
Sketch the graph of the polynomial function P(x) = (x + 2)(x — 1)(x — 3).

Solution The zeros are x = —2, 1, and 3. These determine the intervals
(o0, =2),(=2,1),(1,3), and (3, 00). Using test points in these intervals, we get
the information in the following sign diagram (see Section 1.7).

Test point Test point Test point Test point
X==3 x =—1 X=2 x=4
P(=3) <O P(-1) >0 P(2) <0 F(3) >0
-2 1 3
Sign of
P(x) = (x + 2)(x — 1)(x — 3) - + - +
below above below above
Graph of P X-axis X-axis X-axis X-axis

Plotting a few additional points and connecting them with a smooth curve helps us
complete the graph in Figure 7.

y ;
: P& Test point ;8(31;) |0>Ol(i;t
Testpoint— | —3 | —24 P(1) >0
-2 0

Test point — -1 8

0 6

1 0
Test point — 2 —4

3 0 Test point Test point
Test point — 4 18 P(=3)<0 P(2)<0

Figure 7
P(x) = (x + 2)(x — 1)(x — 3) [
Example 5 Finding Zeros and Graphing
a Polynomial Function
Let P(x) = x* — 2x* — 3x.
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution
(a) To find the zeros, we factor completely.
P(x) = x* — 2x* — 3x
=x(x* — 2x — 3) Factor x
=x(x = 3)(x + 1) Factor quadratic

Thus, the zerosare x = 0, x = 3, and x = —1.
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(b) The x-intercepts are x = 0, x = 3, and x = — . The y-intercept is P(0) = 0. We
make a table of values of P(x), making sure we choose test points between (and
to the right and left of) successive zeros.

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

y—>00 as Xx— 00 and y— —00 as X— —00

We plot the points in the table and connect them by a smooth curve to complete
the graph, as shown in Figure 8.

x | P

Test point — -2 | =10
—1 0

Test point — —% %
0 0

Test point — 1 —4
2 —6

3 0

Test point — 4 20

Figure 8
P(x) = x* — 2x* — 3x ]

Example 6 Finding Zeros and Graphing
a Polynomial Function
Let P(x) = —2x* — x* + 3x7%
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution

(a) To find the zeros, we factor completely.
P(x) = —2x* — x* 4+ 3x?
= —x’(2x* + x — 3) Factor —x?
= —x*2x +3)(x — 1) Factor quadratic

Thus, the zeros are x = 0, x = —%, andx = 1.

(b) The x-intercepts are x = 0, x = —3, and x = 1. The y-intercept is P(0) = 0.
We make a table of values of P(x), making sure we choose test points between
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior:

y— —00 as X— 00 and y——00 as x— —00
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We plot the points from the table and connect the points by a smooth curve to
complete the graph in Figure 9.

X P(x)
Table of values are most easily calcu-
. -2 —12
lated using a programmable calculator 15 0
or a graphing calculator. 1 )
-0.5 0.75
0 0
0.5 0.5
1 0
1.5 | =6.75

Figure 9
P(x) = —2x* — x* + 3x?

Example 7 Finding Zeros and Graphing
a Polynomial Function

Let P(x) = x* — 2x? + 4x + 8.
(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.
P(x) = x> —2x* —4x + 8
=x*(x —2) —4(x—2) Group and factor
=@x?—4)(x—2) Factor x — 2
=x+2)(x—-2)(x—2) Difference of squares
=(x+2)(x—2)? Simplify
Thus, the zeros are x = —2 and x = 2.

(b) The x-intercepts are x = —2 and x = 2. The y-intercept is P(0) = 8. The table
gives additional values of P(x).
Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

y—>00 as Xx—00 and y— —00 as Xx— —o0

We connect the points by a smooth curve to complete the graph in Figure 10.

x | P(x) Y
-3 | =25
-2 0
-1 9
0 8 1 X
1 3
2 0
3 5

Figure 10
P(x) =x*—2x*—4x + 8
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Shape of the Graph Near a Zero

Although x = 2 is a zero of the polynomial in Example 7, the graph does not cross
the x-axis at the x-intercept 2. This is because the factor (x — 2)? corresponding to
that zero is raised to an even power, so it doesn’t change sign as we test points on
either side of 2. In the same way, the graph does not cross the x-axis at x = 0 in
Example 6.

In general, if c is a zero of P and the corresponding factor x — ¢ occurs exactly m
times in the factorization of P then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept ¢, we conclude that the graph
crosses the x-axis at ¢ if the multiplicity m is odd and does not cross the x-axis if m is
even. Moreover, it can be shown using calculus that near x = ¢ the graph has the same
general shape as A(x — ¢)™.

Shape of the Graph Near a Zero of Multiplicity m

Suppose that c is a zero of P of multiplicity m. Then the shape of the graph of
P near c is as follows.

Multiplicity of ¢ Shape of the graph of P near the x-intercept ¢

modd,m > 1

y y
C X C X
y y
meven, m > 1 # OR %
C X Cc X
Example 8 Graphing a Polynomial Function Using Its Zeros

Graph the polynomial P(x) = x*(x — 2)*(x + 1)

Solution The zeros of P are —1, 0, and 2, with multiplicities 2, 4, and 3,
respectively.

O is a zero of 2 is a zero of —1is a zero of
multiplicity 4. multiplicity 3. multiplicity 2.

P(x) = x*(x — 2)%(x + 1)?

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2.
But the zeros 0 and — 1 have even multiplicity, so the graph does not cross the x-axis
at the x-intercepts 0 and —1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has
the following end behavior:

y—>00 as x— 00 and y— —00 as X— —00
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With this information and a table of values, we sketch the graph in Figure 11.

X P(x)
—1.3 | —9.2
-1 0
-0.5| —39 Even
0 0 multiplicities
1 —4
2 0
2.3 8.2

Figure 11
P(x) = x*x — 2)%(x + 1)?

%Y Local Maxima and Minima of Polynomials

YA

SA

X

Odd multiplicity

Recall from Section 2.5 that if the point (a, f(a)) is the highest point on the graph of
f within some viewing rectangle, then f(a) is a local maximum value of f, and if
(b, f(b)) is the lowest point on the graph of f within a viewing rectangle, then f(b) is
a local minimum value (see Figure 12). We say that such a point (a, f(a)) is a local
maximum point on the graph and that (b, f(b)) is a local minimum point. The set
of all local maximum and minimum points on the graph of a function is called its

local extrema.

(b, £(b))
/ Local minimum pointj

| |

(a, f(a))
( Local maximum point

y = flx)

/ 0 a b
Figure 12

For a polynomial function the number of local extrema must be less than the de-
gree, as the following principle indicates. (A proof of this principle requires calculus.)

Local Extrema of Polynomials

If P(x) = a,x" + a, x" '+ -+ + ax + a,is a polynomial of degree n,

then the graph of P has at most n — 1 local extrema.

A polynomial of degree n may in fact have less than n — 1 local extrema. For ex-
ample, P(x) = x° (graphed in Figure 2) has no local extrema, even though it is of de-
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gree 5. The preceding principle tells us only that a polynomial of degree n can have
no more than n — 1 local extrema.

A Example9 The Number of Local Extrema
Determine how many local extrema each polynomial has.
(@) P(x) =x*+x* — 16x* — 4x + 48
() Pyx) =x° +3x* = 5x* — 1522 + 4x — 15 (c) Py(x) = 7x* + 3x* — 10x
Solution The graphs are shown in Figure 13.
(a) P, has two local minimum points and one local maximum point, for a total of
three local extrema.
(b) P has two local minimum points and two local maximum points, for a total of
four local extrema.
(c) P;has just one local extremum, a local minimum.
100 100 100
-5 5 =5 5 =5 5
—100 —100 —100
(a) (b) (c)
P(x) = x*+ x3 — 16x? — 4x + 48 Py(x) = x>+ 3x* = 5x> — 1522 + 4x — 15 Py(x) = Tx* + 3x% — 10x
Figure 13 [ ]
With a graphing calculator we can quickly draw the graphs of many functions at
once, on the same viewing screen. This allows us to see how changing a value in the
definition of the functions affects the shape of its graph. In the next example we ap-
ply this principle to a family of third-degree polynomials.
s Example 10 A Family of Polynomials
=0 o oen Sketch the family of polynomials P(x) = x> — ex?fore =0, 1,2, and 3. How does
10 X_\ i B o= 3 changing the value of ¢ affect the graph?
Solution The polynomials
Py(x) = x* Pi(x) = x* — x?
-2 4
Py(x) = x* — 2x? Py(x) = x* — 3x?

—10

Figure 14

A family of polynomials
P(x) = x* — cx?

are graphed in Figure 14. We see that increasing the value of ¢ causes the graph to
develop an increasingly deep “valley” to the right of the y-axis, creating a local
maximum at the origin and a local minimum at a point in quadrant IV. This local
minimum moves lower and farther to the right as ¢ increases. To see why this
happens, factor P(x) = x*(x — ¢). The polynomial P has zeros at 0 and ¢, and

the larger c gets, the farther to the right the minimum between 0 and ¢ will be. ]
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BEXE Exercises

1-4 ® Sketch the graph of each function by transforming 11-22 m Sketch the graph of the polynomial function. Make
the graph of an appropriate function of the form y = x" from sure your graph shows all intercepts and exhibits the proper
Figure 2. Indicate all x- and y-intercepts on each graph. end behavior.
1. (@) P(x) =x*—4 (b) O(x) = (x — 4)? 11. P(x) = (x — 1)(x + 2)
(©) R(x) = 2x* =2 @ S(x) =2(x - 2)? 12. P(x) = (x — )(x + 1)(x — 2)
2. (a) P(x) =x*— 16 (b) Okx) = (x +2)* 13. P(x) = x(x — 3)(x + 2)
= (x +2) — = —9(x + 2
() R(x) = (x +2) 16 (d) S(x) 2(x + 2) 14. P(r) = (2x — 1)(x + D(x + 3)
_ — 3 +
3 @ Pl) =x' =8 () Ox) = ~x" + 27 15. P(x) = (x = 3)(x + 2)(3x — 2)
© R(x) = —(x+2)* (@ Skx)=3(x—1)+4
s 16. P(x) = 1x(x — 5)?
4. (a) P(x) = (x + 3)° (b) O(x) =2(x + 3)> — 64 ,
(© R(x) = —3x—2)° (@ S(x) = —i(x—2)5+16 17. P(x) = (x = 1)(x = 3)
18. P(x) = 3(x + 1)’(x — 3)
5-10 = Match the polynomial function with one of the graphs 1 2 2
. = hx+ -
I-VI. Give reasons for your choice. 19 P(x) = 1l + 2)%x = 3)
. = (x — 1)2x + 2)3
5. P(x) = x(x — 4) 6. O(x) = —x(x* — 4) 20. Pa) = (x = Dx +2)
. + -3)
7. R(x) = —x® + 5x° —4x 8. S(x) = 3x° — 2x* 21 Px) = xx 4 2)(x = 3)
(x)

. = (r — 3)x + 1)2
9. T(x) = x* + 2x° 10. U(x) = —x3 + 2x2 22. P (=3 +1)

23-36 m Factor the polynomial and use the factored form to
find the zeros. Then sketch the graph.

23. P(x) = x* — x* — 6x

24. P(x) = x* + 2x* — 8x
25. P(x) = —x* + x* + 12x
26. P(x) = —2x% — x> + x
27. P(x) = x* — 3x% + 247
28. P(x) = x° — 9x?

29. P(x) =x*+ x> —x— 1

(x)
(x)
(x)
(x)
(x)
(x)

30. P(x) =x* +3x> —4x — 12
(x) =2x* —x*— 18x + 9
(x)
(x)
(x)
(x)
(x)

31. P(x

32. P(x) = §(2x* + 3x° — 16x — 24)?
33. P(x) = x* — 2x% — 8x + 16

34. P(x) = x* — 2x* + 8x — 16

35. P(x) = x* = 3x* — 4

36. P(x) =x® —2x3 + 1

37-42 m Determine the end behavior of P. Compare the
graphs of P and Q on large and small viewing rectangles,
as in Example 3(b).

37. P(x) =3 — x> + 5x + 1; Q(x)
38. P(x) = —3 x>+ 2x2 + 12x; Q(x)
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39. P(x) =x*— 7x> + 5x + 5; Q(x) = x*
40. P(x) = —x° + 2x> + x; Q(x) = —x°
41. P(x) = x" = 9x% Q(x) = x"

42. P(x) = 2x* —x'% Q(x) = —x"

43-46 ®m The graph of a polynomial function is given. From the
graph, find

(a) the x- and y-intercepts
(b) the coordinates of all local extrema
43. P(x) = —x% + 4x 4. P(x) = %x3 —x2
YA YA
/
1
[\ 0 [
1/ A
[ /
0 x [ )
/ \ /
45. P(x) = —3x* +3x— 1 46. P(x) = gx* — §x°
YA YA
\ \ |
\ \ [
\ \ I
1 - \ -
0 x 0 "\ 2 x
\ \ |/

E% 47-54 m Graph the polynomial in the given viewing rectangle.
Find the coordinates of all local extrema. State each answer
correct to two decimal places.

47. y = —x* + 8x, [—4, 12]by[—50, 30]

48. y = x* —3x% [—2,5]by[—10, 10]

49. y=x>—12x+9, [-5,5]by[—30,30]

50. y = 2x% — 3x? — 12x — 32, [—5,5]by[—60, 30]
51. y = x* + 4x3, [—5,5]by[—30, 30]

52. y=x*— 18x? + 32, [—5,5]by[—100, 100]
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53. y =3x° — 5x* + 3, [-3,3]by[-5, 10]
54, y