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Preface

The art of teaching is the art of assisting discovery.
MARK VAN DOREN

What do students really need to know to be prepared for calculus? What tools do in-
structors really need to assist their students in preparing for calculus? These two
questions have motivated the writing of this book.

To be prepared for calculus a student needs not only technical skill but also a clear
understanding of concepts. Indeed, conceptual understanding and technical skill go
hand in hand, each reinforcing the other. A student also needs to gain an appreciation
for the power and utility of mathematics in modeling the real-world. Every feature of
this textbook is devoted to fostering these goals.

We are keenly aware that good teaching comes in many different forms, and that
each instructor brings unique strengths and imagination to the classroom. Some in-
structors use technology to help students become active learners; others use the rule
of four, “topics should be presented geometrically, numerically, algebraically, and
verbally,” to promote conceptual reasoning; some use an expanded emphasis on ap-
plications to promote an appreciation for mathematics in everyday life; still others
use group learning, extended projects, or writing exercises as a way of encouraging
students to explore their own understanding of a given concept; and all present math-
ematics as a problem-solving endeavor. In this book we have included all these meth-
ods of teaching precalculus as enhancements to a central core of fundamental skills.
These methods are tools to be utilized by instructors and their students to navigate
their own course of action in preparing for calculus.

In writing this fifth edition our purpose was to further enhance the utility of the
book as an instructional tool. The main change in this edition is an expanded empha-
sis on modeling and applications: In each section the applications exercises have been
expanded and are grouped together under the heading Applications, and each chap-
ter (except Chapter 1) now ends with a Focus on Modeling section. We have also
made some organizational changes, including dividing the chapter on analytic
trigonometry into two chapters, each of more manageable size. There are numerous
other smaller changes—as we worked through the book we sometimes realized that
an additional example was needed, or an explanation could be clarified, or a section
could benefit from different types of exercises. Throughout these changes, however,
we have retained the overall structure and the main features that have contributed to
the success of this book.
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Many of the changes in this edition have been drawn from our own experience in
teaching, but, more importantly, we have listened carefully to the users of the current
edition, including many of our closest colleagues. We are also grateful to the many
letters and e-mails we have received from users of this book, instructors as well as
students, recommending changes and suggesting additions. Many of these have
helped tremendously in making this edition even more user-friendly.

Special Features

EXERCISE SETS The most important way to foster conceptual understanding and
hone technical skill is through the problems that the instructor assigns. To that end we
have provided a wide selection of exercises.

■ Exercises Each exercise set is carefully graded, progressing from basic con-
ceptual exercises and skill-development problems to more challenging problems
requiring synthesis of previously learned material with new concepts.

■ Applications Exercises We have included substantial applied problems that
we believe will capture the interest of students. These are integrated throughout
the text in both examples and exercises. In the exercise sets, applied problems
are grouped together under the heading, Applications. (See, for example, pages
127, 156, 314, and 451.)

■ Discovery, Writing, and Group Learning Each exercise set ends with a
block of exercises called Discovery•Discussion. These exercises are designed to
encourage students to experiment, preferably in groups, with the concepts devel-
oped in the section, and then to write out what they have learned, rather than
simply look for “the answer.” (See, for example, pages 232 and 369.)

A COMPLETE REVIEW CHAPTER We have included an extensive review chapter
primarily as a handy reference for the student to revisit basic concepts in algebra and
analytic geometry.

■ Chapter 1 This is the review chapter; it contains the fundamental concepts a
student needs to begin a precalculus course. As much or as little of this chapter
can be covered in class as needed, depending on the background of the students.

■ Chapter 1 Test The test at the end of Chapter 1 is intended as a diagnostic 
instrument for determining what parts of this review chapter need to be taught. 
It also serves to help students gauge exactly what topics they need to review.

FLEXIBLE APPROACH TO TRIGONOMETRY The trigonometry chapters of this
text have been written so that either the right triangle approach or the unit circle ap-
proach may be taught first. Putting these two approaches in different chapters, each
with its relevant applications, helps clarify the purpose of each approach. The chap-
ters introducing trigonometry are as follows:

■ Chapter 5: Trigonometric Functions of Real Numbers This chapter intro-
duces trigonometry through the unit circle approach. This approach emphasizes
that the trigonometric functions are functions of real numbers, just like the poly-
nomial and exponential functions with which students are already familiar.

■ Chapter 6: Trigonometric Functions of Angles This chapter introduces
trigonometry through the right triangle approach. This approach builds on the
foundation of a conventional high-school course in trigonometry.
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Another way to teach trigonometry is to intertwine the two approaches. Some in-
structors teach this material in the following order: Sections 5.1, 5.2, 6.1, 6.2, 6.3, 5.3,
5.4, 6.4, 6.5. Our organization makes it easy to do this without obscuring the fact that
the two approaches involve distinct representations of the same functions.

GRAPHING CALCULATORS AND COMPUTERS Calculator and computer tech-
nology extends in a powerful way our ability to calculate and visualize mathematics.
The availability of graphing calculators makes it not less important, but far more im-
portant to understand the concepts that underlie what the calculator produces. Ac-
cordingly, all our calculator-oriented subsections are preceded by sections in which
students must graph or calculate by hand, so that they can understand precisely what
the calculator is doing when they later use it to simplify the routine, mechanical part
of their work. The graphing calculator sections, subsections, examples, and exercises,
all marked with the special symbol , are optional and may be omitted without loss
of continuity. We use the following capabilities of the calculator:

■ Graphing Calculators The use of the graphing calculator is integrated
throughout the text to graph and analyze functions, families of functions, and se-
quences, to calculate and graph regression curves, to perform matrix algebra, to
graph linear inequalities, and other powerful uses.

■ Simple Programs We exploit the programming capabilities of a graphing cal-
culator to simulate real-life situations, to sum series, or to compute the terms of
a recursive sequence. (See, for instance, pages 702, 825, and 829.)

FOCUS ON MODELING The “modeling” theme has been used throughout to unify
and clarify the many applications of precalculus. We have made a special effort, in
these modeling sections and subsections, to clarify the essential process of translat-
ing problems from English into the language of mathematics. (See pages 204 or 647.)

■ Constructing Models There are numerous applied problems throughout the
book where students are given a model to analyze (see, for instance, page 200).
But the material on modeling, where students are required to construct mathe-
matical models for themselves, has been organized into clearly defined sections
and subsections (see, for example, pages 203, 369, 442, and 848).

■ Focus on Modeling Each chapter concludes with a Focus on Modeling sec-
tion. The first such section, after Chapter 2, introduces the basic idea of model-
ing a real-life situation by fitting lines to data (linear regression). Other sections
present ways in which polynomial, exponential, logarithmic, and trigonometric
functions, and systems of inequalities can all be used to model familiar phenom-
ena from the sciences and from everyday life (see, for example, pages 320, 386,
or 459). Chapter 1 concludes with a section entitled Focus on Problem Solving.

DISCOVERY PROJECTS One way to engage students and make them active learn-
ers is to have them work (perhaps in groups) on extended projects that give a feeling
of substantial accomplishment when completed. Each chapter contains one or more
Discovery Projects (see the table of contents); these provide a challenging but acces-
sible set of activities that enable students to explore in greater depth an interesting 
aspect of the topic they have just learned. (See, for instance, pages 223, 432, or 700.)

MATHEMATICAL VIGNETTES Throughout the book we make use of the margins
to provide historical notes, key insights, or applications of mathematics in the mod-
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ern world. These serve to enliven the material and show that mathematics is an im-
portant, vital activity, and that even at this elementary level it is fundamental to every-
day life.

■ Mathematical Vignettes These vignettes include biographies of interesting
mathematicians and often include a key insight that the mathematician discov-
ered and which is relevant to precalculus. (See, for instance, the vignettes on
Viète, page 49; coordinates as addresses, page 88; and radiocarbon dating,
page 360.)

■ Mathematics in the Modern World This is a series of vignettes that empha-
sizes the central role of mathematics in current advances in technology and the
sciences. (See pages 256, 656, and 746, for example).

CHECK YOUR ANSWER The Check Your Answer feature is used wherever possible
to emphasize the importance of looking back to check whether an answer is reason-
able. (See, for instance, page 363.)

REVIEW MATERIAL The review material in this edition covers individual chapters
as well as groups of chapters. This material is an important tool for helping students
see the unity of the different precalculus topics. The questions and exercises in each
review section combine the topics from an entire chapter or from groups of chapters.
The review material is organized as follows.

■ Concept Check The end-of-chapter material begins with a Concept Check de-
signed to get the students to think about and explain in their own words the ideas
presented in the chapter. These can be used as writing exercises, in a classroom
discussion setting, or for personal study.

■ Review Exercises The Concept Checks are followed by review exercises de-
signed to provide additional practice for working with the chapter material. An-
swers to odd-numbered review exercises are given in the back of the book.

■ Chapter Test Each chapter ends with a Chapter Test designed to help the stu-
dents assess their ability to work with the chapter material as a whole. Answers
to both even and odd test questions are given in the back of the book.

■ Cumulative Review The Cumulative Reviews at the end of the text cover the
material of several related chapters, very much like midterm exams. Each such
review begins with a checklist of the topics the students should have mastered
after completing the respective chapters. This is followed by a Cumulative Re-
view Test. As with the Chapter Tests, answers to all cumulative test questions are
given in the back of the book.

Major Changes for the Fifth Edition

■ More than 20 percent of the exercises are new. New exercises have been chosen
to provide more practice with basic concepts, as well as to explore ideas that we
do not have space to cover in the discussion and examples in the text itself.
Many new applied exercises have been added.

■ Each chapter now begins with a Chapter Overview that introduces the main
themes of the chapter and explains why the material is important.

■ Six new Focus on Modeling sections have been added, with topics ranging from
Mapping the World (Chapter 8) to Traveling and Standing Waves (Chapter 7).
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■ Five new Discovery Projects have been added, with topics ranging from the 
uses of vectors in sailing (see page 626) to the uses of conics in architecture 
(see page 771).

■ A few more mathematical vignettes have been added (see for example the
vignette on splines, page 252, and the one on Maria Agnesi, page 802.)

■ We have moved the section on variation from Chapter 2 to Chapter 1, thus fo-
cusing Chapter 2 more clearly on the essential concept of a function.

■ In Chapter 5, Trigonometric Functions of Real Numbers, we have incorporated
the material on harmonic motion as a new section. The Focus on Modeling sec-
tion is now about fitting sinusoidal curves to data.

■ In Chapter 7, Analytic Trigonometry, we now include only the material on
trigonometric identities and equations. This change was done at the request of
users.

■ Chapter 8, Polar Coordinates and Vectors, is a new chapter, incorporating mate-
rial that was previously in other chapters. The topics in this chapter, which also
include the polar representation of complex numbers, are united by the theme of
using the trigonometric functions to locate the coordinates of a point or describe
the components of a vector.

■ In Chapter 9, Systems of Equations and Inequalities, we have put the section on
graphing of inequalities as the last section, so it now immediately precedes the
material on linear programming in the Focus on Modeling section.

■ Chapter 10, Analytic Geometry, now includes only the conic sections and para-
metric equations. The material on polar coordinates is in the new Chapter 8.

■ In Chapter 11, Sequence and Series, we have expanded the material on recursive
sequences by adding a Focus on Modeling section on the use of such sequences
in modeling real-world phenomena.
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To the Student

This textbook was written for you to use as a guide to mastering precalculus mathe-
matics. Here are some suggestions to help you get the most out of your course.

First of all, you should read the appropriate section of text before you attempt your
homework problems. Reading a mathematics text is quite different from reading a
novel, a newspaper, or even another textbook. You may find that you have to reread a
passage several times before you understand it. Pay special attention to the examples,
and work them out yourself with pencil and paper as you read. With this kind of
preparation you will be able to do your homework much more quickly and with more
understanding.

Don’t make the mistake of trying to memorize every single rule or fact you may
come across. Mathematics doesn’t consist simply of memorization. Mathematics is a
problem-solving art, not just a collection of facts. To master the subject you must
solve problems—lots of problems. Do as many of the exercises as you can. Be sure
to write your solutions in a logical, step-by-step fashion. Don’t give up on a problem
if you can’t solve it right away. Try to understand the problem more clearly—reread
it thoughtfully and relate it to what you have learned from your teacher and from the
examples in the text. Struggle with it until you solve it. Once you have done this a few
times you will begin to understand what mathematics is really all about.

Answers to the odd-numbered exercises, as well as all the answers to each chapter
test, appear at the back of the book. If your answer differs from the one given, don’t
immediately assume that you are wrong. There may be a calculation that connects the
two answers and makes both correct. For example, if you get 1/( ) but the an-
swer given is 1 � , your answer is correct, because you can multiply both nu-
merator and denominator of your answer by � 1 to change it to the given answer.

The symbol is used to warn against committing an error. We have placed this
symbol in the margin to point out situations where we have found that many of our
students make the same mistake.

12
12

12 � 1

xxi
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Calculators and Calculations

Calculators are essential in most mathematics and science subjects. They free us from
performing routine tasks, so we can focus more clearly on the concepts we are study-
ing. Calculators are powerful tools but their results need to be interpreted with care.
In what follows, we describe the features that a calculator suitable for a precalcu-
lus course should have, and we give guidelines for interpreting the results of its
calculations.

Scientific and Graphing Calculators

For this course you will need a scientific calculator—one that has, as a minimum, the
usual arithmetic operations (�, �, �, �) as well as exponential, logarithmic, and
trigonometric functions (ex, 10 x, ln, log, sin, cos, tan). In addition, a memory and at
least some degree of programmability will be useful.

Your instructor may recommend or require that you purchase a graphing calcula-
tor. This book has optional subsections and exercises that require the use of a 
graphing calculator or a computer with graphing software. These special subsections
and exercises are indicated by the symbol . Besides graphing functions, graphing
calculators can also be used to find functions that model real-life data, solve equa-
tions, perform matrix calculations (which are studied in Chapter 9), and help you per-
form other mathematical operations. All these uses are discussed in this book.

It is important to realize that, because of limited resolution, a graphing calculator
gives only an approximation to the graph of a function. It plots only a finite number
of points and then connects them to form a representation of the graph. In Sec-
tion 1.9, we give guidelines for using a graphing calculator and interpreting the
graphs that it produces.

Calculations and Significant Figures

Most of the applied examples and exercises in this book involve approximate values.
For example, one exercise states that the moon has a radius of 1074 miles. This does
not mean that the moon’s radius is exactly 1074 miles but simply that this is the ra-
dius rounded to the nearest mile.

One simple method for specifying the accuracy of a number is to state how many
significant digits it has. The significant digits in a number are the ones from the first
nonzero digit to the last nonzero digit (reading from left to right). Thus, 1074 has four
significant digits, 1070 has three, 1100 has two, and 1000 has one significant digit.
This rule may sometimes lead to ambiguities. For example, if a distance is 200 km to
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the nearest kilometer, then the number 200 really has three significant digits, not just
one. This ambiguity is avoided if we use scientific notation—that is, if we express the
number as a multiple of a power of 10:

2.00 �102

When working with approximate values, students often make the mistake of giv-
ing a final answer with more significant digits than the original data. This is incorrect
because you cannot “create” precision by using a calculator. The final result can be
no more accurate than the measurements given in the problem. For example, suppose
we are told that the two shorter sides of a right triangle are measured to be 1.25 and
2.33 inches long. By the Pythagorean Theorem, we find, using a calculator, that the
hypotenuse has length

� 2.644125564 in.

But since the given lengths were expressed to three significant digits, the answer can-
not be any more accurate. We can therefore say only that the hypotenuse is 2.64 in.
long, rounding to the nearest hundredth.

In general, the final answer should be expressed with the same accuracy as the
least-accurate measurement given in the statement of the problem. The following
rules make this principle more precise.

As an example, suppose that a rectangular table top is measured to be 122.64 in.
by 37.3 in. We express its area and perimeter as follows:

Area � length � width � 122.64 � 37.3 � 4570 in2

Perimeter � 2Ólength � widthÔ � 2Ó122.64 � 37.3Ô � 319.9 in. Tenths digit

Note that in the formula for the perimeter, the value 2 is an exact value, not an ap-
proximate measurement. It therefore does not affect the accuracy of the final result.
In general, if a problem involves only exact values, we may express the final answer
with as many significant digits as we wish.

Note also that to make the final result as accurate as possible, you should wait un-
til the last step to round off your answer. If necessary, use the memory feature of your
calculator to retain the results of intermediate calculations.

Three significant
digits

21.252 � 2.332

1. When multiplying or dividing, round off the final result so that it has as
many significant digits as the given value with the fewest number of
significant digits.

2. When adding or subtracting, round off the final result so that it has its last
significant digit in the decimal place in which the least-accurate given value
has its last significant digit.

3. When taking powers or roots, round off the final result so that it has the
same number of significant digits as the given value.

Rules for Working with Approximate Data



Abbreviations

cm centimeter mg milligram
dB decibel MHz megahertz
F farad mi mile
ft foot min minute
g gram mL milliliter
gal gallon mm millimeter
h hour N Newton
H henry qt quart
Hz Hertz oz ounce
in. inch s second
J Joule � ohm
kcal kilocalorie V volt
kg kilogram W watt
km kilometer yd yard
kPa kilopascal yr year
L liter °C degree Celsius
lb pound °F degree Fahrenheit
lm lumen K Kelvin
M mole of solute ⇒ implies

per liter of solution ⇔ is equivalent to
m meter
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Chapter Overview

In this first chapter we review the real numbers, equations, and the coordinate plane.
You are probably already familiar with these concepts, but it is helpful to get a fresh
look at how these ideas work together to solve problems and model (or describe) real-
world situations.

Let’s see how all these ideas are used in the following real-life situation: Suppose
you get paid $8 an hour at your part-time job. We are interested in how much money
you make.

To describe your pay we use real numbers. In fact, we use real numbers every
day—to describe how tall we are, how much money we have, how cold (or warm) it
is, and so on. In algebra, we express properties of the real numbers by using letters to
stand for numbers. An important property is the distributive property:

To see that this property makes sense, let’s consider your pay if you work 6 hours one
day and 5 hours the next. Your pay for those two days can be calculated in two dif-
ferent ways: or , and both methods give the same answer.
This and other properties of the real numbers constitute the rules for working with
numbers, or the rules of algebra.

We can also model your pay for any number of hours by a formula. If you work 
x hours then your pay is y dollars, where y is given by the algebraic formula

So if you work 10 hours, your pay is dollars.
An equation is a sentence written in the language of algebra that expresses a fact

about an unknown quantity x. For example, how many hours would you need to work
to get paid 60 dollars? To answer this question we need to solve the equation

We use the rules of algebra to find x. In this case we divide both sides of the equation
by 8, so hours.

The coordinate plane allows us to sketch a graph of an equation in two variables.
For example, by graphing the equation y � 8x we can “see” how pay increases with
hours worked. We can also solve the equation 60 � 8x graphically by finding the
value of x at which the graphs of y � 8x and y � 60 intersect (see the figure).

In this chapter we will see many examples of how the real numbers, equations, and
the coordinate plane all work together to help us solve real-life problems.

x � 60
8 � 7.5

60 � 8x

y � 8 # 10 � 80

y � 8x

$8 # 6 � $8 # 5$816 � 5 2
A1B � C 2 � AB � AC

1Bo
b 
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1.1 Real Numbers

Let’s review the types of numbers that make up the real number system. We start with
the natural numbers:

The integers consist of the natural numbers together with their negatives and 0:

We construct the rational numbers by taking ratios of integers. Thus, any rational
number r can be expressed as

where m and n are integers and n � 0. Examples are:

(Recall that division by 0 is always ruled out, so expressions like and are
undefined.) There are also real numbers, such as , that cannot be expressed as a
ratio of integers and are therefore called irrational numbers. It can be shown, with
varying degrees of difficulty, that these numbers are also irrational:

The set of all real numbers is usually denoted by the symbol �. When we use the
word number without qualification, we will mean “real number.” Figure 1 is a dia-
gram of the types of real numbers that we work with in this book.

Figure 1

The real number system

Every real number has a decimal representation. If the number is rational, then its
corresponding decimal is repeating. For example,

(The bar indicates that the sequence of digits repeats forever.) If the number is irra-
tional, the decimal representation is nonrepeating:

12 � 1.414213562373095. . .   p � 3.141592653589793. . .

9
7 � 1.285714285714. . . � 1.285714157

495 � 0.3171717. . . � 0.317

2
3 � 0.66666. . . � 0.61

2 � 0.5000. . . � 0.50

1

2
46,  0.17,  0.6,  0.317 ,œ3

. . . ,  −3,  −2, −1,  0,  1,  2,  3, . . .

Rational numbers Irrational numbers

Integers
Natural numbers

, 3

7
- , ,œ5 , ,œ2 π

π2

3 3– – —

13   15   13 2   p   
3

p2

12

0
0

3
0

1
2   �3

7   46 � 46
1    0.17 � 17

100

r �
m
n

. . . , �3, �2, �1, 0, 1, 2, 3, 4, . . .

1, 2, 3, 4, . . .
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The different types of real numbers
were invented to meet specific needs.
For example, natural numbers are
needed for counting, negative num-
bers for describing debt or below-zero 
temperatures, rational numbers for 
concepts like “half a gallon of milk,”
and irrational numbers for measuring
certain distances, like the diagonal 
of a square.

A repeating decimal such as

is a rational number. To convert it to a
ratio of two integers, we write

Thus, . (The idea is to multiply
x by appropriate powers of 10, and then
subtract to eliminate the repeating part.)

x � 3512
990

990x � 3512.0
10x �   35.47474747. . .

1000x � 3547.47474747. . .

x � 3.5474747. . .



If we stop the decimal expansion of any number at a certain place, we get an approx-
imation to the number. For instance, we can write

where the symbol � is read “is approximately equal to.” The more decimal places we
retain, the better our approximation.

Properties of Real Numbers

We all know that 2 � 3 � 3 � 2 and 5 � 7 � 7 � 5 and 513 � 87 � 87 � 513, and so
on. In algebra, we express all these (infinitely many) facts by writing

where a and b stand for any two numbers. In other words, “a � b � b � a” is a con-
cise way of saying that “when we add two numbers, the order of addition doesn’t mat-
ter.” This fact is called the Commutative Property for addition. From our experience
with numbers we know that the properties in the following box are also valid.

a � b � b � a

p � 3.14159265

SECTION 1.1 Real Numbers 3

Properties of Real Numbers

Property Example Description

Commutative Properties

When we add two numbers, order doesn’t matter.

When we multiply two numbers, order doesn’t 
matter.

Associative Properties

When we add three numbers, it doesn’t matter
which two we add first.

When we multiply three numbers, it doesn’t 
matter which two we multiply first.

Distributive Property

When we multiply a number by a sum of two 
numbers, we get the same result as multiplying 
the number by each of the terms and then adding 
the results.

13 � 5 2 # 2 � 2 # 3 � 2 # 51b � c 2a � ab � ac

2 # 13 � 5 2 � 2 # 3 � 2 # 5a1b � c 2 � ab � ac

13 # 7 2 # 5 � 3 # 17 # 5 21ab 2c � a1bc 2
12 � 4 2 � 7 � 2 � 14 � 7 21a � b 2 � c � a � 1b � c 2
3 # 5 � 5 # 3ab � ba

7 � 3 � 3 � 7a � b � b � a

The Distributive Property applies whenever we multiply a number by a sum. 
Figure 2 explains why this property works for the case in which all the numbers are
positive integers, but the property is true for any real numbers a, b, and c.

2(3+5)

2#3 2#5

Figure 2

The Distributive Property

The Distributive Property is crucial 
because it describes the way addition
and multiplication interact with each
other.



Example 1 Using the Distributive Property

(a) Distributive Property

Simplify

(b) Distributive Property

Distributive Property

Associative Property of Addition

In the last step we removed the parentheses because, according to the 
Associative Property, the order of addition doesn’t matter. ■

The number 0 is special for addition; it is called the additive identity because
a � 0 � a for any real number a. Every real number a has a negative, �a, that
satisfies . Subtraction is the operation that undoes addition; to 
subtract a number from another, we simply add the negative of that number. By
definition

To combine real numbers involving negatives, we use the following properties.

a � b � a � 1�b 2
a � 1�a 2 � 0

� ax � bx � ay � by

� 1ax � bx 2 � 1ay � by 21a � b 2 1x � y 2 � 1a � b 2x � 1a � b 2y� 2x � 6

21x � 3 2 � 2 # x � 2 # 3
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Properties of Negatives

Property Example

1.

2.

3.

4.

5.

6. �15 � 8 2 � 8 � 5�1a � b 2 � b � a

�13 � 5 2 � �3 � 5�1a � b 2 � �a � b

1�4 2 1�3 2 � 4 # 31�a 2 1�b 2 � ab

1�5 27 � 51�7 2 � �15 # 7 21�a 2b � a1�b 2 � �1ab 2 �1�5 2 � 5�1�a 2 � a

1�1 25 � �51�1 2a � �a

Don’t assume that �a is a nega-
tive number. Whether �a is negative or
positive depends on the value of a. For
example, if a � 5, then �a � �5, a
negative number, but if a � �5, then

(Property 2), a posi-
tive number.
�a � �1�5 2 � 5

Property 6 states the intuitive fact that a � b and b � a are negatives of each other.
Property 5 is often used with more than two terms:

Example 2 Using Properties of Negatives

Let x, y, and z be real numbers.

(a) Property 5: �(a � b) � �a � b

(b) Property 5: �(a � b) � �a � b

Property 2: �(�a) � a ■� �x � y � z

�1x � y � z 2 � �x � y � 1�z 2�1x � 2 2 � �x � 2

�1a � b � c 2 � �a � b � c

c



The number 1 is special for multiplication; it is called the multiplicative identity
because a � 1 � a for any real number a. Every nonzero real number a has an inverse,
1/a, that satisfies . Division is the operation that undoes multiplication;
to divide by a number, we multiply by the inverse of that number. If b � 0, then, by
definition,

We write as simply a/b. We refer to a/b as the quotient of a and b or as the
fraction a over b; a is the numerator and b is the denominator (or divisor). To com-
bine real numbers using the operation of division, we use the following properties.

a # 11/b 2 a � b � a # 1
b

a # 11/a 2 � 1
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Properties of Fractions

Property Example Description

1.

2.

3.

4.

5.
Cancel numbers that are common factors in
numerator and denominator.

2 # 5
3 # 5 �

2

3

ac

bc
�

a

b

When adding fractions with different de-
nominators, find a common denominator.
Then add the numerators.

2

5
�

3

7
�

2 # 7 � 3 # 5
35

�
29

35

a

b
�

c

d
�

ad � bc

bd

When adding fractions with the same
denominator, add the numerators.

2

5
�

7

5
�

2 � 7

5
�

9

5

a
c

�
b
c

�
a � b

c

When dividing fractions, invert the divisor and
multiply.

2

3
�

5

7
�

2

3
# 7
5

�
14

15

a

b
�

c

d
�

a

b
# d
c

When multiplying fractions, multiply numer-
ators and denominators.

2

3
# 5
7

�
2 # 5
3 # 7 �

10

21

a

b
# c
d

�
ac

bd

When adding fractions with different denominators, we don’t usually use Prop-
erty 4. Instead we rewrite the fractions so that they have the smallest possible com-
mon denominator (often smaller than the product of the denominators), and then 
we use Property 3. This denominator is the Least Common Denominator (LCD) 
described in the next example.

Example 3 Using the LCD to Add Fractions

Evaluate:

Solution Factoring each denominator into prime factors gives

We find the least common denominator (LCD) by forming the product of all the
factors that occur in these factorizations, using the highest power of each factor.

36 � 22 # 32  and  120 � 23 # 3 # 5

5

36
�

7

120

6. If , then , so Cross multiply.2 # 9 � 3 # 62

3
�

6

9
ad � bc

a

b
�

c

d



Thus, the LCD is . So

Use common denominator

Property 3: Adding fractions with the 
same denominator ■

The Real Line

The real numbers can be represented by points on a line, as shown in Figure 3. The
positive direction (toward the right) is indicated by an arrow. We choose an arbitrary
reference point O, called the origin, which corresponds to the real number 0. Given
any convenient unit of measurement, each positive number x is represented by the
point on the line a distance of x units to the right of the origin, and each negative num-
ber �x is represented by the point x units to the left of the origin. The number asso-
ciated with the point P is called the coordinate of P, and the line is then called a
coordinate line, or a real number line, or simply a real line. Often we identify the
point with its coordinate and think of a number as being a point on the real line.

�
50

360
�

21

360
�

71

360

5

36
�

7

120
�

5 # 10

36 # 10
�

7 # 3
120 # 3

23 # 32 # 5 � 360
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4.44.2
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16
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_3.1725_4.7_4.9

_4.85

œ∑ œ∑

Figure 3 The real line

The real numbers are ordered. We say that a is less than b and write a � b if
b � a is a positive number. Geometrically, this means that a lies to the left of b on
the number line. Equivalently, we can say that b is greater than a and write b 	 a.
The symbol means that either a � b or a � b and is read “a is less
than or equal to b.” For instance, the following are true inequalities (see Figure 4):

Figure 4

Sets and Intervals

A set is a collection of objects, and these objects are called the elements of the set. If
S is a set, the notation a � S means that a is an element of S, and b � S means that b
is not an element of S. For example, if Z represents the set of integers, then �3 � Z
but p � Z.

Some sets can be described by listing their elements within braces. For instance,
the set A that consists of all positive integers less than 7 can be written as

A � 51, 2, 3, 4, 5, 66

0 1 2 3 4 5 6 7 8_1_2_3_4

œ∑2
7.4 7.5

_π

7 � 7.4 � 7.5      �p � �3      12 � 2      2 
 2

a 
 b 1or b � a 2



We could also write A in set-builder notation as

which is read “A is the set of all x such that x is an integer and 0 � x � 7.”
If S and T are sets, then their union S � T is the set that consists of all elements

that are in S or T (or in both). The intersection of S and T is the set S � T consisting
of all elements that are in both S and T. In other words, S � T is the common part of
S and T. The empty set, denoted by �, is the set that contains no element.

Example 4 Union and Intersection of Sets

If S � {1, 2, 3, 4, 5}, T � {4, 5, 6, 7}, and V � {6, 7, 8}, find the sets S � T,
S � T, and S � V.

Solution

All elements in S or T

Elements common to both S and T

S and V have no element in common ■

Certain sets of real numbers, called intervals, occur frequently in calculus and
correspond geometrically to line segments. If a � b, then the open interval from a
to b consists of all numbers between a and b and is denoted . The closed inter-
val from a to b includes the endpoints and is denoted . Using set-builder nota-
tion, we can write

Note that parentheses in the interval notation and open circles on the graph in 
Figure 5 indicate that endpoints are excluded from the interval, whereas square
brackets and solid circles in Figure 6 indicate that the endpoints are included. In-
tervals may also include one endpoint but not the other, or they may extend infinitely
far in one direction or both. The following table lists the possible types of intervals.

3 4 1 21a, b 2 � 5x 0 a � x � b6   3a, b 4 � 5x 0 a 
 x 
 b6
3a, b 4 1a, b 2

S � V � �

S � T � 54, 56S � T � 51, 2, 3, 4, 5, 6, 76

A � 5x 0 x is an integer and 0 � x � 76
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T
64748

1, 2, 3, 4, 5, 6, 7, 8
14243 123

S V

a b

Figure 5

The open interval 1a, b 2
a b

Figure 6

The closed interval 3a, b 4

The symbol q (“infinity”) does not
stand for a number. The notation ,
for instance, simply indicates that the
interval has no endpoint on the right but
extends infinitely far in the positive 
direction.

1a,q 2

Notation Set description Graph

� (set of all real numbers)1�q,q 2 5x 0 x 
 b61�q, b 4 5x 0 x � b61�q, b 2 5x 0 a 
 x63a,q 2 5x 0 a � x61a,q 2 5x 0 a � x 
 b61a, b 4 5x 0 a 
 x � b63a, b 2 5x 0 a 
 x 
 b63a, b 4 a b

a b

a b

a b

a

a

b

b

5x 0 a � x � b61a, b 2



Example 5 Graphing Intervals

Express each interval in terms of inequalities, and then graph the interval.

(a)

(b)

(c) ■

Example 6 Finding Unions and Intersections of Intervals

Graph each set.

(a) (b)

Solution

(a) The intersection of two intervals consists of the numbers that are in both 
intervals. Therefore

This set is illustrated in Figure 7.

(b) The union of two intervals consists of the numbers that are in either one 
interval or the other (or both). Therefore

This set is illustrated in Figure 8.

� 5x 0 1 � x 
 76 � 11, 7 411, 3 2 � 32, 7 4 � 5x 0 1 � x � 3 or 2 
 x 
 76
� 5x 0 2 
 x � 36 � 32, 3 211, 3 2 � 32, 7 4 � 5x 0 1 � x � 3 and 2 
 x 
 76
11, 3 2 � 32, 7 411, 3 2 � 32, 7 4

1�3,q 2 � 5x 0 �3 � x631.5, 4 4 � 5x 0 1.5 
 x 
 463�1, 2 2 � 5x 0 �1 
 x � 26

8 CHAPTER 1 Fundamentals

_3 0

1.5 40

_1 20

No Smallest or Largest

Number in an Open Interval

Any interval contains infinitely
many numbers—every point on the
graph of an interval corresponds to
a real number. In the closed inter-
val , the smallest number is 0
and the largest is 1, but the open in-
terval contains no smallest or
largest number. To see this, note
that 0.01 is close to zero, but 0.001
is closer, 0.0001 closer yet, and so
on. So we can always find a num-
ber in the interval closer to
zero than any given number. Since
0 itself is not in the interval, the in-
terval contains no smallest number.
Similarly, 0.99 is close to 1, but
0.999 is closer, 0.9999 closer yet,
and so on. Since 1 itself is not in
the interval, the interval has no
largest number.

10, 1 2
10, 1 230, 1 4

0.10 0.01

0.010 0.001

0.0001 0.0010 30 1

70 2

30 2

(1, 3)

[2, 7]

[2, 3)

30 1

70 2

10 7

(1, 3)

[2, 7]

(1, 7]

Figure 711, 3 2 � 32, 7 4 � 32, 3 2 Figure 8

■11, 3 2 � 32, 7 4 � 11, 7 4
Absolute Value and Distance

The absolute value of a number a, denoted by , is the distance from a to 0 on 
the real number line (see Figure 9). Distance is always positive or zero, so we have

for every number a. Remembering that �a is positive when a is negative,
we have the following definition.
0 a 0 � 0

0 a 0
50_3

| 5 |=5| _3 |=3

Figure 9



Example 7 Evaluating Absolute Values of Numbers

(a)

(b)

(c)

(d) ■

When working with absolute values, we use the following properties.

0 3 � p 0 � �13 � p 2 � p � 3  1since 3 � p 1  3 � p � 0 20 0 0 � 0

0 �3 0 � �1�3 2 � 3

0 3 0 � 3

SECTION 1.1 Real Numbers 9

Definition of Absolute Value

If a is a real number, then the absolute value of a is0 a 0 � e a if a � 0

�a if a � 0

Properties of Absolute Value

Property Example Description

1. The absolute value of 
a number is always 
positive or zero.

2. A number and its 
negative have the same
absolute value.

3. The absolute value of a
product is the product of
the absolute values.

4. The absolute value of a 
quotient is the quotient
of the absolute values.

` 12

�3
` �

0 12 00 �3 0` a
b
` �
0 a 00 b 0

0 �2 # 5 0 � 0 �2 0 0 5 00 ab 0 � 0 a 0 0 b 0
0 5 0 � 0 �5 00 a 0 � 0 �a 0
0 �3 0 � 3 � 00 a 0 � 0

What is the distance on the real line between the numbers �2 and 11? From 
Figure 10 we see that the distance is 13. We arrive at this by finding either

or . From this observation we make the fol-
lowing definition (see Figure 11).

0 1�2 2 � 11 0 � 130 11 � 1�2 2 0 � 13

Distance between Points on the Real Line

If a and b are real numbers, then the distance between the points a and b on
the real line is

d1a, b 2 � 0 b � a 0

110_2

13

ba

| b-a |

Figure 10

Figure 11

Length of a line segment � 0 b � a 0
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1–2 ■ List the elements of the given set that are

(a) natural numbers

(b) integers

(c) rational numbers

(d) irrational numbers

1.

2.

3–10 ■ State the property of real numbers being used.

3.

4.

5.

6.

7.

8.

9.

10.

11–14 ■ Rewrite the expression using the given property of 
real numbers.

11. Commutative Property of addition,

12. Associative Property of multiplication,

13. Distributive Property,

14. Distributive Property,

15–20 ■ Use properties of real numbers to write the expression
without parentheses.

15. 16.

17. 18.

19. 20. 13a 2 1b � c � 2d 2� 5
2 12x � 4y 2 4

3 1�6y 2412m 2 1a � b 2831x � y 2
5x � 5y �

41A � B 2 �

713x 2 �

x � 3 �

71a � b � c 2 � 71a � b 2 � 7c

2x13 � y 2 � 13 � y 22x

1x � a 2 1x � b 2 � 1x � a 2x � 1x � a 2b15x � 1 23 � 15x � 3

21A � B 2 � 2A � 2B

1x � 2y 2 � 3z � x � 12y � 3z2213 � 5 2 � 13 � 5 227 � 10 � 10 � 7

51.001, 0.333. . . , �p, �11, 11, 13
15, 116, 3.14, 15

3 650, �10, 50, 22
7 , 0.538, 17, 1.23, � 1

3, 13 26

21–26 ■ Perform the indicated operations.

21. (a) (b)

22. (a) (b)

23. (a) (b)

24. (a) (b)

25. (a) (b)

26. (a) (b)

27–28 ■ Place the correct symbol (�, 	, or �) in the space.

27. (a) (b) (c)

28. (a) (b) (c)

29–32 ■ State whether each inequality is true or false.

29. (a) �6 � �10 (b)

30. (a) (b)

31. (a) (b) 8 
 9

32. (a) (b) 8 
 8

33–34 ■ Write each statement in terms of inequalities.

33. (a) x is positive

(b) t is less than 4

(c) a is greater than or equal to p

(d) x is less than and is greater than �5

(e) The distance from p to 3 is at most 5

34. (a) y is negative

(b) z is greater than 1

(c) b is at most 8

1
3

1.1 	 1.1

�p 	 �3

�
1

2
� �1

10

11
�

12

13

12 	 1.41

0 �0.67 00 0.67 0�0.672
30.672

3

7
23.5� 7

2�37
23

2
5 � 1

2
1
10 � 3

15

2 � 3
4

1
2 � 1

3

1
12

1
8 � 1

9

2
2
3

�
2
3

2

A12 � 1
3B A12 � 1

3BA3 � 1
4B A1 � 4

5B 0.25A89 � 1
2B2

3A6 � 3
2B 1 � 5

8 � 1
6

2
3 � 3

5

1
4 � 1

5
3
10 � 4

15

From Property 6 of negatives it follows that . This confirms
that, as we would expect, the distance from a to b is the same as the distance from 
b to a.

Example 8 Distance between Points on the Real Line

The distance between the numbers �8 and 2 is

We can check this calculation geometrically, as shown in Figure 12. ■

1.1 Exercises

d1a, b 2 � 0 �8 � 2 0 � 0 �10 0 � 10

0 b � a 0 � 0 a � b 0

20_8

10

Figure 12
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(d) „ is positive and is less than or equal to 17

(e) y is at least 2 units from p

35–38 ■ Find the indicated set if

A � {1, 2, 3, 4, 5, 6, 7} B � {2, 4, 6, 8} 

C � {7, 8, 9, 10}

35. (a) A � B (b) A � B

36. (a) B � C (b) B � C

37. (a) A � C (b) A � C

38. (a) A � B � C (b) A � B � C

39–40 ■ Find the indicated set if

39. (a) B � C (b) B � C

40. (a) A � C (b) A � B

41–46 ■ Express the interval in terms of inequalities, and then
graph the interval.

41. 42.

43. 44.

45. 46.

47–52 ■ Express the inequality in interval notation, and then
graph the corresponding interval.

47. x 
 1 48. 1 
 x 
 2

49. �2 � x 
 1 50. x � �5

51. x 	 �1 52. �5 � x � 2

53–54 ■ Express each set in interval notation.

53. (a)

(b)

54. (a)

(b)

55–60 ■ Graph the set.

55. 56.

57. 58.

59. 60.

61–66 ■ Evaluate each expression.

61. (a) (b)

62. (a) (b) 0 10 � p 00 15 � 5 0 0 �73 00 100 0
1�q, 6 4 � 12, 10 21�q, �4 2 � 14,q 2 3�4, 6 2 � 30, 8 23�4, 6 4 � 30, 8 2 1�2, 0 2 � 1�1, 1 21�2, 0 2 � 1�1, 1 2

−2 0

20

5−3 0

5−3 0

1�q, 1 232,q 2 3�6, � 1
2 432, 8 2 12, 8 41�3, 0 2

C � 5x 0 �1 � x 
 56B � 5x 0 x � 46A � 5x 0 x � �26

63. (a) @ @ (b)

64. (a) @ @ (b) @ @
65. (a) (b)

66. (a) (b)

67–70 ■ Find the distance between the given numbers.

67.

68.

69. (a) 2 and 17

(b) �3 and 21

(c) and

70. (a) and

(b) �38 and �57

(c) �2.6 and �1.8

71–72 ■ Express each repeating decimal as a fraction. (See the
margin note on page 2.)

71. (a) (b) (c)

72. (a) (b) (c)

Applications

73. Area of a Garden Mary’s backyard vegetable garden
measures 20 ft by 30 ft, so its area is 20 � 30 � 600 ft 2.
She decides to make it longer, as shown in the figure, so 
that the area increases to . Which property
of real numbers tells us that the new area can also be written 
A � 600 � 20x?

74. Temperature Variation The bar graph shows the daily
high temperatures for Omak, Washington, and Geneseo,
New York, during a certain week in June. Let TO represent
the temperature in Omak and TG the temperature in Gene-
seo. Calculate TO � TG and for each day shown.0 TO � TG 0

x30 ft

20 ft

A � 20130 � x 2

2.1351.375.23

0.570.280.7

� 1
21

7
15

� 3
10

11
8

321−3 −2 −1 0

321−3 −2 −1 0

` 7 � 12

12 � 7
`` �6

24
` 0 A� 1

3B 1�15 2 00 1�2 2 # 6 0 1 � 0 �1 0�1 �2 � 0 �12 0
�10 �1 00 �6 0 � 0 �4 0



1.2 Exponents and Radicals

In this section we give meaning to expressions such as am/n in which the exponent
m/n is a rational number. To do this, we need to recall some facts about integer ex-
ponents, radicals, and nth roots.

Integer Exponents

A product of identical numbers is usually written in exponential notation. For ex-
ample, is written as 53. In general, we have the following definition.5 # 5 # 5

12 CHAPTER 1 Fundamentals

Which of these two values gives more information?

75. Mailing a Package The post office will only accept 
packages for which the length plus the “girth” (distance
around) is no more than 108 inches. Thus, for the package
in the figure, we must have

(a) Will the post office accept a package that is 6 in. wide,
8 in. deep, and 5 ft long? What about a package that
measures 2 ft by 2 ft by 4 ft?

(b) What is the greatest acceptable length for a package
that has a square base measuring 9 in. by 9 in?

Discovery • Discussion

76. Signs of Numbers Let a, b, and c be real numbers such
that a 	 0, b � 0, and c � 0. Find the sign of each expression.

(a) �a (b) �b (c) bc

(d) a � b (e) c � a (f ) a � bc

(g) ab � ac (h) �abc (i) ab2

77. Sums and Products of Rational and Irrational 

Numbers Explain why the sum, the difference, and the

6 in.

L

8 in.

5 ft=60 in.
x

y

L � 21x � y 2 
 108

80
Omak, WA
Geneseo, NY

75

70

65
Sun Mon Tue Wed

Day

D
ai

ly
 h

ig
h

te
m

pe
ra

tu
re

 (
*F

)

Thu Fri Sat

80. Irrational Numbers and Geometry Using the follow-
ing figure, explain how to locate the point on a number
line. Can you locate by a similar method? What about

? List some other irrational numbers that can be located
this way.

81. Commutative and Noncommutative Operations

We have seen that addition and multiplication are both 
commutative operations.

(a) Is subtraction commutative?

(b) Is division of nonzero real numbers commutative?

0_1

œ∑2

1 2

1

16
15

12

x 1/x

1
2

10
100

1000

x 1/x

1.0
0.5
0.1
0.01
0.001

product of two rational numbers are rational numbers. 
Is the product of two irrational numbers necessarily 
irrational? What about the sum?

78. Combining Rational Numbers with Irrational 

Numbers Is rational or irrational? Is 
rational or irrational? In general, what can you say about 
the sum of a rational and an irrational number? What about
the product?

79. Limiting Behavior of Reciprocals Complete the tables.
What happens to the size of the fraction 1/x as x gets large?
As x gets small?

1
2
# 121

2 � 12



Example 1 Exponential Notation

(a)

(b)

(c) ■

We can state several useful rules for working with exponential notation. To dis-
cover the rule for multiplication, we multiply 54 by 52:

54 52 � 15 5 5 52 15 52 � 5 5 5 5 5 5 � 56 � 54�2

144424443 123 1444442444443

4 factors 2 factors 6 factors

It appears that to multiply two powers of the same base, we add their exponents. In
general, for any real number a and any positive integers m and n, we have

aman � 1a a . . . a2 1a a . . . a2 � a a a . . . a � am�n

144424443 1442443 144424443

m factors n factors m � n factors

Thus aman � am�n.
We would like this rule to be true even when m and n are 0 or negative integers.

For instance, we must have

But this can happen only if 20 � 1. Likewise, we want to have

and this will be true if 5�4 � 1/54. These observations lead to the following definition.

54 # 5�4 � 54� 1�42 � 54�4 � 50 � 1

20 # 23 � 20�3 � 23

##########

##########

�34 � �13 # 3 # 3 # 3 2 � �81

1�3 2 4 � 1�3 2 # 1�3 2 # 1�3 2 # 1�3 2 � 81

A12B5 � A12B A12B A12B A12B A12B � 1
32
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Exponential Notation

If a is any real number and n is a positive integer, then the nth power of a is

1442443

n factors

The number a is called the base and n is called the exponent.

an � a # a # . . . # a

Note the distinction between 
and �34. In the exponent

applies to �3, but in �34 the exponent
applies only to 3.

1�3 2 41�3 2 4

Zero and Negative Exponents

If a � 0 is any real number and n is a positive integer, then

and a�n �
1

ana0 � 1

Example 2 Zero and Negative Exponents

(a)

(b)

(c) ■1�2 2�3 �
11�2 2 3 �

1

�8
� �

1

8

x�1 �
1

x1 �
1
x

A47B0 � 1



Familiarity with the following rules is essential for our work with exponents and
bases. In the table the bases a and b are real numbers, and the exponents m and n are
integers.

14 CHAPTER 1 Fundamentals

Laws of Exponents

Law Example Description

1. aman � am�n 32 35 � 32�5 � 37 To multiply two powers of the same number, add the exponents.

2. To divide two powers of the same number, subtract the exponents.

3. To raise a power to a new power, multiply the exponents.

4. To raise a product to a power, raise each factor to the power.

5.
To raise a quotient to a power, raise both numerator and 
denominator to the power.

a 3

4
b 2

�
32

42a a

b
b n

�
an

bn

13 # 4 2 2 � 32 # 421ab 2 n � anbn

132 2 5 � 32 #5 � 3101am 2 n � amn

35

32 � 35�2 � 33am

an � am�n

#

■ Proof of Law 3 If m and n are positive integers, we have1am2 n � 1a a . . . a2 n
1444442444443

m factors

� 1a a . . . a2 1a a . . . a2 . . . 1a a . . . a2
1444442444443 1444442444443 1444442444443

m factors m factors m factors
144444444444424444444444443

n groups of factors

� a a . . . a � amn

1444442444443
mn factors

The cases for which m 
 0 or n 
 0 can be proved using the definition of negative
exponents. ■

■ Proof of Law 4 If n is a positive integer, we have1ab2 n � 1ab2 1ab2 . . . 1ab2 � 1a a . . . a2 1b b . . . b2 � anbn

144424443 1442443 1442443
n factors n factors n factors

Here we have used the Commutative and Associative Properties repeatedly. If n 
 0,
Law 4 can be proved using the definition of negative exponents. ■

You are asked to prove Laws 2 and 5 in Exercise 88.

Example 3 Using Laws of Exponents

(a) x4x7 � x4�7 � x11 Law 1: aman � am�n

(b) Law 1: aman � am�n

(c) Law 2: am/an � am�nc9

c5 � c9�5 � c4

y4y�7 � y4�7 � y�3 �
1

y3

#######

###

#########

###



(d) Law 3: (am)n � amn

(e) Law 4: (ab)n � anbn

(f ) Law 5: (a/b)n � an/bn
■

Example 4 Simplifying Expressions with Exponents

Simplify:

(a) (b)

Solution

(a) Law 4: (ab)n � anbn

Law 3: (am)n � amn

Group factors with the same base

Law 1: aman � am�n

(b) Laws 5 and 4

Law 3

Group factors with the same base

Laws 1 and 2 ■

When simplifying an expression, you will find that many different methods will
lead to the same result; you should feel free to use any of the rules of exponents to ar-
rive at your own method. We now give two additional laws that are useful in simpli-
fying expressions with negative exponents.

�
x7y5

z4

� 1x3x4 2 a y8

y3 b 1

z4

�
x3

y3

y8x4

z4

a x
y
b 3 a y2x

z
b 4

�
x3

y3

1y2 2 4x4

z4

� 54a6b14

� 12 2 127 2a3a3b2b12

� 12a3b2 2 127a3b12 212a3b2 2 13ab4 2 3 � 12a3b2 2 333a31b4 2 3 4
a x

y
b 3 a y2x

z
b 412a3b2 2 13ab4 2 3

a x

2
b 5

�
x5

25 �
x5

32

13x 2 3 � 33x3 � 27x3

1b4 2 5 � b4 #5 � b20
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Laws of Exponents

Law Example Description

6.

7.
To move a number raised to a power from numerator to denominator
or from denominator to numerator, change the sign of the exponent.

3�2

4�5 �
45

32

a�n

b�m �
bm

an

To raise a fraction to a negative power, invert the fraction and change
the sign of the exponent.a 3

4
b�2

� a 4

3
b 2a a

b
b�n

� a b
a
b n

■ Proof of Law 7 Using the definition of negative exponents and then 
Property 2 of fractions (page 5), we have

■

You are asked to prove Law 6 in Exercise 88.

a�n

b�m �
1/an

1/bm �
1

an
# bm

1
�

bm

an



Example 5 Simplifying Expressions with Negative 

Exponents

Eliminate negative exponents and simplify each expression.

(a) (b)

Solution

(a) We use Law 7, which allows us to move a number raised to a power from the
numerator to the denominator (or vice versa) by changing the sign of the 
exponent.

Law 7

Law 1

(b) We use Law 6, which allows us to change the sign of the exponent of a fraction
by inverting the fraction.

Law 6

Laws 5 and 4 ■

Scientific Notation

Exponential notation is used by scientists as a compact way of writing very large
numbers and very small numbers. For example, the nearest star beyond the sun, Prox-
ima Centauri, is approximately 40,000,000,000,000 km away. The mass of a hydro-
gen atom is about 0.00000000000000000000000166 g. Such numbers are difficult to
read and to write, so scientists usually express them in scientific notation.

�
9z6

y2

a y

3z3 b�2

� a 3z3

y
b 2

�
3s3

t6

6st� 4

2s�2t2 �
6ss2

2t2t4

a y

3z3 b�26st�4

2s�2t2
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Scientific Notation

A positive number x is said to be written in scientific notation if it is ex-
pressed as follows:

x � a � 10n  where 1 
 a � 10 and n is an integer

For instance, when we state that the distance to the star Proxima Centauri is 
4 � 1013 km, the positive exponent 13 indicates that the decimal point should be
moved 13 places to the right:

4 � 1013 � 40,000,000,000,000

Mathematics in the

Modern World

Although we are often unaware of
its presence, mathematics perme-
ates nearly every aspect of life in
the modern world. With the advent
of modern technology, mathemat-
ics plays an ever greater role in our
lives. Today you were probably
awakened by a digital alarm clock,
made a phone call that used digital
transmission, sent an e-mail mes-
sage over the Internet, drove a car
with digitally controlled fuel injec-
tion, listened to music on a CD
player, then fell asleep in a room
whose temperature is controlled by
a digital thermostat. In each of these
activities mathematics is crucially
involved. In general, a property
such as the intensity or frequency of
sound, the oxygen level in the ex-
haust emission from a car, the col-
ors in an image, or the temperature
in your bedroom is transformed
into sequences of numbers by so-
phisticated mathematical algo-
rithms. These numerical data,
which usually consist of many mil-
lions of bits (the digits 0 and 1), are
then transmitted and reinterpreted.
Dealing with such huge amounts of
data was not feasible until the in-
vention of computers, machines
whose logical processes were in-
vented by mathematicians.

The contributions of mathemat-
ics in the modern world are not
limited to technological advances.
The logical processes of mathe-
matics are now used to analyze
complex problems in the social,
political, and life sciences in new
and surprising ways. Advances in
mathematics continue to be made,
some of the most exciting of these
just within the past decade.

In other Mathematics in the
Modern World, we will describe in
more detail how mathematics 
affects all of us in our everyday 
activities. Move decimal point 13 places to the right.

t�4 moves to denominator
and becomes t4.

s�2 moves to numerator
and becomes s2.



When we state that the mass of a hydrogen atom is 1.66 � 10�24 g, the exponent �24
indicates that the decimal point should be moved 24 places to the left:

Example 6 Writing Numbers in Scientific Notation

(a) 327,900 � 3.279 � 105 (b) 0.000627 � 6.27 � 10�4
14243 14243

5 places 4 places ■

Scientific notation is often used on a calculator to display a very large or very
small number. For instance, if we use a calculator to square the number 1,111,111,
the display panel may show (depending on the calculator model) the approximation

or

Here the final digits indicate the power of 10, and we interpret the result as

Example 7 Calculating with Scientific Notation

If a � 0.00046, b � 1.697 � 1022, and c � 2.91 � 10�18, use a calculator to 
approximate the quotient ab/c.

Solution We could enter the data using scientific notation, or we could use laws
of exponents as follows:

We state the answer correct to two significant figures because the least accurate 
of the given numbers is stated to two significant figures. ■

Radicals

We know what 2n means whenever n is an integer. To give meaning to a power, such
as 24/5, whose exponent is a rational number, we need to discuss radicals.

The symbol means “the positive square root of.” Thus

Since a � b2 � 0, the symbol makes sense only when a � 0. For instance,

19 � 3  because  32 � 9  and  3 � 0

1a

1 

� 2.7 � 1036

�
14.6 2 11.697 2

2.91
� 10�4�22�18

ab
c

�
14.6 � 10�4 2 11.697 � 1022 2

2.91 � 10�18

1.234568 � 1012

1.23468 E121.234568 12

1.66 � 10�24 � 0.00000000000000000000000166
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Move decimal point 24 places to the left.

To use scientific notation on a calcula-
tor, press the key labeled or 

or to enter the exponent. 
For example, to enter the number 
3.629 � 1015 on a TI-83 calculator,
we enter

3.629 15

and the display reads

3.629E15

EE2ND

EEXEXP

EE

It is true that the number 9 has two
square roots, 3 and �3, but the notation

is reserved for the positive square
root of 9 (sometimes called the princi-
pal square root of 9). If we want the
negative root, we must write ,
which is �3.

�19

19
� b means b 2 � a and b � 01a



Square roots are special cases of nth roots. The nth root of x is the number that,
when raised to the nth power, gives x.

18 CHAPTER 1 Fundamentals

Definition of nth Root

If n is any positive integer, then the principal nth root of a is defined as 
follows:

If n is even, we must have a � 0 and b � 0.

1n a � b  means  bn � a

Thus

But , , and are not defined. (For instance, is not defined 
because the square of every real number is nonnegative.)

Notice that

So, the equation is not always true; it is true only when a � 0. However,
we can always write . This last equation is true not only for square roots,
but for any even root. This and other rules used in working with nth roots are listed
in the following box. In each property we assume that all the given roots exist.

2a2 � 0 a 02a2 � a

242 � 116 � 4  but  21�4 2 2 � 116 � 4 � 0 �4 0
1�816 �814 �81�8

13 �8 � �2  because  1�2 2 3 � �8

14 81 � 3   because  34 � 81  and  3 � 0

Properties of nth Roots

Property Example

1.

2.

3. 3mn
a
_

4. if n is odd

5. if n is even 24 1�3 2 4 � 0 �3 0 � 32n an � 0 a 0 23 1�5 2 3 � �5, 25 25 � 22n an � a

313 729 � 16 729 � 33m 1n a �

B4
16

81
�
14 16

14 81
�

2

3Bn
a

b
�
2n a

2n b

13 �8 # 27 � 13 �813 27 � 1�2 2 13 2 � �62n ab � 2n a2n b

Example 8 Simplifying Expressions Involving nth Roots

(a) Factor out the largest cube

Property 1: 

Property 4: 23 a3 � a� x23 x

13 ab � 13 a13 b� 23 x323 x

23 x4 � 23 x3x



Avoid making the following error:

For instance, if we let a � 9 and 
b � 16, then we see the error:

5 � 7  Wrong!

125 � 3 � 4

19 � 16 � 19 � 116

1a � b � 1a � 1b

(b) Property 1: 

Property 5: 

Property 5: ■

It is frequently useful to combine like radicals in an expression such as
. This can be done by using the Distributive Property. Thus

The next example further illustrates this process.

Example 9 Combining Radicals

(a) Factor out the largest squares

Property 1: 

Distributive Property

(b) If b 	 0, then

Property 1: 

Property 5, b 	 0

Distributive Property ■

Rational Exponents

To define what is meant by a rational exponent or, equivalently, a fractional exponent
such as a1/3, we need to use radicals. In order to give meaning to the symbol a1/n in a
way that is consistent with the Laws of Exponents, we would have to have

So, by the definition of nth root,

In general, we define rational exponents as follows.

1a1/n 2 n � a 11/n2n � a1 � a

� 15 � b 22b

� 52b � b2b

1ab � 1a1b225b � 2b3 � 2252b � 2b22b

� 412 � 1012 � 1412

1ab � 1a1b� 11612 � 110012

132 � 1200 � 116 # 2 � 1100 # 2

213 � 513 � 12 � 5 213 � 713

213 � 513

24 a4 � 0 a 0 , 0 x2 0 � x2� 3x2 0 y 0 24 a4 � 0 a 0� 324 1x2 2 4 0 y 0 24 abc � 24 a24 b24 c24 81x8y4 � 24 8124 x824 y4
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Definition of Rational Exponents

For any rational exponent m/n in lowest terms, where m and n are integers
and n 	 0, we define

If n is even, then we require that a � 0.

am/n � 11n a 2m  or equivalently  am/n � 2n am

With this definition it can be proved that the Laws of Exponents also hold for ra-
tional exponents.

a1/n � 1n a



Example 10 Using the Definition of Rational Exponents

(a)

(b) Alternative solution:

(c)

(d) ■

Example 11 Using the Laws of Exponents 

with Rational Exponents

(a) Law 1: aman � am�n

(b) Law 1, Law 2: 

(c) Law 4: 

Law 3: 

(d) Laws 5, 4, and 7

Law 3

Laws 1 and 2 ■

Example 12 Simplifying by Writing Radicals 

as Rational Exponents

(a) Definition of rational exponents

Law 1

(b) Definition of rational exponents

Law 1

Law 3 ■

Rationalizing the Denominator

It is often useful to eliminate the radical in a denominator by multiplying both nu-
merator and denominator by an appropriate expression. This procedure is called ra-
tionalizing the denominator. If the denominator is of the form , we multiply
numerator and denominator by . In doing this we multiply the given quantity by
1, so we do not change its value. For instance,

1

1a
�

1

1a
# 1 �

1

1a
# 1a

1a
�
1a
a

1a
1a

� x3/4

� 1x3/2 2 1/2

3x2x � 1xx1/2 2 1/2

� 6x1/2�1/3 � 6x5/6

121x 2 1313 x 2 � 12x1/2 2 13x1/3 2
� 8x11/4y3

�
8x9/4

y
# y4x1/2

a 2x3/4

y1/3
b 3 a y4

x�1/2
b �

231x3/4 2 31y1/3 2 3 # 1y4x1/2 2� 212a9/2b6

1am 2 n � amn� 112 2 3a313/22b413/22 1abc 2 n � anbncn12a3b4 2 3/2 � 23/21a3 2 3/21b4 2 3/2

am

an � am�na2/5a7/5

a3/5
� a2/5�7/5�3/5 � a6/5

a1/3a7/3 � a8/3

1

23 x4
�

1

x4/3
� x�4/3

125�1/3 �
1

1251/3
�

1

13 125
�

1

5

82/3 � 23 82 � 23 64 � 482/3 � 113 8 2 2 � 22 � 4

41/2 � 14 � 2
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Diophantus lived in Alexandria
about 250 A.D. His book Arith-
metica is considered the first book
on algebra. In it he gives methods
for finding integer solutions of al-
gebraic equations. Arithmetica was
read and studied for more than a
thousand years. Fermat (see page
652) made some of his most im-
portant discoveries while studying
this book. Diophantus’ major con-
tribution is the use of symbols to
stand for the unknowns in a prob-
lem. Although his symbolism is
not as simple as what we use today,
it was a major advance over writing
everything in words. In Diophan-
tus’ notation the equation

is written

K©å �h ©zM°´iskd

Our modern algebraic notation did
not come into common use until
the 17th century.

c

x5 � 7x2 � 8x � 5 � 24
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1–8 ■ Write each radical expression using exponents, and each
exponential expression using radicals.

Radical expression Exponential expression

1.

2.

3. 42/3

4. 11�3/2

5.

6. 2�1.5

7. a2/5

8.

9–18 ■ Evaluate each expression.

9. (a) �32 (b) (c)

10. (a) (b) (c)

11. (a) (b) (c)

12. (a) (b) (c)

13. (a) (b) (c)

14. (a) (b) (c)

15. (a) (b) (c)
15 �3

15 96B3
�1

64B3
8

27

15 �3213 �64164

14 1/1614 16116

A12B4 # A52B�2A32B�2 # 9
16A23B�3

A14B�23�2

9

4�3

2�8

3

3�2

107

10452 # A15B3
1�3 2 01�3 2 2

1

2x5

25 53

23 72

1

15

16. (a) (b) (c)

17. (a) (b) (c)

18. (a) 1024�0.1 (b) (c)

19–22 ■ Evaluate the expression using x � 3, y � 4, and 
z � �1.

19. 20.

21. 22.

23–26 ■ Simplify the expression.

23. 24.

25. 26.

27–44 ■ Simplify the expression and eliminate any negative 
exponent(s).

27. a9a�5 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40. a c4d 3

cd 2 b a d 2

c3 b 31x2y3 2 41xy4 2�3

x2y

12x3 2 213x4 21x3 2 416y3 2 4
2y5

12u2√3 2 313u3√ 2�21rs 2 312s 2�214r 2 4 12s3t�1 2 A14s6B 116t4 2b4A13b2B 112b�8 2
a�3b4

a�5b5

x912x 2 4
x3

16y 2 3112x2y4 2 A12 x5yB 13y2 2 14y5 2
14 48 � 14 315 96 � 15 3

175 � 148132 � 118

1xy 2 2z19x 2 2/3 � 12y 2 2/3 � z2/3

24 x3 � 14y � 2z2x2 � y2

A25
64B�3/2A� 27

8 B2/3

�322/51�32 2 2/5A49B�1/2

14 2414 54
148

13
17128

Note that the denominator in the last fraction contains no radical. In general, if the
denominator is of the form with m � n, then multiplying the numerator and de-
nominator by will rationalize the denominator, because (for a 	 0)

Example 13 Rationalizing Denominators

(a)

(b)

(c) ■

1.2 Exercises

B7
1

a2 �
1

27 a2
�

1

27 a2

27 a5

27 a5
�
27 a5

27 a7
�
27 a5

a

1

23 x2
�

1

23 x2

13 x

13 x
�
13 x

23 x3
�
13 x
x

2

13
�

2

13
# 13

13
�

213

3

2n am2n an�m � 2n am�n�m � 2n an � a

2n an�m
2n am
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41. 42.

43. 44.

45–52 ■ Simplify the expression. Assume the letters denote any
real numbers.

45. 46.

47. 48.

49. 50.

51. 52.

53–70 ■ Simplify the expression and eliminate any negative 
exponent(s). Assume that all letters denote positive numbers.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71–72 ■ Write each number in scientific notation.

71. (a) 69,300,000 (b) 7,200,000,000,000

(c) 0.000028536 (d) 0.0001213

72. (a) 129,540,000 (b) 7,259,000,000

(c) 0.0000000014 (d) 0.0007029

73–74 ■ Write each number in decimal notation.

73. (a) 3.19 � 105 (b) 2.721 � 108

(c) 2.670 � 10�8 (d) 9.999 � 10�9

74. (a) 7.1 � 1014 (b) 6 � 1012

(c) 8.55 � 10�3 (d) 6.257 � 10�10

75–76 ■ Write the number indicated in each statement in 
scientific notation.

75. (a) A light-year, the distance that light travels in one year,
is about 5,900,000,000,000 mi.

a a2b�3

x�1y2 b 3 a x�2b�1

a3/2y1/3
b19st 2 3/2127s3t�4 2 2/3

1y10z�5 2 1/51y�2z3 2 1/3
a 3a�2

4b�1/3
b�1

a�2x1/3

y1/2z1/6
b 4a x6y

y4 b 5/2

1x�5y3z10 2�3/512x4y�4/5 2 318y2 2 2/3

1a2/5 2�3/41y3/4 2 2/3

14x6y8 2 3/21c2d 3 2�1/3

18x6 2�2/314b 2 1/218b2/5 2 1�2a3/4 2 15a3/2 21�3a1/4 2 19a 2�3/2

12x3/2 2 14x 2�1/2x2/3x1/5

24 x4y2z233 264x6

23 a2b23 a4b2a2b6

23 x3y624 16x8

25 x1024 x4

13ab2c 2 a 2a2b

c3 b�2a q�1rs�2

r �5sq�8 b�1

a xy�2z�3

x2y3z�4 b�31xy2z3 2 41x3y2z 2 3 (b) The diameter of an electron is about 
0.0000000000004 cm.

(c) A drop of water contains more than 33 billion billion
molecules.

76. (a) The distance from the earth to the sun is about 
93 million miles.

(b) The mass of an oxygen molecule is about
0.000000000000000000000053 g.

(c) The mass of the earth is about
5,970,000,000,000,000,000,000,000 kg.

77–82 ■ Use scientific notation, the Laws of Exponents, and 
a calculator to perform the indicated operations. State your 
answer correct to the number of significant digits indicated by
the given data.

77.

78.

79.

80.

81. 82.

83–86 ■ Rationalize the denominator.

83. (a) (b) (c)

84. (a) (b) (c)

85. (a) (b) (c)

86. (a) (b) (c)

87. Let a, b, and c be real numbers with a 	 0, b � 0, and 
c � 0. Determine the sign of each expression.

(a) b5 (b) b10 (c) ab2c3

(d) (e) (f)

88. Prove the given Laws of Exponents for the case in which m
and n are positive integers and m 	 n.

(a) Law 2 (b) Law 5 (c) Law 6

Applications

89. Distance to the Nearest Star Proxima Centauri, the star
nearest to our solar system, is 4.3 light-years away. Use the

a3c3

b6c61b � a 2 41b � a 2 3

1

c3/7

a

23 b2

1

14 a

x

y2/5

1

24 y3

2

13 x

B
y

2zB
x

6B
5

12

B
x

3B
2
x

1

110

13.542 � 10�6 2 915.05 � 104 2 12

10.0000162 2 10.01582 21594,621,000 2 10.0058 2
173.1 2 11.6341 � 1028 2

0.0000000019

1.295643 � 10913.610 � 10�17 2 12.511 � 106 2
11.062 � 1024 2 18.61 � 1019 217.2 � 10�9 2 11.806 � 10�12 2
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information in Exercise 75(a) to express this distance in
miles.

90. Speed of Light The speed of light is about 186,000 mi/s.
Use the information in Exercise 76(a) to find how long it
takes for a light ray from the sun to reach the earth.

91. Volume of the Oceans The average ocean depth is 
3.7 � 103 m, and the area of the oceans is 3.6 � 1014 m2.
What is the total volume of the ocean in liters? (One cubic
meter contains 1000 liters.)

92. National Debt As of November 2004, the population of
the United States was 2.949 � 108, and the national debt
was 7.529 � 1012 dollars. How much was each person’s
share of the debt?

93. Number of Molecules A sealed room in a hospital,
measuring 5 m wide, 10 m long, and 3 m high, is filled 
with pure oxygen. One cubic meter contains 1000 L,
and 22.4 L of any gas contains 6.02 � 1023 molecules
(Avogadro’s number). How many molecules of oxygen 
are there in the room?

94. How Far Can You See? Due to the curvature of the
earth, the maximum distance D that you can see from the
top of a tall building of height h is estimated by the formula

where r � 3960 mi is the radius of the earth and D and h
are also measured in miles. How far can you see from the
observation deck of the Toronto CN Tower, 1135 ft above
the ground?

r

CN Tower 

D � 22rh � h2

95. Speed of a Skidding Car Police use the formula
to estimate the speed s (in mi/h) at which a car

is traveling if it skids d feet after the brakes are applied sud-
denly. The number f is the coefficient of friction of the road,
which is a measure of the “slipperiness” of the road. The
table gives some typical estimates for f.

s � 230fd

(a) If a car skids 65 ft on wet concrete, how fast was it
moving when the brakes were applied?

(b) If a car is traveling at 50 mi/h, how far will it skid on
wet tar?

96. Distance from the Earth to the Sun It follows from
Kepler’s Third Law of planetary motion that the average
distance from a planet to the sun (in meters) is

where M � 1.99 � 1030 kg is the mass of the sun,
G � 6.67 � 10�11 is the gravitational constant,
and T is the period of the planet’s orbit (in seconds). 
Use the fact that the period of the earth’s orbit is about 
365.25 days to find the distance from the earth to the sun.

97. Flow Speed in a Channel The speed of water flowing in
a channel, such as a canal or river bed, is governed by the
Manning Equation

Here V is the velocity of the flow in ft/s; A is the cross-
sectional area of the channel in square feet; S is the down-
ward slope of the channel; p is the wetted perimeter in feet
(the distance from the top of one bank, down the side of the
channel, across the bottom, and up to the top of the other
bank); and n is the roughness coefficient (a measure of the
roughness of the channel bottom). This equation is used to
predict the capacity of flood channels to handle runoff from

V � 1.486
A2/3S1/2

p2/3n

N # m2/kg2

d � aGM

4p2 b 1/3

T 2/3

Tar Concrete Gravel

Dry 1.0 0.8 0.2
Wet 0.5 0.4 0.1



1.3 Algebraic Expressions

A variable is a letter that can represent any number from a given set of numbers. If
we start with variables such as x, y, and z and some real numbers, and combine them
using addition, subtraction, multiplication, division, powers, and roots, we obtain an
algebraic expression. Here are some examples:

A monomial is an expression of the form axk, where a is a real number and k is a
nonnegative integer. A binomial is a sum of two monomials and a trinomial is a sum
of three monomials. In general, a sum of monomials is called a polynomial. For ex-
ample, the first expression listed above is a polynomial, but the other two are not.

2x2 � 3x � 4   1x � 10   
y � 2z

y2 � 4

24 CHAPTER 1 Fundamentals

heavy rainfalls. For the canal shown in the figure,
A � 75 ft 2, S � 0.050, p � 24.1 ft, and n � 0.040.

(a) Find the speed with which water flows through this
canal.

(b) How many cubic feet of water can the canal discharge
per second? [Hint: Multiply V by A to get the volume of
the flow per second.]

Discovery • Discussion

98. How Big Is a Billion? If you have a million (106) dollars in
a suitcase, and you spend a thousand (103) dollars each day,
how many years would it take you to use all the money?
Spending at the same rate, how many years would it take
you to empty a suitcase filled with a billion (109) dollars?

5 ft

10 ft

20 ft

Construct a similar table for n1/n. What happens to the nth
root of n as n gets large?

101. Comparing Roots Without using a calculator, deter-
mine which number is larger in each pair.

(a) 21/2 or 21/3 (b) or

(c) 71/4 or 41/3 (d) or 1313 5

A12B1/3A12B1/2

n 21/n

1
2
5

10
100

n

1
2
5

10
100

A12 B1/n

99. Easy Powers That Look Hard Calculate these expres-
sions in your head. Use the Laws of Exponents to help you.

(a) (b)

100. Limiting Behavior of Powers Complete the following
tables. What happens to the nth root of 2 as n gets large?
What about the nth root of ?1

2

206 # 10.5 2 6185

95

Polynomials

A polynomial in the variable x is an expression of the form

where a0, a1, . . . , an are real numbers, and n is a nonnegative integer. If 
an � 0, then the polynomial has degree n. The monomials akxk that make up
the polynomial are called the terms of the polynomial.

anxn � an�1x
n�1 � . . . � a1x � a0



Note that the degree of a polynomial is the highest power of the variable that ap-
pears in the polynomial.
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Polynomial Type Terms Degree

2x 2 � 3x � 4 trinomial 2x 2, �3x, 4 2

x 8 � 5x binomial x 8, 5x 8

3 � x � x 2 � four terms , x 2, �x, 3 3

5x � 1 binomial 5x, 1 1

9x 5 monomial 9x 5 5

6 monomial 6 0

� 1
2 x31

2 x3

Combining Algebraic Expressions

We add and subtract polynomials using the properties of real numbers that were dis-
cussed in Section 1.1. The idea is to combine like terms (that is, terms with the same
variables raised to the same powers) using the Distributive Property. For instance,

In subtracting polynomials we have to remember that if a minus sign precedes an ex-
pression in parentheses, then the sign of every term within the parentheses is changed
when we remove the parentheses:

[This is simply a case of the Distributive Property, , with 
a � �1.]

Example 1 Adding and Subtracting Polynomials

(a) Find the sum .

(b) Find the difference .

Solution

(a)

Group like terms

Combine like terms

(b)

Distributive Property

Group like terms

Combine like terms ■

To find the product of polynomials or other algebraic expressions, we need to use
the Distributive Property repeatedly. In particular, using it three times on the product
of two binomials, we get1a � b 2 1c � d 2 � a1c � d 2 � b1c � d 2 � ac � ad � bc � bd

� �11x2 � 9x � 4

� 1x3 � x3 2 � 1�6x2 � 5x2 2 � 12x � 7x 2 � 4

� x3 � 6x2 � 2x � 4 � x3 � 5x2 � 7x

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2� 2x3 � x2 � 5x � 4

� 1x3 � x3 2 � 1�6x2 � 5x2 2 � 12x � 7x 2 � 4

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2
1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 21x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2

a1b � c 2 � ab � ac

�1b � c 2 � �b � c

5x7 � 3x7 � 15 � 3 2x7 � 8x7

Distributive Property

ac � bc � 1a � b 2c
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The acronym FOIL helps us remember
that the product of two binomials is the
sum of the products of the First terms,
the Outer terms, the Inner terms, and
the Last terms.

Special Product Formulas

If A and B are any real numbers or algebraic expressions, then

1. Sum and product of same terms

2. Square of a sum

3. Square of a difference

4. Cube of a sum

5. Cube of a difference1A � B 2 3 � A3 � 3A2B � 3AB2 � B3

1A � B 2 3 � A3 � 3A2B � 3AB2 � B3

1A � B 2 2 � A2 � 2AB � B2

1A � B 2 2 � A2 � 2AB � B2

1A � B 2 1A � B 2 � A2 � B2

The key idea in using these formulas (or any other formula in algebra) is the 
Principle of Substitution: We may substitute any algebraic expression for any letter
in a formula. For example, to find we use Product Formula 2, substituting
x 2 for A and y 3 for B, to get1x2 � y3 2 2 � 1x2 2 2 � 21x2 2 1y3 2 � 1y3 2 2

1x2 � y3 2 2

See the Discovery Project on page 34
for a geometric interpretation of some
of these formulas.

(A � B)2 � A2 � 2AB � B2

This says that we multiply the two factors by multiplying each term in one factor by
each term in the other factor and adding these products. Schematically we have

� � � �
F O I L

In general, we can multiply two algebraic expressions by using the Distributive
Property and the Laws of Exponents.

Example 2 Multiplying Algebraic Expressions

(a) Distributive 
Property� � � �

F O I L

Combine like 
terms

(b) Distributive
Property

Distributive
Property

Combine like
terms

(c) Distributive 
Property

Combine like 
terms ■

Certain types of products occur so frequently that you should memorize them. You
can verify the following formulas by performing the multiplications.

� 2 � 1x � 3x

11 � 1x 2 12 � 31x 2 � 2 � 31x � 21x � 311x 2 2� x5 � x3 � x2 � 6x � 3

� x5 � 2x3 � x2 � 3x3 � 6x � 3

1x2 � 3 2 1x3 � 2x � 1 2 � x21x3 � 2x � 1 2 � 31x3 � 2x � 1 2� 6x2 � 7x � 5

12x � 1 2 13x � 5 2 � 6x2 � 10x � 3x � 5

1a � b 2 1c � d 2 � ac � ad � bc � bd



Example 3 Using the Special Product Formulas

Use the Special Product Formulas to find each product.

(a) (b) (c)

Solution

(a) Substituting A � 3x and B � 5 in Product Formula 2, we get

(b) Substituting A � x 2 and B � 2 in Product Formula 5, we get

(c) Substituting A � 2x and in Product Formula 1, we get

■

Factoring

We use the Distributive Property to expand algebraic expressions. We sometimes
need to reverse this process (again using the Distributive Property) by factoring an
expression as a product of simpler ones. For example, we can write

We say that x � 2 and x � 2 are factors of x 2 � 4.
The easiest type of factoring occurs when the terms have a common factor.

Example 4 Factoring Out Common Factors

Factor each expression.

(a) (b)

(c)

Solution

(a) The greatest common factor of the terms 3x 2 and �6x is 3x, so we have

(b) We note that

8, 6, and �2 have the greatest common factor 2

x 4, x 3, and x have the greatest common factor x

y 2, y 3, and y 4 have the greatest common factor y 2

So the greatest common factor of the three terms in the polynomial is 2xy 2, and we have

� 2xy214x3 � 3x2y � y2 2 8x4y2 � 6x3y3 � 2xy4 � 12xy2 2 14x3 2 � 12xy2 2 13x2y 2 � 12xy2 2 1�y2 2

3x2 � 6x � 3x 1x � 2 2
12x � 4 2 1x � 3 2 � 51x � 3 2 8x4y2 � 6x3y3 � 2xy43x2 � 6x

x2 � 4 � 1x � 2 2 1x � 2 2

� 4x2 � y

12x � 1y 2 12x � 1y 2 � 12x 2 2 � 11y 2 2B � 1y

� x6 � 6x4 � 12x2 � 8

1x2 � 2 2 3 � 1x2 2 3 � 31x2 2 212 2 � 31x2 2 12 2 2 � 23

13x � 5 2 2 � 13x 2 2 � 213x 2 15 2 � 52 � 9x2 � 30x � 25

12x � 1y 2 12x � 1y 21x2 � 2 2 313x � 5 2 2
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Check Your Answer

Multiplying gives

3x1x � 2 2 � 3x2 � 6x

Check Your Answer

Multiplying gives

8x4y2 � 6x3y3 � 2xy4

2xy214x3 � 3x2y � y2 2 �



(c) The two terms have the common factor x � 3.

Distributive Property

Simplify ■

To factor a trinomial of the form x 2 � bx � c, we note that

so we need to choose numbers r and s so that r � s � b and rs � c.

Example 5 Factoring x 2 � bx � c by Trial and Error

Factor: x 2 � 7x � 12

Solution We need to find two integers whose product is 12 and whose sum is 7.
By trial and error we find that the two integers are 3 and 4. Thus, the factorization is

factors of 12 ■

To factor a trinomial of the form ax2 � bx � c with a � 1, we look for factors of
the form px � r and qx � s:

Therefore, we try to find numbers p, q, r, and s such that pq � a, rs � c, ps � qr � b.
If these numbers are all integers, then we will have a limited number of possibilities
to try for p, q, r, and s.

Example 6 Factoring ax 2 � bx � c by Trial and Error

Factor: 6x 2 � 7x � 5

Solution We can factor 6 as or , and �5 as or . By try-
ing these possibilities, we arrive at the factorization

factors of 6

factors of �5 ■

Example 7 Recognizing the Form of an Expression

Factor each expression.

(a) (b)

Solution

(a) Trial and error

(b) This expression is of the form

2 � 2 � 3

x2 � 2x � 3 � 1x � 3 2 1x � 1 2
15a � 1 2 2 � 215a � 1 2 � 3x2 � 2x � 3

6x2 � 7x � 5 � 13x � 5 2 12x � 1 2
5 # 1�1 2�25 # 13 # 26 # 1

ax2 � bx � c � 1px � r 2 1qx � s 2 � pqx2 � 1ps � qr 2x � rs

x2 � 7x � 12 � 1x � 3 2 1x � 4 2

1x � r 2 1x � s 2 � x2 � 1r � s 2x � rs

� 12x � 1 2 1x � 3 212x � 4 2 1x � 3 2 � 51x � 3 2 � 3 12x � 4 2 � 5 4 1x � 3 2
28 CHAPTER 1 Fundamentals

Check Your Answer

Multiplying gives1x � 3 2 1x � 4 2 � x2 � 7x � 12

factors of a
� �

ax 2 � bx � c � Ópx � rÔÓqx � sÔ

� �
factors of c

Check Your Answer

Multiplying gives13x � 5 2 12x � 1 2 � 6x2 � 7x � 5



where represents 5a � 1. This is the same form as the expression in part (a),
so it will factor as 1 � 32 1 � 12 .1 22 � 21 2 � 3 � 31 2 � 34 31 2� 14

� 15a � 22 15a � 22 ■

Some special algebraic expressions can be factored using the following formulas.
The first three are simply Special Product Formulas written backward.

5a � 15a � 15a � 15a � 1
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Special Factoring Formulas

Formula Name

1. Difference of squares

2. Perfect square

3. Perfect square

4. Difference of cubes

5. Sum of cubesA3 � B3 � 1A � B 2 1A2 � AB � B2 2A3 � B3 � 1A � B 2 1A2 � AB � B2 2A2 � 2AB � B2 � 1A � B 2 2A2 � 2AB � B2 � 1A � B 2 2A2 � B2 � 1A � B 2 1A � B 2

Example 8 Factoring Differences of Squares

Factor each polynomial.

(a) (b)

Solution

(a) Using the Difference of Squares Formula with A � 2x and B � 5, we have

(b) We use the Difference of Squares Formula with A � x � y and B � z.

■

Example 9 Factoring Differences and Sums of Cubes

Factor each polynomial.

(a) (b)

Solution

(a) Using the Difference of Cubes Formula with A � 3x and B � 1, we get

� 13x � 1 2 19x2 � 3x � 1 2 27x3 � 1 � 13x 2 3 � 13 � 13x � 1 2 3 13x 2 2 � 13x 2 11 2 � 12 4
x6 � 827x3 � 1

1x � y 2 2 � z2 � 1x � y � z 2 1x � y � z 2

4x2 � 25 � 12x 2 2 � 52 � 12x � 5 2 12x � 5 2
1x � y 2 2 � z24x2 � 25

A2 � B2 � (A � B)(A � B)



(b) Using the Sum of Cubes Formula with A � x 2 and B � 2, we have

■

A trinomial is a perfect square if it is of the form

or

So, we recognize a perfect square if the middle term (2AB or �2AB) is plus or
minus twice the product of the square roots of the outer two terms.

Example 10 Recognizing Perfect Squares

Factor each trinomial.

(a) (b)

Solution

(a) Here A � x and B � 3, so . Since the middle term is 6x,
the trinomial is a perfect square. By the Perfect Square Formula, we have

(b) Here A � 2x and B � y, so . Since the middle term is
�4xy, the trinomial is a perfect square. By the Perfect Square Formula, we have

■

When we factor an expression, the result can sometimes be factored further. In
general, we first factor out common factors, then inspect the result to see if it can be
factored by any of the other methods of this section. We repeat this process until we
have factored the expression completely.

Example 11 Factoring an Expression Completely

Factor each expression completely.

(a) (b)

Solution

(a) We first factor out the power of x with the smallest exponent.

Common factor is 2x2

Factor x2 � 4 as a difference of squares

(b) We first factor out the powers of x and y with the smallest exponents.

Common factor is xy2

Factor x4 � y 4 as a difference of
squares

Factor x2 � y 2 as a difference of
squares ■

In the next example we factor out variables with fractional exponents. This type of
factoring occurs in calculus.

� xy21x2 � y2 2 1x � y 2 1x � y 2
� xy21x2 � y2 2 1x2 � y2 2x5y2 � xy6 � xy21x4 � y4 2
� 2x21x � 2 2 1x � 2 2 2x4 � 8x2 � 2x21x2 � 4 2

x5y2 � xy62x4 � 8x2

4x2 � 4xy � y2 � 12x � y 2 2
2AB � 2 # 2x # y � 4xy

x2 � 6x � 9 � 1x � 3 2 2
2AB � 2 # x # 3 � 6x

4x2 � 4xy � y2x2 � 6x � 9

A2 � 2AB � B2A2 � 2AB � B2

x6 � 8 � 1x2 2 3 � 23 � 1x2 � 2 2 1x4 � 2x2 � 4 2
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Mathematics in the

Modern World

Changing Words, Sound,

and Pictures into Numbers

Pictures, sound, and text are rou-
tinely transmitted from one place
to another via the Internet, fax ma-
chines, or modems. How can such
things be transmitted through tele-
phone wires? The key to doing this
is to change them into numbers or
bits (the digits 0 or 1). It’s easy to
see how to change text to numbers.
For example, we could use the cor-
respondence A � 00000001, B �
00000010, C � 00000011, D �
00000100, E � 00000101, and so
on. The word “BED” then becomes
000000100000010100000100. By
reading the digits in groups of
eight, it is possible to translate this
number back to the word “BED.”

Changing sound to bits is more
complicated. A sound wave can be
graphed on an oscilloscope or a
computer. The graph is then broken 

down mathematically into simpler
components corresponding to the
different frequencies of the origi-
nal sound. (A branch of mathemat-
ics called Fourier analysis is used
here.) The intensity of each 
component is a number, and the
original sound can be recon-
structed from these numbers. For
example, music is stored on a CD
as a sequence of bits; it may look
like 101010001010010100101010
1000001011110101000101011. . . .
(One second of music requires 1.5
million bits!) The CD player re-
constructs the music from the num-
bers on the CD.

Changing pictures into num-
bers involves expressing the color
and brightness of each dot (or
pixel) into a number. This is done
very efficiently using a branch of
mathematics called wavelet theory.
The FBI uses wavelets as a com-
pact way to store the millions of
fingerprints they need on file.
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1–6 ■ Complete the following table by stating whether the
polynomial is a monomial, binomial, or trinomial; then list its
terms and state its degree.

Polynomial Type Terms Degree

1. x 2 � 3x � 7

2. 2x 5 � 4x 2

3. �8

4.

5. x � x 2 � x 3 � x 4

6. 12x � 13

1
2 x7

7–42 ■ Perform the indicated operations and simplify.

7. 8.

9.

10.

11.

12.

13.

14.

15.

16. 513t � 4 2 � 1t2 � 2 2 � 2t1t � 3 2212 � 5t 2 � t21t � 1 2 � 1t4 � 1 241x2 � 3x � 5 2 � 31x2 � 2x � 1 2812x � 5 2 � 71x � 9 231x � 1 2 � 41x � 2 21x3 � 6x2 � 4x � 7 2 � 13x2 � 2x � 4 213x2 � x � 1 2 � 12x2 � 3x � 5 213x2 � x � 1 2 � 12x2 � 3x � 5 215 � 3x 2 � 12x � 8 2112x � 7 2 � 15x � 12 2

Example 12 Factoring Expressions with Fractional Exponents

Factor each expression.

(a) (b)

Solution

(a) Factor out the power of x with the smallest exponent, that is, x�1/2.

Factor out 3x�1/2

Factor the quadratic
x2 � 3x � 2

(b) Factor out the power of 2 � x with the smallest exponent, that is, .

Factor out 

Simplify

Factor out 2 ■

Polynomials with at least four terms can sometimes be factored by grouping
terms. The following example illustrates the idea.

Example 13 Factoring by Grouping

Factor each polynomial.

(a) (b)

Solution

(a) Group terms

Factor out common factors

Factor out x � 1 from each term

(b) Group terms

Factor out common factors

Factor out x � 2 from each
term ■

1.3 Exercises

� 1x2 � 3 2 1x � 2 2� x21x � 2 2 � 31x � 2 2x3 � 2x2 � 3x � 6 � 1x3 � 2x2 2 � 13x � 6 2� 1x2 � 4 2 1x � 1 2� x21x � 1 2 � 41x � 1 2x3 � x2 � 4x � 4 � 1x3 � x2 2 � 14x � 4 2
x3 � 2x2 � 3x � 6x3 � x2 � 4x � 4

� 212 � x 2�2/311 � x 2� 12 � x 2�2/312 � 2x 2 12 � x 2�2/312 � x 2�2/3x � 12 � x 2 1/3 � 12 � x 2�2/3 3x � 12 � x 2 4 12 � x 2�2/3

� 3x�1/21x � 1 2 1x � 2 2 3x3/2 � 9x1/2 � 6x�1/2 � 3x�1/21x2 � 3x � 2 2
12 � x 2�2/3x � 12 � x 2 1/33x3/2 � 9x1/2 � 6x�1/2

To factor out x�1/2 from x 3/2, we 
subtract exponents:

� x�1/21x2 2� x�1/21x3/2�1/2 2x3/2 � x�1/21x3/2� 1�1/22 2
Check Your Answer

To see that you have factored correctly,
multiply using the Laws of Exponents.

(a)

(b)

� 12 � x 2�2/3x � 12 � x 2 1/3

12 � x 2�2/3 3x � 12 � x 2 4� 3x3/2 � 9x1/2 � 6x�1/2

3x�1/21x2 � 3x � 2 2
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17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

35.

36.

37. 38.

39. 40.

41. 42.

43–48 ■ Factor out the common factor.

43. 44.

45. 46.

47. 48.

49–54 ■ Factor the trinomial.

49. 50.

51. 52.

53.

54.

55–60 ■ Use a Special Factoring Formula to factor the 
expression.

55. 9a2 � 16 56.

57. 27x 3 � y3 58. 8s3 � 125t6

59. x 2 � 12x � 36 60. 16z2 � 24z � 9

61–66 ■ Factor the expression by grouping terms.

61. x 3 � 4x 2 � x � 4 62. 3x 3 � x 2 � 6x � 2

63. 2x 3 � x 2 � 6x � 3 64. �9x 3 � 3x 2 � 3x � 1

65. x 3 � x 2 � x � 1 66. x 5 � x 4 � x � 1

1x � 3 2 2 � 4

21a � b 2 2 � 51a � b 2 � 3

13x � 2 2 2 � 813x � 2 2 � 12

6y2 � 11y � 218x2 � 14x � 15

x2 � 6x � 5x2 � 2x � 3

�7x4y2 � 14xy3 � 21xy42x2y � 6xy2 � 3xy

1z � 2 2 2 � 51z � 2 2y1y � 6 2 � 91y � 6 2 2x4 � 4x3 � 14x2�2x3 � 16x

1x2 � y � z 2 1x2 � y � z 21x � y � z 2 1x � y � z 2 1x4y � y5 2 1x2 � xy � y2 213x2y � 7xy2 2 1x2y3 � 2y2 2 11 � b 2 211 � b 2 211 � x4/3 2 11 � x2/3 213x3 � x2 � 2 2 1x2 � 2x � 1 21x2 � x � 1 2 12x2 � x � 2 211 � 2y 2 311 � a3 2 312h2 � 1 � 1 2 12h2 � 1 � 1 2a1a �
1

b
b a1a �

1

b
b 1x1/2 � y1/2 2 1x1/2 � y1/2 21x2 � a2 2 1x2 � a2 2 11 � 2x 2 1x2 � 3x � 1 212x � 5 2 1x2 � x � 1 2 a c �

1
c
b 212x2 � 3y2 2 2 13x � 4 2 211 � 2y 2 2 14x � 3y 2 12x � 5y 21x � 2y 2 13x � y 2 14x � 1 2 13x � 7 213t � 2 2 17t � 5 2 x3/211x � 1/1x 21x 1x � 1x 2 67–70 ■ Factor the expression completely. Begin by factoring

out the lowest power of each common factor.

67. x 5/2 � x1/2 68. x�3/2 � 2x�1/2 � x1/2

69.

70.

71–100 ■ Factor the expression completely.

71. 12x 3 � 18x 72. 5ab � 8abc

73. x 2 � 2x � 8 74. y 2 � 8y � 15

75. 2x 2 � 5x � 3 76. 9x 2 � 36x � 45

77. 6x 2 � 5x � 6 78. r 2 � 6rs � 9s2

79. 25s 2 � 10st � t 2 80. x 2 � 36

81. 4x 2 � 25 82. 49 � 4y2

83.

84.

85. 86.

87. 8x 3 � 125 88. x 6 � 64

89. x6 � 8y 3 90. 27a3 � b6

91. x 3 � 2x 2 � x 92. 3x 3 � 27x

93. y3 � 3y 2 � 4y � 12 94. x 3 � 3x 2 � x � 3

95. 2x 3 � 4x 2 � x � 2 96. 3x 3 � 5x 2 � 6x � 10

97.

98.

99.

100.

101–104 ■ Factor the expression completely. (This type of 
expression arises in calculus when using the “product rule.”)

101.

102.

103.

104.

105. (a) Show that .

(b) Show that .

(c) Show that

(d) Factor completely: .

106. Verify Special Factoring Formulas 4 and 5 by expanding
their right-hand sides.

4a2c2 � 1a2 � b2 � c2 2 21a2 � b2 2 1c2 � d 2 2 � 1ac � bd 2 2 � 1ad � bc 2 2
1a2 � b2 2 2 � 1a2 � b2 2 2 � 4a2b2

ab � 1
2 3 1a � b 2 2 � 1a2 � b2 2 41

2 x�1/213x � 4 2 1/2 � 3
2 x1/213x � 4 2�1/2

1x2 � 3 2�1/3 � 2
3 x21x2 � 3 2�4/3

312x � 1 2 212 2 1x � 3 2 1/2 � 12x � 1 2 3A12B 1x � 3 2�1/2

51x2 � 4 2 412x 2 1x � 2 2 4 � 1x2 � 4 2 514 2 1x � 2 2 3
1a2 � 2a 2 2 � 21a2 � 2a 2 � 3

1a2 � 1 2 2 � 71a2 � 1 2 � 10

y41y � 2 2 3 � y51y � 2 2 41x � 1 2 1x � 2 2 2 � 1x � 1 2 21x � 2 2

1a2 � 1 2b2 � 41a2 � 1 2x21x2 � 1 2 � 91x2 � 1 2a1 �
1
x
b 2

� a1 �
1
x
b 2

1a � b 2 2 � 1a � b 2 2

2x1/31x � 2 2 2/3 � 5x4/31x � 2 2�1/3

1x2 � 1 2 1/2 � 21x2 � 1 2�1/2
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Applications

107. Volume of Concrete A culvert is constructed out of
large cylindrical shells cast in concrete, as shown in the
figure. Using the formula for the volume of a cylinder
given on the inside back cover of this book, explain why
the volume of the cylindrical shell is

Factor to show that

Use the “unrolled” diagram to explain why this makes sense
geometrically.

108. Mowing a Field A square field in a certain state park is
mowed around the edges every week. The rest of the field
is kept unmowed to serve as a habitat for birds and small
animals (see the figure). The field measures b feet by b feet,
and the mowed strip is x feet wide.

(a) Explain why the area of the mowed portion is
.

(b) Factor the expression in (a) to show that the area of the
mowed portion is also .

Discovery ● Discussion

109. Degrees of Sums and Products of Polynomials Make
up several pairs of polynomials, then calculate the sum 
and product of each pair. Based on your experiments and
observations, answer the following questions.

(a) How is the degree of the product related to the degrees
of the original polynomials?

(b) How is the degree of the sum related to the degrees of
the original polynomials?

x x

x

b

b

x

4x1b � x 2
b2 � 1b � 2x 2 2

r

R

h h

V � 2p # average radius # height # thickness

V � pR2h � pr 2h

110. The Power of Algebraic Formulas Use the Difference
of Squares Formula to factor 172 � 162. Notice that it is
easy to calculate the factored form in your head, but not so
easy to calculate the original form in this way. Evaluate
each expression in your head:

(a) 5282 � 5272 (b) 1222 � 1202 (c) 10202 � 10102

Now use the Special Product Formula

to evaluate these products in your head:

(d) (e)

111. Differences of Even Powers

(a) Factor the expressions completely: A4 � B 4 and
A6 � B 6.

(b) Verify that 18,335 � 124 � 74 and that 
2,868,335 � 126 � 76.

(c) Use the results of parts (a) and (b) to factor the integers
18,335 and 2,868,335. Then show that in both of these
factorizations, all the factors are prime numbers.

112. Factoring An � 1 Verify these formulas by expanding
and simplifying the right-hand side.

Based on the pattern displayed in this list, how do you
think A5 � 1 would factor? Verify your conjecture. Now
generalize the pattern you have observed to obtain a factor-
ing formula for An � 1, where n is a positive integer.

113. Factoring x 4 � ax 2 � b A trinomial of the form 
x 4 � ax 2 � b can sometimes be factored easily. For exam-
ple, . But x 4 � 3x 2 � 4
cannot be factored in this way. Instead, we can use the 
following method.

Add and
subtract x2

Factor per-
fect square

Difference
of squares

Factor the following using whichever method is appropriate.

(a) x 4 � x 2 � 2

(b) x 4 � 2x 2 � 9

(c) x 4 � 4x 2 � 16

(d) x 4 � 2x 2 � 1

� 1x2 � x � 2 2 1x2 � x � 2 2� 3 1x2 � 2 2 � x 4 3 1x2 � 2 2 � x 4
� 1x2 � 2 2 2 � x2

x4 � 3x2 � 4 � 1x4 � 4x2 � 4 2 � x2

x4 � 3x2 � 4 � 1x2 � 4 2 1x2 � 1 2

A4 � 1 � 1A � 1 2 1A3 � A2 � A � 1 2A3 � 1 � 1A � 1 2 1A2 � A � 1 2A2 � 1 � 1A � 1 2 1A � 1 2

998 # 100279 # 51

1A � B 2 1A � B 2 � A2 � B2



Visualizing a Formula

Many of the Special Product Formulas that we learned in this section can be
“seen” as geometrical facts about length, area, and volume. For example, the
figure shows how the formula for the square of a binomial can be interpreted 
as a fact about areas of squares and rectangles.

In the figure, a and b represent lengths, a2, b2, ab, and represent areas.
The ancient Greeks always interpreted algebraic formulas in terms of geometric
figures as we have done here.

1. Explain how the figure verifies the formula .

2. Find a figure that verifies the formula .

3. Explain how the figure verifies the formula
.

4. Is it possible to draw a geometric figure that verifies the formula 
for ? Explain.

5. (a) Expand .

(b) Make a geometric figure that verifies the formula you found in part (a).

1a � b � c 2 21a � b 2 4
b a

a
b

b

a

1a � b 2 3 � a3 � 3a2b � 3ab2 � b3

1a � b 2 2 � a2 � 2ab � b2

b

b

a

a

a2 � b2 � 1a � b 2 1a � b 2
1a � b 2 2(a+b)™=a™+2ab+b™

a b

a™a

b

ab

ab b™

a b

(a+b)™

a

b
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1.4 Rational Expressions

A quotient of two algebraic expressions is called a fractional expression. Here are
some examples:

A rational expression is a fractional expression where both the numerator and de-
nominator are polynomials. For example, the following are rational expressions:

In this section we learn how to perform algebraic operations on rational expressions.

The Domain of an Algebraic Expression

In general, an algebraic expression may not be defined for all values of the variable.
The domain of an algebraic expression is the set of real numbers that the variable 
is permitted to have. The table in the margin gives some basic expressions and their
domains.

Example 1 Finding the Domain of an Expression

Find the domains of the following expressions.

(a) (b) (c)

Solution

(a) This polynomial is defined for every x. Thus, the domain is the set � of real
numbers.

(b) We first factor the denominator.

Denominator would be 0 if 
x � 2 or x � 3.

Since the denominator is zero when x � 2 or 3, the expression is not defined
for these numbers. The domain is .

(c) For the numerator to be defined, we must have x � 0. Also, we cannot divide
by zero, so x � 5.

Must have x � 0
Denominator would beto take square root.
0 if x � 5.

Thus, the domain is . ■5x 0 x � 0 and x � 56
1x

x � 5

5x 0 x � 2 and x � 36

x

x 2 � 5x � 6
�

x1x � 2 2 1x � 3 2

1x

x � 5

x

x 2 � 5x � 6
2x2 � 3x � 1

2x

x � 1
   

x

x 2 � 1
   

x3 � x

x 2 � 5x � 6

2x

x � 1
   

1x � 3

x � 1
   

y � 2

y2 � 4
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Expression Domain

5x 0 x 	 061

1x

5x 0 x � 061x

5x 0 x � 061
x



Simplifying Rational Expressions

To simplify rational expressions, we factor both numerator and denominator and
use the following property of fractions:

This allows us to cancel common factors from the numerator and denominator.

Example 2 Simplifying Rational Expressions by Cancellation

Simplify:

Solution

Factor

Cancel common factors ■

Multiplying and Dividing Rational Expressions

To multiply rational expressions, we use the following property of fractions:

This says that to multiply two fractions we multiply their numerators and multiply
their denominators.

Example 3 Multiplying Rational Expressions

Perform the indicated multiplication and simplify:

Solution We first factor.

Factor

Property of fractions

■

To divide rational expressions, we use the following property of fractions:

Cancel common
factors�

31x � 3 2
x � 4

�
31x � 1 2 1x � 3 2 1x � 4 21x � 1 2 1x � 4 2 2

x 2 � 2x � 3

x 2 � 8x � 16
# 3x � 12

x � 1
�
1x � 1 2 1x � 3 21x � 4 2 2 # 31x � 4 2

x � 1

x 2 � 2x � 3

x 2 � 8x � 16
# 3x � 12

x � 1

�
x � 1

x � 2

x2 � 1

x2 � x � 2
�
1x � 1 2 1x � 1 21x � 1 2 1x � 2 2

x 2 � 1

x 2 � x � 2
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We can’t cancel the x 2’s in 

because x 2 is not a factor.
x2 � 1

x2 � x � 2

AC

BC
�

A

B

A

B
# C
D

�
AC

BD

A

B
�

C

D
�

A

B
# D
C



This says that to divide a fraction by another fraction we invert the divisor and 
multiply.

Example 4 Dividing Rational Expressions

Perform the indicated division and simplify:

Solution

Invert and multiply

Factor

■

Adding and Subtracting Rational Expressions

To add or subtract rational expressions, we first find a common denominator and
then use the following property of fractions:

Although any common denominator will work, it is best to use the least common de-
nominator (LCD) as explained in Section 1.1. The LCD is found by factoring each
denominator and taking the product of the distinct factors, using the highest power
that appears in any of the factors.

Example 5 Adding and Subtracting Rational 
Expressions

Perform the indicated operations and simplify:

(a) (b)

Solution

(a) Here the LCD is simply the product .

Add fractions

Combine terms in
numerator�

x 2 � 2x � 61x � 1 2 1x � 2 2
�

3x � 6 � x 2 � x1x � 1 2 1x � 2 2
Write fractions using
LCD

3

x � 1
�

x

x � 2
�

31x � 2 21x � 1 2 1x � 2 2 �
x1x � 1 21x � 1 2 1x � 2 2

1x � 1 2 1x � 2 2
1

x 2 � 1
�

21x � 1 2 23

x � 1
�

x

x � 2

Cancel common
factors�

x � 31x � 2 2 1x � 1 2
�

1x � 4 2 1x � 2 2 1x � 3 21x � 2 2 1x � 2 2 1x � 4 2 1x � 1 2
x � 4

x 2 � 4
�

x 2 � 3x � 4

x 2 � 5x � 6
�

x � 4

x 2 � 4
# x 2 � 5x � 6

x 2 � 3x � 4

x � 4

x 2 � 4
�

x 2 � 3x � 4

x 2 � 5x � 6
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A

C
�

B

C
�

A � B

C

Avoid making the following error:

For instance, if we let A � 2, B � 1,
and C � 1, then we see the error:

Wrong! 1 � 4

2

2
� 2 � 2

2

1 � 1
�

2

1
�

2

1

A

B � C
�

A

B
�

A

C



(b) The LCD of and is .

Factor

Distributive Property

■

Compound Fractions

A compound fraction is a fraction in which the numerator, the denominator, or both,
are themselves fractional expressions.

Example 6 Simplifying a Compound Fraction

Simplify:

Solution 1 We combine the terms in the numerator into a single fraction. We 
do the same in the denominator. Then we invert and multiply.

Solution 2 We find the LCD of all the fractions in the expression, then multiply
numerator and denominator by it. In this example the LCD of all the fractions 
is xy. Thus

Simplify

Factor ■�
x1x � y 2
y1x � y 2

�
x 2 � xy

xy � y2

Multiply numerator and
denominator by xy

x
y

� 1

1 �
y

x

�

x
y

� 1

1 �
y

x

# xy

xy

�
x1x � y 2
y1x � y 2

x
y

� 1

1 �
y

x

�

x � y

y

x � y

x

�
x � y

y
# x
x � y

x
y

� 1

1 �
y

x

Combine terms in 
numerator�

3 � x1x � 1 2 1x � 1 2 2
�

x � 1 � 2x � 21x � 1 2 1x � 1 2 2
Combine fractions 
using LCD�

1x � 1 2 � 21x � 1 21x � 1 2 1x � 1 2 2
1

x 2 � 1
�

21x � 1 2 2 �
11x � 1 2 1x � 1 2 �

21x � 1 2 2
1x � 1 2 1x � 1 2 21x � 1 2 2x 2 � 1 � 1x � 1 2 1x � 1 2
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Mathematics in the

Modern World

Error-Correcting Codes

The pictures sent back by the
Pathfinder spacecraft from the sur-
face of Mars on July 4, 1997, were
astoundingly clear. But few watch-
ing these pictures were aware of
the complex mathematics used to
accomplish that feat. The distance
to Mars is enormous, and the back-
ground noise (or static) is many
times stronger than the original
signal emitted by the spacecraft.
So, when scientists receive the sig-
nal, it is full of errors. To get a clear
picture, the errors must be found
and corrected. This same problem
of errors is routinely encountered
in transmitting bank records when
you use an ATM machine, or 
voice when you are talking on the
telephone.

To understand how errors are
found and corrected, we must first
understand that to transmit pic-
tures, sound, or text we transform
them into bits (the digits 0 or 1;
see page 30). To help the receiver
recognize errors, the message is
“coded” by inserting additional
bits. For example, suppose you
want to transmit the message
“10100.” A very simple-minded
code is as follows: Send each digit
a million times. The person receiv-
ing the message reads it in blocks of
a million digits. If the first block is
mostly 1’s, he concludes that you
are probably trying to transmit a 1,
and so on. To say that this code is

(continued)

N
AS

A



The next two examples show situations in calculus that require the ability to
work with fractional expressions.

Example 7 Simplifying a Compound Fraction

Simplify:

Solution We begin by combining the fractions in the numerator using a common
denominator.

Distributive Property

Simplify

■

Example 8 Simplifying a Compound Fraction

Simplify:

Solution 1 Factor from the numerator.

Solution 2 Since is a fraction, we can clear all
fractions by multiplying numerator and denominator by .

■�
11 � x 2 2 � x211 � x 2 2 3/2

�
111 � x 2 2 3/2

11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2 �
11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2
# 11 � x 2 2 1/211 � x 2 2 1/2

11 � x 2 2 1/2
11 � x 2 2�1/2 � 1/ 11 � x 2 2 1/2

�
11 � x 2 2�1/2

1 � x 2 �
111 � x 2 2 3/2

11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2 �
11 � x 2 2�1/2 3 11 � x 2 2 � x 2 4

1 � x 2

11 � x 2 2�1/2

11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2

Property 5 of fractions
(cancel common factors)�

�1

a1a � h 2
�

�h

a1a � h 2 # 1h
�

a � a � h

a1a � h 2 # 1h
Property 2 of fractions
(invert divisor and multiply)�

a � 1a � h 2
a1a � h 2 # 1h

Combine fractions in the
numerator

1

a � h
�

1
a

h
�

a � 1a � h 2
a1a � h 2

h

1

a � h
�

1
a

h
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Factor out the power of 1 � x 2 with
the smallest exponent, in this case

.11 � x2 2�1/2

not efficient is a bit of an under-
statement; it requires sending a mil-
lion times more data than the
original message. Another method
inserts “check digits.” For example,
for each block of eight digits insert
a ninth digit; the inserted digit is 0 if
there is an even number of 1’s in the
block and 1 if there is an odd num-
ber. So, if a single digit is wrong (a
0 changed to a 1, or vice versa), the
check digits allow us to recognize
that an error has occurred. This
method does not tell us where the
error is, so we can’t correct it. Mod-
ern error correcting codes use inter-
esting mathematical algorithms
that require inserting relatively few
digits but which allow the receiver
to not only recognize, but also cor-
rect, errors. The first error correct-
ing code was developed in the
1940s by Richard Hamming at
MIT. It is interesting to note that the
English language has a built-in er-
ror correcting mechanism; to test
it, try reading this error-laden sen-
tence: Gve mo libty ox giv ne deth.



Rationalizing the Denominator or the Numerator

If a fraction has a denominator of the form , we may rationalize the de-
nominator by multiplying numerator and denominator by the conjugate radical

. This is effective because, by Special Product Formula 1 in Section 1.3,
the product of the denominator and its conjugate radical does not contain a radical:

Example 9 Rationalizing the Denominator

Rationalize the denominator:

Solution We multiply both the numerator and the denominator by the conjugate
radical of , which is .

Special Product Formula 1

■

Example 10 Rationalizing the Numerator

Rationalize the numerator:

Solution We multiply numerator and denominator by the conjugate radical
.

Special Product Formula 1

■

Avoiding Common Errors

Don’t make the mistake of applying properties of multiplication to the operation of
addition. Many of the common errors in algebra involve doing just that. The follow-
ing table states several properties of multiplication and illustrates the error in apply-
ing them to addition.

Property 5 of fractions 
(cancel common factors)�

h

h114 � h � 2 2 �
1

14 � h � 2

�
4 � h � 4

h114 � h � 2 2
�
114 � h 2 2 � 22

h114 � h � 2 2
Multiply numerator and
denominator by the
conjugate radical

14 � h � 2

h
�
14 � h � 2

h
# 14 � h � 2

14 � h � 2

14 � h � 2

14 � h � 2

h

�
1 � 12

1 � 2
�

1 � 12

�1
� 12 � 1

�
1 � 12

12 � 112 2 2
Multiply numerator and
denominator by the con-
jugate radical

1

1 � 12
�

1

1 � 12
# 1 � 12

1 � 12

1 � 121 � 12

1

1 � 12

1A � B1C 2 1A � B1C 2 � A2 � B2C

A � B1C

A � B1C
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Special Product Formula 11a � b 2 1a � b 2 � a2 � b2

Special Product Formula 11a � b 2 1a � b 2 � a2 � b2
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1–6 ■ Find the domain of the expression.

1. 4x 2 � 10x � 3 2. �x 4 � x 3 � 9x

3. 4.

5. 6.

7–16 ■ Simplify the rational expression.

7. 8.

9. 10.

11. 12.
x2 � x � 12

x2 � 5x � 6

x2 � 6x � 8

x2 � 5x � 4

x2 � x � 2

x2 � 1

x � 2

x2 � 4

41x2 � 1 2
121x � 2 2 1x � 1 231x � 2 2 1x � 1 2

61x � 1 2 2
1

2x � 1
2x � 3

2t2 � 5

3t � 6

2x � 1

x � 4

13. 14.

15. 16.

17–30 ■ Perform the multiplication or division and simplify.

17. 18.

19. 20.

21. 22.

23.
x2 � 7x � 12

x2 � 3x � 2
# x2 � 5x � 6

x2 � 6x � 9

x2 � x � 6

x2 � 2x
# x3 � x2

x2 � 2x � 3

t � 3

t2 � 9
# t � 3

t2 � 9

x2 � 2x � 3

x2 � 2x � 3
# 3 � x

3 � x

x2 � x � 12

x2 � 9
# 3 � x

4 � x

x2 � 25

x2 � 16
# x � 4

x � 5

4x

x2 � 4
# x � 2

16x

1 � x2

x3 � 1

2x3 � x2 � 6x

2x2 � 7x � 6

y2 � 3y � 18

2y2 � 5y � 3

y2 � y

y2 � 1

To verify that the equations in the right-hand column are wrong, simply substitute
numbers for a and b and calculate each side. For example, if we take a � 2 and 
b � 2 in the fourth error, we find that the left-hand side is

whereas the right-hand side is

Since , the stated equation is wrong. You should similarly convince yourself of
the error in each of the other equations. (See Exercise 97.)

1.4 Exercises

1 � 1
4

1

a � b
�

1

2 � 2
�

1

4

1
a

�
1

b
�

1

2
�

1

2
� 1

Correct multiplication property Common error with addition

a�1 � b�1 � 1a � b 2�1a�1 # b�1 � 1a # b 2�1

a � b

a
� b

ab

a
� b

1
a

�
1

b
�

1

a � b

1
a
# 1
b

�
1

a # b

2a2 � b2 � a � b2a2 # b2 � a # b  1a, b � 0 2 1a � b � 1a � 1b1a # b � 1a1b 1a, b � 0 2 1a � b 2 2 � a2 � b21a # b 2 2 � a2 # b2
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24.

25.

26.

27. 28.

29. 30.

31–50 ■ Perform the addition or subtraction and simplify.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45.

46.

47.

48.

49.

50.

51–60 ■ Simplify the compound fractional expression.

51. 52. x �
y

x

y
�

y

x

x

y
�

y

x

1

x2 �
1

y2

1

x � 1
�

21x � 1 2 2 �
3

x2 � 1

1

x2 � 3x � 2
�

1

x2 � 2x � 3

x

x2 � x � 6
�

1

x � 2
�

2

x � 3

2
x

�
3

x � 1
�

4

x2 � x

x

x2 � x � 2
�

2

x2 � 5x � 4

1

x � 3
�

1

x2 � 9

x

x2 � 4
�

1

x � 2

2

x � 3
�

1

x2 � 7x � 12

1
x

�
1

x2 �
1

x3

1

x2 �
1

x2 � x

2

a2 �
3

ab
�

4

b2u � 1 �
u

u � 1

5

2x � 3
�

312x � 3 2 2x1x � 1 2 2 �
2

x � 1

x

x � 4
�

3

x � 6

1

x � 1
�

1

x � 2

1

x � 1
�

1

x � 1

1

x � 5
�

2

x � 3

2x � 1

x � 4
� 12 �

x

x � 3

x

y/z

x/y
z

2x2 � 3x � 2

x2 � 1
2x2 � 5x � 2

x2 � x � 2

x3

x � 1

x

x2 � 2x � 1

4y2 � 9

2y2 � 9y � 18
�

2y2 � y � 3

y2 � 5y � 6

2x2 � 3x � 1

x2 � 2x � 15
�

x2 � 6x � 5

2x2 � 7x � 3

x2 � 2xy � y2

x2 � y2
# 2x2 � xy � y2

x2 � xy � 2y2
53. 54.

55. 56.

57. 58.

59. 60.

61–66 ■ Simplify the fractional expression. (Expressions like
these arise in calculus.)

61.

62.

63.

64.

65. 66.

67–72 ■ Simplify the expression. (This type of expression
arises in calculus when using the “quotient rule.”)

67.

68.

69.

70.

71.

72.
17 � 3x 2 1/2 � 3

2 x 17 � 3x 2�1/2

7 � 3x

311 � x 2 1/3 � x 11 � x 2�2/311 � x 2 2/3

11 � x2 2 1/2 � x211 � x2 2�1/2

1 � x2

211 � x 2 1/2 � x 11 � x 2�1/2

x � 1

2x1x � 6 2 4 � x214 2 1x � 6 2 31x � 6 2 8
31x � 2 2 21x � 3 2 2 � 1x � 2 2 312 2 1x � 3 21x � 3 2 4

B1 � a x3 �
1

4x3 b 2

B1 � a x

21 � x2
b 2

1x � h 2 3 � 71x � h 2 � 1x3 � 7x 2
h

1 � 1x � h 2
2 � 1x � h 2 �

1 � x

2 � x

h

1x � h 2�3 � x�3

h

1

a � h
�

1
a

h

aa �
1

b
b m aa �

1

b
b n

ab �
1
a
b m ab �

1
a
b n

1

1 � an �
1

1 � a�n

x�1 � y�11x � y 2�1

x�2 � y�2

x�1 � y�1

a � b

a
�

a � b

b

a � b

b
�

a � b

a

5

x � 1
�

2

x � 1

x

x � 1
�

1

x � 1

1 �
1

1 �
1

1 � x

1 �
1

c � 1

1 �
1

c � 1
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73–78 ■ Rationalize the denominator.

73. 74.

75. 76.

77. 78.

79–84 ■ Rationalize the numerator.

79. 80.

81. 82.

83. 84.

85–92 ■ State whether the given equation is true for all values
of the variables. (Disregard any value that makes a denominator
zero.)

85. 86.

87. 88.

89. 90.

91. 92.

Applications

93. Electrical Resistance If two electrical resistors with 
resistances R1 and R2 are connected in parallel (see the
figure), then the total resistance R is given by

(a) Simplify the expression for R.

(b) If R1 � 10 ohms and R2 � 20 ohms, what is the total 
resistance R?

R⁄

R¤

R �
1

1

R1
�

1

R2

1 � x � x2

x
�

1
x

� 1 � x
�a

b
� �

a

b

2 a a

b
b �

2a

2b

x

x � y
�

1

1 � y

x � 1

y � 1
�

x

y

2

4 � x
�

1

2
�

2
x

b

b � c
� 1 �

b

c

16 � a

16
� 1 �

a

16

1x � 1 � 1x2x2 � 1 � x

1x � 1x � h

h1x1x � h

1r � 12

5

13 � 15

2

1 � 15

3

21x � y 2
1x � 1y

y

13 � 1y

1

1x � 1

2

12 � 17

2

3 � 15

1

2 � 13

94. Average Cost A clothing manufacturer finds that the cost
of producing x shirts is 500 � 6x � 0.01x 2 dollars.

(a) Explain why the average cost per shirt is given by the
rational expression

(b) Complete the table by calculating the average cost per
shirt for the given values of x.

Discovery • Discussion

95. Limiting Behavior of a Rational Expression The
rational expression

is not defined for x � 3. Complete the tables and 
determine what value the expression approaches as 
x gets closer and closer to 3. Why is this reasonable? 
Factor the numerator of the expression and simplify to 
see why.

x2 � 9

x � 3

A �
500 � 6x � 0.01x2

x

96. Is This Rationalization? In the expression we
would eliminate the radical if we were to square both nu-
merator and denominator. Is this the same thing as rational-
izing the denominator?

97. Algebraic Errors The left-hand column in the table 
lists some common algebraic errors. In each case, give an
example using numbers that show that the formula is not
valid. An example of this type, which shows that a 

2/1x

x

2.80
2.90
2.95
2.99
2.999

x2 � 9

x � 3
x

3.20
3.10
3.05
3.01
3.001

x2 � 9

x � 3

x Average cost

10
20
50

100
200
500

1000



1.5 Equations

An equation is a statement that two mathematical expressions are equal. For example,

is an equation. Most equations that we study in algebra contain variables, which are
symbols (usually letters) that stand for numbers. In the equation

the letter x is the variable. We think of x as the “unknown” in the equation, and our
goal is to find the value of x that makes the equation true. The values of the unknown
that make the equation true are called the solutions or roots of the equation, and the
process of finding the solutions is called solving the equation.

Two equations with exactly the same solutions are called equivalent equations.
To solve an equation, we try to find a simpler, equivalent equation in which the vari-
able stands alone on one side of the “equal” sign. Here are the properties that we use
to solve an equation. (In these properties, A, B, and C stand for any algebraic expres-
sions, and the symbol 3 means “is equivalent to.”)

4x � 7 � 19

3 � 5 � 8
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statement is false, is called a counterexample. 98. The Form of an Algebraic Expression An algebraic 
expression may look complicated, but its “form” is always
simple; it must be a sum, a product, a quotient, or a power.
For example, consider the following expressions:

With appropriate choices for A and B, the first has the form
A � B, the second AB, the third A/B, and the fourth A1/2.
Recognizing the form of an expression helps us expand,
simplify, or factor it correctly. Find the form of the follow-
ing algebraic expressions.

(a) (b)

(c) (d)
1 � 221 � x

1 � 21 � x2
23 x414x2 � 1 2

11 � x2 2 11 � x 2 3x � A1 �
1
x

A
1 � x

1 � x

5 � x3

1 � 21 � x2

11 � x 2 a1 �
x � 5

1 � x4 b11 � x2 2 2 � a x � 2

x � 1
b 3

Properties of Equality

Property Description

1. A � B3 A � C � B � C Adding the same quantity to both sides of
an equation gives an equivalent equation.

2. A � B3CA � CB (C � 0) Multiplying both sides of an equation by
the same nonzero quantity gives an
equivalent equation.

x � 3 is a solution of the equation 
4x � 7 � 19, because substituting 
x � 3 makes the equation true:

413 2 � 7 � 19

x � 3

Algebraic error Counterexample

a�1/n �
1

an

am/an � am/n

1a3 � b3 2 1/3 � a � b

a � b

a
� b

2a2 � b2 � a � b

1a � b 2 2 � a2 � b2

1

2
�

1

2
�

1

2 � 2

1
a

�
1

b
�

1

a � b



These properties require that you perform the same operation on both sides of an
equation when solving it. Thus, if we say “add �7” when solving an equation, that
is just a short way of saying “add �7 to each side of the equation.”

Linear Equations

The simplest type of equation is a linear equation, or first-degree equation, which is an
equation in which each term is either a constant or a nonzero multiple of the variable.
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Linear Equations

A linear equation in one variable is an equation equivalent to one of the form

where a and b are real numbers and x is the variable.

ax � b � 0

Here are some examples that illustrate the difference between linear and nonlinear
equations.

Linear equations Nonlinear equations

Example 1 Solving a Linear Equation

Solve the equation 7x � 4 � 3x � 8.

Solution We solve this by changing it to an equivalent equation with all terms
that have the variable x on one side and all constant terms on the other.

Given equation

Add 4

Simplify

Subtract 3x

Simplify

Multiply by 

Simplify ■

Check Your Answer

x � 3:

LHS � RHS

� 17� 17

 RHS � 313 2 � 8 LHS � 713 2 � 4

x � 3

1
4

1
4
# 4x � 1

4
# 12

 4x � 12

 7x � 3x � 13x � 12 2 � 3x

 7x � 3x � 12

17x � 4 2 � 4 � 13x � 8 2 � 4

 7x � 4 � 3x � 8

3
x

� 2x � 1x � 6 �
x

3

1x � 6x � 02x � 1
2 x � 7

x2 � 2x � 84x � 5 � 3

Because it is important to CHECK
YOUR ANSWER, we do this in many
of our examples. In these checks, LHS
stands for “left-hand side” and RHS
stands for “right-hand side” of the 
original equation.

Not linear; contains the
reciprocal of the variable

Not linear; contains the
square of the variable

Not linear; contains the
square root of the variable

x � 3 x � 3



Many formulas in the sciences involve several variables, and it is often necessary to
express one of the variables in terms of the others. In the next example we solve for
a variable in Newton’s Law of Gravity.

Example 2 Solving for One Variable in Terms of Others

Solve for the variable M in the equation

Solution Although this equation involves more than one variable, we solve 
it as usual by isolating M on one side and treating the other variables as we 
would numbers.

Factor M from RHS

Multiply by reciprocal of 

Simplify

The solution is . ■

Example 3 Solving for One Variable in Terms 

of Others

The surface area A of the closed rectangular box shown in Figure 1 can be calcu-
lated from the length l, the width „, and the height h according to the formula

Solve for „ in terms of the other variables in this equation.

Solution Although this equation involves more than one variable, we solve it as
usual by isolating „ on one side, treating the other variables as we would numbers.

Collect terms involving w

Subtract 2lh

Factor w from RHS

Divide by 2l � 2h

The solution is . ■

Quadratic Equations

Linear equations are first-degree equations like 2x � 1 � 5 or 4 � 3x � 2. Quadratic
equations are second-degree equations like x 2 � 2x � 3 � 0 or 2x 2 � 3 � 5x.

„ �
A � 2lh

2l � 2h

A � 2lh

2l � 2h
� „

A � 2lh � 12l � 2h 2„A � 2lh � 2l„ � 2„h

A � 12l„ � 2„h 2 � 2lh

A � 2l„ � 2„h � 2lh

M �
r 2F

Gm

r 2F

Gm
� M

Gm
r2a r 2

Gm
bF � a r 2

Gm
b aGm

r 2 bM

F � aGm

r 2 bM

F � G
mM

r 2
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This is Newton’s Law of Gravity. It
gives the gravitational force F between
two masses m and M that are a distance
r apart. The constant G is the universal
gravitational constant.

h

l

„

Figure 1

A closed rectangular box



Some quadratic equations can be solved by factoring and using the following basic
property of real numbers.
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Quadratic Equations

A quadratic equation is an equation of the form

where a, b, and c are real numbers with a � 0.

ax2 � bx � c � 0

Quadratic Equations

1
2 x2 � 1

3 x � 1
6 � 0

 3x � 10 � 4x2

x2 � 2x � 8 � 0

Zero-Product Property

AB � 0  if and only if  A � 0 or B � 0

This means that if we can factor the left-hand side of a quadratic (or other) equation,
then we can solve it by setting each factor equal to 0 in turn. This method works only
when the right-hand side of the equation is 0.

Example 4 Solving a Quadratic Equation by Factoring

Solve the equation x 2 � 5x � 24.

Solution We must first rewrite the equation so that the right-hand side is 0.

Subtract 24

Factor

Zero-Product Property

Solve

The solutions are x � 3 and x � �8. ■

Do you see why one side of the equation must be 0 in Example 4? Factoring the
equation as does not help us find the solutions, since 24 can be fac-
tored in infinitely many ways, such as , and so on.

A quadratic equation of the form x 2 � c � 0, where c is a positive constant, fac-
tors as , and so the solutions are and .
We often abbreviate this as .x � �1c

x � �1cx � 1c1x � 1c 2 1x � 1c 2 � 0

6 # 4, 1
2
# 48, A�2

5B # 1�60 2x1x � 5 2 � 24

x � 3   x � �8

x � 3 � 0  or  x � 8 � 0

1x � 3 2 1x � 8 2 � 0

x2 � 5x � 24 � 0

x2 � 5x � 24

Solving a Simple Quadratic Equation

The solutions of the equation x 2 � c are and .x � �1cx � 1c

Check Your Answers

:

:1�8 2 2 � 51�8 2 � 64 � 40 � 24

x � �8

13 2 2 � 513 2 � 9 � 15 � 24

x � 3



Example 5 Solving Simple Quadratics

Solve each equation.

(a) (b)

Solution

(a) From the principle in the preceding box, we get .

(b) We can take the square root of each side of this equation as well.

Take the square root

Add 4

The solutions are and . ■

As we saw in Example 5, if a quadratic equation is of the form , then
we can solve it by taking the square root of each side. In an equation of this form 
the left-hand side is a perfect square: the square of a linear expression in x. So, if a
quadratic equation does not factor readily, then we can solve it using the technique of
completing the square. This means that we add a constant to an expression to make
it a perfect square. For example, to make x 2 � 6x a perfect square we must add 9,
since .x2 � 6x � 9 � 1x � 3 2 2

1x � a 2 2 � c

x � 4 � 15x � 4 � 15

x � 4 � 15

x � 4 � �15

1x � 4 2 2 � 5

x � �15

1x � 4 2 2 � 5x2 � 5
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See page 30 for how to recognize when
a quadratic expression is a perfect
square.

Completing the Square

To make x 2 � bx a perfect square, add , the square of half the

coefficient of x. This gives the perfect square

x2 � bx � a b

2
b 2

� a x �
b

2
b 2

a b

2
b 2

Example 6 Solving Quadratic Equations by Completing 

the Square

Solve each equation.

(a) x 2 � 8x � 13 � 0 (b) 3x 2 � 12x � 6 � 0

Solution

(a) Given equation

Subtract 13

Complete the square: add 

Perfect square

Take square root

Add 4x � 4 � 13

x � 4 � �13

1x � 4 2 2 � 3

a�8
2
b 2

� 16x2 � 8x � 16 � �13 � 16

x2 � 8x � �13

x2 � 8x � 13 � 0

Completing the Square

Area of blue region is

Add a small square of area to
“complete” the square.

1b/2 2 2x2 � 2 a b

2
b x � x2 � bx

x

x

b

2

b

2

When completing the square,
make sure the coefficient of x 2 is 1. If 
it isn’t, you must factor this coefficient
from both terms that contain x:

Then complete the square inside the
parentheses. Remember that the term
added inside the parentheses is multi-
plied by a.

ax2 � bx � a a x2 �
b

a
x b



(b) After subtracting 6 from each side of the equation, we must factor the
coefficient of x 2 (the 3) from the left side to put the equation in the correct form
for completing the square.

Given equation

Subtract 6

Factor 3 from LHS

Now we complete the square by adding inside the parentheses. 
Since everything inside the parentheses is multiplied by 3, this means that we are
actually adding to the left side of the equation. Thus, we must add 
12 to the right side as well.

Complete the square: add 4

Perfect square

Divide by 3

Take square root

Add 2 ■

We can use the technique of completing the square to derive a formula for the roots
of the general quadratic equation ax 2 � bx � c � 0.

x � 2 � 12

x � 2 � �12

1x � 2 2 2 � 2

 31x � 2 2 2 � 6

 31x2 � 4x � 4 2 � �6 � 3 # 4

3 # 4 � 12

1�2 2 2 � 4

 31x2 � 4x 2 � �6

 3x2 � 12x � �6

 3x2 � 12x � 6 � 0
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The Quadratic Formula

The roots of the quadratic equation ax 2 � bx � c � 0, where a � 0, are

x �
�b � 2b2 � 4ac

2a

■ Proof First, we divide each side of the equation by a and move the constant
to the right side, giving

Divide by a

We now complete the square by adding to each side of the equation:

Complete the square: Add 

Perfect square

Take square root

Subtract ■

The quadratic formula could be used to solve the equations in Examples 4 and 6.
You should carry out the details of these calculations.

b
2a

x �
�b � 2b2 � 4ac

2a

x �
b

2a
� �

2b2 � 4ac

2a

a x �
b

2a
b 2

�
�4ac � b2

4a2

a b
2a
b 2

x2 �
b
a

x � a b

2a
b 2

� �
c
a

� a b

2a
b 2

1b/2a 2 2x2 �
b
a

x � �
c
a

François Viète (1540–1603) had a
successful political career before
taking up mathematics late in life.
He became one of the most famous
French mathematicians of the 16th
century. Viète introduced a new
level of abstraction in algebra by
using letters to stand for known
quantities in an equation. Before
Viète’s time, each equation had to
be solved on its own. For instance,
the quadratic equations

had to be solved separately by
completing the square. Viète’s idea
was to consider all quadratic equa-
tions at once by writing

where a, b, and c are known quan-
tities. Thus, he made it possible to
write a formula (in this case, the
quadratic formula) involving a, b,
and c that can be used to solve all
such equations in one fell swoop.

Viète’s mathematical genius
proved quite valuable during a war
between France and Spain. To
communicate with their troops, the
Spaniards used a complicated code
that Viète managed to decipher.
Unaware of Viète’s accomplish-
ment, the Spanish king, Philip II,
protested to the Pope, claiming that
the French were using witchcraft to
read his messages.

ax2 � bx � c � 0

 5x2 � 6x � 4 � 0

 3x2 � 2x � 8 � 0



Example 7 Using the Quadratic Formula

Find all solutions of each equation.

(a) 3x 2 � 5x � 1 � 0 (b) 4x 2 � 12x � 9 � 0 (c) x 2 � 2x � 2 � 0

Solution

(a) In this quadratic equation a � 3, b � �5, and c � �1.

By the quadratic formula,

If approximations are desired, we can use a calculator to obtain

(b) Using the quadratic formula with a � 4, b � 12, and c � 9 gives

This equation has only one solution, .
(c) Using the quadratic formula with a � 1, b � 2, and c � 2 gives

Since the square of any real number is nonnegative, is undefined in the
real number system. The equation has no real solution. ■

In Section 3.4 we study the complex number system, in which the square roots of
negative numbers do exist. The equation in Example 7(c) does have solutions in the
complex number system.

The quantity b 2 � 4ac that appears under the square root sign in the quadratic for-
mula is called the discriminant of the equation ax 2 � bx � c � 0 and is given the
symbol D. If D � 0, then is undefined, and the quadratic equation has
no real solution, as in Example 7(c). If D � 0, then the equation has only one real so-
lution, as in Example 7(b). Finally, if D 	 0, then the equation has two distinct real
solutions, as in Example 7(a). The following box summarizes these observations.

2b2 � 4ac

1�1

x �
�2 � 222 � 4 # 2

2
�

�2 � 1�4

2
�

�2 � 21�1

2
� �1 � 1�1

x � � 3
2

x �
�12 � 2112 2 2 � 4 # 4 # 9

2 # 4 �
�12 � 0

8
� �

3

2

x �
5 � 137

6
� 1.8471  and  x �

5 � 137

6
� �0.1805

x �
�1�5 2 � 21�5 2 2 � 413 2 1�1 2

213 2 �
5 � 137

6

c � �1a � 3

3x2 � 5x � 1 � 0

b � �5
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The Discriminant

The discriminant of the general quadratic is
D � b 2 � 4ac.

1. If D 	 0, then the equation has two distinct real solutions.

2. If D � 0, then the equation has exactly one real solution.

3. If D � 0, then the equation has no real solution.

ax2 � bx � c � 0 1a � 0 2

Another Method

x � � 3
2

2x � 3 � 0

12x � 3 2 2 � 0

4x2 � 12x � 9 � 0



Example 8 Using the Discriminant

Use the discriminant to determine how many real solutions each equation has.

(a) x 2 � 4x � 1 � 0 (b) 4x 2 � 12x � 9 � 0 (c)

Solution

(a) The discriminant is , so the equation has two
distinct real solutions.

(b) The discriminant is , so the equation has exactly
one real solution.

(c) The discriminant is , so the equation has no real
solution. ■

Now let’s consider a real-life situation that can be modeled by a quadratic equation.

Example 9 The Path of a Projectile

An object thrown or fired straight upward at an initial speed of √0 ft/s will reach a
height of h feet after t seconds, where h and t are related by the formula

Suppose that a bullet is shot straight upward with an initial speed of 800 ft/s. Its
path is shown in Figure 2.

(a) When does the bullet fall back to ground level?

(b) When does it reach a height of 6400 ft?

(c) When does it reach a height of 2 mi?

(d) How high is the highest point the bullet reaches?

Solution Since the initial speed in this case is √0 � 800 ft/s, the formula is

(a) Ground level corresponds to h � 0, so we must solve the equation

Set h � 0

Factor

Thus, t � 0 or t � 50. This means the bullet starts at ground level and
returns to ground level after 50 s.

(b) Setting h � 6400 gives the equation

Set h � 6400

All terms to LHS

Divide by 16

Factor

Solve

The bullet reaches 6400 ft after 10 s (on its ascent) and again after 40 s (on its
descent to earth).

t � 10  or  t � 40

1t � 10 2 1t � 40 2 � 0

t 2 � 50t � 400 � 0

 16t 2 � 800t � 6400 � 0

 6400 � �16t 2 � 800t

1t � 0 2 0 � �16t1t � 50 2 0 � �16t2 � 800t

h � �16t 2 � 800t

h � �16t 2 � √0t

D � 1�2 2 2 � 4A13B4 � � 4
3 � 0

D � 1�12 2 2 � 4 # 4 # 9 � 0

D � 42 � 411 2 1�1 2 � 20 	 0

1
3 x2 � 2x � 4 � 0
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This formula depends on the fact that
acceleration due to gravity is constant
near the earth’s surface. Here we 
neglect the effect of air resistance.

h

descent

ascent

Figure 2

6400 ft



(c) Two miles is 2 � 5280 � 10,560 ft.

Set h � 10,560

All terms to LHS

Divide by 16

The discriminant of this equation is , which is
negative. Thus, the equation has no real solution. The bullet never reaches a
height of 2 mi.

(d) Each height the bullet reaches is attained twice, once on its ascent and once on
its descent. The only exception is the highest point of its path, which is reached
only once. This means that for the highest value of h, the following equation
has only one solution for t:

All terms to LHS

This in turn means that the discriminant D of the equation is 0, and so

The maximum height reached is 10,000 ft. ■

Other Types of Equations

So far we have learned how to solve linear and quadratic equations. Now we study
other types of equations, including those that involve higher powers, fractional ex-
pressions, and radicals.

Example 10 An Equation Involving Fractional 

Expressions

Solve the equation 

Solution We eliminate the denominators by multiplying each side by the lowest
common denominator.

Multiply by LCD x(x � 2)

Expand

Expand LHS

Subtract 8x � 6

Divide both sides by 2

Factor

Zero-Product Property

Solvex � 3   x � �1

x � 3 � 0  or  x � 1 � 0

 0 � 1x � 3 2 1x � 1 2 0 � x2 � 2x � 3

 0 � 2x2 � 4x � 6

 8x � 6 � 2x2 � 4x

 31x � 2 2 � 5x � 2x2 � 4x

a 3
x

�
5

x � 2
b x 1x � 2 2 � 2x 1x � 2 2

3
x

�
5

x � 2
� 2.

h � 10,000

 640,000 � 64h � 0

D � 1�800 2 2 � 4116 2h � 0

 16t2 � 800t � h � 0

h � �16t2 � 800t

D � 1�50 2 2 � 41660 2 � �140

t2 � 50t � 660 � 0

 16t2 � 800t � 10,560 � 0

 10,560 � �16t2 � 800t
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2 mi

10,000 ft

Check Your Answers

:

:

 LHS � RHS

 RHS � 2

� �3 � 5 � 2

 LHS �
3

�1
�

5

�1 � 2

x � �1

 LHS � RHS

 RHS � 2

� 1 � 1 � 2

 LHS �
3

3
�

5

3 � 2

x � 3



We must check our answers because multiplying by an expression that contains the
variable can introduce extraneous solutions. From Check Your Answers we see that
the solutions are x � 3 and �1. ■

When you solve an equation that involves radicals, you must be especially careful
to check your final answers. The next example demonstrates why.

Example 11 An Equation Involving a Radical

Solve the equation .

Solution To eliminate the square root, we first isolate it on one side of the equal
sign, then square.

Subtract 1

Square each side

Expand LHS

Add �2 � x

Factor

Zero-Product Property

Solve

The values and x � 1 are only potential solutions. We must check them 
to see if they satisfy the original equation. From Check Your Answers we see that

is a solution but x � 1 is not. The only solution is . ■

When we solve an equation, we may end up with one or more extraneous solu-
tions, that is, potential solutions that do not satisfy the original equation. In Example
11, the value x � 1 is an extraneous solution. Extraneous solutions may be introduced
when we square each side of an equation because the operation of squaring can turn
a false equation into a true one. For example, �1 � 1, but . Thus, the
squared equation may be true for more values of the variable than the original equa-
tion. That is why you must always check your answers to make sure that each satisfies
the original equation.

An equation of the form aW 2 � bW � c � 0, where W is an algebraic expression,
is an equation of quadratic type. We solve equations of quadratic type by substitut-
ing for the algebraic expression, as we see in the next two examples.

Example 12 A Fourth-Degree Equation of Quadratic Type

Find all solutions of the equation x 4 � 8x 2 � 8 � 0.

Solution If we set W � x 2, then we get a quadratic equation in the new variable W:

Write x4 as

Let W � x2

Quadratic formula

W � x2

Take square rootsx � �24 � 212

x2 � 4 � 212

W �
�1�8 2 � 21�8 2 2 � 4 # 8

2
� 4 � 212

W 2 � 8W � 8 � 0

1x 2 221x2 2 2 � 8x2 � 8 � 0

1�1 2 2 � 12

x � � 1
4x � � 1

4

x � � 1
4

x � � 1
4   x � 1

 4x � 1 � 0  or  x � 1 � 0

14x � 1 2 1x � 1 2 � 0

 4x2 � 3x � 1 � 0

 4x2 � 4x � 1 � 2 � x

12x � 1 2 2 � 2 � x

 2x � 1 � �12 � x

2x � 1 � 12 � x
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Check Your Answers

:

LHS � RHS

:

LHS � RHS

� 1 � 1 � 0

 RHS � 1 � 12 � 1

 LHS � 211 2 � 2

x � 1

� 1 � 3
2 � � 1

2

� 1 � 29
4

 RHS � 1 � 22 � A� 1
4B LHS � 2A� 1

4B � � 1
2

x � � 1
4



So, there are four solutions:

, , ,

Using a calculator, we obtain the approximations x � 2.61, 1.08, �2.61, �1.08. ■

Example 13 An Equation Involving Fractional Powers

Find all solutions of the equation x 1/3 � x 1/6 � 2 � 0.

Solution This equation is of quadratic type because if we let W � x 1/6, then
.

Let W � x 1/6

Factor

Zero-Product Property

Solve

W � x 1/6

Take the 6th power

From Check Your Answers we see that x � 1 is a solution but x � 64 is not. The
only solution is x � 1. ■

Check Your Answers

: :

When solving equations that involve absolute values, we usually take cases.

Example 14 An Absolute Value Equation

Solve the equation 

Solution By the definition of absolute value, is equivalent to

The solutions are x � 1, x � 4. ■

x � 4   x � 1

 2x � 8    2x � 2

 2x � 5 � 3  or   2x � 5 � �3

0 2x � 5 0 � 3

0 2x � 5 0 � 3.

 LHS � RHS LHS � RHS

 RHS � 0 RHS � 0

� 4 � 2 � 2 � 4

 LHS � 641/3 � 641/6 � 2 LHS � 11/3 � 11/6 � 2 � 0

x � 64x � 1

x � 16 � 1   x � 1�2 2 6 � 64

x1/6 � 1   x1/6 � �2

W � 1   W � �2

W � 1 � 0  or  W � 2 � 0

1W � 1 2 1W � 2 2 � 0

W 2 � W � 2 � 0

x1/3 � x1/6 � 2 � 0

W 2 � 1x1/6 2 2 � x1/3

�24 � 212�24 � 21224 � 21224 � 212
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Pythagoras (circa 580–500 B.C.)
founded a school in Croton in
southern Italy, which was devoted
to the study of arithmetic, geom-
etry, music, and astronomy. The
Pythagoreans, as they were called,
were a secret society with peculiar
rules and initiation rites. They
wrote nothing down, and were not
to reveal to anyone what they had
learned from the Master. Although
women were barred by law from at-
tending public meetings, Pythago-
ras allowed women in his school,
and his most famous student was
Theano (whom he later married).

According to Aristotle, the
Pythagoreans were convinced that
“the principles of mathematics are
the principles of all things.” Their
motto was “Everything is Number,”
by which they meant whole num-
bers. The outstanding contribution
of Pythagoras is the theorem that
bears his name: In a right triangle
the area of the square on the hypo-
tenuse is equal to the sum of the
areas of the square on the other two
sides.

The converse of Pythagoras’s The-
orem is also true: A triangle whose
sides a, b, and c satisfy a2 � b2 � c2

is a right triangle.

c™=a™+b™

c

b

a
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1–4 ■ Determine whether the given value is a solution of the
equation.

1. 4x � 7 � 9x � 3

(a) x � �2 (b) x � 2

2.

(a) x � 2 (b) x � 4

3.

(a) x � 2 (b) x � 4

4.

(a) x � 4 (b) x � 8

5–22 ■ The given equation is either linear or equivalent to a 
linear equation. Solve the equation.

5. 2x � 7 � 31 6. 5x � 3 � 4

7. 8.

9. �7„ � 15 � 2„ 10. 5t � 13 � 12 � 5t

11. 12.

13.

14.

15. 16.

17. 18.

19. 20.

21. 22.

23–36 ■ Solve the equation for the indicated variable.

23. PV � nRT; for R 24. ; for m

25. ; for R1 26. P � 2l � 2„; for „

27. ; for x

28. ; for x

29. ; for x

30. ; for a
a � 1

b
�

a � 1

b
�

b � 1
a

a2x � 1a � 1 2 � 1a � 1 2xa � 2 3b � 31c � x 2 4 � 6

ax � b

cx � d
� 2

1

R
�

1

R1
�

1

R2

F � G
mM

r 2

13x � 112 �
x � 5

13
1t � 4 2 2 � 1t � 4 2 2 � 32

4

x � 1
�

2

x � 1
�

35

x2 � 1

3

x � 1
�

1

2
�

1

3x � 3

2x � 1

x � 2
�

4

5

1
x

�
4

3x
� 1

2x �
x

2
�

x � 1

4
� 6xx � 1

3 x � 1
2 x � 5 � 0

2

3
y �

1

2
1y � 3 2 �

y � 1

4

211 � x 2 � 311 � 2x 2 � 5

z

5
�

3

10
z � 71

2 y � 2 � 1
3 y

3 � 1
3 x � 51

2 x � 8 � 1

x3/2

x � 6
� x � 8

1
x

�
1

x � 4
� 1

1 � 32 � 13 � x 2 4 � 4x � 16 � x 2
31. ; for r 32. ; for r

33. a 2 � b 2 � c 2; for b

34. ; for i

35. ; for t 36. ; for n

37–44 ■ Solve the equation by factoring.

37. x 2 � x � 12 � 0 38. x 2 � 3x � 4 � 0

39. x 2 � 7x � 12 � 0 40. x 2 � 8x � 12 � 0

41. 4x 2 � 4x � 15 � 0 42. 2y 2 � 7y � 3 � 0

43. 3x 2 � 5x � 2 44.

45–52 ■ Solve the equation by completing the square.

45. x 2 � 2x � 5 � 0 46. x 2 � 4x � 2 � 0

47. 48.

49. 2x 2 � 8x � 1 � 0 50. 3x 2 � 6x � 1 � 0

51. 4x 2 � x � 0 52. �2x 2 � 6x � 3 � 0

53–68 ■ Find all real solutions of the quadratic equation.

53. x 2 � 2x � 15 � 0 54. x 2 � 30x � 200 � 0

55. x 2 � 3x � 1 � 0 56. x 2 � 6x � 1 � 0

57. 2x 2 � x � 3 � 0 58. 3x 2 � 7x � 4 � 0

59. 60.

61. 4x 2 � 16x � 9 � 0 62.

63. 3 � 5z � z2 � 0 64.

65. 66. 3x 2 � 2x � 2 � 0

67. 25x 2 � 70x � 49 � 0 68. 5x 2 � 7x � 5 � 0

69–74 ■ Use the discriminant to determine the number of real
solutions of the equation. Do not solve the equation.

69. x 2 � 6x � 1 � 0 70. 3x 2 � 6x � 9

71. x 2 � 2.20x � 1.21 � 0 72. x 2 � 2.21x � 1.21 � 0

73. 74.

75–98 ■ Find all real solutions of the equation.

75. 76.

77. 78.
1

x � 1
�

2

x2 � 0
x2

x � 100
� 50

10
x

�
12

x � 3
� 4 � 0

1

x � 1
�

1

x � 2
�

5

4

x2 � rx � s � 0 1s 	 0 24x2 � 5x � 13
8 � 0

16x2 � 2x � 23/2 � 0

x2 � 15x � 1 � 0

„ 2 � 31„ � 1 2u2 � 3
2u � 9

16 � 02y2 � y � 1
2 � 0

x2 � 3
4 x � 1

8x2 � 3x � 7
4 � 0

6x1x � 1 2 � 21 � x

S �
n1n � 1 2

2
h � 1

2 gt2 � √0 t

A � P a1 �
i

100
b 2

F � G
mM

r 2V � 1
3pr 2h

1.5 Exercises
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79. 80.

81. 82.

83. 84.

85. x 4 � 13x 2 � 40 � 0 86. x 4 � 5x 2 � 4 � 0

87. 2x 4 � 4x 2 � 1 � 0 88. x 6 � 2x 3 � 3 � 0

89. x 4/3 � 5x 2/3 � 6 � 0 90.

91.

92. x1/2 � 3x�1/2 � 10x�3/2

93. x1/2 � 3x1/3 � 3x1/6 � 9 94.

95. � 3 96. � 1

97. � 0.01 98. � �1

Applications

99–100 ■ Falling-Body Problems Suppose an object is
dropped from a height h0 above the ground. Then its height after
t seconds is given by h � �16t 2 � h0, where h is measured in
feet. Use this information to solve the problem.

99. If a ball is dropped from 288 ft above the ground, how
long does it take to reach ground level?

100. A ball is dropped from the top of a building 96 ft tall.

(a) How long will it take to fall half the distance to ground
level?

(b) How long will it take to fall to ground level?

101–102 ■ Falling-Body Problems Use the formula 
h � �16t 2 � √0 t discussed in Example 9.

101. A ball is thrown straight upward at an initial speed of 
√ 0 � 40 ft /s.

(a) When does the ball reach a height of 24 ft?

(b) When does it reach a height of 48 ft?

(c) What is the greatest height reached by the ball?

(d) When does the ball reach the highest point of its path?

(e) When does the ball hit the ground?

102. How fast would a ball have to be thrown upward to reach a
maximum height of 100 ft? [Hint: Use the discriminant of
the equation 16t 2 � √ 0 t � h � 0.]

103. Shrinkage in Concrete Beams As concrete dries, it
shrinks—the higher the water content, the greater the
shrinkage. If a concrete beam has a water content of 
„ kg/m3, then it will shrink by a factor

S �
0.032„ � 2.5

10,000

0 x � 6 00 x � 4 0 0 3x � 5 00 2x 0 x � 51x � 6 � 0

41x � 1 2 1/2 � 51x � 1 2 3/2 � 1x � 1 2 5/2 � 0

1x � 314 x � 4 � 0

21x � 5 � x � 52x � 1x � 1 � 8

15 � x � 1 � x � 212x � 1 � 1 � x

x

2x � 7
�

x � 1

x � 3
� 1

x � 5

x � 2
�

5

x � 2
�

28

x2 � 4

where S is the fraction of the original beam length that 
disappears due to shrinkage.

(a) A beam 12.025 m long is cast in concrete that contains
250 kg/m3 water. What is the shrinkage factor S? How
long will the beam be when it has dried?

(b) A beam is 10.014 m long when wet. We want it to
shrink to 10.009 m, so the shrinkage factor should be 
S � 0.00050. What water content will provide this
amount of shrinkage?

104. The Lens Equation If F is the focal length of a convex
lens and an object is placed at a distance x from the lens,
then its image will be at a distance y from the lens,
where F, x, and y are related by the lens equation

Suppose that a lens has a focal length of 4.8 cm, and that
the image of an object is 4 cm closer to the lens than the
object itself. How far from the lens is the object?

105. Fish Population The fish population in a certain lake
rises and falls according to the formula

Here F is the number of fish at time t, where t is measured
in years since January 1, 2002, when the fish population
was first estimated.

(a) On what date will the fish population again be the
same as on January 1, 2002?

(b) By what date will all the fish in the lake have died?

106. Fish Population A large pond is stocked with fish. 
The fish population P is modeled by the formula

, where t is the number of days
since the fish were first introduced into the pond. How
many days will it take for the fish population to 
reach 500?

107. Profit A small-appliance manufacturer finds that the
profit P (in dollars) generated by producing x microwave
ovens per week is given by the formula 
provided that 0 
 x 
 200. How many ovens must be
manufactured in a given week to generate a profit of
$1250?

108. Gravity If an imaginary line segment is drawn between
the centers of the earth and the moon, then the net 

P � 1
10 x 1300 � x 2

P � 3t � 101t � 140

F � 1000130 � 17t � t2 2

1

F
�

1
x

�
1
y
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gravitational force F acting on an object situated on this
line segment is

where K 	 0 is a constant and x is the distance of the 
object from the center of the earth, measured in thousands
of miles. How far from the center of the earth is the “dead
spot” where no net gravitational force acts upon the ob-
ject? (Express your answer to the nearest thousand miles.)

109. Depth of a Well One method for determining the depth
of a well is to drop a stone into it and then measure the
time it takes until the splash is heard. If d is the depth of
the well (in feet) and t1 the time (in seconds) it takes 
for the stone to fall, then , so . Now if
t2 is the time it takes for the sound to travel back up, then 
d � 1090t2 because the speed of sound is 1090 ft/s. So 
t2 � d/1090. Thus, the total time elapsed between drop-
ping the stone and hearing the splash is

How deep is the well if this total time is 3 s?

Discovery ● Discussion

110. A Family of Equations The equation

3x � k � 5 � kx � k � 1

Time
sound
rises:
t¤=

d

1090

Time
stone
falls:
t⁄=

œ∑d

4

t1 � t2 �
1d

4
�

d

1090

t1 � 1d/4d � 16t2
1

x

F �
�K

x2 �
0.012K1239 � x 2 2

is really a family of equations, because for each value 
of k, we get a different equation with the unknown x. The
letter k is called a parameter for this family. What value
should we pick for k to make the given value of x a solu-
tion of the resulting equation?

(a) x � 0 (b) x � 1 (c) x � 2

111. Proof That 0 	 1? The following steps appear to give
equivalent equations, which seem to prove that 1 � 0. Find
the error.

Given

Multiply by x

Subtract x

Factor

Divide by x � 1

Simplify

Given x � 1

112. Volumes of Solids The sphere, cylinder, and cone
shown here all have the same radius r and the same 
volume V.

(a) Use the volume formulas given on the inside front
cover of this book, to show that

(b) Solve these equations for h1 and h2.

113. Relationship between Roots and Coefficients

The quadratic formula gives us the roots of a quadratic
equation from its coefficients. We can also obtain the
coefficients from the roots. For example, find the roots of
the equation x 2 � 9x � 20 � 0 and show that the product
of the roots is the constant term 20 and the sum of the
roots is 9, the negative of the coefficient of x. Show that
the same relationship between roots and coefficients holds
for the following equations:

Use the quadratic formula to prove that in general, if the
equation x 2 � bx � c � 0 has roots r1 and r2, then c � r1r2

and .b � �1r1 � r2 2
x2 � 4x � 2 � 0

x2 � 2x � 8 � 0

r

h⁄

r

h¤

r

4
3pr 3 � pr 2h1  and  4

3pr 3 � 1
3pr 2h2

 1 � 0

x � 0

x1x � 1 2
x � 1

�
0

x � 1

x1x � 1 2 � 0

x2 � x � 0

x2 � x

x � 1



1.6 Modeling with Equations

Many problems in the sciences, economics, finance, medicine, and numerous other
fields can be translated into algebra problems; this is one reason that algebra is so 
useful. In this section we use equations as mathematical models to solve real-life
problems.

Guidelines for Modeling with Equations

We will use the following guidelines to help us set up equations that model situations
described in words. To show how the guidelines can help you set up equations, we
note them in the margin as we work each example in this section.
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114. Solving an Equation in Different Ways We have
learned several different ways to solve an equation in this
section. Some equations can be tackled by more than one
method. For example, the equation is of
quadratic type: We can solve it by letting and 
x � u 2, and factoring. Or we could solve for , square
each side, and then solve the resulting quadratic equation.

1x
1x � u

x � 1x � 2 � 0

Solve the following equations using both methods 
indicated, and show that you get the same final answers.

(a) quadratic type; solve for the 
radical, and square

(b) quadratic type; multiply
by LCD

121x � 3 2 2 �
10

x � 3
� 1 � 0

x � 1x � 2 � 0

Guidelines for Modeling with Equations

1. Identify the Variable. Identify the quantity that the problem asks you to
find. This quantity can usually be determined by a careful reading of the
question posed at the end of the problem. Then introduce notation for the
variable (call it x or some other letter).

2. Express All Unknown Quantities in Terms of the Variable. Read each
sentence in the problem again, and express all the quantities mentioned in the
problem in terms of the variable you defined in Step 1. To organize this infor-
mation, it is sometimes helpful to draw a diagram or make a table.

3. Set Up the Model. Find the crucial fact in the problem that gives a rela-
tionship between the expressions you listed in Step 2. Set up an equation (or
model) that expresses this relationship.

4. Solve the Equation and Check Your Answer. Solve the equation, check
your answer, and express it as a sentence that answers the question posed in
the problem.

The following example illustrates how these guidelines are used to translate a
“word problem” into the language of algebra.



Example 1 Renting a Car

A car rental company charges $30 a day and 15¢ a mile for renting a car. Helen
rents a car for two days and her bill comes to $108. How many miles did she 
drive?

Solution We are asked to find the number of miles Helen has driven. So we let

Then we translate all the information given in the problem into the language of 
algebra.

In Words In Algebra

Number of miles driven x

Mileage cost (at $0.15 per mile) 0.15x

Daily cost (at $30 per day) 2 1302
Now we set up the model.

� �

Subtract 60

Divide by 0.15

Calculator

Helen drove her rental car 320 miles. ■

Constructing Models

In the examples and exercises that follow, we construct equations that model prob-
lems in many different real-life situations.

Example 2 Interest on an Investment

Mary inherits $100,000 and invests it in two certificates of deposit. One 
certificate pays 6% and the other pays % simple interest annually. If Mary’s 
total interest is $5025 per year, how much money is invested at each rate?

Solution The problem asks for the amount she has invested at each rate. So 
we let

x � the amount invested at 6%

Since Mary’s total inheritance is $100,000, it follows that she invested 100,000 � x
at %. We translate all the information given into the language of algebra.41

2

41
2

x � 320

x �
48

0.15

 0.15x � 48

 0.15x � 2130 2 � 108

total cost
daily
cost

mileage
cost

x � number of miles driven
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Check Your Answer

total cost � mileage cost � daily cost

� 0.15 13202 � 2 1302
� 108

Identify the variable

Set up the model

Solve

Identify the variable

Express all unknown quantities in
terms of the variable



In Words In Algebra

Amount invested at 6% x

Amount invested at  % 100,000 � x

Interest earned at 6% 0.06x

Interest earned at  %

We use the fact that Mary’s total interest is $5025 to set up the model.

� �

Multiply

Combine the x-terms

Subtract 4500

Divide by 0.015

So Mary has invested $35,000 at 6% and the remaining $65,000 at %. ■

Check Your Answer

total interest � 6% of $35,000 � % of $65,000

� $2100 � $2925 � $5025

Example 3 Dimensions of a Poster

A poster has a rectangular printed area 100 cm by 140 cm, and a blank strip of 
uniform width around the four edges. The perimeter of the poster is times the
perimeter of the printed area. What is the width of the blank strip, and what are the
dimensions of the poster?

Solution We are asked to find the width of the blank strip. So we let

Then we translate the information in Figure 1 into the language of algebra:

In Words In Algebra

Width of blank strip x

Perimeter of printed area 2 11002 � 2 11402 � 480

Width of poster 100 � 2x

Length of poster 140 � 2x

Perimeter, of poster 2 1100 � 2x2 � 2 1140 � 2x2

x � the width of the blank strip

11
2

41
2

41
2

x �
525

0.015
� 35,000

 0.015x � 525

 0.015x � 4500 � 5025

 0.06x � 4500 � 0.045x � 5025

 0.06x � 0.0451100,000 � x 2 � 5025

total interestinterest at 6%

0.0451100,000 � x 241
2

41
2
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In a problem such as this, which 
involves geometry, it is essential to
draw a diagram like the one shown 
in Figure 1.

interest at 4 %1
2Set up the model

Solve

Identify the variable

Express all unknown quantities in
terms of the variable

Express all unknown quantities in
terms of the variable



Now we use the fact that the perimeter of the poster is times the perimeter of the
printed area to set up the model.

� 


Subtract 480

Divide by 8

The blank strip is 30 cm wide, so the dimensions of the poster are

by

Figure 1 ■

Example 4 Dimensions of a Building Lot

A rectangular building lot is 8 ft longer than it is wide and has an area of 2900 ft2.
Find the dimensions of the lot.

Solution We are asked to find the width and length of the lot. So let

Then we translate the information given in the problem into the language of algebra
(see Figure 2 on page 62).

In Words In Algebra

Width of lot „

Length of lot „ � 8

Now we set up the model.

„ � width of lot

100 cm

140 cm

x

x

 140 � 30 � 30 � 200 cm long

 100 � 30 � 30 � 160 cm wide

x � 30

 8x � 240

Expand and combine
like terms on LHS 480 � 8x � 720

 21100 � 2x 2 � 21140 � 2x 2 � 3
2
# 480

perimeter of printed area3
2

perimeter of poster 

11
2
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Set up the model

Solve

Identify the variable

Express all unknown quantities in
terms of the variable




 �

Expand

Subtract 2900

Factor

Zero-Product Property

Since the width of the lot must be a positive number, we conclude that „ � 50 ft.
The length of the lot is „ � 8 � 50 � 8 � 58 ft.

Figure 2 ■

Example 5 Determining the Height of a Building Using 

Similar Triangles

A man 6 ft tall wishes to find the height of a certain four-story building. He mea-
sures its shadow and finds it to be 28 ft long, while his own shadow is ft long.
How tall is the building?

Solution The problem asks for the height of the building. So let

We use the fact that the triangles in Figure 3 are similar. Recall that for any pair of
similar triangles the ratios of corresponding sides are equal. Now we translate these
observations into the language of algebra.

In Words In Algebra

Height of building h

Ratio of height to base in large triangle

Since the large and small triangles are similar, we get the equation

�

h �
6 # 28

3.5
� 48

h

28
�

6

3.5

ratio of height to
base in small triangle

ratio of height to
base in large triangle

h
28

h � the height of the building

31
2

w

w+8

„ � 50  or  „ � �58

1„ � 50 2 1„ � 58 2 � 0

„2 � 8„ � 2900 � 0

„2 � 8„ � 2900

„ 1„ � 8 2 � 2900

area
of lot

length
of lot

width
of lot
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Set up the model

Solve

Identify the variable

Set up the model

Solve

Express all unknown quantities in
terms of the variable

Ratio of height to base in small triangle 6
3.5



Example 6 Mixtures and Concentration

A manufacturer of soft drinks advertises their orange soda as “naturally flavored,”
although it contains only 5% orange juice. A new federal regulation stipulates that
to be called “natural” a drink must contain at least 10% fruit juice. How much pure
orange juice must this manufacturer add to 900 gal of orange soda to conform to
the new regulation?

Solution The problem asks for the amount of pure orange juice to be added. 
So let

In any problem of this type—in which two different substances are to be 
mixed—drawing a diagram helps us organize the given information (see 
Figure 4).

� �
100% juice5% juice

10% juice

Volume

Amount of
orange juice

900 gallons

5% of 900 gallons
=45 gallons

x gallons

 100% of x gallons
=x gallons

900+x gallons

10% of 900+x gallons
=0.1(900+x) gallons

x � the amount 1in gallons 2  of pure orange juice to be added

The building is 48 ft tall.

■

h

3    ft1
2

28 ft

6 ft
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Identify the variable

Figure 4

Figure 3



We now translate the information in the figure into the language of algebra.

In Words In Algebra

Amount of orange juice to be added x

Amount of the mixture 900 � x

Amount of orange juice in the first vat 0.05 19002 = 45

Amount of orange juice in the second vat 1 # x � x

Amount of orange juice in the mixture 0.10 1900 + x2
To set up the model, we use the fact that the total amount of orange juice in the
mixture is equal to the orange juice in the first two vats.

� �

From Figure 4

Multiply

Subtract 0.1x and 45

Divide by 0.9

The manufacturer should add 50 gal of pure orange juice to the soda. ■

Check Your Answer

Amounts are equal.

Example 7 Time Needed to Do a Job

Because of an anticipated heavy rainstorm, the water level in a reservoir must be
lowered by 1 ft. Opening spillway A lowers the level by this amount in 4 hours,
whereas opening the smaller spillway B does the job in 6 hours. How long will it
take to lower the water level by 1 ft if both spillways are opened?

Solution We are asked to find the time needed to lower the level by 1 ft if both
spillways are open. So let

Finding an equation relating x to the other quantities in this problem is not easy.

by 1 ft if both spillways are open
x � the time 1in hours 2  it takes to lower the water level

 amount of juice after mixing � 10% of 950 gal � 95 gal

� 45 gal � 50 gal � 95 gal

 amount of juice before mixing � 5% of 900 gal � 50 gal pure juice

x �
45

0.9
� 50

 0.9x � 45

 45 � x � 90 � 0.1x

 45 � x � 0.11900 � x 2
amount of

orange juice
in mixture

amount of
orange juice
in second vat

amount of 
orange juice
in first vat
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A
B

Identify the variable

Set up the model

Solve

Express all unknown quantities in
terms of the variable



Certainly x is not simply 4 � 6, because that would mean that together the two
spillways require longer to lower the water level than either spillway alone. Instead,
we look at the fraction of the job that can be done in one hour by each spillway.

In Words In Algebra

Time it takes to lower level 1 ft with A and B together x h

Distance A lowers level in 1 h ft

Distance B lowers level in 1 h ft

Distance A and B together lower levels in 1 h ft

Now we set up the model.

fraction done by A   �  fraction done by B �  fraction done by both

Multiply by the LCD, 12x

Add

Divide by 5

It will take hours, or 2 h 24 min to lower the water level by 1 ft if both spillways
are open. ■

The next example deals with distance, rate (speed), and time. The formula to
keep in mind here is

where the rate is either the constant speed or average speed of a moving object. For
example, driving at 60 mi/h for 4 hours takes you a distance of 60 
 4 � 240 mi.

Example 8 A Distance-Speed-Time Problem

A jet flew from New York to Los Angeles, a distance of 4200 km. The speed for 
the return trip was 100 km/h faster than the outbound speed. If the total trip took
13 hours, what was the jet’s speed from New York to Los Angeles?

Solution We are asked for the speed of the jet from New York to Los Angeles.
So let

Then

Now we organize the information in a table. We fill in the “Distance” column
first, since we know that the cities are 4200 km apart. Then we fill in the “Speed”
column, since we have expressed both speeds (rates) in terms of the variable s.
Finally, we calculate the entries for the “Time” column, using

time �
distance

rate

s � 100 � speed from Los Angeles to New York

s � speed from New York to Los Angeles

distance � rate � time

22
5

x �
12

5

 5x � 12

 3x � 2x � 12

1

4
�

1

6
�

1
x

1
x

1
6

1
4
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Distance (km) Speed (km/h) Time (h)

N.Y. to L.A. 4200 s

L.A. to N.Y. 4200 s � 100
4200

s � 100

4200
s

The total trip took 13 hours, so we have the model

� �

Multiplying by the common denominator, , we get

Although this equation does factor, with numbers this large it is probably quicker to
use the quadratic formula and a calculator.

Since s represents speed, we reject the negative answer and conclude that the jet’s
speed from New York to Los Angeles was 600 km/h. ■

Example 9 Energy Expended in Bird Flight

Ornithologists have determined that some species of birds tend to avoid flights over
large bodies of water during daylight hours, because air generally rises over land
and falls over water in the daytime, so flying over water requires more energy. A
bird is released from point A on an island, 5 mi from B, the nearest point on a
straight shoreline. The bird flies to a point C on the shoreline and then flies along
the shoreline to its nesting area D, as shown in Figure 5. Suppose the bird has 
170 kcal of energy reserves. It uses 10 kcal/mi flying over land and 14 kcal/mi
flying over water.

(a) Where should the point C be located so that the bird uses exactly 170 kcal of
energy during its flight?

(b) Does the bird have enough energy reserves to fly directly from A to D?

s � 600  or  s �
�1400

26
� �53.8

�
7100 � 8500

26

s �
7100 � 21�7100 2 2 � 4113 2 1�420,000 2

2113 2
 0 � 13s2 � 7100s � 420,000

 8400s � 420,000 � 13s2 � 1300s

 42001s � 100 2 � 4200s � 13s1s � 100 2s1s � 100 2
4200

s
�

4200

s � 100
� 13

total
time

time from
L.A. to N.Y.

time from
N.Y. to L.A.
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5 mi
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12 mi
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Solution

(a) We are asked to find the location of C. So let

From the figure, and from the fact that

we determine the following:

In Words In Algebra

Distance from B to C x

Distance flown over water (from A to C ) Pythagorean Theorem
Distance flown over land (from C to D) 12 � x

Energy used over water

Energy used over land

Now we set up the model.

� �

To solve this equation, we eliminate the square root by first bringing all other
terms to the left of the equal sign and then squaring each side.

Simplify LHS

Square each side

Expand

All terms to RHS

This equation could be factored, but because the numbers are so large it is eas-
ier to use the quadratic formula and a calculator:

Point C should be either mi or mi from B so that the bird uses exactly 
170 kcal of energy during its flight.

(b) By the Pythagorean Theorem (see page 54), the length of the route directly
from A to D is mi, so the energy the bird requires for that
route is 14 � 13 � 182 kcal. This is more energy than the bird has available,
so it can’t use this route. ■

252 � 122 � 13

33
462

3

�
1000 � 280

192
� 62

3  or  33
4

x �
1000 � 21�1000 2 2 � 4196 2 12400 2

2196 2

 0 � 96x2 � 1000x � 2400

 2500 � 1000x � 100x2 � 196x2 � 4900

150 � 10x 2 2 � 114 2 21x2 � 25 2 50 � 10x � 142x2 � 25

Isolate square-root term
on RHS 170 � 10112 � x 2 � 142x2 � 25

170 � 142x2 � 25 � 10112 � x 2
energy used

over land
energy used
over water

total energy
used

10112 � x 2142x2 � 25

2x2 � 25

energy used � energy per mile � miles flown

x �  distance from B to C
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1–12 ■ Express the given quantity in terms of the indicated
variable.

1. The sum of three consecutive integers; n � first integer of
the three

2. The sum of three consecutive integers; n � middle integer
of the three

3. The average of three test scores if the first two scores are 
78 and 82; s � third test score

4. The average of four quiz scores if each of the first three
scores is 8; q � fourth quiz score

5. The interest obtained after one year on an investment at 
% simple interest per year; x � number of dollars 

invested

6. The total rent paid for an apartment if the rent is $795 a
month; n � number of months

7. The area (in ft2) of a rectangle that is three times as long as
it is wide; „ � width of the rectangle (in ft)

8. The perimeter (in cm) of a rectangle that is 5 cm longer than
it is wide; „ � width of the rectangle (in cm)

9. The distance (in mi) that a car travels in 45 min; s � speed
of the car (in mi/h)

10. The time (in hours) it takes to travel a given distance at 
55 mi/h; d � given distance (in mi)

11. The concentration (in oz/gal) of salt in a mixture of 3 gal of
brine containing 25 oz of salt, to which some pure water has
been added; x � volume of pure water added (in gal)

12. The value (in cents) of the change in a purse that contains
twice as many nickels as pennies, four more dimes than
nickels, and as many quarters as dimes and nickels com-
bined; p � number of pennies

Applications

13. Number Problem Find three consecutive integers whose
sum is 156.

14. Number Problem Find four consecutive odd integers
whose sum is 416.

15. Number Problem Find two numbers whose sum is 55
and whose product is 684.

16. Number Problem The sum of the squares of two 
consecutive even integers is 1252. Find the integers.

17. Investments Phyllis invested $12,000, a portion earning
a simple interest rate of % per year and the rest earning a
rate of 4% per year. After one year the total interest earned

41
2

21
2

on these investments was $525. How much money did she
invest at each rate?

18. Investments If Ben invests $4000 at 4% interest per year,
how much additional money must he invest at % annual
interest to ensure that the interest he receives each year is 

% of the total amount invested?

19. Investments What annual rate of interest would you 
have to earn on an investment of $3500 to ensure receiving
$262.50 interest after one year?

20. Investments Jack invests $1000 at a certain annual inter-
est rate, and he invests another $2000 at an annual rate that
is one-half percent higher. If he receives a total of $190 
interest in one year, at what rate is the $1000 invested?

21. Salaries An executive in an engineering firm earns a
monthly salary plus a Christmas bonus of $8500. If she
earns a total of $97,300 per year, what is her monthly salary?

22. Salaries A woman earns 15% more than her husband. 
Together they make $69,875 per year. What is the husband’s
annual salary?

23. Inheritance Craig is saving to buy a vacation home. He
inherits some money from a wealthy uncle, then combines
this with the $22,000 he has already saved and doubles the
total in a lucky investment. He ends up with $134,000, just
enough to buy a cabin on the lake. How much did he inherit?

24. Overtime Pay Helen earns $7.50 an hour at her job,
but if she works more than 35 hours in a week she is paid 
times her regular salary for the overtime hours worked. One
week her gross pay was $352.50. How many overtime hours
did she work that week?

25. Labor Costs A plumber and his assistant work together
to replace the pipes in an old house. The plumber charges
$45 an hour for his own labor and $25 an hour for his 
assistant’s labor. The plumber works twice as long as his 
assistant on this job, and the labor charge on the final bill is
$4025. How long did the plumber and his assistant work on
this job?

26. Career Home Runs During his major league career,
Hank Aaron hit 41 more home runs than Babe Ruth hit 
during his career. Together they hit 1469 home runs. 
How many home runs did Babe Ruth hit?

27. A Riddle A movie star, unwilling to give his age, posed
the following riddle to a gossip columnist. “Seven years
ago, I was eleven times as old as my daughter. Now I am
four times as old as she is.” How old is the star?

28. A Riddle A father is four times as old as his daughter. 
In 6 years, he will be three times as old as she is. How old 
is the daughter now?

11
2

41
2

51
2

1.6 Exercises
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29. Value of Coins A change purse contains an equal number
of pennies, nickels, and dimes. The total value of the coins
is $1.44. How many coins of each type does the purse 
contain?

30. Value of Coins Mary has $3.00 in nickels, dimes, and
quarters. If she has twice as many dimes as quarters and five
more nickels than dimes, how many coins of each type does
she have?

31. Law of the Lever The figure shows a lever system,
similar to a seesaw that you might find in a children’s play-
ground. For the system to balance, the product of the weight
and its distance from the fulcrum must be the same on each
side; that is

This equation is called the law of the lever, and was first
discovered by Archimedes (see page 748).

A woman and her son are playing on a seesaw. The boy is
at one end, 8 ft from the fulcrum. If the son weighs 100 lb
and the mother weighs 125 lb, where should the woman sit
so that the seesaw is balanced?

32. Law of the Lever A plank 30 ft long rests on top of a
flat-roofed building, with 5 ft of the plank projecting over
the edge, as shown in the figure. A worker weighing 
240 lb sits on one end of the plank. What is the largest
weight that can be hung on the projecting end of the plank 
if it is to remain in balance? (Use the law of the lever stated
in Exercise 31.)

5 ft

„⁄

„¤

x⁄
x¤

„1x1 � „2x2

33. Length and Area Find the length x in the figure. The area
of the shaded region is given.

34. Length and Area Find the length y in the figure. The area
of the shaded region is given.

35. Length of a Garden A rectangular garden is 25 ft wide.
If its area is 1125 ft 2, what is the length of the garden?

36. Width of a Pasture A pasture is twice as long as it is
wide. Its area is 115,200 ft 2. How wide is the pasture?

37. Dimensions of a Lot A square plot of land has a build-
ing 60 ft long and 40 ft wide at one corner. The rest of the
land outside the building forms a parking lot. If the parking
lot has area 12,000 ft 2, what are the dimensions of the entire
plot of land?

38. Dimensions of a Lot A half-acre building lot is five
times as long as it is wide. What are its dimensions? 
[Note: 1 acre � 43,560 ft 2.]

39. Dimensions of a Garden A rectangular garden is 
10 ft longer than it is wide. Its area is 875 ft2. What are its
dimensions?

25 ft
x ft

y

y

1 cm

area=1200 cm2

y

area=120 in2

yy

x

x

13 in.

14 in.

area=160 in2

x

x

6 cm
10 cm

area=144 cm2

(a)

(a)

(b)

(b)
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40. Dimensions of a Room A rectangular bedroom is 
7 ft longer than it is wide. Its area is 228 ft 2. What is the
width of the room?

41. Dimensions of a Garden A farmer has a rectangular
garden plot surrounded by 200 ft of fence. Find the length
and width of the garden if its area is 2400 ft2.

42. Dimensions of a Lot A parcel of land is 6 ft longer than
it is wide. Each diagonal from one corner to the opposite
corner is 174 ft long. What are the dimensions of the parcel?

43. Dimensions of a Lot A rectangular parcel of land is 50 ft
wide. The length of a diagonal between opposite corners is
10 ft more than the length of the parcel. What is the length
of the parcel?

44. Dimensions of a Track A running track has the shape
shown in the figure, with straight sides and semicircular
ends. If the length of the track is 440 yd and the two 
straight parts are each 110 yd long, what is the radius of 
the semicircular parts (to the nearest yard)?

45. Framing a Painting Al paints with watercolors on a sheet
of paper 20 in. wide by 15 in. high. He then places this sheet
on a mat so that a uniformly wide strip of the mat shows all
around the picture. The perimeter of the mat is 102 in. How
wide is the strip of the mat showing around the picture?

x

20 in.

15 in.

110 yd

r

perimeter=200 ft

46. Width of a Lawn A factory is to be built on a lot mea-
suring 180 ft by 240 ft. A local building code specifies that a
lawn of uniform width and equal in area to the factory must
surround the factory. What must the width of this lawn be,
and what are the dimensions of the factory?

47. Reach of a Ladder A 19 -foot ladder leans against 
a building. The base of the ladder is 7 ft from the building.
How high up the building does the ladder reach?

48. Height of a Flagpole A flagpole is secured on 
opposite sides by two guy wires, each of which is 5 ft longer
than the pole. The distance between the points where the
wires are fixed to the ground is equal to the length of one
guy wire. How tall is the flagpole (to the nearest inch)?

49. Length of a Shadow A man is walking away from 
a lamppost with a light source 6 m above the ground. The
man is 2 m tall. How long is the man’s shadow when he is
10 m from the lamppost? [Hint: Use similar triangles.]

6 m

2 m

x10 m

19 ft2
1

7 ft2
1

1
2

1
2
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50. Height of a Tree A woodcutter determines the height of
a tall tree by first measuring a smaller one 125 ft away, then
moving so that his eyes are in the line of sight along the tops
of the trees, and measuring how far he is standing from the
small tree (see the figure). Suppose the small tree is 20 ft
tall, the man is 25 ft from the small tree, and his eye level is
5 ft above the ground. How tall is the taller tree?

51. Buying a Cottage A group of friends decides to buy a
vacation home for $120,000, sharing the cost equally. If
they can find one more person to join them, each person’s
contribution will drop by $6000. How many people are in
the group?

52. Mixture Problem What quantity of a 60% acid solution
must be mixed with a 30% solution to produce 300 mL of a
50% solution?

53. Mixture Problem A jeweler has five rings, each weigh-
ing 18 g, made of an alloy of 10% silver and 90% gold. 
He decides to melt down the rings and add enough silver to
reduce the gold content to 75%. How much silver should 
he add?

54. Mixture Problem A pot contains 6 L of brine at a con-
centration of 120 g/L. How much of the water should be
boiled off to increase the concentration to 200 g/L?

55. Mixture Problem The radiator in a car is filled with a 
solution of 60% antifreeze and 40% water. The manufac-
turer of the antifreeze suggests that, for summer driving,
optimal cooling of the engine is obtained with only 50% 
antifreeze. If the capacity of the radiator is 3.6 L, how much
coolant should be drained and replaced with water to reduce
the antifreeze concentration to the recommended level?

56. Mixture Problem A health clinic uses a solution of
bleach to sterilize petri dishes in which cultures are grown.
The sterilization tank contains 100 gal of a solution of 2%
ordinary household bleach mixed with pure distilled water.
New research indicates that the concentration of bleach
should be 5% for complete sterilization. How much of the
solution should be drained and replaced with bleach to 
increase the bleach content to the recommended level?

25 ft 125 ft

5 ft

20 ft

57. Mixture Problem A bottle contains 750 mL of fruit
punch with a concentration of 50% pure fruit juice. Jill
drinks 100 mL of the punch and then refills the bottle with
an equal amount of a cheaper brand of punch. If the concen-
tration of juice in the bottle is now reduced to 48%, what
was the concentration in the punch that Jill added?

58. Mixture Problem A merchant blends tea that sells for
$3.00 a pound with tea that sells for $2.75 a pound to pro-
duce 80 lb of a mixture that sells for $2.90 a pound. How
many pounds of each type of tea does the merchant use in
the blend?

59. Sharing a Job Candy and Tim share a paper route. It
takes Candy 70 min to deliver all the papers, and it takes
Tim 80 min. How long does it take the two when they work
together?

60. Sharing a Job Stan and Hilda can mow the lawn in 
40 min if they work together. If Hilda works twice as fast 
as Stan, how long does it take Stan to mow the lawn alone?

61. Sharing a Job Betty and Karen have been hired to paint
the houses in a new development. Working together the
women can paint a house in two-thirds the time that it takes
Karen working alone. Betty takes 6 h to paint a house 
alone. How long does it take Karen to paint a house working
alone?

62. Sharing a Job Next-door neighbors Bob and Jim use
hoses from both houses to fill Bob’s swimming pool. They
know it takes 18 h using both hoses. They also know that
Bob’s hose, used alone, takes 20% less time than Jim’s hose
alone. How much time is required to fill the pool by each
hose alone?

63. Sharing a Job Henry and Irene working together can
wash all the windows of their house in 1 h 48 min. Working
alone, it takes Henry 1 h more than Irene to do the job.
How long does it take each person working alone to wash
all the windows?

64. Sharing a Job Jack, Kay, and Lynn deliver advertis-
ing flyers in a small town. If each person works alone,
it takes Jack 4 h to deliver all the flyers, and it takes Lynn 
1 h longer than it takes Kay. Working together, they can de-
liver all the flyers in 40% of the time it takes Kay working
alone. How long does it take Kay to deliver all the flyers
alone?

65. Distance, Speed, and Time Wendy took a trip from
Davenport to Omaha, a distance of 300 mi. She traveled part
of the way by bus, which arrived at the train station just in
time for Wendy to complete her journey by train. The bus
averaged 40 mi/h and the train 60 mi/h. The entire trip took
5 h. How long did Wendy spend on the train?

66. Distance, Speed, and Time Two cyclists, 90 mi apart,
start riding toward each other at the same time. One cycles

1
2

1
2
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twice as fast as the other. If they meet 2 h later, at what aver-
age speed is each cyclist traveling?

67. Distance, Speed, and Time A pilot flew a jet from 
Montreal to Los Angeles, a distance of 2500 mi. On the 
return trip the average speed was 20% faster than the out-
bound speed. The round-trip took 9 h 10 min. What was the
speed from Montreal to Los Angeles?

68. Distance, Speed, and Time A woman driving a car 
14 ft long is passing a truck 30 ft long. The truck is traveling
at 50 mi/h. How fast must the woman drive her car so that
she can pass the truck completely in 6 s, from the position
shown in figure (a) to the position shown in figure (b)?
[Hint: Use feet and seconds instead of miles and hours.]

69. Distance, Speed, and Time A salesman drives from
Ajax to Barrington, a distance of 120 mi, at a steady speed.
He then increases his speed by 10 mi/h to drive the 150 mi
from Barrington to Collins. If the second leg of his trip took
6 min more time than the first leg, how fast was he driving
between Ajax and Barrington?

70. Distance, Speed, and Time Kiran drove from Tortula to
Cactus, a distance of 250 mi. She increased her speed by 
10 mi/h for the 360-mi trip from Cactus to Dry Junction. If
the total trip took 11 h, what was her speed from Tortula to 
Cactus?

71. Distance, Speed, and Time It took a crew 2 h 40 min to
row 6 km upstream and back again. If the rate of flow of the
stream was 3 km/h, what was the rowing speed of the crew
in still water?

72. Speed of a Boat Two fishing boats depart a harbor at 
the same time, one traveling east, the other south. The 

50 mi/h

(a)

50 mi/h

(b)

eastbound boat travels at a speed 3 mi/h faster than the
southbound boat. After two hours the boats are 30 mi apart.
Find the speed of the southbound boat.

73. Dimensions of a Box A large plywood box has a volume
of 180 ft3. Its length is 9 ft greater than its height, and its
width is 4 ft less than its height. What are the dimensions of
the box?

74. Radius of a Sphere A jeweler has three small solid
spheres made of gold, of radius 2 mm, 3 mm, and 4 mm. He
decides to melt these down and make just one sphere out of
them. What will the radius of this larger sphere be?

75. Dimensions of a Box A box with a square base and no
top is to be made from a square piece of cardboard by cut-
ting 4-in. squares from each corner and folding up the sides,
as shown in the figure. The box is to hold 100 in3. How big
a piece of cardboard is needed?

4 in.

4 in.

x+9

x

x-4

N

30 m
i

S
EW
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76. Dimensions of a Can A cylindrical can has a volume of
40p cm3 and is 10 cm tall. What is its diameter? [Hint: Use
the volume formula listed on the inside back cover of this
book.]

77. Radius of a Tank A spherical tank has a capacity of 750
gallons. Using the fact that one gallon is about 0.1337 ft3,
find the radius of the tank (to the nearest hundredth of a
foot).

78. Dimensions of a Lot A city lot has the shape of a right
triangle whose hypotenuse is 7 ft longer than one of the
other sides. The perimeter of the lot is 392 ft. How long is
each side of the lot?

79. Construction Costs The town of Foxton lies 10 mi 
north of an abandoned east-west road that runs through
Grimley, as shown in the figure. The point on the abandoned
road closest to Foxton is 40 mi from Grimley. County
officials are about to build a new road connecting the two
towns. They have determined that restoring the old road
would cost $100,000 per mile, whereas building a new 
road would cost $200,000 per mile. How much of the 
abandoned road should be used (as indicated in the figure) 
if the officials intend to spend exactly $6.8 million? Would
it cost less than this amount to build a new road connecting
the towns directly?

80. Distance, Speed, and Time A boardwalk is parallel to
and 210 ft inland from a straight shoreline. A sandy beach
lies between the boardwalk and the shoreline. A man is

Grimley

New
road 10 mi

Abandoned road
40 mi

Foxton

10 cm

standing on the boardwalk, exactly 750 ft across the sand
from his beach umbrella, which is right at the shoreline. The
man walks 4 ft/s on the boardwalk and 2 ft/s on the sand.
How far should he walk on the boardwalk before veering off
onto the sand if he wishes to reach his umbrella in exactly
4 min 45 s?

81. Volume of Grain Grain is falling from a chute onto 
the ground, forming a conical pile whose diameter is 
always three times its height. How high is the pile (to the
nearest hundredth of a foot) when it contains 1000 ft3 of
grain?

82. TV Monitors Two television monitors sitting beside each
other on a shelf in an appliance store have the same screen
height. One has a conventional screen, which is 5 in. wider
than it is high. The other has a wider, high-definition screen,
which is 1.8 times as wide as it is high. The diagonal mea-
sure of the wider screen is 14 in. more than the diagonal
measure of the smaller. What is the height of the screens,
correct to the nearest 0.1 in.?

210 ft

Boardwalk

750 ft
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83. Dimensions of a Structure A storage bin for corn 
consists of a cylindrical section made of wire mesh, sur-
mounted by a conical tin roof, as shown in the figure. 
The height of the roof is one-third the height of the entire
structure. If the total volume of the structure is 1400p ft3

and its radius is 10 ft, what is its height? [Hint: Use
the volume formulas listed on the inside front cover of 
this book.]

84. Comparing Areas A wire 360 in. long is cut into two
pieces. One piece is formed into a square and the other into
a circle. If the two figures have the same area, what are the
lengths of the two pieces of wire (to the nearest tenth of an
inch)?

85. An Ancient Chinese Problem This problem is taken
from a Chinese mathematics textbook called Chui-chang
suan-shu, or Nine Chapters on the Mathematical Art, which
was written about 250 B.C.

h
1

3

10 ft

h

A 10-ft-long stem of bamboo is broken in such a way
that its tip touches the ground 3 ft from the base of the
stem, as shown in the figure. What is the height of the
break?

[Hint: Use the Pythagorean Theorem.]

Discovery • Discussion

86. Historical Research Read the biographical notes on
Pythagoras (page 54), Euclid (page 532), and Archimedes
(page 748). Choose one of these mathematicians and find
out more about him from the library or on the Internet.
Write a short essay on your findings. Include both biograph-
ical information and a description of the mathematics for
which he is famous.

87. A Babylonian Quadratic Equation The ancient 
Babylonians knew how to solve quadratic equations. Here 
is a problem from a cuneiform tablet found in a Babylonian
school dating back to about 2000 B.C.

I have a reed, I know not its length. I broke from it one
cubit, and it fit 60 times along the length of my field. I
restored to the reed what I had broken off, and it fit 30
times along the width of my field. The area of my field 
is 375 square nindas. What was the original length of the
reed?

Solve this problem. Use the fact that 1 ninda � 12 cubits.

3 ft
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Equations through the Ages

Equations have been used to solve problems throughout recorded history, in
every civilization. (See, for example, Exercise 85 on page 74.) Here is a problem
from ancient Babylon (ca. 2000 B.C.).

I found a stone but did not weigh it. After I added a seventh, and then added an
eleventh of the result, I weighed it and found it weighed 1 mina. What was the 
original weight of the stone?

The answer given on the cuneiform tablet is mina, 8 sheqel, and 22 se, where
1 mina � 60 sheqel, and 1 sheqel � 180 se.

In ancient Egypt, knowing how to solve word problems was a highly prized
secret. The Rhind Papyrus (ca. 1850 B.C.) contains many such problems (see
page 716). Problem 32 in the Papyrus states

A quantity, its third, its quarter, added together become 2. What is the quantity?

The answer in Egyptian notation is , where the bar indicates 
“reciprocal,” much like our notation 4�1.

The Greek mathematician Diophantus (ca. 250 A.D., see page 20) wrote the
book Arithmetica, which contains many word problems and equations. The 
Indian mathematician Bhaskara (12th century A.D., see page 144) and the Chi-
nese mathematician Chang Ch’iu-Chien (6th century A.D.) also studied and
wrote about equations. Of course, equations continue to be important today.

1. Solve the Babylonian problem and show that their answer is correct.

2. Solve the Egyptian problem and show that their answer is correct.

3. The ancient Egyptians and Babylonians used equations to solve practical
problems. From the examples given here, do you think that they may have
enjoyed posing and solving word problems just for fun?

4. Solve this problem from 12th-century India.

A peacock is perched at the top of a 15-cubit pillar, and a snake’s hole is at the foot
of the pillar. Seeing the snake at a distance of 45 cubits from its hole, the peacock
pounces obliquely upon the snake as it slithers home. At how many cubits from the
snake’s hole do they meet, assuming that each has traveled an equal distance?

5. Consider this problem from 6th-century China.

If a rooster is worth 5 coins, a hen 3 coins, and three chicks together one coin, how
many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

This problem has several answers. Use trial and error to find at least one 
answer. Is this a practical problem or more of a riddle? Write a short essay 
to support your opinion.

6. Write a short essay explaining how equations affect your own life in today’s
world.
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1.7 Inequalities

Some problems in algebra lead to inequalities instead of equations. An inequality
looks just like an equation, except that in the place of the equal sign is one of the sym-
bols, �, 	, 
, or �. Here is an example of an inequality:

The table in the margin shows that some numbers satisfy the inequality and some
numbers don’t.

To solve an inequality that contains a variable means to find all values of the vari-
able that make the inequality true. Unlike an equation, an inequality generally has
infinitely many solutions, which form an interval or a union of intervals on the 
real line. The following illustration shows how an inequality differs from its corre-
sponding equation:

Solution Graph

Equation: 4x � 7 � 19 x � 3

Inequality: 4x � 7 
 19 x 
 3

To solve inequalities, we use the following rules to isolate the variable on one side
of the inequality sign. These rules tell us when two inequalities are equivalent (the
symbol3means “is equivalent to”). In these rules the symbols A, B, and C stand for
real numbers or algebraic expressions. Here we state the rules for inequalities in-
volving the symbol 
, but they apply to all four inequality symbols.

0 3

0 3

4x � 7 
 19
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x 4x � 7 
 19

1 11 
 19
2 15 
 19
3 19 
 19
4 23 
 19
5 27 
 19

Rules for Inequalities

Rule Description

1. Adding the same quantity to each side of an inequality
gives an equivalent inequality.

2. Subtracting the same quantity from each side of an in-
equality gives an equivalent inequality.

3. If , then Multiplying each side of an inequality by the same posi-
tive quantity gives an equivalent inequality.

4. If , then Multiplying each side of an inequality by the same nega-
tive quantity reverses the direction of the inequality.

5. If and , Taking reciprocals of each side of an inequality involving 

then
positive quantities reverses the direction of the inequality.

6. If and , Inequalities can be added.
then A � C 
 B � D

C 
 DA 
 B

A 
 B 3  
1

A
�

1

B

B 	 0A 	 0

A 
 B 3  CA � CBC � 0

A 
 B 3  CA 
 CBC 	 0

A 
 B 3  A � C 
 B � C

A 
 B 3  A � C 
 B � C



Pay special attention to Rules 3 and 4. Rule 3 says that we can multiply (or divide)
each side of an inequality by a positive number, but Rule 4 says that if we multiply
each side of an inequality by a negative number, then we reverse the direction of the
inequality. For example, if we start with the inequality

and multiply by 2, we get

but if we multiply by �2, we get

Linear Inequalities

An inequality is linear if each term is constant or a multiple of the variable.

Example 1 Solving a Linear Inequality

Solve the inequality 3x � 9x � 4 and sketch the solution set.

Solution

Subtract 9x

Simplify

Multiply by (or divide by �6)

Simplify

The solution set consists of all numbers greater than . In other words the 
solution of the inequality is the interval . It is graphed in Figure 1. ■

Example 2 Solving a Pair of Simultaneous Inequalities

Solve the inequalities 4 
 3x � 2 � 13.

Solution The solution set consists of all values of x that satisfy both of the 
inequalities 4 
 3x � 2 and 3x � 2 � 13. Using Rules 1 and 3, we see that the 
following inequalities are equivalent:

Add 2

Divide by 3

Therefore, the solution set is , as shown in Figure 2. ■

Nonlinear Inequalities

To solve inequalities involving squares and other powers of the variable, we use fac-
toring, together with the following principle.

32, 5 22 
 x � 5

6 
 3x � 15

4 
 3x � 2 � 13

A�2
3, q B � 2

3

x 	 � 2
3

� 1
6A� 1

6B 1�6x 2 	 A�1
6B 14 2�6x � 4

3x � 9x � 9x � 4 � 9x

3x � 9x � 4

�6 	 �10

6 � 10

3 � 5
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0_
2

3

Figure 1

Figure 2

0 2 5

Multiplying by the negative number 
reverses the direction of the inequality.

�1
6



Example 3 A Quadratic Inequality

Solve the inequality x 2 � 5x � 6 
 0.

Solution First we factor the left side.

We know that the corresponding equation has the solutions 2
and 3. As shown in Figure 3, the numbers 2 and 3 divide the real line into three in-
tervals: , , and . On each of these intervals we determine the
signs of the factors using test values. We choose a number inside each interval and
check the sign of the factors x � 2 and x � 3 at the value selected. For instance, if we
use the test value x � 1 for the interval shown in Figure 4, then substitution
in the factors x � 2 and x � 3 gives

and

So both factors are negative on this interval. (The factors x � 2 and x � 3 change sign
only at 2 and 3, respectively, so they maintain their signs over the length of each in-
terval. That is why using a single test value on each interval is sufficient.)

Using the test values and x � 4 for the intervals and (see Fig-
ure 4), respectively, we construct the following sign table. The final row of the table
is obtained from the fact that the expression in the last row is the product of the two
factors.

13, q 212, 3 2x � 21
2

x � 3 � 1 � 3 � �2 � 0

x � 2 � 1 � 2 � �1 � 0

1�q, 2 2
13,q 212, 3 21�q, 2 2 1x � 2 2 1x � 3 2 � 0

1x � 2 2 1x � 3 2 
 0
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The Sign of a Product or Quotient

If a product or a quotient has an even number of negative factors, then its
value is positive.

If a product or a quotient has an odd number of negative factors, then its
value is negative.

0 3

(_`, 2) (2, 3) (3, `)

2

Figure 3

Figure 4

20 3

Test value
x = 1

Test value
x = 4

Test value
x = 2 1

2

Interval 1�q, 22 12, 32 13,q2
Sign of x � 2 � � �

Sign of x � 3 � � �

Sign of Óx � 2ÔÓx � 3Ô � � �

If you prefer, you can represent this information on a real number line, as in the
following sign diagram. The vertical lines indicate the points at which the real line is
divided into intervals:



We read from the table or the diagram that is negative on the in-
terval . Thus, the solution of the inequality is

We have included the endpoints 2 and 3 because we seek values of x such that 
the product is either less than or equal to zero. The solution is illustrated in 
Figure 5. ■

Example 3 illustrates the following guidelines for solving an inequality that can be
factored.

5x 0 2 
 x 
 36 � 32, 3 41x � 2 2 1x � 3 2 
 012, 3 2 1x � 2 2 1x � 3 2

Sign of x-2

Sign of x-3

Sign of (x-2)(x-3)

2 3

+

-

-

-

-

+

+

+

+
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Figure 5

20 3

Guidelines for Solving Nonlinear Inequalities

1. Move All Terms to One Side. If necessary, rewrite the inequality so 
that all nonzero terms appear on one side of the inequality sign. If the
nonzero side of the inequality involves quotients, bring them to a common
denominator.

2. Factor. Factor the nonzero side of the inequality.

3. Find the Intervals. Determine the values for which each factor is zero.
These numbers will divide the real line into intervals. List the intervals 
determined by these numbers.

4. Make a Table or Diagram. Use test values to make a table or diagram of
the signs of each factor on each interval. In the last row of the table deter-
mine the sign of the product (or quotient) of these factors.

5. Solve. Determine the solution of the inequality from the last row of the
sign table. Be sure to check whether the inequality is satisfied by some or all
of the endpoints of the intervals (this may happen if the inequality involves 

 or �).

The factoring technique described in these guidelines works only if all nonzero
terms appear on one side of the inequality symbol. If the inequality is not written in
this form, first rewrite it, as indicated in Step 1. This technique is illustrated in the ex-
amples that follow.



Example 4 An Inequality Involving a Quotient

Solve:

Solution First we move all nonzero terms to the left side, and then we simplify
using a common denominator.

Common denominator 1 � x

Combine the fractions

Simplify

The numerator is zero when x � 0 and the denominator is zero when x � 1, so we
construct the following sign diagram using these values to define intervals on the
real line.

2x

1 � x
� 0

1 � x � 1 � x

1 � x
� 0

1 � x

1 � x
�

1 � x

1 � x
� 0

Subtract 1 (to move all
terms to LHS)

1 � x

1 � x
� 1 � 0

1 � x

1 � x
� 1

1 � x

1 � x
� 1
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From the diagram we see that the solution set is . We
include the endpoint 0 because the original inequality requires the quotient to be
greater than or equal to 1. However, we do not include the other endpoint 1, since
the quotient in the inequality is not defined at 1. Always check the endpoints of so-
lution intervals to determine whether they satisfy the original inequality.

The solution set is illustrated in Figure 6. ■

Example 5 Solving an Inequality with Three Factors

Solve the inequality 

Solution After moving all nonzero terms to one side of the inequality, we use a
common denominator to combine the terms.

Subtract 

Common denominator x � 1

Combine fractions

Factor numerator
1x � 1 2 1x � 2 2

x � 1
� 0

x2 � x � 2

x � 1
� 0

x1x � 1 2
x � 1

�
2

x � 1
� 0

2
x � 1

x �
2

x � 1
� 0

x �
2

x � 1
.

30, 1 2
5x 0 0 
 x � 16 � 30,1 2

It is tempting to multiply both
sides of the inequality by 1 � x (as you
would if this were an equation). But
this doesn’t work because we don’t
know if 1 � x is positive or negative,
so we can’t tell if the inequality needs
to be reversed. (See Exercise 110.)

0 1

Figure 6

Sign of 2x

Sign of 1-x

Sign of

0 1

+

+

+

-

+

-

+

-

-
2x

1-x

Make a diagram

Solve

Terms to one side

Factor

Terms to one side



The factors in this quotient change sign at �1, 1, and 2, so we must examine the 
intervals , , , and . Using test values, we get the 
following sign diagram.

12,q 211, 2 21�1, 1 21�q, �1 2
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Figure 7

Since the quotient must be negative, the solution is

as illustrated in Figure 7. ■

Absolute Value Inequalities

We use the following properties to solve inequalities that involve absolute value.

1�q, �1 2 � 11, 2 20_1 1 2

Properties of Absolute Value Inequalities

Inequality Equivalent form Graph

1. �x � � c �c � x � c

2. �x � 
 c �c 
 x 
 c

3. �x � 	 c x � �c or c � x

4. �x � � c x 
 �c or c 
 x

0_c c

0_c c

0_c c

0_c c

These properties can be proved using the definition of absolute value. To prove
Property 1, for example, note that the inequality says that the distance from
x to 0 is less than c, and from Figure 8 you can see that this is true if and only if x is
between �c and c.

Example 6 Solving an Absolute Value Inequality

Solve the inequality .

Solution 1 The inequality is equivalent to

Property 1

Add 5

The solution set is the open interval .

Solution 2 Geometrically, the solution set consists of all numbers x whose dis-
tance from 5 is less than 2. From Figure 9 we see that this is the interval . ■13,7 2

13, 7 23 � x � 7

�2 � x � 5 � 2

0 x � 5 0 � 2

0 x � 5 0 � 2

0 x 0 � c
_c 0x c

c c

| x |

Figure 8

Find the intervals

Make a diagram

These properties hold when x is re-
placed by any algebraic expression. 
(In the figures we assume that c 	 0.)

Sign of x+1

Sign of x-2

Sign of x-1

Sign of

_1 1

+

-

-

+

-

-

-

-

+

+

+

+
(x+1)(x-2)

x-1

2

+

-

+

-

Figure 9

0

2

3 5 7

2



Example 7 Solving an Absolute Value Inequality

Solve the inequality .

Solution By Property 4 the inequality is equivalent to

or

Subtract 2

Divide by 3

So the solution set is

The set is graphed in Figure 10. ■

Modeling with Inequalities

Modeling real-life problems frequently leads to inequalities because we are often in-
terested in determining when one quantity is more (or less) than another.

Example 8 Carnival Tickets

A carnival has two plans for tickets.

Plan A: $5 entrance fee and 25¢ each ride

Plan B: $2 entrance fee and 50¢ each ride

How many rides would you have to take for plan A to be less expensive than plan B?

Solution We are asked for the number of rides for which plan A is less 
expensive than plan B. So let

The information in the problem may be organized as follows.

In Words In Algebra

Number of rides x

Cost with plan A 5 � 0.25x

Cost with plan B 2 � 0.50x

Now we set up the model.

�

Subtract 2

Subtract 0.25x

Divide by 0.25

So if you plan to take more than 12 rides, plan A is less expensive. ■

12 � x

3 � 0.25x

3 � 0.25x � 0.50x

5 � 0.25x � 2 � 0.50x

cost with
plan B

cost with
plan A

x � number of rides

5x 0 x 
 �2  or  x � 2
36 � 1�q, �2 4 � 3 23,q 2

x 
 �2x � 2
3

3x 
 �63x � 2

3x � 2 
 �43x � 2 � 4

0 3x � 2 0 � 4

0 3x � 2 0 � 4
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0_2
2

3

Figure 10

Identify the variable

Set up the model

Solve

Express all unknown quantities in
terms of the variable



Example 9 Fahrenheit and Celsius Scales

The instructions on a box of film indicate that the box should be stored at a temper-
ature between and . What range of temperatures does this correspond to
on the Fahrenheit scale?

Solution The relationship between degrees Celsius (C ) and degrees Fahrenheit
(F ) is given by the equation . Expressing the statement on the box
in terms of inequalities, we have

So the corresponding Fahrenheit temperatures satisfy the inequalities

Multiply by 

Simplify

Add 32

Simplify

The film should be stored at a temperature between and . ■

Example 10 Concert Tickets

A group of students decide to attend a concert. The cost of chartering a bus to take
them to the concert is $450, which is to be shared equally among the students. The
concert promoters offer discounts to groups arriving by bus. Tickets normally cost
$50 each but are reduced by 10¢ per ticket for each person in the group (up to the
maximum capacity of the bus). How many students must be in the group for the 
total cost per student to be less than $54?

Solution We are asked for the number of students in the group. So let

The information in the problem may be organized as follows.

In Words In Algebra

Number of students in group x

Bus cost per student

Ticket cost per student 50 � 0.10x

Now we set up the model.

� �

450
x

� 150 � 0.10x 2 � 54

54
ticket cost 
per student

bus cost 
per student

450
x

x � number of students in the group

86°F41°F

 41 � F � 86

 9 � 32 � F � 54 � 32

 9 � F � 32 � 54

9
5

9
5
# 5 � F � 32 � 9

5
# 30

 5 � 5
9 1F � 32 2 � 30

5 � C � 30

C � 5
9 1F � 32 2

30°C5°C
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*C

5

30

*F

41

86

Identify the variable

Set up the model

Express all unknown quantities in
terms of the variable
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1–6 ■ Let . Determine which
elements of S satisfy the inequality.

1. 2. 2x � 1 � x

3. 1 � 2x � 4 
 7 4. �2 
 3 � x � 2

5. 6. x 2 � 2 � 4

7–28 ■ Solve the linear inequality. Express the solution using
interval notation and graph the solution set.

7. 2x � 5 	 3 8. 3x � 11 � 5

9. 7 � x � 5 10. 5 � 3x 
 �16

11. 2x � 1 � 0 12. 0 � 5 � 2x

13. 3x � 11 
 6x � 8 14. 6 � x � 2x � 9

15. 16.

17. 18.

19. 20.

21. 2 
 x � 5 � 4 22. 5 
 3x � 4 
 14

23. �1 � 2x � 5 � 7 24. 1 � 3x � 4 
 16

25. �2 � 8 � 2x 
 �1 26. �3 
 3x � 7 
 1
2

217x � 3 2 
 12x � 164 � 3x 
 �11 � 8x 2 2
3 � 1

2 x � 1
6 � x1

3 x � 2 � 1
6 x � 1

2
5 x � 1 � 1

5 � 2x1
2 x � 2

3 	 2

1
x



1

2

3 � 2x 
 1
2

S � 5�2, �1, 0, 12, 1, 12, 2, 46 27. 28.

29–62 ■ Solve the nonlinear inequality. Express the solution
using interval notation and graph the solution set.

29. 30.

31. 32.

33. x 2 � 3x � 18 
 0 34. x 2 � 5x � 6 	 0

35. 2x 2 � x � 1 36. x 2 � x � 2

37. 3x 2 � 3x � 2x 2 � 4 38. 5x 2 � 3x � 3x 2 � 2

39. 40. x 2 � 2x 	 3

41. x 2 � 4 42. x 2 � 9

43. �2x 2 
 4

44.

45. x 3 � 4x 	 0 46. 16x 
 x 3

47. 48.

49. 50. �2 �
x � 1

x � 3

4x

2x � 3
	 2

2x � 6

x � 2
� 0

x � 3

x � 1
� 0

1x � 2 2 1x � 1 2 1x � 3 2 
 0

x2 	 31x � 6 2

x12 � 3x 2 
 0x12x � 7 2 � 0

1x � 5 2 1x � 4 2 � 01x � 2 2 1x � 3 2 � 0

�
1

2



4 � 3x

5



1

4

1

6
�

2x � 13

12



2

3

Subtract 54

Common denominator

Multiply by 10

Factor numerator
190 � x 2 150 � x 2

x
� 0

4500 � 40x � x2

x
� 0

450 � 4x � 0.10x2

x
� 0

450
x

� 4 � 0.10x � 0

The sign diagram shows that the solution of the inequality is .
Because we cannot have a negative number of students, it follows that the group
must have more than 50 students for the total cost per person to be less than $54. ■

1.7 Exercises

1�90, 0 2 � 150,q 2

Solve

Sign of 90+x

Sign of 50-x

Sign of x

Sign of

_90

+

+

-

-

-

+

-

+

+

-

+

-
(90+x)(50-x)

x

50

+

+

+

+

0
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51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. x 4 	 x 2 62. x 5 	 x 2

63–76 ■ Solve the absolute value inequality. Express the 
answer using interval notation and graph the solution set.

63. 
 4 64. � 15

65. 	 7 66.

67. 
 3 68. � 1

69. 
 0.4 70. � 6

71. 72.

73. � 0.001 74. 3 � 
 1

75. 8 � � 6 76. 7 � 5 	 4

77–80 ■ A phrase describing a set of real numbers is given. 
Express the phrase as an inequality involving an absolute value.

77. All real numbers x less than 3 units from 0

78. All real numbers x more than 2 units from 0

79. All real numbers x at least 5 units from 7

80. All real numbers x at most 4 units from 2

81–86 ■ A set of real numbers is graphed. Find an inequality
involving an absolute value that describes the set.

81.

82.

83.

84.

85.

86.
0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 x � 2 00 2x � 1 0 0 2x � 4 00 x � 6 0 ` x � 1

2
` � 4` x � 2

3
` � 2

0 5x � 2 00 2x � 3 0 0 x � 1 00 x � 5 0 1
2 0 x 0 � 10 2x 0 0 3x 00 x 0

1

x � 1
�

1

x � 2

 0

x � 2

x � 3
�

x � 1

x � 2

x

2
�

5

x � 1
� 4

6

x � 1
�

6
x

� 1

3

x � 1
�

4
x

� 11 �
2

x � 1



2
x

x

x � 1
	 3x

4
x

� x

3 � x

3 � x
� 1

2x � 1

x � 5

 3

87–90 ■ Determine the values of the variable for which the ex-
pression is defined as a real number.

87. 88.

89. 90.

91. Solve the inequality for x, assuming that a, b, and c are posi-
tive constants.

(a) (b) a 
 bx � c � 2a

92. Suppose that a, b, c, and d are positive numbers such that

Show that

Applications

93. Temperature Scales Use the relationship between C and
F given in Example 9 to find the interval on the Fahrenheit
scale corresponding to the temperature range 20 
 C 
 30.

94. Temperature Scales What interval on the Celsius scale
corresponds to the temperature range 50 
 F 
 95?

95. Car Rental Cost A car rental company offers two plans
for renting a car.

Plan A: $30 per day and 10¢ per mile

Plan B: $50 per day with free unlimited mileage

For what range of miles will plan B save you money?

96. Long-Distance Cost A telephone company offers two
long-distance plans.

Plan A: $25 per month and 5¢ per minute

Plan B: $5 per month and 12¢ per minute

For how many minutes of long-distance calls would plan B
be financially advantageous?

97. Driving Cost It is estimated that the annual cost of 
driving a certain new car is given by the formula

where m represents the number of miles driven per year and
C is the cost in dollars. Jane has purchased such a car, and
decides to budget between $6400 and $7100 for next year’s
driving costs. What is the corresponding range of miles that
she can drive her new car?

98. Gas Mileage The gas mileage g (measured in mi/gal) for
a particular vehicle, driven at √ mi/h, is given by the formula
g � 10 � 0.9√ � 0.01√ 2, as long as √ is between 10 mi/h
and 75 mi/h. For what range of speeds is the vehicle’s
mileage 30 mi/gal or better?

C � 0.35m � 2200

a

b
�

a � c

b � d
�

c

d

a

b
�

c

d

a1bx � c 2 � bc

B4
1 � x

2 � x
a 1

x2 � 5x � 14
b 1/2

23x2 � 5x � 2216 � 9x2
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99. Gravity The gravitational force F exerted by the earth on
an object having a mass of 100 kg is given by the equation

where d is the distance (in km) of the object from the center
of the earth, and the force F is measured in newtons (N).
For what distances will the gravitational force exerted by
the earth on this object be between 0.0004 N and 0.01 N?

100. Bonfire Temperature In the vicinity of a bonfire, the
temperature T in �C at a distance of x meters from the 
center of the fire was given by

At what range of distances from the fire’s center was the
temperature less than 500�C?

101. Stopping Distance For a certain model of car the 
distance d required to stop the vehicle if it is traveling at
√ mi/h is given by the formula

where d is measured in feet. Kerry wants her stopping 
distance not to exceed 240 ft. At what range of speeds can
she travel?

102. Manufacturer’s Profit If a manufacturer sells x units of
a certain product, his revenue R and cost C (in dollars) are
given by:

Use the fact that

to determine how many units he should sell to enjoy a
profit of at least $2400.

profit � revenue � cost

C � 2000 � 8x � 0.0025x2

R � 20x

240 ft

d � √ �
√ 2

20

T �
600,000

x2 � 300

F �
4,000,000

d 2

103. Air Temperature As dry air moves upward, it expands
and in so doing cools at a rate of about for each 
100-meter rise, up to about 12 km.

(a) If the ground temperature is , write a formula for
the temperature at height h.

(b) What range of temperatures can be expected if a plane
takes off and reaches a maximum height of 5 km?

104. Airline Ticket Price A charter airline finds that on its
Saturday flights from Philadelphia to London, all 120 
seats will be sold if the ticket price is $200. However, for
each $3 increase in ticket price, the number of seats sold
decreases by one.

(a) Find a formula for the number of seats sold if the
ticket price is P dollars.

(b) Over a certain period, the number of seats sold for this
flight ranged between 90 and 115. What was the corre-
sponding range of ticket prices?

105. Theater Tour Cost A riverboat theater offers bus tours
to groups on the following basis. Hiring the bus costs the
group $360, to be shared equally by the group members.
Theater tickets, normally $30 each, are discounted by 25¢
times the number of people in the group. How many mem-
bers must be in the group so that the cost of the theater tour
(bus fare plus theater ticket) is less than $39 per person?

106. Fencing a Garden A determined gardener has 120 ft 
of deer-resistant fence. She wants to enclose a rectangular
vegetable garden in her backyard, and she wants the area
enclosed to be at least 800 ft2. What range of values is 
possible for the length of her garden?

107. Thickness of a Laminate A company manufactures 
industrial laminates (thin nylon-based sheets) of thickness
0.020 in, with a tolerance of 0.003 in.

(a) Find an inequality involving absolute values that de-
scribes the range of possible thickness for the laminate.

(b) Solve the inequality you found in part (a).

108. Range of Height The average height of adult males is
68.2 in, and 95% of adult males have height h that satisfies
the inequality

Solve the inequality to find the range of heights.

` h � 68.2

2.9
` 
 2

0.020 in.

20°C

1°C



1.8 Coordinate Geometry

The coordinate plane is the link between algebra and geometry. In the coordinate plane
we can draw graphs of algebraic equations. The graphs, in turn, allow us to “see” the
relationship between the variables in the equation. In this section we study the coordi-
nate plane.

The Coordinate Plane

Just as points on a line can be identified with real numbers to form the coordinate line,
points in a plane can be identified with ordered pairs of numbers to form the coordi-
nate plane or Cartesian plane. To do this, we draw two perpendicular real lines that
intersect at 0 on each line. Usually one line is horizontal with positive direction to the
right and is called the x-axis; the other line is vertical with positive direction upward
and is called the y-axis. The point of intersection of the x-axis and the y-axis is the
origin O, and the two axes divide the plane into four quadrants, labeled I, II, III, and
IV in Figure 1. (The points on the coordinate axes are not assigned to any quadrant.)

Figure 1 Figure 2

Any point P in the coordinate plane can be located by a unique ordered pair of
numbers , as shown in Figure 1. The first number a is called the x-coordinate
of P; the second number b is called the y-coordinate of P. We can think of the coor-
dinates of P as its “address,” because they specify its location in the plane. Several
points are labeled with their coordinates in Figure 2.

1a, b 2

1

1

y

x0

)

)(_2, 2)

(5, 0)

(1, 3)

(2, _4)

(_3, _2)

y

x

P (a, b)

O

b

a

II

III

I

IV
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Discovery • Discussion

109. Do Powers Preserve Order? If a � b, is a 2 � b 2?
(Check both positive and negative values for a and b.) If 
a � b, is a 3 � b 3? Based on your observations, state a 
general rule about the relationship between an and bn when
a � b and n is a positive integer.

110. What’s Wrong Here? It is tempting to try to solve an
inequality like an equation. For instance, we might try to
solve 1 � 3/x by multiplying both sides by x, to get x � 3,
so the solution would be . But that’s wrong; for1�q, 3 2

example, x � �1 lies in this interval but does not satisfy
the original inequality. Explain why this method doesn’t
work (think about the sign of x). Then solve the inequality 
correctly.

111. Using Distances to Solve Absolute Value Inequali-

ties Recall that is the distance between a and b
on the number line. For any number x, what do 
and represent? Use this interpretation to solve the
inequality geometrically. In general,
if a � b, what is the solution of the inequality

?0 x � a 0 � 0 x � b 00 x � 1 0 � 0 x � 3 00 x � 3 0 0 x � 1 00 a � b 0

The Cartesian plane is named in honor
of the French mathematician René 
Descartes (1596–1650), although 
another Frenchman, Pierre Fermat
(1601–1665), also invented the prin-
ciples of coordinate geometry at the
same time. (See their biographies on
pages 112 and 652.)

Although the notation for a point 
is the same as the notation for an open
interval , the context should make
clear which meaning is intended.

1a, b 2 1a, b 2



Example 1 Graphing Regions in the Coordinate Plane

Describe and sketch the regions given by each set.

(a) (b) (c) @
Solution

(a) The points whose x-coordinates are 0 or positive lie on the y-axis or to the right
of it, as shown in Figure 3(a).

(b) The set of all points with y-coordinate 1 is a horizontal line one unit above the
x-axis, as in Figure 3(b).

(c) Recall from Section 1.7 that

So the given region consists of those points in the plane whose y-coordinates lie
between �1 and 1. Thus, the region consists of all points that lie between (but
not on) the horizontal lines y � 1 and y � �1. These lines are shown as broken
lines in Figure 3(c) to indicate that the points on these lines do not lie in the set.

Figure 3 ■

The Distance and Midpoint Formulas

We now find a formula for the distance between two points and
in the plane. Recall from Section 1.1 that the distance between points a and

b on a number line is . So, from Figure 4 we see that the distance
between the points and on a horizontal line must be , and
the distance between and on a vertical line must be .0 y2 � y1 0C1x2, y1 2B1x2, y2 2 0 x2 � x1 0C1x2, y1 2A1x1, y1 2d1a, b 2 � 0 b � a 0B1x2, y2 2 A1x1, y1 2d1A, B 2

y

x0

(a) x≥0

y

x0

(b) y=1

y

x0

y=1

y=_1

(c) | y | <1

0 y 0 � 1  if and only if  �1 � y � 1

0 y 0 � 165 1x, y 25 1x, y 2 0 y � 165 1x, y 2 0 x � 06
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Coordinates as Addresses

The coordinates of a point in the
xy-plane uniquely determine its lo-
cation. We can think of the coordi-
nates as the “address” of the point.
In Salt Lake City, Utah, the ad-
dresses of most buildings are in
fact expressed as coordinates. The
city is divided into quadrants with
Main Street as the vertical (North-
South) axis and S. Temple Street as
the horizontal (East-West) axis. An
address such as

indicates a location 17.6 blocks
west of Main Street and 21 blocks
south of S. Temple Street. (This is
the address of the main post office
in Salt Lake City.) With this logical
system it is possible for someone
unfamiliar with the city to locate
any address immediately, as easily
as one locates a point in the coordi-
nate plane.

S. Temple St.

9th South St.

13th South St.

17th South St.

21st South St.

Post Office
1760 W 2100 S

500 North St.

7th E
ast St.

M
ain St.

300 W
est St.

900 W
est St.

1700 W
est St.

Jor dan
R

iver

4th South St.

1760 W  2100 S

| y¤-y⁄ |

| x¤-x⁄ |
A(x⁄, y⁄)

B(x¤, y

d (A
, B

)

¤)

C(x¤, y⁄)

y

x0 x⁄ x¤

y⁄

y¤

Figure 4



Example 2 Applying the Distance Formula

Which of the points or is closer to the point ?

Solution By the Distance Formula, we have

This shows that , so P is closer to A (see Figure 5). ■

Now let’s find the coordinates of the midpoint M of the line segment that
joins the point to the point . In Figure 6 notice that triangles APM
and MQB are congruent because and the corresponding angles
are equal.

It follows that and so

Solving this equation for x, we get 2x � x1 � x2, and so . Similarly,

.y �
y1 � y2

2

x �
x1 � x2

2

x � x1 � x2 � x

d1A, P 2 � d1M, Q 2

y

x0

x-x⁄

x¤-x
A(x⁄, y⁄)

M(x, y)

B(x¤, y¤)

P

Q

Midpoint

Figure 6

d1A, M 2 � d1M, B 2B1x2, y2 2A1x1, y1 2 1x, y 2
d1P, A 2 � d1Q, A 2d1Q, A 2 � 215 � 8 22 � 13 � 9 2 2 � 21�3 2 2 � 1�6 2 2 � 145

d1P, A 2 � 215 � 1 2 2 � 33 � 1�2 2 4 2 � 242 � 52 � 141

A15, 3 2Q18, 9 2P11, �2 2
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y

x0

2

4 8

4

6

8

_2

Q(8, 9)

P(1, _2)

A(5, 3)

Distance Formula

The distance between the points and in the plane is

d1A, B 2 � 21x2 � x1 2 2 � 1y2 � y1 2 2B1x2, y2 2A1x1, y1 2

Figure 5

Since triangle ABC is a right triangle, the Pythagorean Theorem gives

d1A, B 2 � 2 0 x2 � x1 0 2 � 0 y2 � y1 0 2 � 21x2 � x1 2 2 � 1y2 � y1 2 2
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Example 3 Applying the Midpoint Formula

Show that the quadrilateral with vertices , , , and is a
parallelogram by proving that its two diagonals bisect each other.

Solution If the two diagonals have the same midpoint, then they must bisect
each other. The midpoint of the diagonal PR is

and the midpoint of the diagonal QS is

so each diagonal bisects the other, as shown in Figure 7. (A theorem from elemen-
tary geometry states that the quadrilateral is therefore a parallelogram.) ■

Graphs of Equations in Two Variables

An equation in two variables, such as y � x 2 � 1, expresses a relationship between
two quantities. A point satisfies the equation if it makes the equation true when
the values for x and y are substituted into the equation. For example, the point 
satisfies the equation y � x 2 � 1 because 10 � 32 � 1, but the point does not,
because 3 � 12 � 1.

11, 3 2 13, 10 21x, y 2

a 4 � 2

2
,

4 � 7

2
b � a3,

11

2
b

a 1 � 5

2
,

2 � 9

2
b � a3,

11

2
b

S12, 7 2R15, 9 2Q14, 4 2P11, 2 2

P

Q

R

S

y

x0 4

4

8

Figure 7

The Graph of an Equation

The graph of an equation in x and y is the set of all points in the coor-
dinate plane that satisfy the equation.

1x, y 2

Fundamental Principle of

Analytic Geometry

A point lies on the graph of an
equation if and only if its coordinates
satisfy the equation.

1x, y 2

The graph of an equation is a curve, so to graph an equation we plot as many points
as we can, then connect them by a smooth curve.

Example 4 Sketching a Graph by Plotting Points

Sketch the graph of the equation 2x � y � 3.

Solution We first solve the given equation for y to get

y � 2x � 3

Midpoint Formula

The midpoint of the line segment from to isa x1 � x2

2
,

y1 � y2

2
b B1x2, y2 2A1x1, y1 2
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y

x0 4

y=2x-3

4

Figure 8

This helps us calculate the y-coordinates in the following table.

Of course, there are infinitely many points on the graph, and it is impossible to plot
all of them. But the more points we plot, the better we can imagine what the graph
represented by the equation looks like. We plot the points we found in Figure 8;
they appear to lie on a line. So, we complete the graph by joining the points by a
line. (In Section 1.10 we verify that the graph of this equation is indeed a line.) ■

Example 5 Sketching a Graph by Plotting Points

Sketch the graph of the equation y � x 2 � 2.

Solution We find some of the points that satisfy the equation in the following
table. In Figure 9 we plot these points and then connect them by a smooth curve. A
curve with this shape is called a parabola.

x y � 2x � 3

�1 �5
0 �3
1 �1
2 1
3 3
4 5 14, 5 213, 3 212, 1 211, �1 210, �3 21�1, �5 21x, y 2

x y � x2 � 2

�3 7
�2 2
�1 �1

0 �2
1 �1
2 2
3 7 13, 7 212, 2 211, �1 210, �2 21�1, �1 21�2, 2 21�3, 7 21x, y 2

■

Example 6 Graphing an Absolute Value Equation

Sketch the graph of the equation y � .

Solution We make a table of values:

0 x 0

y

x_ 0

y=≈-2

4

4

4

Figure 9

A detailed discussion of parabolas and
their geometric properties is presented
in Chapter 10.

x y �

�3 3
�2 2
�1 1

0 0
1 1
2 2
3 3 13, 3 212, 2 211, 1 210, 0 21�1, 1 21�2, 2 21�3, 3 21x, y 20 x 0y

x_ 0

y=| x |2

4

4 42_2

Figure 10

In Figure 10 we plot these points and use them to sketch the graph of the equation.
■
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Intercepts

The x-coordinates of the points where a graph intersects the x-axis are called the 
x-intercepts of the graph and are obtained by setting y � 0 in the equation of the
graph. The y-coordinates of the points where a graph intersects the y-axis are called
the y-intercepts of the graph and are obtained by setting x � 0 in the equation of the
graph.

Definition of Intercepts

Intercepts How to find them Where they are on the graph

x-intercepts:

The x-coordinates of points where the Set y � 0 and 
graph of an equation intersects the x-axis solve for x

y-intercepts:

The y-coordinates of points where the Set x � 0 and 
graph of an equation intersects the y-axis solve for y

y

x0

y

x0

Example 7 Finding Intercepts

Find the x- and y-intercepts of the graph of the equation y � x 2 � 2.

Solution To find the x-intercepts, we set y � 0 and solve for x. Thus

Set y � 0

Add 2 to each side

Take the square root

The x-intercepts are and .
To find the y-intercepts, we set x � 0 and solve for y. Thus

Set x � 0

The y-intercept is �2.
The graph of this equation was sketched in Example 5. It is repeated in Figure 11

with the x- and y-intercepts labeled. ■

Circles

So far we have discussed how to find the graph of an equation in x and y. The con-
verse problem is to find an equation of a graph, that is, an equation that represents a

y � �2

y � 02 � 2

�1212

x � �12

x2 � 2

 0 � x2 � 2y

x2_2 0

_2

2

y=≈-2

-intercepty

x-intercepts

Figure 11



given curve in the xy-plane. Such an equation is satisfied by the coordinates of the
points on the curve and by no other point. This is the other half of the fundamental
principle of analytic geometry as formulated by Descartes and Fermat. The idea is
that if a geometric curve can be represented by an algebraic equation, then the rules
of algebra can be used to analyze the curve.

As an example of this type of problem, let’s find the equation of a circle with 
radius r and center . By definition, the circle is the set of all points whose
distance from the center is r (see Figure 12). Thus, P is on the circle if and
only if . From the distance formula we have

Square each side

This is the desired equation.

1x � h 2 2 � 1y � k 2 2 � r 2

21x � h 2 2 � 1y � k 2 2 � r

d1P, C 2 � r
C1h, k 2 P1x, y 21h, k 2
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r

y

x0

C(h, k)

P(x, y)

Figure 12

Equation of a Circle

An equation of the circle with center and radius r is

This is called the standard form for the equation of the circle. If the center
of the circle is the origin , then the equation is

x2 � y2 � r 2

10, 0 2
1x � h 2 2 � 1y � k 2 2 � r 2

1h, k 2

Example 8 Graphing a Circle

Graph each equation.

(a) x 2 � y 2 � 25 (b)

Solution

(a) Rewriting the equation as x 2 � y 2 � 52, we see that this is an equation of the
circle of radius 5 centered at the origin. Its graph is shown in Figure 13.

(b) Rewriting the equation as , we see that this is an
equation of the circle of radius 5 centered at . Its graph is shown in 
Figure 14.

12, �1 21x � 2 2 2 � 1y � 1 2 2 � 52

1x � 2 2 2 � 1y � 1 2 2 � 25

5

5

y

x

≈+¥=25

0
(2, _1)

y

x

(x-2)™+(y+1)™=25

0

Figure 13 Figure 14 ■



(x-3)™+(y-1)™=53

P(1, 8)

Q(5, _6)

(3, 1)

y

x0

Example 9 Finding an Equation of a Circle

(a) Find an equation of the circle with radius 3 and center .

(b) Find an equation of the circle that has the points and as the
endpoints of a diameter.

Solution

(a) Using the equation of a circle with r � 3, h � 2, and k � �5, we obtain

The graph is shown in Figure 15.

(b) We first observe that the center is the midpoint of the diameter PQ, so by the
Midpoint Formula the center is

The radius r is the distance from P to the center, so by the Distance Formula

Therefore, the equation of the circle is

The graph is shown in Figure 16. ■

Let’s expand the equation of the circle in the preceding example.

Standard form

Expand the squares

Subtract 10 to get expanded form

Suppose we are given the equation of a circle in expanded form. Then to find its cen-
ter and radius we must put the equation back in standard form. That means we must
reverse the steps in the preceding calculation, and to do that we need to know what to
add to an expression like x 2 � 6x to make it a perfect square—that is, we need to 
complete the square, as in the next example.

Example 10 Identifying an Equation of a Circle

Show that the equation x 2 � y 2 � 2x � 6y � 7 � 0 represents a circle, and find the
center and radius of the circle.

Solution We first group the x-terms and y-terms. Then we complete the square
within each grouping. That is, we complete the square for x 2 � 2x by adding

, and we complete the square for y 2 � 6y by adding .

Group terms

Complete the square by 
adding 1 and 9 to each side

Factor and simplify1x � 1 2 2 � 1 y � 3 2 2 � 3

1x2 � 2x � 1 2 � 1 y2 � 6y � 9 2 � �7 � 1 � 9

1x2 � 2x 2 � 1 y2 � 6y 2 � �7

3 12 # 1�6 2 4 2 � 9A12 # 2B2 � 1

x2 � 6x � y2 � 2y � 43

x2 � 6x � 9 � y2 � 2y � 1 � 53

1x � 3 2 2 � 1y � 1 2 2 � 53

1x � 3 2 2 � 1y � 1 2 2 � 53

r 2 � 13 � 1 2 2 � 11 � 8 2 2 � 22 � 1�7 2 2 � 53

a 1 � 5

2
,

8 � 6

2
b � 13,1 2

1x � 2 2 2 � 1y � 5 2 2 � 9

Q15, �6 2P11, 8 212, �5 2
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Figure 15

(x-2)™+(y+5)™=9

y

x20

(2, _5)

_2

Completing the square is used in many
contexts in algebra. In Section 1.5 we
used completing the square to solve
quadratic equations.

We must add the same numbers to
each side to maintain equality.

Figure 16



Comparing this equation with the standard equation of a circle, we see that h � �1,
k � 3, and , so the given equation represents a circle with center 
and radius . ■

Symmetry

Figure 17 shows the graph of y � x 2. Notice that the part of the graph to the left of
the y-axis is the mirror image of the part to the right of the y-axis. The reason is 
that if the point is on the graph, then so is , and these points are reflec-
tions of each other about the y-axis. In this situation we say the graph is symmetric
with respect to the y-axis. Similarly, we say a graph is symmetric with respect to
the x-axis if whenever the point is on the graph, then so is . A graph is
symmetric with respect to the origin if whenever is on the graph, so is

.1�x, �y 2 1x, y 2 1x, �y 21x, y 2
1�x, y 21x, y 2

13
1�1, 3 2r � 13
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(x, y)(_x, y)

y

x10

1

y=≈

Figure 17

Definition of Symmetry

Type of How to test What the graph looks like 
symmetry for symmetry (figures in this section) Geometric meaning

Symmetry with respect The equation is Graph is unchanged 
to the x-axis unchanged when y when reflected in the 

is replaced by �y x-axis

Symmetry with respect The equation is Graph is unchanged 
to the y-axis unchanged when x when reflected in the 

is replaced by �x y-axis

Symmetry with respect The equation is Graph is unchanged 
to the origin unchanged when when rotated 180�

x is replaced by �x about the origin
and y by �y

(Figures 13, 19)

(x, y)

(x, _y)

y

x0

(x, y)(_x, y)

y

x0

(x, y)

(_x, _y)

y

x

0

(Figures 13, 18)

(Figures 9, 10, 11, 13, 17)



The remaining examples in this section show how symmetry helps us sketch the
graphs of equations.

Example 11 Using Symmetry to Sketch a Graph

Test the equation x � y 2 for symmetry and sketch the graph.

Solution If y is replaced by �y in the equation x � y 2, we get

Replace y by �y

Simplify

and so the equation is unchanged. Therefore, the graph is symmetric about the 
x-axis. But changing x to �x gives the equation �x � y 2, which is not the same as
the original equation, so the graph is not symmetric about the y-axis.

We use the symmetry about the x-axis to sketch the graph by first plotting points
just for y 	 0 and then reflecting the graph in the x-axis, as shown in Figure 18.

x � y2

x � 1�y 2 2
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y x � y 2

0 0
1 1
2 4
3 9 19, 3 214, 2 211, 1 210, 0 21x, y 2

Example 12 Using Symmetry to Sketch a Graph

Test the equation y � x 3 � 9x for symmetry and sketch its graph.

Solution If we replace x by �x and y by �y in the equation, we get

Replace x by �x and y by �y

Simplify

Multiply by �1

and so the equation is unchanged. This means that the graph is symmetric with 
respect to the origin. We sketch it by first plotting points for x 	 0 and then using
symmetry about the origin (see Figure 19).

y � x3 � 9x

�y � �x3 � 9x

�y � 1�x 2 3 � 91�x 2

y

x4

x=¥

(9, 3)

(0, 0)

4
(4, 2)

(1, 1)

Figure 18

x y � x 3 � 9x

0 0
1 �8
1.5 �10.125
2 �10
2.5 �6.875
3 0
4 28 14, 28 213, 0 212.5, �6.875 212, �10 211.5, �10.125 211, �8 210, 0 21x, y 2

y

x2

y=x£-9x

0

20

(1.5, _10.125)

4_2

_20 (2.5, _6.875)

Figure 19

■

■
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1. Plot the given points in a coordinate plane:

2. Find the coordinates of the points shown in the figure.

3–6 ■ A pair of points is graphed.

(a) Find the distance between them.

(b) Find the midpoint of the segment that joins them.

3. 4.

5. 6.

7–12 ■ A pair of points is graphed.

(a) Plot the points in a coordinate plane.

(b) Find the distance between them.

(c) Find the midpoint of the segment that joins them.

7. ,

8. , 110, 0 21�2, 5 216, 16 210, 8 2

0

y

x

1

10

y

x1

2

0

y

x1

1

0

y

x1

1

y

x0

B

A

C

D

E

G

F

H

1

1

12, 3 2 , 1�2, 3 2 , 14, 5 2 , 14, �5 2 , 1�4, 5 2 , 1�4, �5 2 9. ,

10. ,

11. ,

12. ,

13. Draw the rectangle with vertices , , ,
and on a coordinate plane. Find the area of the
rectangle.

14. Draw the parallelogram with vertices , ,
, and on a coordinate plane. Find the area 

of the parallelogram.

15. Plot the points , , , and , on a 
coordinate plane. Draw the segments AB, BC, CD, and DA.
What kind of quadrilateral is ABCD, and what is its area?

16. Plot the points , , and , on a 
coordinate plane. Where must the point S be located 
so that the quadrilateral PQRS is a square? Find the area 
of this square.

17–26 ■ Sketch the region given by the set.

17.

18.

19.

20.

21.

22.

23. @
24. @
25.

26. @
27. Which of the points or is closer to the

origin?

28. Which of the points or is closer to the
point ?

29. Which of the points or is closer to the
point ?R1�1, �1 2 Q1�1, 3 2P13, 1 2E1�2, 1 2 D13, 0 2C1�6, 3 2

B1�5, 8 2A16, 7 20 x 0 
 2 and 0 y 0 
 365 1x, y 251x, y 2 0 x � 1 and y � 360 y 0 
 265 1x, y 2 0 x 0 	 465 1x, y 251x, y 2 0 0 
 y 
 4651x, y 2 0 1 � x � 2651x, y 2 0 x � �1651x, y 2 0 y � 2651x, y 2 0 y � 3651x, y 2 0 x � 36

R1�5, 1 2Q10, 6 2P15, 1 2
D12, 3 2C14, 3 2B15, 0 2A11, 0 2

D17, 6 2C13, 6 2 B15, 2 2A11, 2 2
D15, �3 2 C11, �3 2B15, 3 2A11, 3 215, 0 210, �6 2 1�6, 2 216, �2 2 19, 9 21�1, �1 2 14, 18 21�3, �6 21.8 Exercises
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30. (a) Show that the points and are the same 
distance from the origin.

(b) Show that the points and are the same 
distance from the origin.

31. Show that the triangle with vertices , ,
and is isosceles.

32. Find the area of the triangle shown in the figure.

33. Refer to triangle ABC in the figure.

(a) Show that triangle ABC is a right triangle by using the
converse of the Pythagorean Theorem (see page 54).

(b) Find the area of triangle ABC.

34. Show that the triangle with vertices , ,
and is a right triangle by using the converse of the
Pythagorean Theorem. Find the area of the triangle.

35. Show that the points , , , and
are the vertices of a square.

36. Show that the points , , and are
collinear by showing that .

37. Find a point on the y-axis that is equidistant from the points
and .

38. Find the lengths of the medians of the triangle with vertices
, , and . (A median is a line segment

from a vertex to the midpoint of the opposite side.)
C18, 2 2B13, 6 2A11, 0 2

11, 1 215, �5 2
d1A, B 2 � d1B, C 2 � d1A, C 2C15, 15 2B13, 11 2A1�1, 3 2D1�5, 3 2 C11, 0 2B14, 6 2A1�2, 9 2

C12, �2 2 B111, �3 2A16, �7 2

y

x0 2

2

4 6_2_4

_2

B

A

C

y

x0 2

2

4 6 8

4

_2

_2

C

BA

C1�4, 3 2 B1�3, �1 2A10, 2 2
1b, a 21a, b 2
13, 7 217, 3 2 39. Plot the points , , and , on a coor-

dinate plane. Where should the point S be located so that the
figure PQRS is a parallelogram?

40. If is the midpoint of the line segment AB, and if A
has coordinates , find the coordinates of B.

41. (a) Sketch the parallelogram with vertices ,
, , and .

(b) Find the midpoints of the diagonals of this 
parallelogram.

(c) From part (b) show that the diagonals bisect each other.

42. The point M in the figure is the midpoint of the line 
segment AB. Show that M is equidistant from the vertices 
of triangle ABC.

43–46 ■ Determine whether the given points are on the graph
of the equation.

43.

44.

45.

46.

47–50 ■ An equation and its graph are given. Find the x- and 
y-intercepts.

47. 48.

y

x0

1

1

y

x0

1

1

x2

9
�

y2

4
� 1y � 4x � x2

x2 � y2 � 1; 10, 1 2 , a 1

12
,

1

12
b , a 13

2
,
1

2
b

x2 � xy � y2 � 4; 10, �2 2 , 11, �2 2 , 12, �2 2y1x2 � 1 2 � 1; 11, 1 2 , A1, 1
2B, A�1, 1

2Bx � 2y � 1 � 0; 10, 0 2 , 11, 0 2 , 1�1, �1 2

y

xC(0, 0) A(a, 0)

M

B(0, b)

D11, 4 2C17, 7 2B14, 2 2 A1�2, �1 212, 3 2M16, 8 2
R14, 2 2Q11, 1 2P1�1, �4 2
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49. 50.

51–70 ■ Make a table of values and sketch the graph of the
equation. Find the x- and y-intercepts and test for symmetry.

51. y � �x � 4 52. y � 3x � 3

53. 2x � y � 6 54. x � y � 3

55. y � 1 � x2 56. y � x 2 � 2

57. 4y � x 2 58. 8y � x 3

59. y � x 2 � 9 60. y � 9 � x 2

61. xy � 2 62.

63. 64.

65. x � y 2 � 4 66. x � y 3

67. y � 16 � x 4 68.

69. 70.

71–76 ■ Test the equation for symmetry.

71. y � x 4 � x 2 72. x � y 4 � y 2

73. x 2y 2 � xy � 1 74. x 4y 4 � x 2y 2 � 1

75. y � x 3 � 10x 76.

77–80 ■ Complete the graph using the given symmetry property.

77. Symmetric with respect 78. Symmetric with respect 
to the y-axis to the x-axis

¥-≈=1

y

x0

y=
1

1+≈

y

x0

y � x2 � 0 x 0

y � 0 4 � x 0y � 4 � 0 x 0 x � 0 y 0
y � �24 � x2y � 24 � x2

y � 1x � 4

y

x0

2

2

y

x0

1

1

x2 � y3 � x2y2 � 64x4 � y2 � xy � 16 79. Symmetric with respect 80. Symmetric with respect 
to the origin to the origin

81–86 ■ Find an equation of the circle that satisfies the given
conditions.

81. Center ; radius 3

82. Center ; radius 8

83. Center at the origin; passes through 

84. Endpoints of a diameter are and 

85. Center ; tangent to the x-axis

86. Circle lies in the first quadrant, tangent to both x-and y-axes;
radius 5

87–88 ■ Find the equation of the circle shown in the figure.

87. 88.

89–94 ■ Show that the equation represents a circle, and find the
center and radius of the circle.

89. x 2 � y 2 � 4x � 10y � 13 � 0

90. x 2 � y 2 � 6y � 2 � 0

91.

92.

93. 2x 2 � 2y 2 � 3x � 0

94. 3x 2 � 3y 2 � 6x � y � 0

x2 � y2 � 1
2 x � 2y � 1

16 � 0

x2 � y2 � 1
2 x � 1

2 y � 1
8

y

x0

2

2_2

y

x0

2

2_2

17, �3 2 Q15, 9 2P1�1, 1 2 14, 7 21�1, �4 212, �1 2

y=
1

x£

y

x0

y=
x

1+≈

y

x0
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95–96 ■ Sketch the region given by the set.

95.

96.

97. Find the area of the region that lies outside the circle 
x 2 � y 2 � 4 but inside the circle

98. Sketch the region in the coordinate plane that satisfies both
the inequalities x 2 � y 2 
 9 and y � . What is the area
of this region?

Applications

99. Distances in a City A city has streets that run north 
and south, and avenues that run east and west, all equally
spaced. Streets and avenues are numbered sequentially, as
shown in the figure. The walking distance between points
A and B is 7 blocks—that is, 3 blocks east and 4 blocks
north. To find the straight-line distances d, we must use 
the Distance Formula.

(a) Find the straight-line distance (in blocks) between A
and B.

(b) Find the walking distance and the straight-line dis-
tance between the corner of 4th St. and 2nd Ave. and
the corner of 11th St. and 26th Ave.

(c) What must be true about the points P and Q if the
walking distance between P and Q equals the straight-
line distance between P and Q?

100. Halfway Point Two friends live in the city described in
Exercise 99, one at the corner of 3rd St. and 7th Ave., the
other at the corner of 27th St. and 17th Ave. They frequently
meet at a coffee shop halfway between their homes.

(a) At what intersection is the coffee shop located?

N

W E

S

B

A

d

3 blocks

7th Ave.

6th Ave.

5th Ave.

4th Ave.

3rd Ave.

2nd Ave.

1st Ave.

1s
t S

t.

2n
d 

St
.

3r
d 

St
.

4t
h 

St
.

5t
h 

St
.

4 
bl

oc
ks

0 x 0
x2 � y2 � 4y � 12 � 0

5 1x, y 2 0 x2 � y2 	 465 1x, y 2 0 x2 � y2 
 16 (b) How far must each of them walk to get to the coffee
shop?

101. Orbit of a Satellite A satellite is in orbit around the
moon. A coordinate plane containing the orbit is set up
with the center of the moon at the origin, as shown in the
graph, with distances measured in megameters (Mm). The
equation of the satellite’s orbit is

(a) From the graph, determine the closest and the farthest
that the satellite gets to the center of the moon.

(b) There are two points in the orbit with y-coordinates
2. Find the x-coordinates of these points, and deter-
mine their distances to the center of the moon.

Discovery • Discussion

102. Shifting the Coordinate Plane Suppose that each
point in the coordinate plane is shifted 3 units to the right
and 2 units upward.

(a) The point is shifted to what new point?

(b) The point is shifted to what new point?

(c) What point is shifted to ?

(d) Triangle ABC in the figure has been shifted to triangle
A�B�C�. Find the coordinates of the points A�, B�,
and C�.

A'

B'

C '

0

y

x

A(_5, _1)

C(2, 1)

B(_3, 2)

13, 4 21a, b 215, 3 2

2

y

x2

1x � 3 2 2
25

�
y2

16
� 1

N
AS

A
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103. Reflecting in the Coordinate Plane Suppose that the
y-axis acts as a mirror that reflects each point to the right
of it into a point to the left of it.

(a) The point is reflected to what point?

(b) The point is reflected to what point?

(c) What point is reflected to ?

(d) Triangle ABC in the figure is reflected to triangle
A�B�C�. Find the coordinates of the points A�, B�,
and C�.

104. Completing a Line Segment Plot the points 
and on a coordinate plane. If M is the midpoint of
the line segment AB, find the coordinates of B. Write a
brief description of the steps you took to find B, and your
reasons for taking them.

105. Completing a Parallelogram Plot the points ,
Q , and on a coordinate plane. Where should
the point S be located so that the figure PQRS is a parallel-
ogram? Write a brief description of the steps you took and
your reasons for taking them.

106. Circle, Point, or Empty Set? Complete the squares in
the general equation x 2 � ax � y 2 � by � c � 0 and sim-
plify the result as much as possible. Under what conditions
on the coefficients a, b, and c does this equation represent
a circle? A single point? The empty set? In the case that
the equation does represent a circle, find its center and
radius.

R15, 3 212, 2 2 P10, 3 2
A12, 3 2 M16, 8 2

A'

B'

C '

0

y

x

A(3, 3)

C(1, _4)

B(6, 1)

1�4, �1 21a, b 213, 7 2
107. Do the Circles Intersect?

(a) Find the radius of each circle in the pair, and the dis-
tance between their centers; then use this information
to determine whether the circles intersect.

(i)

(ii)

(iii)

(b) How can you tell, just by knowing the radii of two
circles and the distance between their centers, whether
the circles intersect? Write a short paragraph describ-
ing how you would decide this and draw graphs to 
illustrate your answer.

108. Making a Graph Symmetric The graph shown in the
figure is not symmetric about the x-axis, the y-axis, or the
origin. Add more line segments to the graph so that it 
exhibits the indicated symmetry. In each case, add as little
as possible.

(a) Symmetry about the x-axis

(b) Symmetry about the y-axis

(c) Symmetry about the origin

y

x0

1

1

1x � 2 2 2 � 1y � 2 2 2 � 25

1x � 3 2 2 � 1y � 1 2 2 � 1;

1x � 5 2 2 � 1y � 14 2 2 � 9

x2 � 1y � 2 2 2 � 4;

1x � 6 2 2 � 1y � 4 2 2 � 16

1x � 2 2 2 � 1y � 1 2 2 � 9;

1.9 Graphing Calculators; Solving Equations
and Inequalities Graphically

In Sections 1.5 and 1.7 we solved equations and inequalities algebraically. In the pre-
ceding section we learned how to sketch the graph of an equation in a coordinate
plane. In this section we use graphs to solve equations and inequalities. To do this, we
must first draw a graph using a graphing device. So, we begin by giving a few guide-
lines to help us use graphing devices effectively.



Using a Graphing Calculator

A graphing calculator or computer displays a rectangular portion of the graph of an
equation in a display window or viewing screen, which we call a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important
to choose the viewing rectangle with care. If we choose the x-values to range from a
minimum value of Xmin � a to a maximum value of Xmax � b and the y-values to
range from a minimum value of Ymin � c to a maximum value of Ymax � d, then
the displayed portion of the graph lies in the rectangle

as shown in Figure 1. We refer to this as the by viewing rectangle.
The graphing device draws the graph of an equation much as you would. It plots

points of the form for a certain number of values of x, equally spaced between
a and b. If the equation is not defined for an x-value, or if the corresponding y-value
lies outside the viewing rectangle, the device ignores this value and moves on to the
next x-value. The machine connects each point to the preceding plotted point to form
a representation of the graph of the equation.

Example 1 Choosing an Appropriate Viewing Rectangle

Graph the equation y � x 2 � 3 in an appropriate viewing rectangle.

Solution Let’s experiment with different viewing rectangles. We’ll start with the
viewing rectangle by , so we set

Xmin � �2 Ymin � �2

Xmax � 2 Xmax � 2

The resulting graph in Figure 2(a) is blank! This is because x 2 � 0, so x 2 � 3 � 3
for all x. Thus, the graph lies entirely above the viewing rectangle, so this viewing
rectangle is not appropriate. If we enlarge the viewing rectangle to by

, as in Figure 2(b), we begin to see a portion of the graph.
Now let’s try the viewing rectangle by . The graph in

Figure 2(c) seems to give a more complete view of the graph. If we enlarge the
viewing rectangle even further, as in Figure 2(d), the graph doesn’t show clearly
that the y-intercept is 3.

So, the viewing rectangle by gives an appropriate represen-
tation of the graph.

Figure 2 Graphs of y � x 2 � 3 ■

(a) (b) (c) (d)

4

_4

_4 4

2

_2

_2 2

30

_5

_10 10

1000

_100

_50 50

3�5, 30 43�10, 10 4
3�5, 30 43�10, 10 43�4, 4 4 3�4, 4 4

3�2, 2 43�2, 2 4

1x, y 2 3c, d 43a, b 43a, b 4 � 3c, d 4 � 5 1x, y 2 0 a 
 x 
 b, c 
 y 
 d6
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(a, d) (b, d)

(a, c ) (b, c)

y=d

y=c

x=a x=b

Figure 1

The viewing rectangle 3a, b4 by 3c, d 4



Example 2 Two Graphs on the Same Screen

Graph the equations y � 3x 2 � 6x � 1 and y � 0.23x � 2.25 together in the 
viewing rectangle by . Do the graphs intersect in this viewing
rectangle?

Solution Figure 3(a) shows the essential features of both graphs. One is 
a parabola and the other is a line. It looks as if the graphs intersect near the 
point . However, if we zoom in on the area around this point as shown in
Figure 3(b), we see that although the graphs almost touch, they don’t actually
intersect.

Figure 3 ■

You can see from Examples 1 and 2 that the choice of a viewing rectangle makes
a big difference in the appearance of a graph. If you want an overview of the essen-
tial features of a graph, you must choose a relatively large viewing rectangle to ob-
tain a global view of the graph. If you want to investigate the details of a graph, you
must zoom in to a small viewing rectangle that shows just the feature of interest.

Most graphing calculators can only graph equations in which y is isolated on one
side of the equal sign. The next example shows how to graph equations that don’t
have this property.

Example 3 Graphing a Circle

Graph the circle x 2 � y 2 � 1.

Solution We first solve for y, to isolate it on one side of the equal sign.

Subtract x2

Take square roots

Therefore, the circle is described by the graphs of two equations:

The first equation represents the top half of the circle (because y � 0), and the 
second represents the bottom half of the circle (because y 
 0). If we graph the 

y � 21 � x2  and  y � �21 � x2

y � �21 � x2

y2 � 1 � x2

1.5

_2.5

_1 3

(a)

_1.85

_2.25
0.75 1.25

(b)

11,�2 2
3�2.5, 1.5 43�1, 3 4
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Alan Turing (1912–1954) was at
the center of two pivotal events of
the 20th century—World War II
and the invention of computers. At
the age of 23 Turing made his mark
on mathematics by solving an im-
portant problem in the foundations
of mathematics that was posed by
David Hilbert at the 1928 Interna-
tional Congress of Mathematicians
(see page 708). In this research he
invented a theoretical machine,
now called a Turing machine,
which was the inspiration for mod-
ern digital computers. During
World War II Turing was in charge
of the British effort to decipher se-
cret German codes. His complete
success in this endeavor played a
decisive role in the Allies’ victory.
To carry out the numerous logical
steps required to break a coded
message, Turing developed deci-
sion procedures similar to modern
computer programs. After the war
he helped develop the first elec-
tronic computers in Britain. He also
did pioneering work on artificial
intelligence and computer models
of biological processes. At the age
of 42 Turing died of poisoning after
eating an apple that had mysteri-
ously been laced with cyanide.
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first equation in the viewing rectangle by , we get the semicircle
shown in Figure 4(a). The graph of the second equation is the semicircle in 
Figure 4(b). Graphing these semicircles together on the same viewing screen,
we get the full circle in Figure 4(c).

Figure 4 Graphing the equation x 2 � y 2 � 1 ■

Solving Equations Graphically

In Section 1.5 we learned how to solve equations. To solve an equation like

we used the algebraic method. This means we used the rules of algebra to isolate x
on one side of the equation. We view x as an unknown and we use the rules of alge-
bra to hunt it down. Here are the steps in the solution:

Add 5

Divide by 3

So the solution is .
We can also solve this equation by the graphical method. In this method we view

x as a variable and sketch the graph of the equation

Different values for x give different values for y. Our goal is to find the value of x for
which y � 0. From the graph in Figure 5 we see that y � 0 when x � 1.7. Thus, the
solution is x � 1.7. Note that from the graph we obtain an approximate solution.

We summarize these methods in the following box.

y=3x-5

y

x0 2

1

1

Figure 5

y � 3x � 5

x � 5
3

x � 5
3

 3x � 5

 3x � 5 � 0

3x � 5 � 0

2

_2

_2 2

2

_2

_2 2

2

_2

_2 2

(a) (b) (c)

3�2, 2 43�2, 2 4
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“Algebra is a merry science,” Uncle
Jakob would say. “We go hunting for a
little animal whose name we don’t
know, so we call it x. When we bag our
game we pounce on it and give it its
right name.”

ALBERT EINSTEIN

The graph in Figure 4(c) looks 
somewhat flattened. Most graphing 
calculators allow you to set the scales
on the axes so that circles really look
like circles. On the TI-82 and TI-83,
from the menu, choose
ZSquare to set the scales appropri-
ately. (On the TI-86 the command is
Zsq.)

ZOOM



The advantage of the algebraic method is that it gives exact answers. Also, the pro-
cess of unraveling the equation to arrive at the answer helps us understand the alge-
braic structure of the equation. On the other hand, for many equations it is difficult or
impossible to isolate x.

The graphical method gives a numerical approximation to the answer. This is an ad-
vantage when a numerical answer is desired. (For example, an engineer might find an
answer expressed as x � 2.6 more immediately useful than .) Also, graphing
an equation helps us visualize how the solution is related to other values of the variable.

Example 4 Solving a Quadratic Equation Algebraically 

and Graphically

Solve the quadratic equations algebraically and graphically.

(a) x 2 � 4x � 2 � 0 (b) x 2 � 4x � 4 � 0 (c) x 2 � 4x � 6 � 0

Solution 1: Algebraic

We use the quadratic formula to solve each equation.

(a)

There are two solutions, and .

(b)

There is just one solution, x � 2.

(c)

There is no real solution.

x �
�1�4 2 � 21�4 22 � 4 # 1 # 6

2
�

4 � 1�8

2

x �
�1�4 2 � 21�4 2 2 � 4 # 1 # 4

2
�

4 � 10

2
� 2

x � 2 � 12x � 2 � 12

x �
�1�4 2 � 21�4 2 2 � 4 # 1 # 2

2
�

4 � 18

2
� 2 � 12

x � 17
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Solving an Equation

Algebraic method Graphical method

Use the rules of algebra to isolate Move all terms to one side and 
the unknown x on one side of the set equal to y. Sketch the graph 
equation. to find the value of x where y � 0.

Example: Example:

Add x

Divide by 3 Set y � 6 � 3x and graph.

The solution is x � 2.

From the graph the solution is x � 2.

y=6-3x

y

x0 2

2

1

x � 2

 0 � 6 � 3x 3x � 6

 2x � 6 � x 2x � 6 � x

The quadratic formula is discussed on
page 49.

The Discovery Project on page 283 
describes a numerical method for 
solving equations.



Solution 2: Graphical

We graph the equations y � x 2 � 4x � 2, y � x 2 � 4x � 4, and y � x 2 � 4x � 6
in Figure 6. By determining the x-intercepts of the graphs, we find the following 
solutions.

(a) x � 0.6 and x � 3.4

(b) x � 2

(c) There is no x-intercept, so the equation has no solution.

Figure 6 ■

The graphs in Figure 6 show visually why a quadratic equation may have two 
solutions, one solution, or no real solution. We proved this fact algebraically in Sec-
tion 1.5 when we studied the discriminant.

Example 5 Another Graphical Method

Solve the equation algebraically and graphically: 5 � 3x � 8x � 20

Solution 1: Algebraic

Subtract 5

Subtract 8x

Divide by �11 and simplify

Solution 2: Graphical

We could move all terms to one side of the equal sign, set the result equal to y, and
graph the resulting equation. But to avoid all this algebra, we graph two equations
instead:

The solution of the original equation will be the value of x that makes y1 equal to y2;
that is, the solution is the x-coordinate of the intersection point of the two graphs.
Using the feature or the intersect command on a graphing calculator,TRACE

y1 � 5 � 3x  and  y2 � 8x � 20

x �
�25

�11
� 2 3

11

�11x � �25

�3x � 8x � 25

 5 � 3x � 8x � 20

10

_5

_1 5

(a) y=≈-4x+2 (b) y=≈-4x+4 (c) y=≈-4x+6

10

_5

_1 5

10

_5

_1 5
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10

_25

_1 3

y⁄=5-3x

y¤=8x-20

Intersection
X=2.2727723   Y=-1.818182

Figure 7

we see from Figure 7 that the solution is x � 2.27. ■

In the next example we use the graphical method to solve an equation that is 
extremely difficult to solve algebraically.



Example 6 Solving an Equation in an Interval

Solve the equation

in the interval .

Solution We are asked to find all solutions x that satisfy 1 
 x 
 6, so we will
graph the equation in a viewing rectangle for which the x-values are restricted 
to this interval.

Subtract 

Figure 8 shows the graph of the equation in the viewing
rectangle 31, 64 by 3�5, 54. There are two x-intercepts in this viewing rectangle;
zooming in we see that the solutions are x � 2.18 and x � 3.72.

The equation in Example 6 actually has four solutions. You are asked to find the
other two in Exercise 57.

Example 7 Intensity of Light

Two light sources are 10 m apart. One is three times as intense as the other. The
light intensity L (in lux) at a point x meters from the weaker source is given by

(See Figure 9.) Find the points at which the light intensity is 4 lux.

Solution We need to solve the equation

4 �
10

x2 �
30110 � x 2 2

x 10 − x

Figure 9

L �
10

x2 �
30110 � x 2 2

(a) (b)

5

_5

1 6

Zero
X=3.7200502   Y=0

5

_5

1 6

Zero
X=2.1767162   Y=0

y � x3 � 6x2 � 9x � 1x

1xx3 � 6x2 � 9x � 1x � 0

x3 � 6x2 � 9x � 1x

31, 6 4 x3 � 6x2 � 9x � 1x
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We can also use the zero command
to find the solutions, as shown in 
Figures 8(a) and 8(b).

Figure 8 ■



The graphs of

are shown in Figure 10. Zooming in (or using the intersect command) we find
two solutions, x � 1.67431 and x � 7.1927193. So the light intensity is 4 lux at the
points that are 1.67 m and 7.19 m from the weaker source. ■

Solving Inequalities Graphically

Inequalities can be solved graphically. To describe the method we solve

This inequality was solved algebraically in Section 1.7, Example 3. To solve the 
inequality graphically, we draw the graph of

Our goal is to find those values of x for which y 
 0. These are simply the x-values
for which the graph lies below the x-axis. From Figure 11 we see that the solution of
the inequality is the interval 32, 34.
Example 8 Solving an Inequality Graphically

Solve the inequality 3.7x 2 � 1.3x � 1.9 
 2.0 � 1.4x.

Solution We graph the equations

in the same viewing rectangle in Figure 12. We are interested in those values of 
x for which y1 
 y2; these are points for which the graph of y2 lies on or above the
graph of y1. To determine the appropriate interval, we look for the x-coordinates of
points where the graphs intersect. We conclude that the solution is (approximately)
the interval 3�1.45, 0.724. ■

Example 9 Solving an Inequality Graphically

Solve the inequality x 3 � 5x 2 � �8.

Solution We write the inequality as

and then graph the equation

in the viewing rectangle 3�6, 64 by 3�15, 154, as shown in Figure 13. The solution 
of the inequality consists of those intervals on which the graph lies on or above the
x-axis. By moving the cursor to the x-intercepts we find that, correct to one decimal
place, the solution is 3�1.1, 1.54 � 34.6,q2. ■

y � x3 � 5x2 � 8

x3 � 5x2 � 8 � 0

y1 � 3.7x2 � 1.3x � 1.9  and  y2 � 2.0 � 1.4x

y � x2 � 5x � 6

x2 � 5x � 6 
 0

y1 � 4  and  y2 �
10

x2 �
30110 � x 2 2
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10

0 10

y1 = 4

y2 = +10
x2

30
(10 – x)2

Figure 10

10

_2

_1 5

Figure 11

x 2 � 5x � 6 
 0

5

_3

_3 3

y⁄

y¤

Figure 12

y1 � 3.7x 2 � 1.3x � 1.9

y2 � 2.0 � 1.4x

15

_15

_6 6

Figure 13

x 3 � 5x 2 � 8 � 0
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1–6 ■ Use a graphing calculator or computer to decide which
viewing rectangle (a)–(d) produces the most appropriate graph
of the equation.

1. y � x 4 � 2

(a) 3�2, 24 by 3�2, 24
(b) 30, 44 by 30, 44
(c) 3�8, 84 by 3�4, 404
(d) 3�40, 404 by 3�80, 8004

2. y � x 2 � 7x � 6

(a) 3�5, 54 by 3�5, 54
(b) 30, 104 by 3�20, 1004
(c) 3�15, 84 by 3�20, 1004
(d) 3�10, 34 by 3�100, 204

3. y � 100 � x 2

(a) 3�4, 44 by 3�4, 44
(b) 3�10, 104 by 3�10, 104
(c) 3�15, 154 by 3�30, 1104
(d) 3�4, 44 by 3�30, 1104

4. y � 2x 2 � 1000

(a) 3�10, 104 by 3�10, 104
(b) 3�10, 104 by 3�100, 1004
(c) 3�10, 104 by 3�1000, 10004
(d) 3�25, 254 by 3�1200, 2004

5. y � 10 � 25x � x3

(a) 3�4, 4] by 3�4, 44
(b) 3�10, 104 by 3�10, 104
(c) 3�20, 204 by 3�100, 1004
(d) 3�100, 1004 by 3�200, 2004

6.

(a) 3�4, 44 by 3�4, 44
(b) 3�5, 54 by 30, 1004
(c) 3�10, 104 by 3�10, 404
(d) 3�2, 104 by 3�2, 64

7–18 ■ Determine an appropriate viewing rectangle for 
the equation and use it to draw the graph.

7. y � 100x 2 8. y � �100x 2

9. y � 4 � 6x � x 2 10. y � 0.3x 2 � 1.7x � 3

11. 12.

13. y� 0.01x 3 � x 2 � 5 14.

15. y � x 4� 4x 3 16. y �
x

x2 � 25

y � x1x � 6 2 1x � 9 2y � 212x � 17y � 24 256 � x2

y � 28x � x2

17. y � 1 � 18. y � 2x �

19. Graph the circle x 2 � y 2 � 9 by solving for y and graphing
two equations as in Example 3.

20. Graph the circle by solving for y and
graphing two equations as in Example 3.

21. Graph the equation 4x 2 � 2y 2 � 1 by solving for y and
graphing two equations corresponding to the negative and
positive square roots. (This graph is called an ellipse.)

22. Graph the equation y 2 � 9x 2 � 1 by solving for y and graph-
ing the two equations corresponding to the positive and neg-
ative square roots. (This graph is called a hyperbola.)

23–26 ■ Do the graphs intersect in the given viewing rectangle?
If they do, how many points of intersection are there?

23. , ; 3�4, 44 by 3�1, 34
24. , ; 3�8, 84 by 3�1, 84
25. y � 6 � 4x � x 2, y � 3x � 18; 3�6, 24 by 3�5, 204
26. y � x 3 � 4x, y � x � 5; 3�4, 44 by 3�15, 154
27–36 ■ Solve the equation both algebraically and graphically.

27. x � 4 � 5x � 12 28.

29. 30.

31. x 2 � 32 � 0 32. x 3 � 16 � 0

33. 16x 4 � 625 34. 2x 5 � 243 � 0

35. 36.

37–44 ■ Solve the equation graphically in the given interval.
State each answer correct to two decimals.

37. x 2 � 7x � 12 � 0; 30, 64
38. x 2 � 0.75x � 0.125 � 0; 3�2, 24
39. x 3 � 6x 2 � 11x � 6 � 0; 3 �1, 44
40. 16x 3 � 16x 2 � x � 1; 3�2, 24
41. ; 3�1, 54
42. ; 3�1, 54
43. x 1/3 � x � 0; 3 �3, 34
44. x 1/2 � x 1/3 � x � 0; 3�1, 54
45–48 ■ Find all real solutions of the equation, correct to two
decimals.

45. x 3 � 2x 2 � x � 1 � 0 46. x 4 � 8x 2 � 2 � 0

47. 48. x 4 � 16 � x 3x1x � 1 2 1x � 2 2 � 1
6 x

1 � 1x � 21 � x2

x � 1x � 1 � 0

61x � 2 2 5 � 641x � 5 2 4 � 80 � 0

4

x � 2
�

6

2x
�

5

2x � 4

2
x

�
1

2x
� 7

1
2 x � 3 � 6 � 2x

y � 1
5 141 � 3x 2y � 249 � x2

y � 27 � 7
12 x2y � �3x2 � 6x � 1

2

1y � 1 2 2 � x2 � 1

0 x2 � 5 00 x � 1 01.9 Exercises
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49–56 ■ Find the solutions of the inequality by drawing appro-
priate graphs. State each answer correct to two decimals.

49. x 2 � 3x � 10 
 0

50. 0.5x 2 � 0.875x 
 0.25

51. x 3 � 11x 
 6x 2 � 6

52. 16x 3 � 24x 2 	 �9x � 1

53. x 1/3 � x

54.

55.

56.

57. In Example 6 we found two solutions of the equation
, the solutions that lie between 1 

and 6. Find two more solutions, correct to two decimals.

Applications

58. Estimating Profit An appliance manufacturer estimates
that the profit y (in dollars) generated by producing x cook-
tops per month is given by the equation

where 0 
 x 
 450.

(a) Graph the equation.

(b) How many cooktops must be produced to begin 
generating a profit?

(c) For what range of values of x is the company’s profit
greater than $15,000?

59. How Far Can You See? If you stand on a ship in a calm
sea, then your height x (in ft) above sea level is related to the
farthest distance y (in mi) that you can see by the equation

(a) Graph the equation for 0 
 x 
 100.

(b) How high up do you have to be to be able to see 10 mi?

x

y � B1.5x � a x

5280
b 2

y � 10x � 0.5x2 � 0.001x3 � 5000

x3 � 6x2 � 9x � 1x

1x � 1 2 2 
 x3

1x � 1 2 2 � 1x � 1 2 220.5x2 � 1 
 2 0 x 0

Discovery • Discussion

60. Equation Notation on Graphing Calculators When
you enter the following equations into your calculator, how
does what you see on the screen differ from the usual way
of writing the equations? (Check your user’s manual if
you’re not sure.)

(a) y �

(b)

(c)

(d)

61. Enter Equations Carefully A student wishes to graph
the equations

on the same screen, so he enters the following information
into his calculator:

The calculator graphs two lines instead of the equations he
wanted. What went wrong?

62. Algebraic and Graphical Solution Methods Write a
short essay comparing the algebraic and graphical methods
for solving equations. Make up your own examples to illus-
trate the advantages and disadvantages of each method.

63. How Many Solutions? This exercise deals with the 
family of equations

x 3 � 3x � k

(a) Draw the graphs of

y1 � x 3 � 3x and y2 � k

in the same viewing rectangle, in the cases k � �4,
�2, 0, 2, and 4. How many solutions of the equation 
x 3 � 3x � k are there in each case? Find the solutions
correct to two decimals.

(b) For what ranges of values of k does the equation have
one solution? two solutions? three solutions?

Y1 � X^1/3   Y2 � X/X � 4

y � x1/3  and  y �
x

x � 4

y � x3 � 13 x � 2

y �
x

x � 1

y � 15 x

0 x 0



The Slope of a Line

We first need a way to measure the “steepness” of a line, or how quickly it rises 
(or falls) as we move from left to right. We define run to be the distance we move to
the right and rise to be the corresponding distance that the line rises (or falls). The
slope of a line is the ratio of rise to run:

Figure 1 shows situations where slope is important. Carpenters use the term pitch for
the slope of a roof or a staircase; the term grade is used for the slope of a road.

Figure 1

If a line lies in a coordinate plane, then the run is the change in the x-coordinate
and the rise is the corresponding change in the y-coordinate between any two points
on the line (see Figure 2). This gives us the following definition of slope.

y

x0

1

2

Rise:
change in
y-coordinate
(negative)

Run

y

x

0

1

2

Rise:
change in
y-coordinate
(positive)

Run

12

1

Slope of a ramp Pitch of a roof Grade of a road

Slope=
1
12

Slope=
1
3

Slope=
8

100

100

88%
GRADE

1

3

slope �
rise
run
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1.10 Lines

In this section we find equations for straight lines lying in a coordinate plane. The
equations will depend on how the line is inclined, so we begin by discussing the con-
cept of slope.

Figure 2



The slope is independent of which two points are chosen on the line. We can see that
this is true from the similar triangles in Figure 3:

Figure 3

Figure 4 shows several lines labeled with their slopes. Notice that lines with pos-
itive slope slant upward to the right, whereas lines with negative slope slant down-
ward to the right. The steepest lines are those for which the absolute value of the slope
is the largest; a horizontal line has slope zero.

Figure 4

Lines with various slopes

m=0

m=1m=2m=5

m=
1

2

m=_1m=_2m=_5

m=_
1

2

y

x

0

B(x'¤, y'¤)

y

x0

x'¤-x'⁄

x¤-x⁄ (run)

y¤-y⁄ (rise)

y'¤-y'⁄
A'(x'⁄, y'⁄)

B(x¤, y¤)

A(x⁄, y⁄)

y2 � y1

x2 � x1
�

yœ2 � yœ1
xœ2 � xœ1
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Slope of a Line

The slope m of a nonvertical line that passes through the points and
is

The slope of a vertical line is not defined.

m �
rise
run

�
y2 � y1

x2 � x1

B1x2, y2 2 A1x1, y1 2

René Descartes (1596–1650) was
born in the town of La Haye in
southern France. From an early age
Descartes liked mathematics be-
cause of “the certainty of its results
and the clarity of its reasoning.” He
believed that in order to arrive at
truth, one must begin by doubting
everything, including one’s own
existence; this led him to formulate
perhaps the most well-known sen-
tence in all of philosophy: “I think,
therefore I am.” In his book Dis-
course on Method he described
what is now called the Cartesian
plane. This idea of combining alge-
bra and geometry enabled mathe-
maticians for the first time to “see”
the equations they were studying.
The philosopher John Stuart Mill
called this invention “the greatest
single step ever made in the
progress of the exact sciences.”
Descartes liked to get up late and
spend the morning in bed thinking
and writing. He invented the coor-
dinate plane while lying in bed
watching a fly crawl on the ceiling,
reasoning that he could describe the
exact location of the fly by knowing
its distance from two perpendicular
walls. In 1649 Descartes became
the tutor of Queen Christina of
Sweden. She liked her lessons at
5 o’clock in the morning when,
she said, her mind was sharpest.
However, the change from his usual
habits and the ice-cold library
where they studied proved too
much for him. In February 1650,
after just two months of this, he
caught pneumonia and died.



Example 1 Finding the Slope of a Line 

through Two Points

Find the slope of the line that passes through the points and .

Solution Since any two different points determine a line, only one line passes
through these two points. From the definition, the slope is

This says that for every 3 units we move to the right, the line rises 2 units. The line
is drawn in Figure 5. ■

Equations of Lines

Now let’s find the equation of the line that passes through a given point and
has slope m. A point with x � x1 lies on this line if and only if the slope of the
line through P1 and P is equal to m (see Figure 6), that is,

This equation can be rewritten in the form ; note that the equation
is also satisfied when x � x1 and y � y1. Therefore, it is an equation of the given line.

y � y1 � m1x � x1 2
y � y1

x � x1
� m

P1x,y 2 P1x1, y1 2

m �
y2 � y1

x2 � x1
�

5 � 1

8 � 2
�

4

6
�

2

3

Q18, 5 2P12, 1 2
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x

y

(

Q

P 2, 1

(8, 5)

)

Figure 5

Run x – x1

Rise
y – y1

0 x

y

P⁄(x⁄, y⁄)

P(x, y)

Figure 6
Point-Slope Form of the Equation of a Line

An equation of the line that passes through the point and has slope m is

y � y1 � m1x � x1 2 1x1, y1 2

Example 2 Finding the Equation of a Line with Given Point

and Slope

(a) Find an equation of the line through with slope .

(b) Sketch the line.

Solution

(a) Using the point-slope form with , and y1 � �3, we obtain an
equation of the line as

From point-slope equation

Multiply by 2

Rearrange

(b) The fact that the slope is tells us that when we move to the right 2 units, the
line drops 1 unit. This enables us to sketch the line in Figure 7. ■

�1
2

x � 2y � 5 � 0

 2y � 6 � �x � 1

y � 3 � �1
2 1x � 1 2

m � �1
2, x1 � 1

� 1
211, �3 2

0 x

y

(1, _3)

3

1

Run = 2

Rise = –1

Figure 7



Example 3 Finding the Equation of a Line 

through Two Given Points

Find an equation of the line through the points and .

Solution The slope of the line is

Using the point-slope form with x1 � �1 and y1 � 2, we obtain

From point-slope equation

Multiply by 2

Rearrange ■

Suppose a nonvertical line has slope m and y-intercept b (see Figure 8). This
means the line intersects the y-axis at the point , so the point-slope form of the 
equation of the line, with x � 0 and y � b, becomes

This simplifies to y � mx � b, which is called the slope-intercept form of the equa-
tion of a line.

y � b � m1x � 0 2
10, b 2

 3x � 2y � 1 � 0

 2y � 4 � �3x � 3

y � 2 � �3
2 1x � 1 2

m �
�4 � 2

3 � 1�1 2 � �
6

4
� �

3

2

13, �4 21�1, 2 2
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We can use either point, or
, in the point-slope equation.

We will end up with the same final
answer.

13, �4 2 1�1, 2 2

(0, b)

y=mx+b

0 x

y

Figure 8 Slope-Intercept Form of the Equation of a Line

An equation of the line that has slope m and y-intercept b is

y � mx � b

Example 4 Lines in Slope-Intercept Form

(a) Find the equation of the line with slope 3 and y-intercept �2.

(b) Find the slope and y-intercept of the line 3y � 2x �1.

Solution

(a) Since m � 3 and b � �2, from the slope-intercept form of the equation of a
line we get

(b) We first write the equation in the form y � mx � b:

Add 2x

Divide by 3

From the slope-intercept form of the equation of a line, we see that the slope is
and the y-intercept is . ■b � 1

3m � 2
3

y � 2
3 x � 1

3

 3y � 2x � 1

 3y � 2x � 1

y � 3x � 2

y � 2
3 x � 1

3

Slope y-intercept



If a line is horizontal, its slope is m � 0, so its equation is y � b, where b is the 
y-intercept (see Figure 9). A vertical line does not have a slope, but we can write its
equation as x � a, where a is the x-intercept, because the x-coordinate of every point
on the line is a.
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b y=b

0

x=a

(a, b)

a x

y

Figure 9

Vertical and Horizontal Lines

An equation of the vertical line through is x � a.

An equation of the horizontal line through is y � b.1a, b 21a, b 2
Example 5 Vertical and Horizontal Lines

(a) The graph of the equation x � 3 is a vertical line with x-intercept 3.

(b) The graph of the equation y � �2 is a horizontal line with y-intercept �2.

The lines are graphed in Figure 10. ■

A linear equation is an equation of the form

where A, B, and C are constants and A and B are not both 0. The equation of a line
is a linear equation:

■ A nonvertical line has the equation y � mx � b or �mx � y � b � 0, which is a
linear equation with A � �m, B � 1, and C � �b.

■ A vertical line has the equation x � a or x � a � 0, which is a linear equation
with A � 1, B � 0, and C � �a.

Conversely, the graph of a linear equation is a line:

■ If B � 0, the equation becomes

and this is the slope-intercept form of the equation of a line (with m � �A/B and
b � �C/B).

■ If B � 0, the equation becomes

or x � �C/A, which represents a vertical line.

We have proved the following.

Ax � C � 0

y � �
A

B
x �

C

B

Ax � By � C � 0

y

x2

x=3

0

2

4_2

y=_2

Figure 10

General Equation of a Line

The graph of every linear equation

(A, B not both zero)

is a line. Conversely, every line is the graph of a linear equation.

Ax � By � C � 0



Example 6 Graphing a Linear Equation

Sketch the graph of the equation 2x � 3y � 12 � 0.

Solution 1 Since the equation is linear, its graph is a line. To draw the graph, it is
enough to find any two points on the line. The intercepts are the easiest points to find.

With these points we can sketch the graph in Figure 11.

Solution 2 We write the equation in slope-intercept form:

Add 12

Subtract 2x

Divide by �3

This equation is in the form y � mx � b, so the slope is and the y-intercept
is b � �4. To sketch the graph, we plot the y-intercept, and then move 3 units to
the right and 2 units up as shown in Figure 12. ■

Parallel and Perpendicular Lines

Since slope measures the steepness of a line, it seems reasonable that parallel lines
should have the same slope. In fact, we can prove this.

m � 2
3

y � 2
3 x � 4

�3y � �2x � 12

 2x � 3y � 12

 2x � 3y � 12 � 0

y-intercept: Substitute x � 0, to get �3y � 12 � 0, so y � �4

x-intercept: Substitute y � 0, to get 2x � 12 � 0, so x � 6
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Figure 11

2x-3y-12=0

y

x0

(0, _4)

1

1

3

2

Figure 12

l¤

l⁄

y

x

D
F

E

A
C

B

Figure 13

Parallel Lines

Two nonvertical lines are parallel if and only if they have the same slope.

■ Proof Let the lines l1 and l2 in Figure 13 have slopes m1 and m2. If the lines
are parallel, then the right triangles ABC and DEF are similar, so

Conversely, if the slopes are equal, then the triangles will be similar, so 
�BAC ��EDF and the lines are parallel. ■

Example 7 Finding the Equation of a Line Parallel

to a Given Line

Find an equation of the line through the point that is parallel to the line
.

Solution First we write the equation of the given line in slope-intercept form.

Subtract 4x � 5

Divide by 6y � �2
3 x � 5

6

 6y � �4x � 5

 4x � 6y � 5 � 0

4x � 6y � 5 � 0
15, 2 2

m1 �
d1B, C 2
d1A, C 2 �

d1E, F 2
d1D, F 2 � m2

y

x

2x-3y-12=0

0

(0, _4)

(6, 0)1

1



So the line has slope . Since the required line is parallel to the given line, it
also has slope . From the point-slope form of the equation of a line, we get

Slope , point 

Multiply by 3

Rearrange

Thus, the equation of the required line is 2x � 3y � 16 � 0. ■

The condition for perpendicular lines is not as obvious as that for parallel lines.

 2x � 3y � 16 � 0

 3y � 6 � �2x � 10

15, 2 2m � �2
3y � 2 � �2

3 1x � 5 2m � � 2
3

m � � 2
3
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Perpendicular Lines

Two lines with slopes m1 and m2 are perpendicular if and only if ,
that is, their slopes are negative reciprocals:

Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope).

m2 � �
1

m1

m1m2 � �1

■ Proof In Figure 14 we show two lines intersecting at the origin. (If the lines 
intersect at some other point, we consider lines parallel to these that intersect at the
origin. These lines have the same slopes as the original lines.)

If the lines l1 and l2 have slopes m1 and m2, then their equations are y � m1x and
y � m2x. Notice that lies on l1 and lies on l2. By the Pythagorean
Theorem and its converse (see page 54), OA � OB if and only if

By the Distance Formula, this becomes

■

Example 8 Perpendicular Lines

Show that the points , and are the vertices of a right 
triangle.

Solution The slopes of the lines containing PR and QR are, respectively,

Since m1m2 � �1, these lines are perpendicular and so PQR is a right triangle. It is
sketched in Figure 15.

m1 �
5 � 3

11 � 3
�

1

4
  and  m2 �

5 � 17

11 � 8
� �4

R111, 5 2P13, 3 2 , Q18, 17 2
m1m2 � �1

 2 � �2m1m2

 2 � m2
1 � m2

2 � m2
2 � 2m1m2 � m2

1

112 � m2
1 2 � 112 � m2

2 2 � 11 � 1 2 2 � 1m2 � m1 2 2
3d1O, A 2 4 2 � 3d1O, B 2 4 2 � 3d1A, B 2 4 2

B11, m2 2A11, m1 2
y

x

A(1, m⁄)

B(1, m¤)

l⁄
l¤

O

Figure 14

y

x0

3

5

17

3 8 11

R

Q

P

Figure 15



Example 9 Finding an Equation of a Line Perpendicular 

to a Given Line

Find an equation of the line that is perpendicular to the line and
passes through the origin.

Solution In Example 7 we found that the slope of the line 4x � 6y � 5 � 0
is . Thus, the slope of a perpendicular line is the negative reciprocal, that is, .
Since the required line passes through , the point-slope form gives

■

Example 10 Graphing a Family of Lines

Use a graphing calculator to graph the family of lines

for b � �2, �1, 0, 1, 2. What property do the lines share?

Solution The lines are graphed in Figure 16 in the viewing rectangle by
. The lines all have the same slope, so they are parallel. ■

Applications: Slope as Rate of Change

When a line is used to model the relationship between two quantities, the slope of the
line is the rate of change of one quantity with respect to the other. For example, the
graph in Figure 17(a) gives the amount of gas in a tank that is being filled. The slope
between the indicated points is

The slope is the rate at which the tank is being filled, 2 gallons per minute. In 
Figure 17(b), the tank is being drained at the rate of 0.03 gallon per minute, and the
slope is �0.03.

Figure 17
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(a) Tank filled at 2 gal/min
Slope of line is 2

(b) Tank drained at 0.03 gal/min
Slope of line is −0.03

m �
6 gallons

3 minutes
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y � 0.5x � b
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y � 0.5x � b



The next two examples give other situations where the slope of a line is a rate of change.

Example 11 Slope as Rate of Change

A dam is built on a river to create a reservoir. The water level „ in the reservoir is
given by the equation

where t is the number of years since the dam was constructed, and „ is measured 
in feet.

(a) Sketch a graph of this equation.

(b) What do the slope and „-intercept of this graph represent?

Solution

(a) This equation is linear, so its graph is a line. Since two points determine a line,
we plot two points that lie on the graph and draw a line through them.

.

.

The line determined by these points is shown in Figure 18.

(b) The slope is m � 4.5; it represents the rate of change of water level with 
respect to time. This means that the water level increases 4.5 ft per year. 
The „-intercept is 28, and occurs when t � 0, so it represents the water level
when the dam was constructed. ■

Example 12 Linear Relationship between Temperature 

and Elevation

(a) As dry air moves upward, it expands and cools. If the ground temperature is
20 �C and the temperature at a height of 1 km is 10�C, express the temperature
T (in �C) in terms of the height h (in kilometers). (Assume that the relationship
between T and h is linear.)

(b) Draw the graph of the linear equation. What does its slope represent?

(c) What is the temperature at a height of 2.5 km?

Solution

(a) Because we are assuming a linear relationship between T and h, the equation
must be of the form

T � mh � b

„

t0

10

1

„=4.5t+28

Figure 18

When t � 2, then „ � 4.512 2 � 28 � 37, so 12,37 2  is on the line

When t � 0, then „ � 4.510 2 � 28 � 28, so 10,28 2  is on the line

„ � 4.5t � 28
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1.10 Exercises

where m and b are constants. When h � 0, we are given that T � 20, so

Thus, we have

When h � 1, we have T � 10 and so

The required expression is

(b) The graph is sketched in Figure 19. The slope is m � �10 �C/km, and this 
represents the rate of change of temperature with respect to distance above 
the ground. So the temperature decreases 10 �C per kilometer of height.

(c) At a height of h � 2.5 km, the temperature is

■T � �1012.5 2 � 20 � �25 � 20 � �5°C

T � �10h � 20

m � 10 � 20 � �10

 10 � m11 2 � 20

T � mh � 20

b � 20

 20 � m10 2 � b

T

h0

10

20

T=_10h+20

1 3

Figure 19

1–8 ■ Find the slope of the line through P and Q.

1. 2.

3. 4.

5. 6.

7. 8.

9. Find the slopes of the lines l1, l2, l3, and l4 in the figure 
below.

l‹

l¤l⁄

l›

x

y

0

_2

_2 2

1

P1�1, �4 2 , Q16, 0 2P11, �3 2 , Q1�1, 6 2 P12, �5 2 , Q1�4, 3 2P12, 4 2 , Q14, 3 2 P11, 2 2 , Q13, 3 2P12, 2 2 , Q1�10, 0 2 P10, 0 2 , Q12, �6 2P10, 0 2 , Q14, 2 2 10. (a) Sketch lines through with slopes 1, 0, , 2, and �1.

(b) Sketch lines through with slopes , and 3.

11–14 ■ Find an equation for the line whose graph is sketched.

11. 12.

13. 14.

_ x

y

0 14

_3

1

x

y

0 1 3

_3

1

x

y

0 2_3

3

0 1 3 5

_2

1

3

x

y

1
3,

1
2, � 1

310, 0 2 1
210, 0 2
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15–34 ■ Find an equation of the line that satisfies the given
conditions.

15. Through ; slope 1

16. Through ; slope �1

17. Through ; slope 

18. Through ; slope 

19. Through and 

20. Through and 

21. Slope 3; y-intercept �2

22. Slope ; y-intercept 4

23. x-intercept 1; y-intercept �3

24. x-intercept �8; y-intercept 6

25. Through ; parallel to the x-axis

26. Through ; parallel to the y-axis

27. Through ; parallel to the line x � 2y � 6

28. y-intercept 6; parallel to the line 2x � 3y � 4 � 0

29. Through ; parallel to the line x � 5

30. Through ; perpendicular to the line y � 1

31. Through ; perpendicular to the line 
2x � 5y � 8 � 0

32. Through ; perpendicular to the line 4x � 8y � 1

33. Through ; parallel to the line passing through 
and

34. Through ; perpendicular to the line passing
through and 

35. (a) Sketch the line with slope that passes through the
point .

(b) Find an equation for this line.

36. (a) Sketch the line with slope �2 that passes through the
point .

(b) Find an equation for this line.

37–40 ■ Use a graphing device to graph the given family of
lines in the same viewing rectangle. What do the lines have in
common?

37. y � �2x � b for b � 0, �1, �3, �6

38. y � mx � 3 for m � 0, �0.25, �0.75, �1.5

39. for m � 0, �0.25, �0.75, �1.5

40. for m � 0, �0.5, �1, �2, �6y � 2 � m1x � 3 2y � m1x � 3 2

14, �1 2
1�2, 1 2 3

2

15, �1 211, 1 21�2, �11 21�2, 1 212, 5 2 11, 7 2A12, � 2
3B

1�1, �2 212, 6 21�1, 2 2
11, �6 214, 5 214, 5 2

2
5

14, 3 21�1, �2 2 11, 6 212, 1 2 � 7
21�3, �5 2 2

311, 7 21�2, 4 212, 3 2
41–52 ■ Find the slope and y-intercept of the line and draw 
its graph.

41. x � y � 3 42. 3x � 2y � 12

43. x � 3y � 0 44. 2x � 5y � 0

45. 46. �3x � 5y � 30 � 0

47. y � 4 48. 4y � 8 � 0

49. 3x � 4y � 12 50. x � �5

51. 3x � 4y � 1 � 0 52. 4x � 5y � 10

53. Use slopes to show that , and
are vertices of a parallelogram.

54. Use slopes to show that , and 
are vertices of a right triangle.

55. Use slopes to show that , and
are vertices of a rectangle.

56. Use slopes to determine whether the given points are
collinear (lie on a line).

(a)

(b)

57. Find an equation of the perpendicular bisector of the line
segment joining the points and .

58. Find the area of the triangle formed by the coordinate axes
and the line

59. (a) Show that if the x- and y-intercepts of a line are 
nonzero numbers a and b, then the equation of the 
line can be written in the form

This is called the two-intercept form of the equation of 
a line.

(b) Use part (a) to find an equation of the line whose 
x-intercept is 6 and whose y-intercept is �8.

60. (a) Find an equation for the line tangent to the circle 
x 2 � y 2 � 25 at the point . (See the figure.)

(b) At what other point on the circle will a tangent line be
parallel to the tangent line in part (a)?

(3, _4)

0 x

y

13, �4 2

x

a
�

y

b
� 1

2y � 3x � 6 � 0

B17, �2 2A11, 4 2
1�1, 3 2 , 11, 7 2 , 14, 15 211, 1 2 , 13, 9 2 , 16,21 2

D10, 6 2 A11, 1 2 , B111, 3 2 , C110, 8 2
C1�9, 8 2A1�3, �1 2 , B13, 3 2D1�1, 7 2 A11, 1 2 , B17, 4 2 , C15, 10 2

1
2 x � 1

3 y � 1 � 0
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Applications

61. Grade of a Road West of Albuquerque, New Mexico,
Route 40 eastbound is straight and makes a steep descent 
toward the city. The highway has a 6% grade, which means
that its slope is . Driving on this road you notice from
elevation signs that you have descended a distance of 
1000 ft. What is the change in your horizontal distance?

62. Global Warming Some scientists believe that the average
surface temperature of the world has been rising steadily.
The average surface temperature is given by

where T is temperature in �C and t is years since 1900.

(a) What do the slope and T-intercept represent?

(b) Use the equation to predict the average global surface
temperature in 2100.

63. Drug Dosages If the recommended adult dosage for a
drug is D (in mg), then to determine the appropriate dosage
c for a child of age a, pharmacists use the equation

Suppose the dosage for an adult is 200 mg.

(a) Find the slope. What does it represent?

(b) What is the dosage for a newborn?

64. Flea Market The manager of a weekend flea market
knows from past experience that if she charges x dollars for
a rental space at the flea market, then the number y of spaces
she can rent is given by the equation y � 200 � 4x.

(a) Sketch a graph of this linear equation. (Remember that
the rental charge per space and the number of spaces
rented must both be nonnegative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept
of the graph represent?

65. Production Cost A small-appliance manufacturer finds
that if he produces x toaster ovens in a month his production
cost is given by the equation

(where y is measured in dollars).

(a) Sketch a graph of this linear equation.

(b) What do the slope and y-intercept of the graph represent?

y � 6x � 3000

c � 0.0417D1a � 1 2

T � 0.02t � 8.50

6%
GRADE

1000 ft

6% grade

� 6
100

66. Temperature Scales The relationship between the
Fahrenheit (F) and Celsius (C ) temperature scales is given
by the equation .

(a) Complete the table to compare the two scales at the
given values.

(b) Find the temperature at which the scales agree. 
[Hint: Suppose that a is the temperature at which the
scales agree. Set F � a and C � a. Then solve for a.]

F � 9
5 C � 32

C F

�30�
�20�
�10�

0�
50�
68�
86�

67. Crickets and Temperature Biologists have observed
that the chirping rate of crickets of a certain species is re-
lated to temperature, and the relationship appears to be very
nearly linear. A cricket produces 120 chirps per minute at
70 �F and 168 chirps per minute at 80�F.

(a) Find the linear equation that relates the temperature t
and the number of chirps per minute n.

(b) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

68. Depreciation A small business buys a computer for
$4000. After 4 years the value of the computer is expected
to be $200. For accounting purposes, the business uses lin-
ear depreciation to assess the value of the computer at a
given time. This means that if V is the value of the computer
at time t, then a linear equation is used to relate V and t.

(a) Find a linear equation that relates V and t.

(b) Sketch a graph of this linear equation.

(c) What do the slope and V-intercept of the graph 
represent?

(d) Find the depreciated value of the computer 3 years from
the date of purchase.

69. Pressure and Depth At the surface of the ocean, the wa-
ter pressure is the same as the air pressure above the water,
15 lb/in2. Below the surface, the water pressure increases by
4.34 lb/in2 for every 10 ft of descent.

(a) Find an equation for the relationship between pressure
and depth below the ocean surface.

(b) Sketch a graph of this linear equation.

(c) What do the slope and y-intercept of the graph 
represent?
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(d) At what depth is the pressure 100 lb/in2?

70. Distance, Speed, and Time Jason and Debbie leave 
Detroit at 2:00 P.M. and drive at a constant speed, traveling
west on I-90. They pass Ann Arbor, 40 mi from Detroit, at
2:50 P.M.

(a) Express the distance traveled in terms of the time
elapsed.

(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

71. Cost of Driving The monthly cost of driving a car 
depends on the number of miles driven. Lynn found that in
May her driving cost was $380 for 480 mi and in June her
cost was $460 for 800 mi. Assume that there is a linear 
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relationship between the monthly cost C of driving a car 
and the distance driven d.

(a) Find a linear equation that relates C and d.
(b) Use part (a) to predict the cost of driving 1500 mi per

month.
(c) Draw the graph of the linear equation. What does the

slope of the line represent?
(d) What does the y-intercept of the graph represent?
(e) Why is a linear relationship a suitable model for this 

situation?

72. Manufacturing Cost The manager of a furniture factory
finds that it costs $2200 to manufacture 100 chairs in one
day and $4800 to produce 300 chairs in one day.

(a) Assuming that the relationship between cost and the
number of chairs produced is linear, find an equation
that expresses this relationship. Then graph the equation.

(b) What is the slope of the line in part (a), and what does it
represent?

(c) What is the y-intercept of this line, and what does it 
represent?

Discovery • Discussion

73. What Does the Slope Mean? Suppose that the graph of
the outdoor temperature over a certain period of time is a
line. How is the weather changing if the slope of the line is
positive? If it’s negative? If it’s zero?

74. Collinear Points Suppose you are given the coordinates
of three points in the plane, and you want to see whether
they lie on the same line. How can you do this using slopes?
Using the Distance Formula? Can you think of another
method?

1.11 Modeling Variation

When scientists talk about a mathematical model for a real-world phenomenon, they
often mean an equation that describes the relationship between two quantities. For in-
stance, the model may describe how the population of an animal species varies with
time or how the pressure of a gas varies as its temperature changes. In this section we
study a kind of modeling called variation.

Direct Variation

Two types of mathematical models occur so often that they are given special names.
The first is called direct variation and occurs when one quantity is a constant mul-
tiple of the other, so we use an equation of the form y � kx to model this dependence.

Mathematical models are discussed in
more detail in Focus on Modeling,
which begins on page 239.
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Direct Variation

If the quantities x and y are related by an equation

for some constant k � 0, we say that y varies directly as x, or y is directly
proportional to x, or simply y is proportional to x. The constant k is called
the constant of proportionality.

y � kx

Recall that the graph of an equation of the form y � mx � b is a line with slope m
and y-intercept b. So the graph of an equation y � kx that describes direct variation
is a line with slope k and y-intercept 0 (see Figure 1).

Example 1 Direct Variation

During a thunderstorm you see the lightning before you hear the thunder 
because light travels much faster than sound. The distance between you and 
the storm varies directly as the time interval between the lightning and the 
thunder.

(a) Suppose that the thunder from a storm 5400 ft away takes 5 s to reach you. 
Determine the constant of proportionality and write the equation for the 
variation.

(b) Sketch the graph of this equation. What does the constant of proportionality
represent?

(c) If the time interval between the lightning and thunder is now 8 s, how far away
is the storm?

Solution

(a) Let d be the distance from you to the storm and let t be the length of the time
interval. We are given that d varies directly as t, so

where k is a constant. To find k, we use the fact that t � 5 when d � 5400.
Substituting these values in the equation, we get

Substitute

Solve for k

Substituting this value of k in the equation for d, we obtain

as the equation for d as a function of t.

(b) The graph of the equation d � 1080t is a line through the origin with slope
1080 and is shown in Figure 2. The constant k � 1080 is the approximate speed
of sound (in ft/s).

d � 1080t

k �
5400

5
� 1080

 5400 � k15 2
d � kt

0

k

1

y=kx

(k>0)

y

x

Figure 1

0

6000

d=1080t4000

2000

2 4 6 8

d

t

Figure 2



(c) When t � 8, we have

So, the storm is 8640 ft � 1.6 mi away. ■

Inverse Variation

Another equation that is frequently used in mathematical modeling is y � k /x, where
k is a constant.

d � 1080 # 8 � 8640
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Inverse Variation

If the quantities x and y are related by the equation

for some constant k � 0, we say that y is inversely proportional to x, or y
varies inversely as x.

y �
k
x

The graph of y � k /x for x 	 0 is shown in Figure 3 for the case k 	 0. It gives a
picture of what happens when y is inversely proportional to x.

Example 2 Inverse Variation

Boyle’s Law states that when a sample of gas is compressed at a constant
temperature, the pressure of the gas is inversely proportional to the volume of 
the gas.

(a) Suppose the pressure of a sample of air that occupies 0.106 m3 at 25 �C is 
50 kPa. Find the constant of proportionality, and write the equation that 
expresses the inverse proportionality.

(b) If the sample expands to a volume of 0.3 m3, find the new pressure.

Solution

(a) Let P be the pressure of the sample of gas and let V be its volume. Then, by the
definition of inverse proportionality, we have

where k is a constant. To find k we use the fact that P � 50 when V � 0.106.
Substituting these values in the equation, we get

Substitute

Solve for kk � 150 2 10.106 2 � 5.3

 50 �
k

0.106

P �
k

V

0

y=

(k>0)

k
x

y

x

Figure 3

Inverse variation



Putting this value of k in the equation for P, we have

(b) When V � 0.3, we have

So, the new pressure is about 17.7 kPa. ■

Joint Variation

A physical quantity often depends on more than one other quantity. If one quantity is
proportional to two or more other quantities, we call this relationship joint variation.

P �
5.3

0.3
� 17.7

P �
5.3

V
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Joint Variation

If the quantities x, y, and z are related by the equation

where k is a nonzero constant, we say that z varies jointly as x and y, or z is
jointly proportional to x and y.

z � kxy

In the sciences, relationships between three or more variables are common, and
any combination of the different types of proportionality that we have discussed is
possible. For example, if

we say that z is proportional to x and inversely proportional to y.

Example 3 Newton’s Law of Gravitation

Newton’s Law of Gravitation says that two objects with masses m1 and m2

attract each other with a force F that is jointly proportional to their masses and 
inversely proportional to the square of the distance r between the objects. Express
Newton’s Law of Gravitation as an equation.

Solution Using the definitions of joint and inverse variation, and the traditional
notation G for the gravitational constant of proportionality, we have

■

If m1 and m2 are fixed masses, then the gravitational force between them is 
F � C/r 2 (where C � Gm1m2 is a constant). Figure 4 shows the graph of this 
equation for r 	 0 with C � 1. Observe how the gravitational attraction decreases
with increasing distance.

F � G
m1m2

r 2

z � k
x
y

1.5

0
5

Figure 4

Graph of F �
1

r 2
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1–12 ■ Write an equation that expresses the statement.

1. T varies directly as x.

2. P is directly proportional to „.

3. √ is inversely proportional to z.

4. „ is jointly proportional to m and n.

5. y is proportional to s and inversely proportional to t.

6. P varies inversely as T.

7. z is proportional to the square root of y.

8. A is proportional to the square of t and inversely propor-
tional to the cube of x.

9. V is jointly proportional to l, „, and h.

10. S is jointly proportional to the squares of r and u.

11. R is proportional to i and inversely proportional to P and t.

12. A is jointly proportional to the square roots of x and y.

13–22 ■ Express the statement as an equation. Use the given
information to find the constant of proportionality.

13. y is directly proportional to x. If x � 6, then y � 42.

14. z varies inversely as t. If t � 3, then z � 5.

15. M varies directly as x and inversely as y. If x � 2 and y � 6,
then M � 5.

16. S varies jointly as p and q. If p � 4 and q � 5, then 
S � 180.

17. W is inversely proportional to the square of r. If r � 6, then
W � 10.

18. t is jointly proportional to x and y and inversely proportional
to r. If x � 2, y � 3, and r � 12, then t � 25.

19. C is jointly proportional to l, „, and h. If l � „ � h � 2,
then C � 128.

20. H is jointly proportional to the squares of l and „. If l � 2
and , then H � 36.

21. s is inversely proportional to the square root of t. If s � 100,
then t � 25.

22. M is jointly proportional to a, b, and c, and inversely pro-
portional to d. If a and d have the same value, and if b and c
are both 2, then M � 128.

Applications

23. Hooke’s Law Hooke’s Law states that the force needed to
keep a spring stretched x units beyond its natural length is
directly proportional to x. Here the constant of proportional-

„ � 1
3

ity is called the spring constant.

(a) Write Hooke’s Law as an equation.

(b) If a spring has a natural length of 10 cm and a force of
40 N is required to maintain the spring stretched to a
length of 15 cm, find the spring constant.

(c) What force is needed to keep the spring stretched to a
length of 14 cm?

24. Law of the Pendulum The period of a pendulum (the
time elapsed during one complete swing of the pendulum)
varies directly with the square root of the length of the 
pendulum.

(a) Express this relationship by writing an equation.

(b) In order to double the period, how would we have to
change the length l?

25. Printing Costs The cost C of printing a magazine is
jointly proportional to the number of pages p in the maga-
zine and the number of magazines printed m.

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if the printing cost
is $60,000 for 4000 copies of a 120-page magazine.

(c) How much would the printing cost be for 5000 copies
of a 92-page magazine?

l

5 cm

0

60

40

20

0

60

40

20

1.11 Exercises
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26. Boyle’s Law The pressure P of a sample of gas is directly
proportional to the temperature T and inversely proportional
to the volume V.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality if 100 L of gas 
exerts a pressure of 33.2 kPa at a temperature of 
400 K (absolute temperature measured on the Kelvin
scale).

(c) If the temperature is increased to 500 K and the 
volume is decreased to 80 L, what is the pressure of 
the gas?

27. Power from a Windmill The power P that can be ob-
tained from a windmill is directly proportional to the cube
of the wind speed s.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality for a windmill that
produces 96 watts of power when the wind is blowing
at 20 mi/h.

(c) How much power will this windmill produce if the
wind speed increases to 30 mi/h?

28. Power Needed to Propel a Boat The power P (mea-
sured in horse power, hp) needed to propel a boat is directly
proportional to the cube of the speed s. An 80-hp engine is
needed to propel a certain boat at 10 knots. Find the power
needed to drive the boat at 15 knots.

29. Loudness of Sound The loudness L of a sound (mea-
sured in decibels, dB) is inversely proportional to the square
of the distance d from the source of the sound. A person 
10 ft from a lawn mower experiences a sound level of 
70 dB; how loud is the lawn mower when the person is 
100 ft away?

30. Stopping Distance The stopping distance D of a car 
after the brakes have been applied varies directly as the
square of the speed s. A certain car traveling at 50 mi/h can

stop in 240 ft. What is the maximum speed it can be travel-
ing if it needs to stop in 160 ft?

31. A Jet of Water The power P of a jet of water is jointly
proportional to the cross-sectional area A of the jet and to
the cube of the velocity √. If the velocity is doubled and the
cross-sectional area is halved, by what factor will the power
increase?

32. Aerodynamic Lift The lift L on an airplane wing at take-
off varies jointly as the square of the speed s of the plane
and the area A of its wings. A plane with a wing area of 
500 ft2 traveling at 50 mi/h experiences a lift of 1700 lb.
How much lift would a plane with a wing area of 600 ft2

traveling at 40 mi/h experience?

33. Drag Force on a Boat The drag force F on a boat is
jointly proportional to the wetted surface area A on the hull
and the square of the speed s of the boat. A boat experiences
a drag force of 220 lb when traveling at 5 mi/h with a wet-
ted surface area of 40 ft2. How fast must a boat be traveling
if it has 28 ft2 of wetted surface area and is experiencing a
drag force of 175 lb?

34. Skidding in a Curve A car is traveling on a curve that
forms a circular arc. The force F needed to keep the car
from skidding is jointly proportional to the weight „ of the
car and the square of its speed s, and is inversely propor-
tional to the radius r of the curve.

(a) Write an equation that expresses this variation.

(b) A car weighing 1600 lb travels around a curve at 
60 mi/h. The next car to round this curve weighs 2500 lb

Lift
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and requires the same force as the first car to keep from
skidding. How fast is the second car traveling?

35. Electrical Resistance The resistance R of a wire varies
directly as its length L and inversely as the square of its 
diameter d.

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if a wire 1.2 m long
and 0.005 m in diameter has a resistance of 140 ohms.

(c) Find the resistance of a wire made of the same material
that is 3 m long and has a diameter of 0.008 m.

36. Kepler’s Third Law Kepler’s Third Law of planetary mo-
tion states that the square of the period T of a planet (the
time it takes for the planet to make a complete revolution
about the sun) is directly proportional to the cube of its 
average distance d from the sun.

(a) Express Kepler’s Third Law as an equation.

(b) Find the constant of proportionality by using the fact
that for our planet the period is about 365 days and the
average distance is about 93 million miles.

(c) The planet Neptune is about 2.79 � 109 mi from the
sun. Find the period of Neptune.

37. Radiation Energy The total radiation energy E emitted
by a heated surface per unit area varies as the fourth power
of its absolute temperature T. The temperature is 6000 K at
the surface of the sun and 300 K at the surface of the earth.

(a) How many times more radiation energy per unit area is
produced by the sun than by the earth?

(b) The radius of the earth is 3960 mi and the radius of the
sun is 435,000 mi. How many times more total radia-
tion does the sun emit than the earth?

38. Value of a Lot The value of a building lot on Galiano
Island is jointly proportional to its area and the quantity of
water produced by a well on the property. A 200 ft by 300 ft
lot has a well producing 10 gallons of water per minute, and
is valued at $48,000. What is the value of a 400 ft by 400 ft lot
if the well on the lot produces 4 gallons of water per minute?

39. Growing Cabbages In the short growing season of the
Canadian arctic territory of Nunavut, some gardeners find it

possible to grow gigantic cabbages in the midnight sun. 
Assume that the final size of a cabbage is proportional to the
amount of nutrients it receives, and inversely proportional 
to the number of other cabbages surrounding it. A cabbage
that received 20 oz of nutrients and had 12 other cabbages
around it grew to 30 lb. What size would it grow to if it 
received 10 oz of nutrients and had only 5 cabbage 
“neighbors”?

40. Heat of a Campfire The heat experienced by a hiker at a
campfire is proportional to the amount of wood on the fire,
and inversely proportional to the cube of his distance from
the fire. If he is 20 ft from the fire, and someone doubles the
amount of wood burning, how far from the fire would he
have to be so that he feels the same heat as before?

41. Frequency of Vibration The frequency f of vibration of
a violin string is inversely proportional to its length L. The
constant of proportionality k is positive and depends on the
tension and density of the string.

(a) Write an equation that represents this variation.

(b) What effect does doubling the length of the string have
on the frequency of its vibration?

42. Spread of a Disease The rate r at which a disease
spreads in a population of size P is jointly proportional to
the number x of infected people and the number P � x who
are not infected. An infection erupts in a small town with
population P � 5000.

(a) Write an equation that expresses r as a function of x.

(b) Compare the rate of spread of this infection when 
10 people are infected to the rate of spread when 1000
people are infected. Which rate is larger? By what 
factor?

(c) Calculate the rate of spread when the entire population
is infected. Why does this answer make intuitive sense?

Discovery • Discussion

43. Is Proportionality Everything? A great many laws of
physics and chemistry are expressible as proportionalities.
Give at least one example of a function that occurs in the
sciences that is not a proportionality.

x
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1. Define each term in your own words. (Check by referring to 
the definition in the text.)

(a) An integer (b) A rational number

(c) An irrational number (d) A real number

2. State each of these properties of real numbers.

(a) Commutative Property

(b) Associative Property

(c) Distributive Property

3. What is an open interval? What is a closed interval? What
notation is used for these intervals?

4. What is the absolute value of a number?

5. (a) In the expression ax, which is the base and which is the
exponent?

(b) What does ax mean if x � n, a positive integer?

(c) What if x � 0?

(d) What if x is a negative integer: x � �n, where n is a
positive integer?

(e) What if x � m/n, a rational number?

(f ) State the Laws of Exponents.

6. (a) What does mean?

(b) Why is ?

(c) How many real nth roots does a positive real number
have if n is odd? If n is even?

7. Explain how the procedure of rationalizing the denominator
works.

8. State the Special Product Formulas for 
, and .

9. State each Special Factoring Formula.

(a) Difference of squares (b) Difference of cubes

(c) Sum of cubes

10. What is a solution of an equation?

11. How do you solve an equation involving radicals? Why is it
important to check your answers when solving equations of
this type?

1a � b 2 31a � b 2 3 1a � b 2 2,1a � b 2 2,

2a2 � 0 a 01n a � b

12. How do you solve an equation

(a) algebraically? (b) graphically?

13. Write the general form of each type of equation.

(a) A linear equation (b) A quadratic equation

14. What are the three ways to solve a quadratic equation?

15. State the Zero-Product Property.

16. Describe the process of completing the square.

17. State the quadratic formula.

18. What is the discriminant of a quadratic equation?

19. State the rules for working with inequalities.

20. How do you solve

(a) a linear inequality?

(b) a nonlinear inequality?

21. (a) How do you solve an equation involving an absolute
value?

(b) How do you solve an inequality involving an absolute
value?

22. (a) Describe the coordinate plane.

(b) How do you locate points in the coordinate plane?

23. State each formula.

(a) The Distance Formula

(b) The Midpoint Formula

24. Given an equation, what is its graph?

25. How do you find the x-intercepts and y-intercepts of a
graph?

26. Write an equation of the circle with center and 
radius r.

27. Explain the meaning of each type of symmetry. How do you
test for it?

(a) Symmetry with respect to the x-axis

(b) Symmetry with respect to the y-axis

(c) Symmetry with respect to the origin

1h, k 2

1 Review

Concept Check
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1–4 ■ State the property of real numbers being used.

1. 3x � 2y � 2y � 3x

2.

3.

4.

5–6 ■ Express the interval in terms of inequalities, and then
graph the interval.

5. 6.

7–8 ■ Express the inequality in interval notation, and then
graph the corresponding interval.

7. x � 5 8. �1 � x 
 5

9–18 ■ Evaluate the expression.

9. @ @ 10. @ @
11. 2�3 � 3�2 12.

13. 216�1/3 14. 642/3

15. 16.

17. 21/281/2 18.

19–28 ■ Simplify the expression.

19. 20.

21. 22.

23. 24. 2x2y423 1x3y 2 2y4

a r 2s4/3

r 1/3s
b 613xy2 2 3123 x�1y 2 2

1a2 2�31a3b 2 21b3 2 4x212x 2 4
x3

12150

14 414 324
1242

12

23 �125

1 � 0 �1 01 �3 � 0 �9 0

1�q, 4 43�2, 6 2
1A � 1 2 1x � y 2 � 1A � 1 2x � 1A � 1 2y41a � b 2 � 4a � 4b

1a � b 2 1a � b 2 � 1a � b 2 1a � b 2
25. 26.

27. 28.

29. Write the number 78,250,000,000 in scientific notation.

30. Write the number 2.08 � 10�8 in ordinary decimal notation.

31. If a � 0.00000293, b � 1.582 � 10�14, and 
c � 2.8064 � 1012, use a calculator to approximate 
the number ab/c.

32. If your heart beats 80 times per minute and you live to 
be 90 years old, estimate the number of times your heart
beats during your lifetime. State your answer in scientific
notation.

33–48 ■ Factor the expression completely.

33. 12x 2y 4 � 3xy 5 � 9x 3y 2 34. x 2 � 9x � 18

35. x 2 � 3x � 10 36. 6x 2 � x � 12

37. 4t 2 � 13t � 12 38. x 4 � 2x 2 � 1

39. 25 � 16t 2 40. 2y 6 � 32y 2

41. x 6 � 1 42. y 3 � 2y 2 � y � 2

43. x�1/2 � 2x 1/2 � x 3/2 44. a4b2 � ab5

45. 4x 3 � 8x 2 � 3x � 6 46. 8x 3 � y 6

47.

48. 3x 3 � 2x 2 � 18x � 12

49–64 ■ Perform the indicated operations and simplify.

49.

50.

51. 11 � x 2 12 � x 2 � 13 � x 2 13 � x 212y � 7 2 12y � 7 212x � 1 2 13x � 2 2 � 514x � 1 2
1x2 � 2 2 5/2 � 2x 1x2 � 2 2 3/2 � x22x2 � 2

a ab2c�3

2a3b�4 b�28r 1/2s�3

2r �2s4

a x�2y3

x2y
b�1/2 a x3y

y1/2
b 2a 9x3y

y�3 b1/2

28. Define the slope of a line.

29. Write each form of the equation of a line.

(a) The point-slope form

(b) The slope-intercept form

30. (a) What is the equation of a vertical line?

(b) What is the equation of a horizontal line?

31. What is the general equation of a line?

32. Given lines with slopes m1 and m2, explain how you can tell
if the lines are

(a) parallel (b) perpendicular

33. Write an equation that expresses each relationship.

(a) y is directly proportional to x.

(b) y is inversely proportional to x.

(c) z is jointly proportional to x and y.

Exercises
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52.

53. 54.

55. 56.

57.

58. 59.

60.

61. 62.

63.

64.

65–80 ■ Find all real solutions of the equation.

65. 7x � 6 � 4x � 9 66. 8 � 2x � 14 � x

67. 68.

69. x 2 � 9x � 14 � 0 70. x 2 � 24x � 144 � 0

71. 2x 2 � x � 1 72. 3x 2 � 5x � 2 � 0

73. 4x 3 � 25x � 0 74. x 3 � 2x 2 � 5x � 10 � 0

75. 3x 2 � 4x � 1 � 0 76.

77.

78. x 4 � 8x 2 � 9 � 0

79. 80.

81. The owner of a store sells raisins for $3.20 per pound 
and nuts for $2.40 per pound. He decides to mix the raisins
and nuts and sell 50 lb of the mixture for $2.72 per 
pound. What quantities of raisins and nuts should he use?

82. Anthony leaves Kingstown at 2:00 P.M. and drives 
to Queensville, 160 mi distant, at 45 mi/h. At 2:15 P.M.
Helen leaves Queensville and drives to Kingstown 
at 40 mi/h. At what time do they pass each other on 
the road?

0 2x � 5 0 � 90 x � 7 0 � 4

x

x � 2
�

1

x � 2
�

8

x2 � 4

1
x

�
2

x � 1
� 3

1x � 2 2 2 � 1x � 4 2 2x � 1

x � 1
�

3x

3x � 6

2x � h � 1x

h
 1rationalize the numerator 2

16

13 � 12
 1rationalize the denominator 2

1
x

�
1

x � 1

1
x

�
1

x � 1

1
x

�
1

2

x � 2

1

x � 2
�

1

x2 � 4
�

2

x2 � x � 2

1

x � 1
�

2

x2 � 1

2
x

�
1

x � 2
�

31x � 2 2 2
x2 � 2x � 15

x2 � 6x � 5
�

x2 � x � 12

x2 � 1

t3 � 1

t2 � 1

x2 � 2x � 3

x2 � 8x � 16
# 3x � 12

x � 1

x2 � 2x � 3

2x2 � 5x � 3
x21x � 2 2 � x1x � 2 2 21x 11x � 1 2 121x � 1 2 83. A woman cycles 8 mi/h faster than she runs. Every 

morning she cycles 4 mi and runs mi, for a total of 
one hour of exercise. How fast does she run?

84. The hypotenuse of a right triangle has length 20 cm. 
The sum of the lengths of the other two sides is 28 cm. 
Find the lengths of the other two sides of the triangle.

85. Abbie paints twice as fast as Beth and three times as fast 
as Cathie. If it takes them 60 min to paint a living room 
with all three working together, how long would it take 
Abbie if she works alone?

86. A homeowner wishes to fence in three adjoining garden
plots, one for each of her children, as shown in the 
figure. If each plot is to be 80 ft2 in area, and she has 
88 ft of fencing material at hand, what dimensions 
should each plot have?

87–94 ■ Solve the inequality. Express the solution using inter-
val notation and graph the solution set on the real number line.

87. 3x � 2 	 �11

88. �1 � 2x � 5 
 3

89. x 2 � 4x � 12 	 0

90. x 2 
 1

91.

92.

93.

94.

95–98 ■ Solve the equation or inequality graphically.

95. x 2 � 4x � 2x � 7

96. 1x � 4 � x2 � 5

0 x � 4 0 � 0.02

0 x � 5 0 
 3

5

x3 � x2 � 4x � 4
� 0

x � 4

x2 � 4

 0

21
2
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97. 4x � 3 � x 2

98. x 3 � 4x 2 � 5x 	 2

99–100 ■ Two points P and Q are given.

(a) Plot P and Q on a coordinate plane.

(b) Find the distance from P to Q.

(c) Find the midpoint of the segment PQ.

(d) Sketch the line determined by P and Q, and find its 
equation in slope-intercept form.

(e) Sketch the circle that passes through Q and has center P,
and find the equation of this circle.

99. 100.

101–102 ■ Sketch the region given by the set.

101.

102.

103. Which of the points or is closer to the point
?

104. Find an equation of the circle that has center and
radius .

105. Find an equation of the circle that has center and
passes through the origin.

106. Find an equation of the circle that contains the points
and and has the midpoint of the segment

PQ as its center.

107–110 ■ Determine whether the equation represents a circle,
a point, or has no graph. If the equation is that of a circle, find its
center and radius.

107. x 2 � y 2 � 2x � 6y � 9 � 0

108. 2x 2 � 2y 2 � 2x � 8y �

109. x 2 � y 2 � 72 � 12x

110. x 2 � y 2 � 6x � 10y � 34 � 0

111–118 ■ Test the equation for symmetry and sketch 
its graph.

111. y � 2 � 3x

112. 2x � y � 1 � 0

113. x � 3y � 21

1
2

Q1�1, 8 2P12, 3 2
1�5, �1 212
12, �5 2C1�1, �3 2 B15, 3 2A14, 4 25 1x,y 2 0 x � 4 or y � 265 1x,y 2 0 �4 � x � 4 and �2 � y � 26

P17, �1 2 , Q12, �11 2P12, 0 2 , Q1�5, 12 2

114. x � 2y � 12

115. y � 16 � x 2

116. 8x � y 2 � 0

117.

118.

119–122 ■ Use a graphing device to graph the equation in an
appropriate viewing rectangle.

119. y � x 2 � 6x

120.

121. y � x 3 � 4x 2 � 5x

122.

123. Find an equation for the line that passes through the points
and .

124. Find an equation for the line that passes through the point
and has slope .

125. Find an equation for the line that has x-intercept 4 and 
y-intercept 12.

126. Find an equation for the line that passes through the point
and is perpendicular to the line x � 3y � 16 � 0.

127. Find an equation for the line that passes through the origin
and is parallel to the line 3x � 15y � 22.

128. Find an equation for the line that passes through the point
and is parallel to the line passing through 

and .

129–130 ■ Find equations for the circle and the line in the
figure.

129.
y

x0

(_5, 12)

13, 2 2 1�1, �3 215, 2 2

11, 7 2

� 1
216, �3 2

12, �4 21�1, �6 2
x2

4
� y2 � 1

y � 25 � x

y � �21 � x2

x � 1y
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130.

131. Hooke’s Law states that if a weight „ is attached to a 
hanging spring, then the stretched length s of the spring 
is linearly related to „. For a particular spring we have

where s is measured in inches and „ in pounds.

(a) What do the slope and s-intercept in this equation 
represent?

(b) How long is the spring when a 5-lb weight is attached?

132. Margarita is hired by an accounting firm at a salary of
$60,000 per year. Three years later her annual salary 
has increased to $70,500. Assume her salary increases 
linearly.

(a) Find an equation that relates her annual salary 
S and the number of years t that she has worked for 
the firm.

(b) What do the slope and S-intercept of her salary 
equation represent?

(c) What will her salary be after 12 years with the firm?

s � 0.3„ � 2.5

y

x

(8, 1 )

0 5

5

133. Suppose that M varies directly as z, and M � 120 when 
z � 15. Write an equation that expresses this variation.

134. Suppose that z is inversely proportional to y, and that 
z � 12 when y � 16. Write an equation that expresses z
in terms of y.

135. The intensity of illumination I from a light varies inversely
as the square of the distance d from the light.

(a) Write this statement as an equation.

(b) Determine the constant of proportionality if it is
known that a lamp has an intensity of 1000 candles 
at a distance of 8 m.

(c) What is the intensity of this lamp at a distance of
20 m?

136. The frequency of a vibrating string under constant tension
is inversely proportional to its length. If a violin string 
12 inches long vibrates 440 times per second, to what
length must it be shortened to vibrate 660 times per 
second?

137. The terminal velocity of a parachutist is directly propor-
tional to the square root of his weight. A 160-lb parachutist
attains a terminal velocity of 9 mi/h. What is the terminal
velocity for a parachutist weighing 240 lb?

138. The maximum range of a projectile is directly proportional
to the square of its velocity. A baseball pitcher throws a
ball at 60 mi/h, with a maximum range of 242 ft. What is
his maximum range if he throws the ball at 70 mi/h?



CHAPTER 1 Test 135

1 Test

1. (a) Graph the intervals and on the real number line.

(b) Express the inequalities x 
 3 and �1 
 x � 4 in interval notation.

(c) Find the distance between �7 and 9 on the real number line.

2. Evaluate each expression.

(a) (b) �34 (c) 3�4 (d) (e) (f) 16�3/4

3. Write each number in scientific notation.

(a) 186,000,000,000 (b) 0.0000003965

4. Simplify each expression. Write your final answer without negative exponents.

(a) (b) (3a 3b 3 )(4ab 2 )2 (c)

(d) (e) (f)

5. Rationalize the denominator and simplify:

6. Perform the indicated operations and simplify.

(a) (b) (c)
(d) (e)

7. Factor each expression completely.

(a) 4x 2 � 25 (b) 2x 2 � 5x � 12 (c) x 3 � 3x 2 � 4x � 12

(d) x 4 � 27x (e) 3x 3/2 � 9x 1/2 � 6x�1/2 (f) x 3y � 4xy

8. Find all real solutions.

(a) (b) (c) x 2 �x � 12 � 0

(d) 2x 2 � 4x � 1 � 0 (e) (f) x 4 � 3x 2 � 2 � 0

(g)

9. Mary drove from Amity to Belleville at a speed of 50 mi/h. On the way back, she 
drove at 60 mi/h. The total trip took h of driving time. Find the distance between
these two cities.

10. A rectangular parcel of land is 70 ft longer than it is wide. Each diagonal between oppo-
site corners is 130 ft. What are the dimensions of the parcel?

11. Solve each inequality. Write the answer using interval notation, and sketch the solution
on the real number line.

(a) �4 � 5 � 3x 
 17 (b)

(c) (d)

12. A bottle of medicine is to be stored at a temperature between 5 �C and 10 �C. What
range does this correspond to on the Fahrenheit scale? [Note: Fahrenheit (F) and 
Celsius (C) temperatures satisfy the relation .]

13. For what values of x is the expression defined as a real number?26x � x2

C � 5
9 1F � 32 2

2x � 3

x � 1

 10 x � 4 0 � 3

x1x � 1 2 1x � 2 2 	 0

42
5

3 0 x � 4 0 � 10

33 � 2x � 5 � 2

2x

x � 1
�

2x � 1
x

x � 5 � 14 � 1
2 x

1x � 2 2 312x � 3 2 2 11a � 1b2 11a � 1b21x � 3 2 14x � 5 231x � 6 2 � 412x � 5 2
110

15 � 2

y

x
�

x

y

1
y

�
1
x

x2

x2 � 4
�

x � 1

x � 2

x2 � 3x � 2

x2 � x � 2

a 3x3/2y3

x2y�1/2
b�21200 � 132

a 2

3
b�2523

5211�3 2 4
12,q 21�5, 3 4
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14. Solve the equation and the inequality graphically.

(a) x 3 � 9x � 1 � 0 (b) x 2 � 1 


15. (a) Plot the points , , and in the coordinate plane. Where must the
point S be located so that PQRS is a square?

(b) Find the area of PQRS.

16. (a) Sketch the graph of y � x2 � 4.

(b) Find the x- and y-intercepts of the graph.

(c) Is the graph symmetric about the x-axis, the y-axis, or the origin?

17. Let and be two points in the coordinate plane.

(a) Plot P and Q in the coordinate plane.

(b) Find the distance between P and Q.

(c) Find the midpoint of the segment PQ.

(d) Find the slope of the line that contains P and Q.

(e) Find the perpendicular bisector of the line that contains P and Q.

(f) Find an equation for the circle for which the segment PQ is a diameter.

18. Find the center and radius of each circle and sketch its graph.

(a) x2 � y 2 � 25 (b) (c) x 2 � 6x � y 2 � 2y � 6 � 0

19. Write the linear equation 2x � 3y � 15 in slope-intercept form, and sketch its graph.
What are the slope and y-intercept?

20. Find an equation for the line with the given property.

(a) It passes through the point and is parallel to the line 3x � y � 10 � 0.

(b) It has x-intercept 6 and y-intercept 4.

21. A geologist uses a probe to measure the temperature T (in �C) of the soil at various
depths below the surface, and finds that at a depth of x cm, the temperature is given by
the linear equation T � 0.08x � 4.

(a) What is the temperature at a depth of one meter (100 cm)?

(b) Sketch a graph of the linear equation.

(c) What do the slope, the x-intercept, and T-intercept of the graph of this equation 
represent?

22. The maximum weight M that can be supported by a beam is jointly proportional to its
width „ and the square of its height h, and inversely proportional to its length L.

(a) Write an equation that expresses this proportionality.

(b) Determine the constant of proportionality if a beam 4 in. wide, 6 in. high, and 12 ft
long can support a weight of 4800 lb.

(c) If a 10-ft beam made of the same material is 3 in. wide and 10 in. high, what is the
maximum weight it can support?

L

„

h

13, �6 2
1x � 2 2 2 � 1y � 1 2 2 � 9

Q15,6 2P1�3,1 2

R16, 3 2Q13, 0 2P10, 3 2 0 x � 1 0



If you had difficulty with any of these problems, you may wish to review the section of
this chapter indicated below.

If you had trouble with 
this test problem Review this section

1 Section 1.1

2, 3, 4(a), 4(b), 4(c) Section 1.2

4(d), 4(e), 4(f), 5 Section 1.4

6, 7 Section 1.3

8 Section 1.5

9, 10 Section 1.6

11, 12, 13 Section 1.7

14 Section 1.9

15, 16, 17(a), 17(b) Section 1.8

17(c), 17(d) Section 1.10

17(e), 17(f), 18 Section 1.8

19, 20, 21 Section 1.10

22 Section 1.11
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There are no hard and fast rules that will ensure success in solving problems. How-
ever, it is possible to outline some general steps in the problem-solving process and
to give principles that are useful in solving certain problems. These steps and prin-
ciples are just common sense made explicit. They have been adapted from George
Polya’s insightful book How To Solve It.

1. Understand the Problem

The first step is to read the problem and make sure that you understand it. Ask your-
self the following questions:

For many problems it is useful to

and identify the given and required quantities on the diagram.
Usually it is necessary to

In choosing symbols for the unknown quantities, we often use letters such as a, b, c,
m, n, x, and y, but in some cases it helps to use initials as suggestive symbols, for in-
stance, V for volume or t for time.

2. Think of a Plan

Find a connection between the given information and the unknown that enables you
to calculate the unknown. It often helps to ask yourself explicitly: “How can I relate
the given to the unknown?” If you don’t see a connection immediately, the following
ideas may be helpful in devising a plan.

■ Try to recognize something familiar

Relate the given situation to previous knowledge. Look at the unknown and try to 
recall a more familiar problem that has a similar unknown.

■ Try to recognize patterns

Certain problems are solved by recognizing that some kind of pattern is occurring.
The pattern could be geometric, or numerical, or algebraic. If you can see regularity
or repetition in a problem, then you might be able to guess what the pattern is and
then prove it.

■ Use analogy

Try to think of an analogous problem, that is, a similar or related problem, but one
that is easier than the original. If you can solve the similar, simpler problem, then it
might give you the clues you need to solve the original, more difficult one. For 

introduce suitable notation

draw a diagram

What are the given conditions?
What are the given quantities?
What is the unknown?
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George Polya (1887–1985) is fa-
mous among mathematicians for
his ideas on problem solving. His
lectures on problem solving at
Stanford University attracted over-
flow crowds whom he held on the
edges of their seats, leading them
to discover solutions for them-
selves. He was able to do this be-
cause of his deep insight into the
psychology of problem solving.
His well-known book How To
Solve It has been translated into 15
languages. He said that Euler (see
page 288) was unique among great
mathematicians because he ex-
plained how he found his results.
Polya often said to his students and
colleagues, “Yes, I see that your
proof is correct, but how did you
discover it?” In the preface to How
To Solve It, Polya writes, “A great
discovery solves a great problem
but there is a grain of discovery in
the solution of any problem. Your
problem may be modest; but if it
challenges your curiosity and
brings into play your inventive fac-
ulties, and if you solve it by your
own means, you may experience
the tension and enjoy the triumph
of discovery.”
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instance, if a problem involves very large numbers, you could first try a similar prob-
lem with smaller numbers. Or if the problem is in three-dimensional geometry, you
could look for something similar in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

■ Introduce something extra

You may sometimes need to introduce something new—an auxiliary aid—to make
the connection between the given and the unknown. For instance, in a problem for
which a diagram is useful, the auxiliary aid could be a new line drawn in the diagram.
In a more algebraic problem the aid could be a new unknown that relates to the orig-
inal unknown.

■ Take cases

You may sometimes have to split a problem into several cases and give a different ar-
gument for each case. For instance, we often have to use this strategy in dealing with
absolute value.

■ Work backward

Sometimes it is useful to imagine that your problem is solved and work backward,
step by step, until you arrive at the given data. Then you may be able to reverse your
steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation 3x � 5 � 7,
we suppose that x is a number that satisfies 3x � 5 � 7 and work backward. We add
5 to each side of the equation and then divide each side by 3 to get x � 4. Since each
of these steps can be reversed, we have solved the problem.

■ Establish subgoals

In a complex problem it is often useful to set subgoals (in which the desired situation
is only partially fulfilled). If you can attain or accomplish these subgoals, then you
may be able to build on them to reach your final goal.

■ Indirect reasoning

Sometimes it is appropriate to attack a problem indirectly. In using proof by contra-
diction to prove that P implies Q, we assume that P is true and Q is false and try to
see why this cannot happen. Somehow we have to use this information and arrive at
a contradiction to what we absolutely know is true.

■ Mathematical induction

In proving statements that involve a positive integer n, it is frequently helpful to use
the Principle of Mathematical Induction, which is discussed in Section 11.5.

3. Carry Out the Plan

In Step 2, a plan was devised. In carrying out that plan, you must check each stage of
the plan and write the details that prove each stage is correct.
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Solution We need to look more carefully at the meaning of average speed. It is
defined as

Let d be the distance traveled on each half of the trip. Let t1 and t2 be the times
taken for the first and second halves of the trip. Now we can write down the infor-
mation we have been given. For the first half of the trip, we have

(1)

and for the second half, we have

(2)

Now we identify the quantity we are asked to find:

average speed for entire trip �
total distance

total time
�

2d

t1 � t2

60 �
d

t2

30 �
d

t1

average speed �
distance traveled

time elapsed

4. Look Back

Having completed your solution, it is wise to look back over it, partly to see if any er-
rors have been made and partly to see if you can discover an easier way to solve the
problem. Looking back also familiarizes you with the method of solution, and this
may be useful for solving a future problem. Descartes said, “Every problem that I
solved became a rule which served afterwards to solve other problems.”

We illustrate some of these principles of problem solving with an example. Fur-
ther illustrations of these principles will be presented at the end of selected chapters.

Problem Average Speed

A driver sets out on a journey. For the first half of the distance she drives at the
leisurely pace of 30 mi/h; during the second half she drives 60 mi/h. What is her 
average speed on this trip?
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Try a special case

Understand the problem

Introduce notation

State what is given

Identify the unknown

■ Thinking about the problem

It is tempting to take the average of the speeds and say that the average speed
for the entire trip is

� 45 mi/h

But is this simple-minded approach really correct?
Let’s look at an easily calculated special case. Suppose that the total dis-

tance traveled is 120 mi. Since the first 60 mi is traveled at 30 mi/h, it takes 
2 h. The second 60 mi is traveled at 60 mi/h, so it takes one hour. Thus, the
total time is 2 � 1 � 3 hours and the average speed is

� 40 mi/h

So our guess of 45 mi/h was wrong.

120

3

30 � 60

2



To calculate this quantity, we need to know t1 and t2, so we solve Equations 1 and 2
for these times:

Now we have the ingredients needed to calculate the desired quantity:

So, the average speed for the entire trip is 40 mi/h. ■

Problems

1. Distance, Time, and Speed A man drives from home to work at a speed of
50 mi/h. The return trip from work to home is traveled at the more leisurely pace of
30 mi/h. What is the man’s average speed for the round-trip?

2. Distance, Time, and Speed An old car has to travel a 2-mile route, uphill and
down. Because it is so old, the car can climb the first mile—the ascent—no faster than
an average speed of 15 mi/h. How fast does the car have to travel the second mile—on
the descent it can go faster, of course—in order to achieve an average speed of 30 mi/h
for the trip?

3. A Speeding Fly A car and a van are parked 120 mi apart on a straight road. The
drivers start driving toward each other at noon, each at a speed of 40 mi/h. A fly starts
from the front bumper of the van at noon and flies to the bumper of the car, then imme-
diately back to the bumper of the van, back to the car, and so on, until the car and the
van meet. If the fly flies at a speed of 100 mi/h, what is the total distance it travels?

4. Comparing Discounts Which price is better for the buyer, a 40% discount or two
successive discounts of 20%?

5. Cutting up a Wire A piece of wire is bent as shown in the figure. You can see 
that one cut through the wire produces four pieces and two parallel cuts produce seven
pieces. How many pieces will be produced by 142 parallel cuts? Write a formula for the
number of pieces produced by n parallel cuts.

6. Amoeba Propagation An amoeba propagates by simple division; each split takes
3 minutes to complete. When such an amoeba is put into a glass container with a nutri-
ent fluid, the container is full of amoebas in one hour. How long would it take for the
container to be filled if we start with not one amoeba, but two?

�
120d

2d � d
�

120d

3d
� 40

Multiply numerator and 
denominator by 60

�
6012d 2

60 a d

30
�

d

60
b

 average speed �
2d

t1 � t2
�

2d

d

30
�

d

60

t1 �
d

30
   t2 �

d

60
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Connect the given with 
the unknown

Don’t feel bad if you don’t solve
these problems right away. Prob-
lems 2 and 6 were sent to Albert
Einstein by his friend Wertheimer.
Einstein (and his friend Bucky) en-
joyed the problems and wrote back
to Wertheimer. Here is part of his
reply:

Your letter gave us a lot of
amusement. The first intelli-
gence test fooled both of us
(Bucky and me). Only on work-
ing it out did I notice that no
time is available for the downhill
run! Mr. Bucky was also taken
in by the second example, but I
was not. Such drolleries show us
how stupid we are!

(See Mathematical Intelligencer,
Spring 1990, page 41.)
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7. Running Laps Two runners start running laps at the same time, from the same start-
ing position. George runs a lap in 50 s; Sue runs a lap in 30 s. When will the runners
next be side by side?

8. Batting Averages Player A has a higher batting average than player B for the first
half of the baseball season. Player A also has a higher batting average than player B for
the second half of the season. Is it necessarily true that player A has a higher batting 
average than player B for the entire season?

9. Coffee and Cream A spoonful of cream is taken from a pitcher of cream and put
into a cup of coffee. The coffee is stirred. Then a spoonful of this mixture is put into 
the pitcher of cream. Is there now more cream in the coffee cup or more coffee in the
pitcher of cream?

10. A Melting Ice Cube An ice cube is floating in a cup of water, full to the brim, as
shown in the sketch. As the ice melts, what happens? Does the cup overflow, or does the
water level drop, or does it remain the same? (You need to know Archimedes’ Principle:
A floating object displaces a volume of water whose weight equals the weight of the
object.)

11. Wrapping the World A red ribbon is tied tightly around the earth at the equator.
How much more ribbon would you need if you raised the ribbon 1 ft above the equator
everywhere? (You don’t need to know the radius of the earth to solve this problem.)

12. Irrational Powers Prove that it’s possible to raise an irrational number to an irra-
tional power and get a rational result. [Hint: The number is either rational 
or irrational. If a is rational, you are done. If a is irrational, consider ]

13. Babylonian Square Roots The ancient Babylonians developed the following pro-
cess for finding the square root of a number N. First they made a guess at the square
root—let’s call this first guess r1. Noting that

they concluded that the actual square root must be somewhere between r1 and N/r1, so
their next guess for the square root, r2, was the average of these two numbers:

Continuing in this way, their next approximation was given by

r3 �
1

2
a r2 �

N

r2
b

r2 �
1

2
a r1 �

N

r1
b

r1
# a N

r1
b � N

a12.
a � 1212

142 Focus on Problem Solving



and so on. In general, once we have the nth approximation to the square root of N, we
find the st using

Use this procedure to find , correct to two decimal places.

14. A Perfect Cube Show that if you multiply three consecutive integers and then add
the middle integer to the result, you get a perfect cube.

15. Number Patterns Find the last digit in the number 3459. [Hint: Calculate the first
few powers of 3, and look for a pattern.]

16. Number Patterns Use the techniques of solving a simpler problem and looking for
a pattern to evaluate the number

17. Right Triangles and Primes Prove that every prime number is the leg of exactly
one right triangle with integer sides. (This problem was first stated by Fermat; see 
page 652.)

18. An Equation with No Solution Show that the equation x 2 � y 2 � 4z � 3 has no
solution in integers. [Hint: Recall that an even number is of the form 2n and an odd
number is of the form 2n � 1. Consider all possible cases for x and y even or odd.]

19. Ending Up Where You Started A woman starts at a point P on the earth’s surface
and walks 1 mi south, then 1 mi east, then 1 mi north, and finds herself back at P, the
starting point. Describe all points P for which this is possible (there are infinitely many).

20. Volume of a Truncated Pyramid The ancient Egyptians, as a result of their 
pyramid-building, knew that the volume of a pyramid with height h and square base of
side length a is . They were able to use this fact to prove that the volume of a
truncated pyramid is , where h is the height and b and a are the
lengths of the sides of the square top and bottom, as shown in the figure. Prove the trun-
cated pyramid volume formula.

21. Area of a Ring Find the area of the region between the two concentric circles shown
in the figure.

2

a

a

h

a

a

b
b

h

V � 1
3 h1a2 � ab � b2 2V � 1

3 ha2

39999999999992

172

rn�1 �
1

2
a rn �

N

rn
b1n � 1 2
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22. Bhaskara’s Proof The Indian mathematician Bhaskara sketched the two figures
shown here and wrote below them, “Behold!” Explain how his sketches prove the 
Pythagorean Theorem.

23. An Interesting Integer The number 1729 is the smallest positive integer that can be
represented in two different ways as the sum of two cubes. What are the two ways?

24. Simple Numbers

(a) Use a calculator to find the value of the expression

The number looks very simple. Show that the calculated value is correct.

(b) Use a calculator to evaluate

Show that the calculated value is correct.

25. The Impossible Museum Tour A museum is in the shape of a square with six
rooms to a side; the entrance and exit are at diagonally opposite corners, as shown in the
figure to the left. Each pair of adjacent rooms is joined by a door. Some very efficient
tourists would like to tour the museum by visiting each room exactly once. Can you find
a path for such a tour? Here are examples of attempts that failed.

Here is how you can prove that the museum tour is not possible. Imagine that the rooms
are colored black and white like a checkerboard.

(a) Show that the room colors alternate between white and black as the tourists walk
through the museum.

(b) Use part (a) and the fact that there are an even number of rooms in the museum to
conclude that the tour cannot end at the exit.

26. Coloring the Coordinate Plane Suppose that each point in the coordinate plane is
colored either red or blue. Show that there must always be two points of the same color
that are exactly one unit apart.

27. The Rational Coordinate Forest Suppose that each point in the plane, both
of whose coordinates are rational numbers, represents a tree. If you are standing at the
point , how far could you see in this forest?10, 0 2 1x, y 2

Oops! No exit.

Oops! Missed this room.

12 � 16

22 � 13

23 � 212 � 23 � 212

Entrance

Exit

Bhaskara (born 1114) was an In-
dian mathematician, astronomer,
and astrologer. Among his many
accomplishments was an ingenious
proof of the Pythagorean Theorem
(see Problem 22). His important
mathematical book Lilavati [The
Beautiful] consists of algebra prob-
lems posed in the form of stories 
to his daughter Lilavati. Many of
the problems begin “Oh beautiful
maiden, suppose . . .” The story is
told that using astrology, Bhaskara
had determined that great misfor-
tune would befall his daughter if
she married at any time other than
at a certain hour of a certain day.
On her wedding day, as she was
anxiously watching the water
clock, a pearl fell unnoticed from
her headdress. It stopped the flow
of water in the clock, causing her to
miss the opportune moment for
marriage. Bhaskara’s Lilavati was
written to console her.



28. A Thousand Points A thousand points are graphed in the coordinate plane. Explain
why it is possible to draw a straight line in the plane so that half of the points are on 
one side of the line and half are on the other. [Hint: Consider the slopes of the lines 
determined by each pair of points.]

29. Graphing a Region in the Plane Sketch the region in the plane consisting of all
points such that

30. The Graph of an Equation Graph the equation

[Hint: Factor.]

x2y � y3 � 5x2 � 5y2 � 0

0 x 0 � 0 y 0 
 1

1x, y 2
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Chapter Overview

Perhaps the most useful mathematical idea for modeling the real world is the concept
of function, which we study in this chapter. To understand what a function is, let’s
look at an example.

If a rock climber drops a stone from a high cliff, what happens to the stone? Of
course the stone falls; how far it has fallen at any given moment depends upon how
long it has been falling. That’s a general description, but it doesn’t tell us exactly
when the stone will hit the ground.

What we need is a rule that relates the position of the stone to the time it has fallen.
Physicists know that the rule is: In t seconds the stone falls 16t 2 feet. If we let 
stand for the distance the stone has fallen at time t, then we can express this rule as

This “rule” for finding the distance in terms of the time is called a function. We say
that distance is a function of time. To understand this rule or function better, we can
make a table of values or draw a graph. The graph allows us to easily visualize how
far and how fast the stone falls.

d1t 2 � 16t 2

d1t 2

d(t) = 16t2

Function: In t seconds the stone falls 16t2 ft.General description: The stone falls.
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2.1 What Is a Function?

2.2 Graphs of Functions

2.3 Increasing and Decreasing Functions; 
Average Rate of Change

2.4 Transformations of Functions

2.5 Quadratic Functions; 
Maxima and Minima

2.6 Modeling with Functions

2.7 Combining Functions

2.8 One-to-One Functions and 
Their Inverses



You can see why functions are important. For example, if a physicist finds the
“rule” or function that relates distance fallen to elapsed time, then she can predict
when a missile will hit the ground. If a biologist finds the function or “rule” that re-
lates the number of bacteria in a culture to the time, then he can predict the number
of bacteria for some future time. If a farmer knows the function or “rule” that relates
the yield of apples to the number of trees per acre, then he can decide how many trees
per acre to plant to maximize the yield.

In this chapter we will learn how functions are used to model real-world situations
and how to find such functions.

2.1 What Is a Function?

In this section we explore the idea of a function and then give the mathematical
definition of function.

Functions All Around Us

In nearly every physical phenomenon we observe that one quantity depends on an-
other. For example, your height depends on your age, the temperature depends on the
date, the cost of mailing a package depends on its weight (see Figure 1). We use the
term function to describe this dependence of one quantity on another. That is, we say
the following:

■ Height is a function of age.
■ Temperature is a function of date.
■ Cost of mailing a package is a function of weight.

The U.S. Post Office uses a simple rule to determine the cost of mailing a package
based on its weight. But it’s not so easy to describe the rule that relates height to age
or temperature to date.

Height is a function of age. T Postage is a function of weight.

Date

* F
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0 < „ ≤ 1

1 < „ ≤ 2

2 < „ ≤ 3

3 < „ ≤ 4
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5 < „ ≤ 6
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emperature is a function of date.

Daily high temperature
Columbia, MO, April 1995

1

50

100

150

200

250

2 3 40 t

d(t)
Time t Distance d 1t2

0 0
1 16
2 64
3 144
4 256
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Can you think of other functions? Here are some more examples:

■ The area of a circle is a function of its radius.
■ The number of bacteria in a culture is a function of time.
■ The weight of an astronaut is a function of her elevation.
■ The price of a commodity is a function of the demand for that commodity.

The rule that describes how the area A of a circle depends on its radius r is given
by the formula A � pr 2. Even when a precise rule or formula describing a function
is not available, we can still describe the function by a graph. For example, when you
turn on a hot water faucet, the temperature of the water depends on how long the wa-
ter has been running. So we can say

■ Temperature of water from the faucet is a function of time.

Figure 2 shows a rough graph of the temperature T of the water as a function of the
time t that has elapsed since the faucet was turned on. The graph shows that the ini-
tial temperature of the water is close to room temperature. When the water from the
hot water tank reaches the faucet, the water’s temperature T increases quickly. In the
next phase, T is constant at the temperature of the water in the tank. When the tank is
drained, T decreases to the temperature of the cold water supply.

Definition of Function

A function is a rule. In order to talk about a function, we need to give it a name. We
will use letters such as f, g, h, . . . to represent functions. For example, we can use the
letter f to represent a rule as follows:

When we write , we mean “apply the rule f to the number 2.” Applying the rule
gives . Similarly, , , and in general

.f 1x 2 � x2
f 14 2 � 42 � 16f 13 2 � 32 � 9f 12 2 � 22 � 4

f 12 2“f ”  is the rule  “square the number”

50
60

70
80

90

100
110

T (°F)

0 t

Figure 2

Graph of water temperature T as
a function of time t
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We have previously used letters to
stand for numbers. Here we do some-
thing quite different. We use letters to
represent rules.

Definition of Function

A function f is a rule that assigns to each element x in a set A exactly one 
element, called , in a set B.f 1x 2



We usually consider functions for which the sets A and B are sets of real numbers.
The symbol is read “f of x” or “f at x” and is called the value of f at x, or the
image of x under f. The set A is called the domain of the function. The range of f is
the set of all possible values of as x varies throughout the domain, that is,

The symbol that represents an arbitrary number in the domain of a function f is
called an independent variable. The symbol that represents a number in the range
of f is called a dependent variable. So if we write y � , then x is the indepen-
dent variable and y is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 3). If x is in the domain
of the function f, then when x enters the machine, it is accepted as an input and the
machine produces an output according to the rule of the function. Thus, we can
think of the domain as the set of all possible inputs and the range as the set of all pos-
sible outputs.

Another way to picture a function is by an arrow diagram as in Figure 4. Each
arrow connects an element of A to an element of B. The arrow indicates that is
associated with x, is associated with a, and so on.

Example 1 The Squaring Function

The squaring function assigns to each real number x its square x 2. It is defined by

(a) Evaluate , , and .

(b) Find the domain and range of f.

(c) Draw a machine diagram for f.

Solution

(a) The values of f are found by substituting for x in .

(b) The domain of f is the set � of all real numbers. The range of f consists of all
values of , that is, all numbers of the form x 2. Since x 2 � 0 for all real
numbers x, we can see that the range of f is .

(c) A machine diagram for this function is shown in Figure 5. ■

5y 0 y � 06 � 30, q 2f 1x 2
f 13 2 � 32 � 9   f 1�2 2 � 1�2 2 2 � 4   f 115 2 � 115 2 2 � 5

f 1x 2 � x2

f 115 2f 1�2 2f 13 2 f 1x 2 � x2

Ï

f(a)

B

f

A

x

a

Figure 4

Arrow diagram of f

f 1a 2 f 1x 2
fx

input
Ï

output
Figure 3

Machine diagram of f

f 1x 2
f 1x 2

range of f � 5f 1x 2 0 x � A6f 1x 2f 1x 2
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The key on your calculator is a
good example of a function as a 
machine. First you input x into the dis-
play. Then you press the key labeled

. (On most graphing calculators, the 
order of these operations is reversed.) 
If x � 0, then x is not in the domain 
of this function; that is, x is not an 
acceptable input and the calculator will
indicate an error. If x � 0, then an 
approximation to appears in the 
display, correct to a certain number of
decimal places. (Thus, the key on
your calculator is not quite the same 
as the exact mathematical function f
defined by .)f1x 2 � 1x

œ–

1x

œ–

œ–

squarex

input
x2

output

square3 9

square_2 4

Figure 5

Machine diagram



Evaluating a Function

In the definition of a function the independent variable x plays the role of a “place-
holder.” For example, the function can be thought of as

fÓ Ô � 3 � 2 � � 5

To evaluate f at a number, we substitute the number for the placeholder.

Example 2 Evaluating a Function

Let . Evaluate each function value.

(a) (b) (c) (d)

Solution To evaluate f at a number, we substitute the number for x in the 
definition of f.

(a)

(b)

(c)

(d) ■

Example 3 A Piecewise Defined Function

A cell phone plan costs $39 a month. The plan includes 400 free minutes and
charges 20¢ for each additional minute of usage. The monthly charges are a 
function of the number of minutes used, given by

Find .

Solution Remember that a function is a rule. Here is how we apply the rule 
for this function. First we look at the value of the input x. If 0 
 x 
 400, then 
the value of is 39. On the other hand, if x 	 400, then the value of is

.

Thus, the plan charges $39 for 100 minutes, $39 for 400 minutes, and $55 for 480
minutes. ■

Example 4 Evaluating a Function

If , evaluate the following.

(a) (b)

(c) (d) , h � 0
f 1a � h 2 � f 1a 2

h
f 1a � h 2 f 1�a 2f 1a 2f 1x 2 � 2x2 � 3x � 1

Since 480 	 400, we have C1480 2 � 39 � 0.21480 � 400 2 � 55.

Since 400 
 400, we have C1400 2 � 39.

Since 100 
 400, we have C1100 2 � 39.

39 � 0.21x � 400 2 C1x 2C1x 2
C1100 2 ,C1400 2 ,and C1480 2

C1x 2 � e39 if 0 
 x 
 400
39 � 0.21x � 400 2 if x 	 400

f A12B � 3 # A12B2 � 1
2 � 5 � �15

4

f 14 2 � 3 # 42 � 4 � 5 � 47

f 10 2 � 3 # 02 � 0 � 5 � �5

f 1�2 2 � 3 # 1�2 2 2 � 1�2 2 � 5 � 5

f A12Bf 14 2f 10 2f 1�2 2f 1x 2 � 3x2 � x � 5

f 1x 2 � 3x2 � x � 5
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A piecewise-defined function is defined
by different formulas on different parts
of its domain. The function C of
Example 3 is piecewise defined.

Expressions like the one in part (d) of
Example 4 occur frequently in calculus;
they are called difference quotients,
and they represent the average change
in the value of f between x � a and
x � a � h.



Solution

(a)

(b)

(c)

(d) Using the results from parts (c) and (a), we have

■

Example 5 The Weight of an Astronaut

If an astronaut weighs 130 pounds on the surface of the earth, then her 
weight when she is h miles above the earth is given by the function

(a) What is her weight when she is 100 mi above the earth?

(b) Construct a table of values for the function „ that gives her weight at heights
from 0 to 500 mi. What do you conclude from the table?

Solution

(a) We want the value of the function „ when h � 100; that is, we must calculate
.

So at a height of 100 mi, she weighs about 124 lb.

(b) The table gives the astronaut’s weight, rounded to the nearest pound, at 
100-mile increments. The values in the table are calculated as in part (a).

The table indicates that the higher the astronaut travels, the less she weighs. ■

h „ 1h2
0 130

100 124
200 118
300 112
400 107
500 102

„ 1100 2 � 130 a 3960

3960 � 100
b 2

� 123.67

„ 1100 2

„ 1h 2 � 130 a 3960

3960 � h
b 2

�
4ah � 2h2 � 3h

h
� 4a � 2h � 3

f 1a � h 2 � f 1a 2
h

�
12a2 � 4ah � 2h2 � 3a � 3h � 1 2 � 12a2 � 3a � 1 2

h

� 2a2 � 4ah � 2h2 � 3a � 3h � 1

� 21a2 � 2ah � h2 2 � 31a � h 2 � 1

f 1a � h 2 � 21a � h 2 2 � 31a � h 2 � 1

f 1�a 2 � 21�a 2 2 � 31�a 2 � 1 � 2a2 � 3a � 1

f 1a 2 � 2a2 � 3a � 1
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The weight of an object on or near the
earth is the gravitational force that the
earth exerts on it. When in orbit around
the earth, an astronaut experiences the
sensation of “weightlessness” because
the centripetal force that keeps her 
in orbit is exactly the same as the
gravitational pull of the earth.



The Domain of a Function

Recall that the domain of a function is the set of all inputs for the function. The do-
main of a function may be stated explicitly. For example, if we write

then the domain is the set of all real numbers x for which 0 
 x 
 5. If the function
is given by an algebraic expression and the domain is not stated explicitly, then by
convention the domain of the function is the domain of the algebraic expression—that
is, the set of all real numbers for which the expression is defined as a real number.
For example, consider the functions

The function f is not defined at x � 4, so its domain is { }. The function g is
not defined for negative x, so its domain is { }.

Example 6 Finding Domains of Functions

Find the domain of each function.

(a) (b) (c)

Solution

(a) The function is not defined when the denominator is 0. Since

we see that is not defined when x � 0 or x � 1. Thus, the domain of f is

The domain may also be written in interval notation as

(b) We can’t take the square root of a negative number, so we must have 
9 � x 2 � 0. Using the methods of Section 1.7, we can solve this inequality 
to find that �3 
 x 
 3. Thus, the domain of g is

(c) We can’t take the square root of a negative number, and we can’t divide by 0,
so we must have t � 1 	 0, that is, t 	 �1. So the domain of h is

■

Four Ways to Represent a Function

To help us understand what a function is, we have used machine and arrow diagrams.
We can describe a specific function in the following four ways:

■ verbally (by a description in words)
■ algebraically (by an explicit formula)

5t 0 t 	 �16 � 1�1, q 2
5x 0 �3 
 x 
 36 � 3�3, 3 4
1q, 0 2 � 10, 1 2 � 11, q 2
5x 0 x � 0, x � 16f 1x 2 f 1x 2 �

1

x2 � x
�

1

x1x � 1 2

h1t 2 �
t

1t � 1
g1x 2 � 29 � x2f 1x 2 �

1

x2 � x

x 0 x � 0
x 0 x � 4

f 1x 2 �
1

x � 4
      g1x 2 � 1x

f 1x 2 � x2,  0 
 x 
 5
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Domains of algebraic expressions 
are discussed on page 35.



■ visually (by a graph)
■ numerically (by a table of values)

A single function may be represented in all four ways, and it is often useful to go
from one representation to another to gain insight into the function. However, certain
functions are described more naturally by one method than by the others. An exam-
ple of a verbal description is

P(t) is “the population of the world at time t”

The function P can also be described numerically by giving a table of values (see
Table 1 on page 386). A useful representation of the area of a circle as a function of
its radius is the algebraic formula

The graph produced by a seismograph (see the box) is a visual representation of the
vertical acceleration function of the ground during an earthquake. As a final ex-
ample, consider the function , which is described verbally as “the cost of mail-
ing a first-class letter with weight „.” The most convenient way of describing this
function is numerically—that is, using a table of values.

We will be using all four representations of functions throughout this book. We
summarize them in the following box.

C1„ 2a1t 2
A1r 2 � pr 2
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Four Ways to Represent a Function

Verbal Algebraic

Using words: Using a formula:

PÓtÔ is “the population of the world at time t”

Relation of population P and time t Area of a circle

Visual Numerical

Using a graph: Using a table of values:

„ (ounces) C 1„2 (dollars)

0 � „ 
 1 0.37         
1 � „ 
 2 0.60
2 � „ 
 3 0.83
3 � „ 
 4 1.06
4 � „ 
 5 1.29

. .. .. .

Vertical acceleration during an earthquake Cost of mailing a first-class letter

A1r 2 � pr 2

(cm/s2)

t (s)

Source: Calif. Dept. of
Mines and Geology

5

50

−50

10 15 20 25

a

100

30
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1–4 ■ Express the rule in function notation. (For example,
the rule “square, then subtract 5” is expressed as the function

.)

1. Add 3, then multiply by 2

2. Divide by 7, then subtract 4

3. Subtract 5, then square

4. Take the square root, add 8, then multiply by 

5–8 ■ Express the function (or rule) in words.

5. 6.

7. 8.

9–10 ■ Draw a machine diagram for the function.

9. 10.

11–12 ■ Complete the table.

11. 12.

13–20 ■ Evaluate the function at the indicated values.

13. ;

14. ;

15. ;

16. ;

h11 2 , h1�1 2 , h12 2 , hA12B, h1x 2 , h a 1
x
b

h1t 2 � t �
1

t

g12 2 , g1�2 2 , gA12B, g1a 2 , g1a � 1 2 , g1�1 2g1x 2 �
1 � x

1 � x

f 10 2 , f 13 2 , f 1�3 2 , f 1a 2 , f 1�x 2 , f a 1
a
bf 1x 2 � x2 � 2x

f 11 2 , f 1�2 2 , f A12B, f 1a 2 , f 1�a 2 , f 1a � b 2f 1x 2 � 2x � 1

g1x 2 � 0 2x � 3 0f 1x 2 � 21x � 1 2 2
f 1x 2 �

3

x � 2
f 1x 2 � 2x � 1

k1x 2 � 2x � 2h1x 2 � x2 � 2

g1x 2 �
x

3
� 4f 1x 2 �

x � 4

3

1
3

f 1x 2 � x2 � 5

17. ;

18. ;

19. ;

20. ;

21–24 ■ Evaluate the piecewise defined function at the 
indicated values.

21.

22.

23.

24.

25–28 ■ Use the function to evaluate the indicated expressions
and simplify.

25.

26.

27.

28.

29–36 ■ Find , and the difference quotient

, where h � 0.

29. 30. f 1x 2 � x2 � 1f 1x 2 � 3x � 2

f 1a � h 2 � f 1a 2
h

f 1a 2 , f 1a � h 2
f 1x 2 � 6x � 18; f a x

3
b ,

f 1x 2
3

f 1x 2 � x � 4; f 1x2 2 , 1f 1x 22 2f 1x 2 � 3x � 1; f 12x 2 , 2f 1x 2f 1x 2 � x2 � 1; f 1x � 2 2 , f 1x 2 � f 12 2
f 1�5 2 , f 10 2 , f 11 2 , f 12 2 , f 15 2
f 1x 2 � c3x if x � 0

x � 1 if 0 
 x 
 21x � 2 2 2 if x 	 2

f 1�4 2 , f A�3
2B, f 1�1 2 , f 10 2 , f 125 2

f 1x 2 � cx2 � 2x if x 
 �1

x if �1 � x 
 1

�1 if x 	 1

f 1�3 2 , f 10 2 , f 12 2 , f 13 2 , f 15 2f 1x 2 � e5 if x 
 2

2x � 3 if x 	 2

f 1�2 2 , f 1�1 2 , f 10 2 , f 11 2 , f 12 2f 1x 2 � e x2 if x � 0

x � 1 if x � 0

f 1�2 2 , f 1�1 2 , f 10 2 , f 15 2 , f 1x2 2 , f a 1
x
b

f 1x 2 �
0 x 0
x

f 1�2 2 , f 10 2 , f A12B, f 12 2 , f 1x � 1 2 , f 1x2 � 2 2f 1x 2 � 2 0 x � 1 0f 10 2 , f 11 2 , f 1�1 2 , f A32B, f a x

2
b , f 1x2 2f 1x 2 � x3 � 4x2

f 10 2 , f 12 2 , f 1�2 2 , f 112 2 , f 1x � 1 2 , f 1�x 2f 1x 2 � 2x2 � 3x � 4

2.1 Exercises

x

�1
0
1
2
3

f 1x 2 x

�3
�2

0
1
3

g 1x 2
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31. 32.

33. 34.

35. 36.

37–58 ■ Find the domain of the function.

37. 38.

39. , �1 
 x 
 5

40. , 0 
 x 
 5

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Applications

59. Production Cost The cost C in dollars of producing
x yards of a certain fabric is given by the function

(a) Find and .

(b) What do your answers in part (a) represent?

(c) Find . (This number represents the fixed costs.)

60. Area of a Sphere The surface area S of a sphere is a
function of its radius r given by

(a) Find and .

(b) What do your answers in part (a) represent?

61. How Far Can You See? Due to the curvature of the
earth, the maximum distance D that you can see from the

S13 2S12 2 S1r 2 � 4pr2

C10 2
C1100 2C110 2C 1x 2 � 1500 � 3x � 0.02x2 � 0.0001x3

f 1x 2 �
x

24 9 � x2
f 1x 2 �

1x � 1 2 2
22x � 1

f 1x 2 �
x2

26 � x
f 1x 2 �

3

2x � 4

g1x 2 � 2x2 � 2x � 8g1x 2 � 24 x2 � 6x

g1x 2 �
1x

2x2 � x � 1
g1x 2 �

22 � x

3 � x

G1x 2 � 2x2 � 9h1x 2 � 22x � 5

g1x 2 � 27 � 3xf 1t 2 � 23 t � 1

f 1x 2 � 24 x � 9f 1x 2 � 2x � 5

f 1x 2 �
x4

x2 � x � 6
f 1x 2 �

x � 2

x2 � 1

f 1x 2 �
1

3x � 6
f 1x 2 �

1

x � 3

f 1x 2 � x2 � 1

f 1x 2 � 2x

f 1x 2 � x2 � 1f 1x 2 � 2x

f 1x 2 � x3f 1x 2 � 3 � 5x � 4x2

f 1x 2 �
2x

x � 1
f 1x 2 �

x

x � 1

f 1x 2 �
1

x � 1
f 1x 2 � 5 top of a tall building or from an airplane at height h is given

by the function

where r � 3960 mi is the radius of the earth and D and h are
measured in miles.

(a) Find and .

(b) How far can you see from the observation deck of
Toronto’s CN Tower, 1135 ft above the ground?

(c) Commercial aircraft fly at an altitude of about 7 mi.
How far can the pilot see?

62. Torricelli’s Law A tank holds 50 gallons of water, which
drains from a leak at the bottom, causing the tank to empty
in 20 minutes. The tank drains faster when it is nearly full
because the pressure on the leak is greater. Torricelli’s 
Law gives the volume of water remaining in the tank after 
t minutes as

(a) Find and .

(b) What do your answers to part (a) represent?

(c) Make a table of values of for t � 0, 5, 10, 15, 20.

63. Blood Flow As blood moves through a vein or an artery,
its velocity √ is greatest along the central axis and decreases
as the distance r from the central axis increases (see the
figure). The formula that gives √ as a function of r is called
the law of laminar flow. For an artery with radius 0.5 cm,
we have

(a) Find and .

(b) What do your answers to part (a) tell you about the flow
of blood in this artery?

(c) Make a table of values of for r � 0, 0.1, 0.2, 0.3,
0.4, 0.5.

0.5 cm r

√1r 2
√10.4 2√10.1 2√1r 2 � 18,50010.25 � r2 2  0 
 r 
 0.5

V1t 2
V120 2V10 2V1t 2 � 50 a1 �

t

20
b 2

  0 
 t 
 20

D10.2 2D10.1 2
D1h 2 � 22rh � h2
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64. Pupil Size When the brightness x of a light source is in-
creased, the eye reacts by decreasing the radius R of the 
pupil. The dependence of R on x is given by the function

(a) Find , and .

(b) Make a table of values of .

65. Relativity According to the Theory of Relativity, the
length L of an object is a function of its velocity √ with
respect to an observer. For an object whose length at rest 
is 10 m, the function is given by

where c is the speed of light.

(a) Find , and .

(b) How does the length of an object change as its velocity
increases?

66. Income Tax In a certain country, income tax T is assessed
according to the following function of income x:

(a) Find , and .

(b) What do your answers in part (a) represent?

67. Internet Purchases An Internet bookstore charges $15
shipping for orders under $100, but provides free shipping
for orders of $100 or more. The cost C of an order is a func-
tion of the total price x of the books purchased, given by

(a) Find , and .

(b) What do your answers in part (a) represent?

68. Cost of a Hotel Stay A hotel chain charges $75 each
night for the first two nights and $50 for each additional
night’s stay. The total cost T is a function of the number 
of nights x that a guest stays.

(a) Complete the expressions in the following piecewise
defined function.

T1x 2 � e          if 0 
 x 
 2

         if x 	 2

C1105 2C175 2 , C190 2 , C1100 2C1x 2 � ex � 15 if x � 100

x if x � 100

T125,000 2T15,000 2 , T112,000 2
T1x 2 � c0 if 0 
 x 
 10,000

0.08x if 10,000 � x 
 20,000

1600 � 0.15x if 20,000 � x

L10.9c 2L10.5c 2 , L10.75c 2
L1√ 2 � 10B1 �

√2

c2

R

R1x 2R1100 2R11 2 , R110 2
R1x 2 � B

13 � 7x0.4

1 � 4x0.4

(b) Find , and .

(c) What do your answers in part (b) represent?

69. Speeding Tickets In a certain state the maximum speed
permitted on freeways is 65 mi/h and the minimum is 40.
The fine F for violating these limits is $15 for every mile
above the maximum or below the minimum.

(a) Complete the expressions in the following piecewise
defined function, where x is the speed at which you are
driving.

(b) Find , and .

(c) What do your answers in part (b) represent?

70. Height of Grass A home owner mows the lawn every
Wednesday afternoon. Sketch a rough graph of the height of
the grass as a function of time over the course of a four-
week period beginning on a Sunday.

71. Temperature Change You place a frozen pie in an oven
and bake it for an hour. Then you take it out and let it cool
before eating it. Sketch a rough graph of the temperature of
the pie as a function of time.

72. Daily Temperature Change Temperature readings T
(in �F) were recorded every 2 hours from midnight to noon
in Atlanta, Georgia, on March 18, 1996. The time t was
measured in hours from midnight. Sketch a rough graph 
of T as a function of t.

POLICE

F175 2F130 2 , F150 2
F1x 2 � c          if 0 � x � 40

          if 40 
 x 
 65
          if x 	 65

T15 2T12 2 , T13 2

t T

0 58
2 57
4 53
6 50
8 51

10 57
12 61
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73. Population Growth The population P (in thousands) 
of San Jose, California, from 1988 to 2000 is shown in the
table. (Midyear estimates are given.) Draw a rough graph 
of P as a function of time t.

Discovery • Discussion

74. Examples of Functions At the beginning of this section
we discussed three examples of everyday, ordinary func-
tions: Height is a function of age, temperature is a function
of date, and postage cost is a function of weight. Give three
other examples of functions from everyday life.

75. Four Ways to Represent a Function In the box on 
page 154 we represented four different functions verbally,
algebraically, visually, and numerically. Think of a function
that can be represented in all four ways, and write the four
representations.

t P

1988 733
1990 782
1992 800
1994 817
1996 838
1998 861
2000 895

2.2 Graphs of Functions

The most important way to visualize a function is through its graph. In this section
we investigate in more detail the concept of graphing functions.

Graphing Functions

The Graph of a Function

If f is a function with domain A, then the graph of f is the set of ordered
pairs

In other words, the graph of f is the set of all points such that ;
that is, the graph of f is the graph of the equation .y � f 1x 2 y � f 1x 21x, y 25 1x,f 1x 22 0 x � A6

The graph of a function f gives a picture of the behavior or “life history” of the
function. We can read the value of from the graph as being the height of the
graph above the point x (see Figure 1).

A function f of the form is called a linear function because its
graph is the graph of the equation y � mx � b, which represents a line with slope m
and y-intercept b. A special case of a linear function occurs when the slope is m � 0.
The function , where b is a given number, is called a constant function be-
cause all its values are the same number, namely, b. Its graph is the horizontal line 
y � b. Figure 2 shows the graphs of the constant function and the linear
function .f 1x 2 � 2x � 1

f 1x 2 � 3

f 1x 2 � b

f 1x 2 � mx � b

f 1x 2

y

x

f(1)

0 2

f(2)
Ï

1 x

Óx, ÏÔ

Figure 1

The height of the graph above the
point x is the value of .f 1x 2



Example 1 Graphing Functions

Sketch the graphs of the following functions.

(a) (b) (c)

Solution We first make a table of values. Then we plot the points given by the
table and join them by a smooth curve to obtain the graph. The graphs are sketched
in Figure 3.

h1x 2 � 1xg1x 2 � x3f 1x 2 � x2

The constant function Ï=3 The linear function Ï=2x+1

y

x0 1

1

y=2x+1

y

x0 2 4 6_2

2

4
y=3

Figure 2
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x

0 0

�1 1
�2 4
�3 9

1
4� 1

2

f 1x 2 � x2 x

0 0

1 1
2 8

�1 �1
�2 �8

� 1
8� 1

2

1
8

1
2

g1x 2 � x3 x

0 0
1 1
2
3
4 2
5 15

13
12

h1x 2 � 1x

(a) Ï=≈

y

x0 3

3

(1, 1)

(2, 4)

(_1, 1)

(_2, 4)

!_   ,    @
1

2

1

4
!   ,    @

1

2

1

4

y=≈

(b) ˝=x£

y

x1

(1, 1
(1, 1)

(2, )

)

(2, 8)

(_1, _1)

(_2, _8)

2

y=x£

(c) h(x)=œ∑x

y

x1

1

0

y=œ∑x

œ∑2
(4, 2)

Figure 3 ■

A convenient way to graph a function is to use a graphing calculator, as in the next
example.



Example 2 A Family of Power Functions

(a) Graph the functions for n � 2, 4, and 6 in the viewing 
rectangle 3�2, 24 by 3�1, 34.

(b) Graph the functions for n � 1, 3, and 5 in the viewing rectangle3�2, 24 by 3�2, 24.
(c) What conclusions can you draw from these graphs?

Solution The graphs for parts (a) and (b) are shown in Figure 4.

(c) We see that the general shape of the graph of depends on whether n
is even or odd.

If n is even, the graph of is similar to the parabola y � x 2.
If n is odd, the graph of is similar to that of y � x 3. ■

Notice from Figure 4 that as n increases the graph of y � xn becomes flatter near
0 and steeper when x 	 1. When 0 � x � 1, the lower powers of x are the “bigger”
functions. But when x 	 1, the higher powers of x are the dominant functions.

Getting Information from the Graph of a Function

The values of a function are represented by the height of its graph above the x-axis.
So, we can read off the values of a function from its graph.

Example 3 Find the Values of a Function from a Graph

The function T graphed in Figure 5 gives the temperature between noon and 6 P.M.
at a certain weather station.

(a) Find , and .

(b) Which is larger, or ?

Solution

(a) is the temperature at 1:00 P.M. It is represented by the height of the 
graph above the x-axis at x � 1. Thus, . Similarly, and

.

(b) Since the graph is higher at x � 2 than at x � 4, it follows that is larger
than . ■T14 2 T12 2T15 2 � 10

T13 2 � 30T11 2 � 25
T11 2

x

T (°F) 

0

10

20

30

40

1 2 3 4 5 6

Hours from noon

Figure 5

Temperature function

T14 2T12 2T15 2T11 2 , T13 2

f 1x 2 � xn
f 1x 2 � xn

f 1x 2 � xn

f 1x 2 � xn

f 1x 2 � xn
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2

_2

_2 2

x∞ x£ x

3

_1

_2 2

x§ x¢ x™

(a) Even powers of x

(b) Odd powers of x

Figure 4

A family of power functions f 1x 2 � xn



The graph of a function helps us picture the domain and range of the function on
the x-axis and y-axis as shown in Figure 6.

Example 4 Finding the Domain and Range from a Graph

(a) Use a graphing calculator to draw the graph of .

(b) Find the domain and range of f.

Solution

(a) The graph is shown in Figure 7.

(b) From the graph in Figure 7 we see that the domain is 3�2, 24 and the range 
is 30, 24. ■

Graphing Piecewise Defined Functions

A piecewise defined function is defined by different formulas on different parts of its
domain. As you might expect, the graph of such a function consists of separate pieces.

Example 5 Graph of a Piecewise Defined Function

Sketch the graph of the function.

Solution If x 
 1, then , so the part of the graph to the left of x � 1
coincides with the graph of y � x 2, which we sketched in Figure 3. If x 	 1, then

, so the part of the graph to the right of x � 1 coincides with the f 1x 2 � 2x � 1

f 1x 2 � x 2

f 1x 2 � e x 2 if x 
 1
2x � 1 if x 	 1

2

Domain=[_2, 2]

0_2

Range=[0, 2]

f 1x 2 � 24 � x2

y

x0 Domain

Range y=Ï

Figure 6

Domain and range of f
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Figure 7

Graph of f 1x 2 � 24 � x2



line y � 2x � 1, which we graphed in Figure 2. This enables us to sketch the graph
in Figure 8.

The solid dot at 11, 12 indicates that this point is included in the graph; the open
dot at 11, 32 indicates that this point is excluded from the graph.

■

Example 6 Graph of the Absolute Value Function

Sketch the graph of the absolute value function .

Solution Recall that

Using the same method as in Example 5, we note that the graph of f coincides with
the line y � x to the right of the y-axis and coincides with the line y � �x to the
left of the y-axis (see Figure 9).

■

The greatest integer function is defined by

“x‘ � greatest integer less than or equal to x

For example, “2‘ � 2, “2.3‘ � 2, “1.999‘ � 1, “0.002‘ � 0, “�3.5‘ � �4,
“�0.5‘ � �1.

Example 7 Graph of the Greatest Integer Function

Sketch the graph of f(x) � “x‘.

Solution The table shows the values of f for some values of x. Note that is
constant between consecutive integers so the graph between integers is a horizontal

f 1x 2

y

x0 1

1

0 x 0 � e x if x � 0
�x if x � 0

f 1x 2 � 0 x 0

y

x0 1

1

f(x) = x2

if x ≤ 1

f(x) = 2x + 1
if x > 1
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5

_1

_2 2

On many graphing calculators the
graph in Figure 8 can be produced 
by using the logical functions in the
calculator. For example, on the TI-83
the following equation gives the 
required graph:

Y1 � 1X 
 12X^2 � 1X 	 12 12X � 12

Figure 8

f 1x 2 � e x2 if x 
 1
2x � 1 if x 	 1

Figure 9

Graph of f 1x 2 � 0 x 0

(To avoid the extraneous vertical line
between the two parts of the graph,
put the calculator in Dot mode.)



The greatest integer function is an example of a step function. The next exam-
ple gives a real-world example of a step function.

Example 8 The Cost Function for Long-Distance Phone Calls

The cost of a long-distance daytime phone call from Toronto to Mumbai, India, is
69 cents for the first minute and 58 cents for each additional minute (or part of a
minute). Draw the graph of the cost C (in dollars) of the phone call as a function of
time t (in minutes).

Solution Let be the cost for t minutes. Since t 	 0, the domain of the 
function is . From the given information, we have

and so on. The graph is shown in Figure 11. ■

The Vertical Line Test

The graph of a function is a curve in the xy-plane. But the question arises:
Which curves in the xy-plane are graphs of functions? This is answered by the fol-
lowing test.

if 3 � t 
 4C1t 2 � 0.69 � 310.58 2 � 2.43

if 2 � t 
 3C1t 2 � 0.69 � 210.58 2 � 1.85

if 1 � t 
 2C1t 2 � 0.69 � 0.58 � 1.27

if 0 � t 
 1C1t 2 � 0.69

10, q 2C1t 2
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y

x0 1

1

x “x‘

. .. .. .
�2 
 x � �1 �2
�1 
 x � 0 �1

0 
 x � 1 0
1 
 x � 2 1
2 
 x � 3 2

. .. .. .

Figure 10

The greatest integer function, y � “x‘ ■

C

t0 1

1

Figure 11

Cost of a long-distance call

The Vertical Line Test

A curve in the coordinate plane is the graph of a function if and only if no
vertical line intersects the curve more than once.

line segment as shown in Figure 10.



We can see from Figure 12 why the Vertical Line Test is true. If each vertical line
x � a intersects a curve only once at , then exactly one functional value is 
defined by . But if a line x � a intersects the curve twice, at and at

, then the curve can’t represent a function because a function cannot assign two
different values to a.

Example 9 Using the Vertical Line Test

Using the Vertical Line Test, we see that the curves in parts (b) and (c) of Figure 13
represent functions, whereas those in parts (a) and (d) do not.

■

Equations That Define Functions

Any equation in the variables x and y defines a relationship between these variables.
For example, the equation

defines a relationship between y and x. Does this equation define y as a function of x?
To find out, we solve for y and get

We see that the equation defines a rule, or function, that gives one value of y for each

y � x2

y � x2 � 0

Figure 13

(a) (b) (c) (d)

y

x0

y

x0

y

x0

y

x0

Figure 12

Vertical Line Test

y

x0 a

x=a

(a, b)

y

x0 a

x=a

(a, b)

(a, c)

Graph of a function Not a graph of a function

1a, c 2 1a, b 2f 1a 2 � b
1a, b 2

164 CHAPTER 2 Functions



value of x. We can express this rule in function notation as

But not every equation defines y as a function of x, as the following example 
shows.

Example 10 Equations That Define Functions

Does the equation define y as a function of x?

(a) y � x 2 � 2

(b) x 2 � y 2 � 4

Solution

(a) Solving for y in terms of x gives

Add x2

The last equation is a rule that gives one value of y for each value of x, so it
defines y as a function of x. We can write the function as .

(b) We try to solve for y in terms of x:

Subtract x2

Take square roots

The last equation gives two values of y for a given value of x. Thus, the equa-
tion does not define y as a function of x. ■

The graphs of the equations in Example 10 are shown in Figure 14. The Vertical
Line Test shows graphically that the equation in Example 10(a) defines a function but
the equation in Example 10(b) does not.

(a) (b)

y

x0 1

1

y-≈=2

y

x0 1

1

≈+¥=4

Figure 14

y � �24 � x2

y2 � 4 � x2

x2 � y2 � 4

f 1x 2 � x2 � 2

y � x2 � 2

y � x2 � 2

f 1x 2 � x2

SECTION 2.2 Graphs of Functions 165

Donald Knuth was born in Mil-
waukee in 1938 and is Professor
Emeritus of Computer Science at
Stanford University. While still a
graduate student at Caltech, he
started writing a monumental se-
ries of books entitled The Art of
Computer Programming. President
Carter awarded him the National
Medal of Science in 1979. When
Knuth was a high school student,
he became fascinated with graphs
of functions and laboriously drew
many hundreds of them because he
wanted to see the behavior of a
great variety of functions. (Today,
of course, it is far easier to use
computers and graphing calcula-
tors to do this.) Knuth is famous 
for his invention of TEX, a system
of computer-assisted typesetting.
This system was used in the prepa-
ration of the manuscript for this
textbook. He has also written a
novel entitled Surreal Numbers:
How Two Ex-Students Turned On
to Pure Mathematics and Found
Total Happiness.

Dr. Knuth has received numer-
ous honors, among them election
as an associate of the French Acad-
emy of Sciences, and as a Fellow
of the Royal Society.
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The following table shows the graphs of some functions that you will see fre-
quently in this book.
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Ï=œ∑x Ï= £œ∑x Ï=¢œ∑x Ï= ∞œ∑x

Ï=b Ï=mx+b

Ï=≈ Ï=x£ Ï=x¢ Ï=x∞

Root functions
Ï=

n
œ∑x

x

y

x

y

Some Functions and Their Graphs

Linear functions
Ï=mx+b

Power functions
Ï=

x

y

x

y

x

y

x

y

x

y

x

y

b

x

y

b

x

y

Reciprocal functions
Ï=1/xn

xn

x

y

x

y

Ï=
1

x
Ï=

1

≈

x

yAbsolute value function
Ï=|x |

Ï=|x |

Greatest integer function
Ï=“x‘

x

y

Ï=“x‘

1

1
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1–22 ■ Sketch the graph of the function by first making a table
of values.

1. 2.

3. 4.

5.

6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. The graph of a function h is given.

(a) Find , , , and .

(b) Find the domain and range of h.

24. The graph of a function g is given.

(a) Find , , , , and .

(b) Find the domain and range of g.

x

y

0

3
g

_3 3

g14 2g12 2g10 2g1�2 2g1�4 2
_3 3 x

y

0

3
h

h13 2h12 2h10 2h1�2 2
g1x 2 �

0 x 0
x2g1x 2 �

2

x2

f 1x 2 �
x0 x 0f 1x 2 � 0 2x � 2 0 G1x 2 � 0 x 0 � xG1x 2 � 0 x 0 � x

H1x 2 � 0 x � 1 0H1x 2 � 0 2x 0 F1x 2 �
1

x � 4
F1x 2 �

1
x

g1x 2 � 1�xg1x 2 � 1x � 4

g1x 2 � 4x2 � x4g1x 2 � x3 � 8

f 1x 2 � x2 � 4f 1x 2 � �x2

f 1x 2 �
x � 3

2
, 0 
 x 
 5

f 1x 2 � �x � 3, �3 
 x 
 3

f 1x 2 � 6 � 3xf 1x 2 � 2x � 4

f 1x 2 � �3f 1x 2 � 2

25. Graphs of the functions f and g are given.

(a) Which is larger, or ?

(b) Which is larger, or ?

(c) For which values of x is ?

26. The graph of a function f is given.

(a) Estimate to the nearest tenth.

(b) Estimate to the nearest tenth.

(c) Find all the numbers x in the domain of f for which
.

27–36 ■ A function f is given.

(a) Use a graphing calculator to draw the graph of f.

(b) Find the domain and range of f from the graph.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–50 ■ Sketch the graph of the piecewise defined function.

37. f 1x 2 � e0 if x � 2

1 if x � 2

f 1x 2 � 1x � 2f 1x 2 � 1x � 1

f 1x 2 � �225 � x2f 1x 2 � 216 � x2

f 1x 2 � x2 � 4f 1x 2 � 4 � x2

f 1x 2 � �x2f 1x 2 � 4

f 1x 2 � 21x � 1 2f 1x 2 � x � 1

x_2 2

2

_2

0

f

f 1x 2 � 1

f 13 2f 10.5 2

_2 2 x

y

0

2

_2

f

g

f 1x 2 � g1x 2g1�3 2f 1�3 2 g10 2f 10 2
2.2 Exercises
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38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51–52 ■ Use a graphing device to draw the graph of 
the piecewise defined function. (See the margin note on 
page 162.)

51.

52. f 1x 2 � e2x � x2 if x 	 11x � 1 2 3 if x 
 1

f 1x 2 � e x � 2 if x 
 �1

x2 if x 	 �1

f 1x 2 � c�x if x 
 0

9 � x2 if 0 � x 
 3

x � 3 if x 	 3

f 1x 2 � c4 if x � �2

x2 if �2 
 x 
 2

�x � 6 if x 	 2

f 1x 2 � bx2 if 0 x 0 
 1

1 if 0 x 0 	 1

f 1x 2 � e0 if 0 x 0 
 2

3 if 0 x 0 	 2

f 1x 2 � e1 � x2 if x 
 2

x if x 	 2

f 1x 2 � e2 if x 
 �1

x2 if x 	 �1

f 1x 2 � c�1 if x � �1

x if �1 
 x 
 1

1 if x 	 1

f 1x 2 � c�1 if x � �1

1 if �1 
 x 
 1

�1 if x 	 1

f 1x 2 � e2x � 3 if x � �1

3 � x if x � �1

f 1x 2 � e x if x 
 0

x � 1 if x 	 0

f 1x 2 � e1 � x if x � �2

5 if x � �2

f 1x 2 � e3 if x � 2

x � 1 if x � 2

f 1x 2 � e1 if x 
 1

x � 1 if x 	 1

53–54 ■ The graph of a piecewise defined function is given.
Find a formula for the function in the indicated form.

55–56 ■ Determine whether the curve is the graph of a function
of x.

55.

56.

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0 1

2

y

x

0

2

2

f 1x 2 � c        if x � �2

        if �2 
 x 
 2

        if x 	 2

f 1x 2 � c        if x 
 �1

        if �1 � x 
 2

        if x 	 2

(a) (b)

(a) (b)

(c) (d)

(c) (d)

53.

54.
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57–60 ■ Determine whether the curve is the graph of a function
x. If it is, state the domain and range of the function.

57. 58.

59. 60.

61–72 ■ Determine whether the equation defines y as a function
of x. (See Example 10.)

61. x 2 � 2y � 4 62. 3x � 7y � 21

63. x � y 2 64.

65. x � y 2 � 9 66. x 2 � y � 9

67. x 2y � y � 1 68.

69. 70.

71. x � y3 72. x � y4

73–78 ■ A family of functions is given. In parts (a) and 
(b) graph all the given members of the family in the viewing 
rectangle indicated. In part (c) state the conclusions you can
make from your graphs.

73.

(a) c � 0, 2, 4, 6; 3�5, 54 by 3�10, 104
(b) c � 0, �2, �4, �6; 3�5, 54 by 3�10, 104
(c) How does the value of c affect the graph?

74.

(a) c � 0, 1, 2, 3; 3�5, 54 by 3�10, 104
(b) c � 0, �1, �2, �3; 3�5, 54 by 3�10, 104
(c) How does the value of c affect the graph?

75.

(a) c � 0, 2, 4, 6; 3�10, 104 by 3�10, 104
(b) c � 0, �2, �4, �6; 3�10, 104 by 3�10, 104
(c) How does the value of c affect the graph?

f 1x 2 � 1x � c 2 3
f 1x 2 � 1x � c 2 2
f 1x 2 � x2 � c

2x � 0 y 0 � 02 0 x 0 � y � 0

1x � y � 12

x2 � 1y � 1 2 2 � 4

y

x0 2

2

y

x0 3

1

y

x0 3

2

y

x0 2

2

76.

(a) ; 3�5, 54 by 3�10, 104
(b) ; 3�5, 54 by 3�10, 104
(c) How does the value of c affect the graph?

77.

(a) ; 3�1, 44 by 3�1, 34
(b) ; 3�3, 34 by 3�2, 24
(c) How does the value of c affect the graph?

78.

(a) n � 1, 3; 3�3, 34 by 3�3, 34
(b) n � 2, 4; 3�3, 34 by 3�3, 34
(c) How does the value of n affect the graph?

79–82 ■ Find a function whose graph is the given curve.

79. The line segment joining the points and 

80. The line segment joining the points and 

81. The top half of the circle x 2 � y 2 � 9

82. The bottom half of the circle x 2 � y 2 � 9

Applications

83. Weight Function The graph gives the weight of a certain
person as a function of age. Describe in words how this 
person’s weight has varied over time. What do you think
happened when this person was 30 years old?

84. Distance Function The graph gives a salesman’s dis-
tance from his home as a function of time on a certain day.
Describe in words what the graph indicates about his travels
on this day.

8 A.M. 10 NOON 2 4 6 P.M.

Time (hours)

Distance
from home

(miles)

0

150

100

50

10

200

20 30 40 50 60 70

Age (years)

Weight
(pounds)

16, 3 21�3, �2 2 14, �6 21�2, 1 2

f 1x 2 � 1/x n

c � 1, 1
3,

1
5

c � 1
2,

1
4,

1
6

f 1x 2 � xc

c � 1, �1, � 1
2, �2

c � 1, 1
2, 2, 4

f 1x 2 � cx2
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85. Hurdle Race Three runners compete in a 100-meter hur-
dle race. The graph depicts the distance run as a function of
time for each runner. Describe in words what the graph tells
you about this race. Who won the race? Did each runner
finish the race? What do you think happened to runner B?

86. Power Consumption The figure shows the power con-
sumption in San Francisco for September 19, 1996 (P is
measured in megawatts; t is measured in hours starting at
midnight).

(a) What was the power consumption at 6 A.M.? At 6 P.M.?

(b) When was the power consumption the lowest?

(c) When was the power consumption the highest?

87. Earthquake The graph shows the vertical acceleration 
of the ground from the 1994 Northridge earthquake in Los
Angeles, as measured by a seismograph. (Here t represents
the time in seconds.)

(a) At what time t did the earthquake first make noticeable
movements of the earth?

(b) At what time t did the earthquake seem to end?

(c) At what time t was the maximum intensity of the earth-
quake reached?

(cm/s2)

Source: Calif. Dept. of
Mines and Geology

5

50

−50

10 15 20 25

a

t (s) 

100

30

P (MW)

0 181512963 t (h)21

400

600

800

200

Source: Pacific Gas & Electric

100

y (m)

0 20 t (s)

A B C

88. Utility Rates Westside Energy charges its electric 
customers a base rate of $6.00 per month, plus 10¢ per 
kilowatt-hour (kWh) for the first 300 kWh used and 
6¢ per kWh for all usage over 300 kWh. Suppose a 
customer uses x kWh of electricity in one month.

(a) Express the monthly cost E as a function of x.

(b) Graph the function E for 0 
 x 
 600.

89. Taxicab Function A taxi company charges $2.00 for the
first mile (or part of a mile) and 20 cents for each succeed-
ing tenth of a mile (or part). Express the cost C (in dollars)
of a ride as a function of the distance x traveled (in miles)
for 0 � x � 2, and sketch the graph of this function.

90. Postage Rates The domestic postage rate for first-class
letters weighing 12 oz or less is 37 cents for the first ounce
(or less), plus 23 cents for each additional ounce (or part of
an ounce). Express the postage P as a function of the weight
x of a letter, with 0 � x 
 12, and sketch the graph of this
function.

Discovery • Discussion

91. When Does a Graph Represent a Function? For every
integer n, the graph of the equation y � xn is the graph 
of a function, namely . Explain why the graph of 
x � y 2 is not the graph of a function of x. Is the graph of 
x � y3 the graph of a function of x? If so, of what function
of x is it the graph? Determine for what integers n the graph
of x � yn is the graph of a function of x.

92. Step Functions In Example 8 and Exercises 89 and 90
we are given functions whose graphs consist of horizontal
line segments. Such functions are often called step
functions, because their graphs look like stairs. Give 
some other examples of step functions that arise in 
everyday life.

93. Stretched Step Functions Sketch graphs of the func-
tions f(x) � “x‘, g(x) � “2x‘, and h(x) � “3x‘ on separate
graphs. How are the graphs related? If n is a positive integer,
what does the graph of k(x) � “nx‘ look like?

94. Graph of the Absolute Value of a Function

(a) Draw the graphs of the functions 
and . How are the graphs of f and
g related?

(b) Draw the graphs of the functions and
. How are the graphs of f and g

related?

(c) In general, if , how are the graphs 
of f and g related? Draw graphs to illustrate your 
answer.

g1x 2 � 0 f 1x 2 0
g1x 2 � 0 x4 � 6x2 0 f 1x 2 � x4 � 6x2

g1x 2 � 0 x2 � x � 6 0 f 1x 2 � x2 � x � 6

f 1x 2 � xn



We can describe a relation by listing all the ordered pairs in the relation or
giving the rule of correspondence. Also, since a relation consists of ordered pairs
we can sketch its graph. Let’s consider the following relations and try to decide
which are functions.

(a) The relation that consists of the ordered pairs .

(b) The relation that consists of the ordered pairs .

(c) The relation whose graph is shown to the left.

(d) The relation whose input values are days in January 2005 and whose output
values are the maximum temperature in Los Angeles on that day.

(e) The relation whose input values are days in January 2005 and whose output
values are the persons born in Los Angeles on that day.

The relation in part (a) is a function because each input corresponds to exactly
one output. But the relation in part (b) is not, because the input 1 corresponds 
to two different outputs (2 and 3). The relation in part (c) is not a function 
because the input 1 corresponds to two different outputs (1 and 2). The relation
in (d) is a function because each day corresponds to exactly one maximum 
temperature. The relation in (e) is not a function because many persons (not just
one) were born in Los Angeles on most days in January 2005.

1. Let A � 51, 2, 3, 46 and B � 5�1, 0, 16. Is the given relation a function from 
A to B?

(a)
(b) 5 11, 0 2 , 12, �1 2 , 13, 0 2 , 13, �1 2 , 14, 0 2 65 11, 0 2 , 12, �1 2 , 13, 0 2 , 14, 1 2 6

5 11, 2 2 , 11, 3 2 , 12, 4 2 , 13, 2 2 65 11, 1 2 , 12, 3 2 , 13, 3 2 , 14, 2 2 6
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Relations and Functions

A function f can be represented as a set of ordered pairs where 
x is the input and is the output. For example, the function that 
squares each natural number can be represented by the ordered pairs

.
A relation is any collection of ordered pairs. If we denote the ordered pairs 

in a relation by then the set of x-values (or inputs) is the domain and the
set of y-values (or outputs) is the range. With this terminology a function is a
relation where for each x-value there is exactly one y-value (or for each input
there is exactly one output). The correspondences in the figure below are 
relations—the first is a function but the second is not because the input 7 in 
A corresponds to two different outputs, 15 and 17, in B.

1x, y 25 11, 1 2 , 12, 4 2 , 13, 9 2 , . . .6y � f 1x 2 1x, y 2D I S C O V E R Y
P R O J E C T

B

Function

A

15

18

17

19

B

Not a function

A

7

8

9

1

2

3

4

10

20

30

y

2

1

1_1 2 30 x

3



2. Determine if the correspondence is a function.

3. The following data were collected from members of a college precalculus
class. Is the set of ordered pairs a function?

4. An equation in x and y defines a relation, which may or may not be a function
(see page 164). Decide whether the relation consisting of all ordered pairs of
real numbers satisfying the given condition is a function.

(a) y � x 2 (b) x � y 2 (c) x 
 y (d) 2x � 7y � 11

5. In everyday life we encounter many relations which may or may not define
functions. For example, we match up people with their telephone number(s),
baseball players with their batting averages, or married men with their wives.
Does this last correspondence define a function? In a society in which each
married man has exactly one wife the rule is a function. But the rule is not a
function. Which of the following everyday relations are functions?

(a) x is the daughter of y (x and y are women in the United States)

(b) x is taller than y (x and y are people in California)

(c) x has received dental treatment from y (x and y are millionaires in the
United States)

(d) x is a digit (0 to 9) on a telephone dial and y is a corresponding letter

1x, y 2

1x, y 2
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(a)

(a) (b) (c)

(b)

x y
Height Weight

72 in. 180 lb
60 in. 204 lb
60 in. 120 lb
63 in. 145 lb
70 in. 184 lb

x y
Age ID Number

19 82-4090
21 80-4133
40 66-8295
21 64-9110
21 20-6666

x y
Year of Number of

graduation graduates

2005 2
2006 12
2007 18
2008 7
2009 1

1 2
abc

3

4 5 6

7 8 9

0

CENTRAL
WIRELESS

def

ghi jkl mno

pqrs tuv

oper

wxyz

5'0"
5'6"
6'0"
6'6"

BA

1

2

3
4

5

A

C

B

D

BA

1

2

3
4

5

A

C

B

D
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2.3 Increasing and Decreasing Functions; 
Average Rate of Change

Functions are often used to model changing quantities. In this section we learn how
to determine if a function is increasing or decreasing, and how to find the rate at
which its values change as the variable changes.

Increasing and Decreasing Functions

It is very useful to know where the graph of a function rises and where it falls. 
The graph shown in Figure 1 rises, falls, then rises again as we move from left 
to right: It rises from A to B, falls from B to C, and rises again from C to D. The 
function f is said to be increasing when its graph rises and decreasing when its 
graph falls.

We have the following definition.

Figure 1

f is increasing on [a, b] and [c, d].
f is decreasing on [b, c].

y

x0 a

y=Ï

b c d

A

B

C

D
f is increasing.

f is increasing.

f is decreasing.

Definition of Increasing and Decreasing Functions

f is increasing on an interval I if whenever x1 � x2 in I.

f is decreasing on an interval I if whenever x1 � x2 in I.

f(x¤)
x⁄)

f

f(x⁄)
f(x¤)

f

y

x0 x⁄ x¤

f(

y

x0 x⁄ x¤

f is increasing f is decreasing

f 1x1 2 	 f 1x2 2f 1x1 2 � f 1x2 2
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Example 1 Intervals on which a Function Increases 

and Decreases

The graph in Figure 2 gives the weight W of a person at age x. Determine the inter-
vals on which the function W is increasing and on which it is decreasing.

Solution The function is increasing on 30, 254 and 335, 404. It is decreasing 
on 340, 504. The function is constant (neither increasing nor decreasing) on 325, 354 and 350, 804. This means that the person gained weight until age 25,
then gained weight again between ages 35 and 40. He lost weight between ages 
40 and 50. ■

Example 2 Using a Graph to Find Intervals where a 

Function Increases and Decreases

(a) Sketch the graph of the function .

(b) Find the domain and range of the function.

(c) Find the intervals on which f increases and decreases.

Solution

(a) We use a graphing calculator to sketch the graph in Figure 3.

(b) From the graph we observe that the domain of f is � and the range is .

(c) From the graph we see that f is decreasing on and increasing on
. ■

Average Rate of Change

We are all familiar with the concept of speed: If you drive a distance of 120 miles in
2 hours, then your average speed, or rate of travel, is .120 mi

2 h � 60 mi/h

10

_1

_20 20

30, q 2 1�q, 0 4 30,q 2

f 1x 2 � x2/3

x (yr) 

W (lb) 

0

50

100

150

200

10 20 30 40 50 60 70 80

Figure 2

Weight as a function of age

Figure 3

Graph of f 1x 2 � x2/3

Some graphing calculators, such as the
TI-82, do not evaluate x 2/3 [entered as

] for negative x. To graph a
function like , we enter it as

because these calcu-
lators correctly evaluate powers of the
form . Newer calculators, such
as the TI-83 and TI-86, do not have this
problem.

x^11/n 2y1 � 1x^11/3 22^2
f 1x 2 � x2/3

x^12/3 2
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Now suppose you take a car trip and record the distance that you travel every few
minutes. The distance s you have traveled is a function of the time t:

We graph the function s as shown in Figure 4. The graph shows that you have trav-
eled a total of 50 miles after 1 hour, 75 miles after 2 hours, 140 miles after 3 hours,
and so on. To find your average speed between any two points on the trip, we divide
the distance traveled by the time elapsed.

Let’s calculate your average speed between 1:00 P.M. and 4:00 P.M. The time
elapsed is 4 � 1 � 3 hours. To find the distance you traveled, we subtract the distance
at 1:00 P.M. from the distance at 4:00 P.M., that is, 200 � 50 � 150 mi. Thus, your av-
erage speed is

The average speed we have just calculated can be expressed using function notation:

Note that the average speed is different over different time intervals. For example,
between 2:00 P.M. and 3:00 P.M. we find that

Finding average rates of change is important in many contexts. For instance, we
may be interested in knowing how quickly the air temperature is dropping as a storm
approaches, or how fast revenues are increasing from the sale of a new product. So
we need to know how to determine the average rate of change of the functions that
model these quantities. In fact, the concept of average rate of change can be defined
for any function.

average speed �
s13 2 � s12 2

3 � 2
�

140 � 75

1
� 65 mi/h

average speed �
s14 2 � s11 2

4 � 1
�

200 � 50

3
� 50 mi/h

average speed �
distance traveled

time elapsed
�

150 mi

3 h
� 50 mi/h

s1t 2 � total distance traveled at time t

s (mi)

200

100

1 2 3 40 t (h) 

3 h

150 mi

Average Rate of Change

The average rate of change of the function between x � a and x � b is

The average rate of change is the slope of the secant line between x � a and
x � b on the graph of f, that is, the line that passes through and .

f(a)

y=Ï

y

x0

f(b)

a b

b-a

f(b)-f(a)

average rate of change=
f(b)-f(a)

b-a

1b, f 1b 221a, f 1a 22
average rate of change �

change in y

change in x
�

f 1b 2 � f 1a 2
b � a

y � f 1x 2

Figure 4

Average speed
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Example 3 Calculating the Average Rate of Change

For the function , whose graph is shown in Figure 5, find the 
average rate of change between the following points:

(a) x � 1 and x � 3 (b) x � 4 and x � 7

Solution

(a) Definition

Use

(b) Definition

Use

■

Example 4 Average Speed of a Falling Object

If an object is dropped from a tall building, then the distance it has fallen 
after t seconds is given by the function . Find its average speed 
(average rate of change) over the following intervals:

(a) Between 1 s and 5 s (b) Between t � a and t � a � h

Solution

(a) Definition

Use

(b) Definition

Use

Expand and factor 16

Simplify numerator

Factor h

Simplify ■� 1612a � h 2�
16h12a � h 2

h

�
1612ah � h2 2

h

�
161a2 � 2ah � h2 � a2 2

h

d1t 2 � 16t 2�
161a � h 2 2 � 161a 2 21a � h 2 � a

Average rate of change �
d1a � h 2 � d1a 21a � h 2 � a

�
400 � 16

4
� 96 ft/s

d1t 2 � 16t 2�
1615 2 2 � 1611 2 2

5 � 1

Average rate of change �
d15 2 � d11 2

5 � 1

d1t 2 � 16t2

�
16 � 1

3
� 5

f 1x 2 � 1x � 3 22�
17 � 3 2 2 � 14 � 3 2 2

7 � 4

Average rate of change �
f 17 2 � f 14 2

7 � 4

�
0 � 4

2
� �2

f 1x 2 � 1x � 3 22�
13 � 3 2 2 � 11 � 3 2 2

3 � 1

 Average rate of change �
f 13 2 � f 11 2

3 � 1

f 1x 2 � 1x � 3 2 2

x

y

0

1

16

9

1 3 4 7

Figure 5

f1x 2 � 1x � 3 2 2



SECTION 2.3 Increasing and Decreasing Functions; Average Rate of Change 177

The average rate of change calculated in Example 4(b) is known as a difference quo-
tient. In calculus we use difference quotients to calculate instantaneous rates of change.
An example of an instantaneous rate of change is the speed shown on the speedometer
of your car. This changes from one instant to the next as your car’s speed changes.

Example 5 Average Rate of Temperature Change

The table gives the outdoor temperatures observed by a science student on a spring
day. Draw a graph of the data, and find the average rate of change of temperature
between the following times:

(a) 8:00 A.M. and 9:00 A.M.

(b) 1:00 P.M. and 3:00 P.M.

(c) 4:00 P.M. and 7:00 P.M.

Solution A graph of the temperature data is shown in Figure 6. Let t represent
time, measured in hours since midnight (so that 2:00 P.M., for example, corresponds
to t � 14). Define the function F by

(a)

The average rate of change was 2 �F per hour.

(b)

The average rate of change was 2.5�F per hour.

(c)

The average rate of change was about �4.3 �F per hour during this time interval.
The negative sign indicates that the temperature was dropping. ■

�
51 � 64

3
� �4.3

�
F119 2 � F116 2

19 � 16

 Average rate of change �
temperature at 7 P.M. � temperature at 4 P.M.

19 � 16

�
67 � 62

2
� 2.5

�
F115 2 � F113 2

15 � 13

 Average rate of change �
temperature at 3 P.M. � temperature at 1 P.M.

15 � 13

�
40 � 38

9 � 8
� 2

�
F19 2 � F18 2

9 � 8

Average rate of change �
temperature at 9 A.M. � temperature at 8 A.M.

9 � 8

F1t 2 � temperature at time t

Time Temperature (°F)

8:00 A.M. 38
9:00 A.M. 40

10:00 A.M. 44
11:00 A.M. 50

12:00 NOON 56
1:00 P.M. 62
2:00 P.M. 66
3:00 P.M. 67
4:00 P.M. 64
5:00 P.M. 58
6:00 P.M. 55
7:00 P.M. 51

°F

60

50

40

30

8 100  h

70

12 14 16 18

Figure 6
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The graphs in Figure 7 show that if a function is increasing on an interval, then the
average rate of change between any two points is positive, whereas if a function is de-
creasing on an interval, then the average rate of change between any two points is
negative.

Example 6 Linear Functions Have Constant Rate 

of Change

Let . Find the average rate of change of f between the following
points.

(a) x � 0 and x � 1 (b) x � 3 and x � 7 (c) x � a and x � a � h

What conclusion can you draw from your answers?

Solution

(a)

(b)

(c)

It appears that the average rate of change is always 3 for this function. In fact,
part (c) proves that the rate of change between any two arbitrary points x � a and
x � a � h is 3. ■

As Example 6 indicates, for a linear function , the average rate of
change between any two points is the slope m of the line. This agrees with what we
learned in Section 1.10, that the slope of a line represents the rate of change of y with
respect to x.

f 1x 2 � mx � b

�
3a � 3h � 5 � 3a � 5

h
�

3h

h
� 3

 Average rate of change �
f 1a � h 2 � f 1a 21a � h 2 � a

�
331a � h 2 � 5 4 � 33a � 5 4

h

�
16 � 4

4
� 3

 Average rate of change �
f 17 2 � f 13 2

7 � 3
�
13 # 7 � 5 2 � 13 # 3 � 5 2

4

�
1�2 2 � 1�5 2

1
� 3

 Average rate of change �
f 11 2 � f 10 2

1 � 0
�
13 # 1 � 5 2 � 13 # 0 � 5 2

1

f 1x 2 � 3x � 5

Figure 7

ƒ increasing
Average rate of change positive

y

x0 a b

Slope>0

y=Ï

ƒ decreasing
Average rate of change negative

y

x0 a b

Slope<0

y=Ï

Mathematics in 

the Modern World

Computers

For centuries machines have 
been designed to perform specific 
tasks. For example, a washing ma-
chine washes clothes, a weaving
machine weaves cloth, an adding
machine adds numbers, and so on.
The computer has changed all that.

The computer is a machine that
does nothing—until it is given in-
structions on what to do. So your
computer can play games, draw
pictures, or calculatep to a million
decimal places; it all depends on
what program (or instructions) you
give the computer. The computer
can do all this because it is able to
accept instructions and logically
change those instructions based on
incoming data. This versatility
makes computers useful in nearly
every aspect of human endeavor.

The idea of a computer was de-
scribed theoretically in the 1940s
by the mathematician Allan Turing
(see page 103) in what he called a
universal machine. In 1945 the
mathematician John Von Neu-
mann, extending Turing’s ideas,
built one of the first electronic
computers.

Mathematicians continue to 
develop new theoretical bases for
the design of computers. The heart
of the computer is the “chip,”
which is capable of processing log-
ical instructions. To get an idea of
the chip’s complexity, consider
that the Pentium chip has over 3.5
million logic circuits!
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1–4 ■ The graph of a function is given. Determine the intervals
on which the function is (a) increasing and (b) decreasing.

1. 2.

3. 4.

5–12 ■ A function f is given.

(a) Use a graphing device to draw the graph of f.

(b) State approximately the intervals on which f is increasing
and on which f is decreasing.

5.

6.

7.

8.

9.

10.

11.

12.

13–16 ■ The graph of a function is given. Determine the 
average rate of change of the function between the indicated 
values of the variable.

13. y

x0 1

1

3

5

4

f 1x 2 � x4 � 4x3 � 2x2 � 4x � 3

f 1x 2 � x3 � 2x2 � x � 2

f 1x 2 � x4 � 16x2

f 1x 2 � 2x3 � 3x2 � 12x

f 1x 2 � x3 � 4x

f 1x 2 � x2 � 5x

f 1x 2 � 4 � x2/3

f 1x 2 � x2/5

y

x1

1

y

x0 1

1

y

x0 1

1

y

x0 1

1

14.

15.

16.

17–28 ■ A function is given. Determine the average rate of
change of the function between the given values of the variable.

17. ; x � 2, x � 3

18. ; x � 1, x � 5

19. ; t � �1, t � 4

20. ; z � �2, z � 0

21. ; x � 0, x � 10

22. ; x � �1, x � 3

23. ; x � 2, x � 2 � h

24. ; x � 1, x � 1 � h

25. ; x � 1, x � a

26. ; x � 0, x � hg1x 2 �
2

x � 1

g1x 2 �
1
x

f 1x 2 � 4 � x2

f 1x 2 � 3x2

f 1x 2 � x � x4

f 1x 2 � x3 � 4x2

f 1z 2 � 1 � 3z2

h1t 2 � t2 � 2t

g1x 2 � 5 � 1
2 x

f 1x 2 � 3x � 2

y

0 5

2

4

_1 x

y

0 x1 5

6

2

4

y

x0 1 5

2.3 Exercises
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27. ; t � a, t � a � h

28. ; t � a, t � a � h

29–30 ■ A linear function is given.

(a) Find the average rate of change of the function between 
x � a and x � a � h.

(b) Show that the average rate of change is the same as the
slope of the line.

29. 30.

Applications

31. Changing Water Levels The graph shows the depth 
of water W in a reservoir over a one-year period, as a 
function of the number of days x since the beginning of 
the year.

(a) Determine the intervals on which the function W is
increasing and on which it is decreasing.

(b) What was the average rate of change of W between
x � 100 and x � 200?

32. Population Growth and Decline The graph shows the
population P in a small industrial city from 1950 to 2000.
The variable x represents the number of years since 1950.

(a) Determine the intervals on which the function P is
increasing and on which it is decreasing.

(b) What was the average rate of change of P between
x � 20 and x � 40?

(c) Interpret the value of the average rate of change that
you found in part (b).

x (years) 

P
(thousands) 

0

10

20

30

40

50

10 20 30 40 50

x (days) 

W (ft) 

0

25

50

75

100

100 200 300

g1x 2 � �4x � 2f 1x 2 � 1
2 x � 3

f 1t 2 � 1t

f 1t 2 �
2

t

33. Population Growth and Decline The table gives the
population in a small coastal community for the period
1997–2006. Figures shown are for January 1 in each year.

(a) What was the average rate of change of population 
between 1998 and 2001?

(b) What was the average rate of change of population 
between 2002 and 2004?

(c) For what period of time was the population increasing?

(d) For what period of time was the population decreasing?

34. Running Speed A man is running around a circular track
200 m in circumference. An observer uses a stopwatch to
record the runner’s time at the end of each lap, obtaining the
data in the following table.

(a) What was the man’s average speed (rate) between 68 s
and 152 s?

(b) What was the man’s average speed between 263 s and
412 s?

(c) Calculate the man’s speed for each lap. Is he slowing
down, speeding up, or neither?

35. CD Player Sales The table shows the number of CD play-
ers sold in a small electronics store in the years 1993–2003.

(a) What was the average rate of change of sales between
1993 and 2003?

Year Population

1997 624
1998 856
1999 1,336
2000 1,578
2001 1,591
2002 1,483
2003 994
2004 826
2005 801
2006 745

Time (s) Distance (m)

32 200
68 400

108 600
152 800
203 1000
263 1200
335 1400
412 1600



(b) Describe the differences between the way the three 
runners ran the race.

38. Changing Rates of Change: Concavity The two tables
and graphs give the distances traveled by a racing car during
two different 10-s portions of a race. In each case, calculate
the average speed at which the car is traveling between the
observed data points. Is the speed increasing or decreasing?
In other words, is the car accelerating or decelerating on
each of these intervals? How does the shape of the graph tell
you whether the car is accelerating or decelerating? (The
first graph is said to be concave up and the second graph
concave down.)

39. Functions That Are Always Increasing or Decreasing

Sketch rough graphs of functions that are defined for all real
numbers and that exhibit the indicated behavior (or explain
why the behavior is impossible).

(a) f is always increasing, and for all x

(b) f is always decreasing, and for all x

(c) f is always increasing, and for all x

(d) f is always decreasing, and for all xf 1x 2 � 0

f 1x 2 � 0

f 1x 2 	 0

f 1x 2 	 0

t (s) 

d (m) 

0

50

100

5

A

C

10

B

(b) What was the average rate of change of sales between
1993 and 1994?

(c) What was the average rate of change of sales between
1994 and 1996?

(d) Between which two successive years did CD player
sales increase most quickly? Decrease most quickly?

36. Book Collection Between 1980 and 2000, a rare book
collector purchased books for his collection at the rate of 
40 books per year. Use this information to complete the 
following table. (Note that not every year is given in the
table.)

Discovery • Discussion

37. 100-meter Race A 100-m race ends in a three-way tie 
for first place. The graph shows distance as a function of
time for each of the three winners.

(a) Find the average speed for each winner.
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Year Number of books

1980 420
1981 460
1982
1985
1990
1992
1995
1997
1998
1999
2000 1220

Time Distance
(s) (ft)

0 0
2 34
4 70
6 196
8 490

10 964

200

42 6 80 (s)

400

600

800

10

d

t 

 (ft)
(a)

Time Distance
(s) (ft)

30 5208
32 5734
34 6022
36 6204
38 6352
40 6448

d (ft)

5200

300 t (s)

5600

6000

6400

40

(b)

Year CD players sold

1993 512
1994 520
1995 413
1996 410
1997 468
1998 510
1999 590
2000 607
2001 732
2002 612
2003 584
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2.4 Transformations of Functions

In this section we study how certain transformations of a function affect its graph.
This will give us a better understanding of how to graph functions. The transforma-
tions we study are shifting, reflecting, and stretching.

Vertical Shifting

Adding a constant to a function shifts its graph vertically: upward if the constant is
positive and downward if it is negative.

Example 1 Vertical Shifts of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

Solution The function was graphed in Example 1(a), Section 2.2. It is
sketched again in Figure 1.

(a) Observe that

So the y-coordinate of each point on the graph of g is 3 units above the cor-
responding point on the graph of f. This means that to graph g we shift the 
graph of f upward 3 units, as in Figure 1.

(b) Similarly, to graph h we shift the graph of f downward 2 units, as shown. ■

In general, suppose we know the graph of . How do we obtain from it the
graphs of

The y-coordinate of each point on the graph of is c units above the 
y-coordinate of the corresponding point on the graph of . So, we obtain the
graph of simply by shifting the graph of upward c units. Sim-
ilarly, we obtain the graph of by shifting the graph of down-
ward c units.

y � f 1x 2y � f 1x 2 � c
y � f 1x 2y � f 1x 2 � c

y � f 1x 2y � f 1x 2 � c

y � f 1x 2 � c  and  y � f 1x 2 � c  1c 	 0 2y � f 1x 2

x

y

0 2

2

g(x) = x

f(x) = x2

h(x) = x2 – 2

2 + 3

Figure 1

g1x 2 � x2 � 3 � f 1x 2 � 3

f 1x 2 � x2

h1x 2 � x2 � 2g1x 2 � x2 � 3

f 1x 2 � x2

Recall that the graph of the function f
is the same as the graph of the equation

.y � f1x 2
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Example 2 Vertical Shifts of Graphs

Use the graph of , which was sketched in Example 12, Section 1.8,
to sketch the graph of each function.

(a) (b)

Solution The graph of f is sketched again in Figure 2.

(a) To graph g we shift the graph of f upward 10 units, as shown.

(b) To graph h we shift the graph of f downward 20 units, as shown.

■

Horizontal Shifting

Suppose that we know the graph of . How do we use it to obtain the 
graphs of

The value of at x is the same as the value of at x � c. Since x � c is
c units to the left of x, it follows that the graph of is just the graph ofy � f 1x � c 2f 1x 2f 1x � c 2y � f 1x � c 2  and  y � f 1x � c 2  1c 	 0 2

y � f 1x 2

y

x42_2_4

_30

30

f(x) = x3 – 9x

g(x) = x3 – 9x + 10

h(x) = x3 – 9x – 20
Figure 2

h1x 2 � x3 � 9x � 20g1x 2 � x3 � 9x � 10

f 1x 2 � x3 � 9x

Vertical Shifts of Graphs

Suppose c 	 0.

To graph , shift the graph of upward c units.

To graph , shift the graph of downward c units.

c

y

x0

c

y

x0

y=f(x)+c

y=f(x)-c

y=f(x)

y=f(x)

y � f 1x 2y � f 1x 2 � c

y � f 1x 2y � f 1x 2 � c
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shifted to the right c units. Similar reasoning shows that the graph of
is the graph of shifted to the left c units. The following box

summarizes these facts.
y � f 1x 2y � f 1x � c 2y � f 1x 2

Horizontal Shifts of Graphs

Suppose c 	 0.

To graph , shift the graph of to the right c units.

To graph , shift the graph of to the left c units.

y=Ï

y=f(x-c)

c

y

x0

y=Ï

y=f(x+c)

c

y

x0

y � f 1x 2y � f 1x � c 2 y � f 1x 2y � f 1x � c 2

Example 3 Horizontal Shifts of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

Solution

(a) To graph g, we shift the graph of f to the left 4 units.

(b) To graph h, we shift the graph of f to the right 2 units.

The graphs of g and h are sketched in Figure 3.

■

Example 4 Combining Horizontal and Vertical Shifts

Sketch the graph of .

Solution We start with the graph of (Example 1(c), Section 2.2) 
and shift it to the right 3 units to obtain the graph of . Then we shifty � 1x � 3

y � 1x

f 1x 2 � 1x � 3 � 4

1

y

1 x_4 0

™
g(x) = (x + 4)2 h(x) = (x – 2)2f(x) = x2

Figure 3

h1x 2 � 1x � 2 2 2g1x 2 � 1x � 4 2 2f 1x 2 � x2
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the resulting graph upward 4 units to obtain the graph of 
shown in Figure 4.

■

Reflecting Graphs

Suppose we know the graph of . How do we use it to obtain the graphs of
and ? The y-coordinate of each point on the graph of

is simply the negative of the y-coordinate of the corresponding point on
the graph of . So the desired graph is the reflection of the graph of 
in the x-axis. On the other hand, the value of at x is the same as the value
of at �x and so the desired graph here is the reflection of the graph of

in the y-axis. The following box summarizes these observations.y � f 1x 2y � f 1x 2 y � f 1�x 2 y � f 1x 2y � f 1x 2y � �f 1x 2 y � f 1�x 2y � �f 1x 2 y � f 1x 2

y

x0 3

4

x – 3 + 4f(x) =

(3, 4)

x – 3y =

xy =

Figure 4

f 1x 2 � 1x � 3 � 4

Reflecting Graphs

To graph , reflect the graph of in the x-axis.

To graph , reflect the graph of in the y-axis.

y=Ï

y

x0

y=_Ï

y

x0

y=f(_x)

y=Ï

y � f 1x 2y � f 1�x 2 y � f 1x 2y � �f 1x 2

Example 5 Reflecting Graphs

Sketch the graph of each function.

(a) (b)

Solution

(a) We start with the graph of y � x 2. The graph of is the graph of 
y � x 2 reflected in the x-axis (see Figure 5).

f 1x 2 � �x2

g1x 2 � 1�xf 1x 2 � �x2

y

x

y=x™

f(x)=_x™

2

2

Figure 5
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(b) We start with the graph of (Example 1(c) in Section 2.2). The graph 
of is the graph of reflected in the y-axis (see Figure 6).
Note that the domain of the function .

■

Vertical Stretching and Shrinking

Suppose we know the graph of . How do we use it to obtain the graph of
? The y-coordinate of at x is the same as the corresponding 

y-coordinate of multiplied by c. Multiplying the y-coordinates by c has the
effect of vertically stretching or shrinking the graph by a factor of c.

y � f 1x 2 y � cf 1x 2y � cf 1x 2 y � f 1x 2

y

x

y=œ∑x
g(x)=œ∑_x

0 1

1

Figure 6

g1x 2 � 1�x is 5x 0 x 
 06y � 1xg1x 2 � 1�x
y � 1x

Vertical Stretching and Shrinking of Graphs

To graph :

If c 	 1, stretch the graph of vertically by a factor of c.

If 0 � c � 1, shrink the graph of vertically by a factor of c.

y=Ï

y

x0

y=c Ïy=Ï

c >1 0 <c <1

y

x0

y=c Ï

y � f 1x 2y � f 1x 2y � cf 1x 2

Example 6 Vertical Stretching and Shrinking of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

Solution

(a) The graph of g is obtained by multiplying the y-coordinate of each point on 
the graph of f by 3. That is, to obtain the graph of g we stretch the graph of 
f vertically by a factor of 3. The result is the narrower parabola in Figure 7.

(b) The graph of h is obtained by multiplying the y-coordinate of each point on 
the graph of f by . That is, to obtain the graph of h we shrink the graph of 
f vertically by a factor of . The result is the wider parabola in Figure 7. ■

We illustrate the effect of combining shifts, reflections, and stretching in the fol-
lowing example.

1
3

1
3

h1x 2 � 1
3 x2g1x 2 � 3x2

f 1x 2 � x 2

y

x0 1

4

1
3h(x) = x2

f(x) = x2

g(x) = 3x2

Figure 7
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Example 7 Combining Shifting, Stretching, 

and Reflecting

Sketch the graph of the function .

Solution Starting with the graph of y � x 2, we first shift to the right 3 units to
get the graph of . Then we reflect in the x-axis and stretch by a factor
of 2 to get the graph of . Finally, we shift upward 1 unit to get the
graph of shown in Figure 8.

■

Horizontal Stretching and Shrinking

Now we consider horizontal shrinking and stretching of graphs. If we know the graph
of , then how is the graph of related to it? The y-coordinate of

at x is the same as the y-coordinate of at cx. Thus, the x-coordinates
in the graph of correspond to the x-coordinates in the graph of
multiplied by c. Looking at this the other way around, we see that the x-coordinates in
the graph of are the x-coordinates in the graph of multiplied by 1/c.
In other words, to change the graph of to the graph of , we must
shrink (or stretch) the graph horizontally by a factor of 1/c, as summarized in the fol-
lowing box.

y � f 1cx 2y � f 1x 2 y � f 1x 2y � f 1cx 2 y � f 1cx 2y � f 1x 2 y � f 1x 2y � f 1cx 2 y � f 1cx 2y � f 1x 2

y

x1

1

0

(3, 1)

f(x) = 1 – 2(x – 3)2

y = –2(x – 3)2

y = (x – 3)2

y = x2

Figure 8

f 1x 2 � 1 � 21x � 3 2 2y � �21x � 3 2 2y � 1x � 3 2 2
f 1x 2 � 1 � 21x � 3 2 2

Horizontal Shrinking and Stretching of Graphs

To graph :

If c 	 1, shrink the graph of horizontally by a factor of 1/c.

If 0 � c � 1, stretch the graph of horizontally by a factor of 1/c.

y=Ï

y

x0

y=f(cx)

y=Ï

y

x0

y=f(cx)

c >1 0 <c <1

y � f 1x 2y � f 1x 2y � f 1cx 2
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Example 8 Horizontal Stretching and Shrinking of Graphs

The graph of is shown in Figure 9. Sketch the graph of each function.

(a) (b)

Solution Using the principles described in the preceding box, we obtain the
graphs shown in Figures 10 and 11.

Even and Odd Functions

If a function f satisfies for every number x in its domain, then f is
called an even function. For instance, the function is even because

The graph of an even function is symmetric with respect to the y-axis (see Figure 12).
This means that if we have plotted the graph of f for x � 0, then we can obtain the 
entire graph simply by reflecting this portion in the y-axis.

If f satisfies for every number x in its domain, then f is called an
odd function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 13). If we
have plotted the graph of f for x � 0, then we can obtain the entire graph by rotating 

0

y

x

Ï=x£

x

_x

y

x

Ï=x™

0 x_x

f 1�x 2 � 1�x 2 3 � 1�1 2 3x3 � �x3 � �f 1x 2f 1x 2 � x3
f 1�x 2 � �f 1x 2

f 1�x 2 � 1�x 22 � 1�1 2 2x2 � x2 � f 1x 2f 1x 2 � x2
f 1�x 2 � f 1x 2

y

x0 1

1

2_1

y

x0 1

1

1
2

y

x0 1

1

y � f A12xBy � f 12x 2y � f 1x 2

Figure 9

y � f 1x 2

Figure 10 Figure 11

■y � f A12 xBy � f 12x 2

Figure 12 Figure 13

is an even function. is an odd function.f 1x 2 � x3f 1x 2 � x2

Sonya Kovalevsky (1850–1891) is
considered the most important
woman mathematician of the 19th
century. She was born in Moscow
to an aristocratic family. While a
child, she was exposed to the prin-
ciples of calculus in a very unusual
fashion—her bedroom was tempo-
rarily wallpapered with the pages
of a calculus book. She later wrote
that she “spent many hours in front
of that wall, trying to understand
it.” Since Russian law forbade
women from studying in universi-
ties, she entered a marriage of con-
venience, which allowed her to
travel to Germany and obtain a
doctorate in mathematics from the
University of Göttingen. She even-
tually was awarded a full pro-
fessorship at the University of
Stockholm, where she taught for
eight years before dying in an
influenza epidemic at the age of 41.
Her research was instrumental in
helping put the ideas and applica-
tions of functions and calculus on a
sound and logical foundation. She
received many accolades and
prizes for her research work.
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this portion through 180° about the origin. (This is equivalent to reflecting first in the
x-axis and then in the y-axis.)

Even and Odd Functions

Let f be a function.

f is even if for all x in the domain of f.

f is odd if for all x in the domain of f

y

x0

The graph of an even function is
symmetric with respect to the y-axis.

The graph of an odd function is
symmetric with respect to the origin.

_x x

Ïf(_x)

y

x

_x

x0

Ï

f(_x)

f 1�x 2 � �f 1x 2f 1�x 2 � f 1x 2

Example 9 Even and Odd Functions

Determine whether the functions are even, odd, or neither even nor odd.

(a) (b) (c)

Solution

(a)

Therefore, f is an odd function.

(b)

So g is even.

(c)

Since and , we conclude that h is neither even 
nor odd. ■

The graphs of the functions in Example 9 are shown in Figure 14. The graph of f
is symmetric about the origin, and the graph of g is symmetric about the y-axis. The
graph of h is not symmetric either about the y-axis or the origin.

(a) (b) (c)

2.5

_2.5

_1.75 1.75

Ï=x∞+x 2.5

_2.5

_2 2

˝=1-x¢

2.5

_2.5

_1 3

h(x)=2x-x™

h1�x 2 � �h1x 2h1�x 2 � h1x 2h 1�x 2 � 21�x 2 � 1�x 2 2 � �2x � x2

g1�x 2 � 1 � 1�x 2 4 � 1 � x4 � g1x 2
� �f 1x 2� �x5 � x � �1x5 � x 2f 1�x 2 � 1�x 2 5 � 1�x 2

h1x 2 � 2x � x2g1x 2 � 1 � x4f 1x 2 � x5 � x

Figure 14
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1–10 ■ Suppose the graph of f is given. Describe how the graph
of each function can be obtained from the graph of f.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

9. (a) (b)

10. (a) (b)

11–16 ■ The graphs of f and g are given. Find a formula for the
function g.

11.

12.

13.

1

1

0 x

y

g

f (x)=| x |

x

y

1

10

g

f(x) = x3

x

y

g

f (x) = x2
1

10

y � f 12x 2 � 1y � �f 12x 2 y � f A14 xBy � f 14x 2 y � 2f 1x � 2 2 � 2y � 2f 1x � 2 2 � 2

y � f 1x � 4 2 � 3
4y � f 1x � 4 2 � 3

4

y � 3f 1x 2 � 5y � �f 1x 2 � 5

y � � 1
2f 1x 2y � �2f 1x 2 y � f 1�x 2y � �f 1x 2 y � f 1x 2 � 1

2y � f 1x � 1
2 2 y � f 1x 2 � 7y � f 1x � 7 2 y � f 1x � 5 2y � f 1x 2 � 5

14.

15.

16.

17–18 ■ The graph of is given. Match each equation
with its graph.

17. (a) (b)

(c) (d)

y

x3

3

_3

_3

_6 6

6
➀➁

➂

➃

Ï

0

y � �f 12x 2y � 2f 1x � 6 2 y � f 1x 2 � 3y � f 1x � 4 2
y � f 1x 2

0 x

y

g

f (x)=x2

0 x

y

g

f (x)= x

10 x

y

g

f (x)=| x |
2

2.4 Exercises
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18. (a) (b)

(c) (d)

19. The graph of f is given. Sketch the graphs of the following
functions.

(a) (b)

(c) (d)

(e) (f)

20. The graph of g is given. Sketch the graphs of the following
functions.

(a) (b)

(c) (d)

(e) (f)

21. (a) Sketch the graph of by plotting points.

(b) Use the graph of f to sketch the graphs of the following
functions.

(i) (ii)

(iii) (iv) y � 1 �
1

x � 3
y �

2

x � 2

y �
1

x � 1
y � �

1
x

f 1x 2 �
1
x

x

y

g

1

10

y � 2g1x 2y � �g1x 2 � 2

y � g1x 2 � 2y � g1x � 2 2 y � �g1x � 1 2y � g1x � 1 2
x

y

1

10

f

y � 1
2f 1x � 1 2y � f 1�x 2 y � �f 1x 2 � 3y � 2f 1x 2 y � f 1x 2 � 2y � f 1x � 2 2

y

x3

3

_3

_3

_6 6

6 ➀

➁

➂

➃
Ï

0

y � f 1�x 2y � f 1x � 4 2 � 3

y � �f 1x � 4 2y � 1
3f 1x 2 22. (a) Sketch the graph of by plotting points.

(b) Use the graph of g to sketch the graphs of the following
functions.

(i) (ii)

(iii) (iv)

23–26 ■ Explain how the graph of g is obtained from the graph
of f.

23. (a)

(b)

24. (a)

(b)

25. (a)

(b)

26. (a)

(b)

27–32 ■ A function f is given, and the indicated transforma-
tions are applied to its graph (in the given order). Write the
equation for the final transformed graph.

27. ; shift upward 3 units and shift 2 units to the 
right

28. ; shift downward 1 unit and shift 4 units to 
the left

29. ; shift 3 units to the left, stretch vertically by a
factor of 5, and reflect in the x-axis

30. ; reflect in the y-axis, shrink vertically by a fac-
tor of , and shift upward unit

31. ; shift to the right unit, shrink vertically by a
factor of 0.1, and shift downward 2 units

32. ; shift to the left 1 unit, stretch vertically by a
factor of 3, and shift upward 10 units

33–48 ■ Sketch the graph of the function, not by plotting
points, but by starting with the graph of a standard function and
applying transformations.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48. y � 2 � 0 x 0y � 0 x � 2 0 � 2

y � 0 x � 1 0y � 0 x 0 � 1

y � 1
3 x3 � 1y � 5 � 1x � 3 2 2 y � 3 � 21x � 1 2 2y � 1

21x � 4 � 3

y � 2 � 1x � 1y � 1 � 1x

f 1x 2 � �x3f 1x 2 � x3 � 2

f 1x 2 � 1 � x2f 1x 2 � �1x � 1 2 2 f 1x 2 � 1x � 7 2 2f 1x 2 � 1x � 2 2 2

f 1x 2 � 0 x 0
1
2f 1x 2 � 0 x 0 3

5
1
2

f 1x 2 � 13 x

f 1x 2 � 1x

f 1x 2 � x3

f 1x 2 � x2

f 1x 2 � 0 x 0 , g1x 2 � � 0 x � 1 0f 1x 2 � 0 x 0 , g1x 2 � 3 0 x 0 � 1

f 1x 2 � 1x, g1x 2 � 1
21x � 2

f 1x 2 � 1x, g1x 2 � 21x

f 1x 2 � x3, g1x 2 � x3 � 4

f 1x 2 � x3, g1x 2 � 1x � 4 2 3f 1x 2 � x2, g1x 2 � x2 � 2

f 1x 2 � x2, g1x 2 � 1x � 2 2 2
y � 213 xy � 1 � 13 x

y � 13 x � 2 � 2y � 13 x � 2

g1x 2 � 13 x
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49–52 ■ Graph the functions on the same screen using the
given viewing rectangle. How is each graph related to the graph
in part (a)?

49. Viewing rectangle 3�8, 84 by 3�2, 84
(a) (b)

(c) (d)

50. Viewing rectangle 3�8, 84 by 3�6, 64
(a) (b)

(c) (d)

51. Viewing rectangle 3�4, 64 by 3�4, 44
(a) (b)

(c) (d)

52. Viewing rectangle 3�6, 64 by 3�4, 44
(a) (b)

(c) (d)

53. The graph of g is given. Use it to graph each of the 
following functions.

(a) (b)

54. The graph of h is given. Use it to graph each of the 
following functions.

(a) (b)

55–56 ■ The graph of a function defined for x � 0 is given.
Complete the graph for x � 0 to make

(a) an even function

(b) an odd function

y

x

h

0 3

_3

y � hA13 xBy � h13x 2

x

y

1

10

g

y � gA12xBy � g12x 2
y �

1

21x � 3
� 3y �

1

21x � 3

y �
1

1x � 3
y �

1

1x

y � � 1
3 1x � 4 2 6y � � 1

3 x 6

y � 1
3 x 6y � x6

y � �3 0 x � 5 0y � �3 0 x 0 y � � 0 x 0y � 0 x 0
y � 4 � 214 x � 5y � 214 x � 5

y � 14 x � 5y � 14 x

55. 56.

57–58 ■ Use the graph of described on pages
162–163 to graph the indicated function.

57. 58.

59. If , graph the following functions in the
viewing rectangle 3�5, 54 by 3�4, 44. How is each graph re-
lated to the graph in part (a)?

(a) (b) (c)

60. If , graph the following functions in the
viewing rectangle 3�5, 54 by 3�4, 44. How is each graph 
related to the graph in part (a)?

(a) (b) (c)

(d) (e)

61–68 ■ Determine whether the function f is even, odd, or 
neither. If f is even or odd, use symmetry to sketch its graph.

61. 62.

63. 64.

65. 66.

67. 68.

69. The graphs of and
are shown. Explain how the graph of g is obtained from 
the graph of f.

y

x2

4

_2

8

0

_4

˝=| ≈-4 |

y

x2

4

_2

_4

8

0

Ï=≈-4

g1x 2 � 0 x2 � 4 0f1x 2 � x2 � 4

f 1x 2 � x �
1
x

f 1x 2 � 1 � 13 x

f 1x 2 � 3x3 � 2x2 � 1f 1x 2 � x3 � x

f 1x 2 � x4 � 4x2f 1x 2 � x2 � x

f 1x 2 � x�3f 1x 2 � x�2

y � f A� 1
2xBy � f 1�2x 2 y � �f 1�x 2y � f 1�x 2y � f 1x 2

f 1x 2 � 22x � x2

y � f A12xBy � f 12x 2y � f 1x 2
f 1x 2 � 22x � x2

y � “
1
4 x‘y � “2x‘

f 1x 2 � “ x‘

x

y

1

10x

y

1

10
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70. The graph of is shown. Use this graph to
sketch the graph of .

71–72 ■ Sketch the graph of each function.

71. (a) (b)

72. (a) (b)

Applications

73. Sales Growth The annual sales of a certain company 
can be modeled by the function , where 
t represents years since 1990 and is measured in 
millions of dollars.

(a) What shifting and shrinking operations must be per-
formed on the function y � t 2 to obtain the function

?

(b) Suppose you want t to represent years since 2000 in-
stead of 1990. What transformation would you have to
apply to the function to accomplish this? Write
the new function that results from this trans-
formation.

y � g1t 2y � f 1t 2
y � f 1t 2

f 1t 2f 1t 2 � 4 � 0.01t2

g1x 2 � 0 x3 0f 1x 2 � x3

g1x 2 � 0 4x � x2 0f 1x 2 � 4x � x2

1 3

2

4

_1_3

_4

y

x

g1x 2 � 0 x4 � 4x2 0f 1x 2 � x4 � 4x 2 74. Changing Temperature Scales The temperature on a
certain afternoon is modeled by the function

where t represents hours after 12 noon , and C
is measured in �C.

(a) What shifting and shrinking operations must be per-
formed on the function y � t 2 to obtain the function

?

(b) Suppose you want to measure the temperature in �F
instead. What transformation would you have to 
apply to the function to accomplish this? 
(Use the fact that the relationship between Celsius and
Fahrenheit degrees is given by .) Write 
the new function that results from this 
transformation.

Discovery • Discussion

75. Sums of Even and Odd Functions If f and g are both
even functions, is f � g necessarily even? If both are odd, is
their sum necessarily odd? What can you say about the sum
if one is odd and one is even? In each case, prove your 
answer.

76. Products of Even and Odd Functions Answer the same
questions as in Exercise 75, except this time consider the
product of f and g instead of the sum.

77. Even and Odd Power Functions What must be true
about the integer n if the function

is an even function? If it is an odd function? Why do you
think the names “even” and “odd” were chosen for these
function properties?

f 1x 2 � x n

y � F1t 2 F � 9
5C � 32

y � C1t 2
y � C1t 2

10 
 t 
 6 2C1t 2 � 1
2t2 � 2

2.5 Quadratic Functions; Maxima and Minima

A maximum or minimum value of a function is the largest or smallest value of the
function on an interval. For a function that represents the profit in a business, we
would be interested in the maximum value; for a function that represents the amount
of material to be used in a manufacturing process, we would be interested in the min-
imum value. In this section we learn how to find the maximum and minimum values
of quadratic and other functions.
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Graphing Quadratic Functions Using the 

Standard Form

A quadratic function is a function f of the form

where a, b, and c are real numbers and a � 0.
In particular, if we take a � 1 and b � c � 0, we get the simple quadratic func-

tion whose graph is the parabola that we drew in Example 1 of Section 2.2.
In fact, the graph of any quadratic function is a parabola; it can be obtained from the
graph of by the transformations given in Section 2.4.f 1x 2 � x2

f 1x 2 � x2

f 1x 2 � ax2 � bx � c

Standard Form of a Quadratic Function

A quadratic function can be expressed in the standard
form

by completing the square. The graph of f is a parabola with vertex ; the
parabola opens upward if a 	 0 or downward if a � 0.

y

x0

Ï=a(x-h)™+k,  a>0

y

x0

Ï=a(x-h)™+k,  a<0

h

k

h

Vertex (h, k)

Vertex (h, k)

k

1h, k 2f 1x 2 � a1x � h 2 2 � k

f 1x 2 � ax2 � bx � c

Example 1 Standard Form of a Quadratic Function

Let .

(a) Express f in standard form.

(b) Sketch the graph of f.

Solution

(a) Since the coefficient of x 2 is not 1, we must factor this coefficient from the
terms involving x before we complete the square.

Factor 2 from the x-terms

Factor and simplify

The standard form is .f 1x 2 � 21x � 3 2 2 � 5

� 21x � 3 2 2 � 5

Complete the square: Add 9 inside
parentheses, subtract 2 � 9 outside� 21x2 � 6x � 9 2 � 23 � 2 # 9

� 21x2 � 6x 2 � 23

f 1x 2 � 2x2 � 12x � 23

f 1x 2 � 2x2 � 12x � 23

Completing the square is discussed 
in Section 1.5.

f 1x 2 � 21x � 3 2 2 � 5

Vertex is 13, 5 2
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(b) The standard form tells us that we get the graph of f by taking the parabola 
y � x 2, shifting it to the right 3 units, stretching it by a factor of 2, and moving
it upward 5 units. The vertex of the parabola is at and the parabola opens
upward. We sketch the graph in Figure 1 after noting that the y-intercept is

.

■

Maximum and Minimum Values 

of Quadratic Functions

If a quadratic function has vertex , then the function has a minimum value at the
vertex if it opens upward and a maximum value at the vertex if it opens downward.
For example, the function graphed in Figure 1 has minimum value 5 when x � 3,
since the vertex is the lowest point on the graph.13, 5 2

1h, k 2

y

x

25

Vertex (3, 5)

Ï=2(x-3)™+5

23

15

5

30Figure 1

f 10 2 � 23

13, 5 2

Maximum or Minimum Value of a Quadratic Function

Let f be a quadratic function with standard form . The
maximum or minimum value of f occurs at x � h.

If a 	 0, then the minimum value of f is

If a � 0, then the maximum value of f is

y

x0

y

x0
h

k

h

Minimum

Maximum

k

Ï=a(x-h)™+k, a>0 Ï=a(x-h)™+k, a<0

f 1h 2 � k.

f 1h 2 � k.

f 1x 2 � a1x � h 2 2 � k
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Example 2 Minimum Value of a Quadratic Function

Consider the quadratic function .

(a) Express f in standard form.

(b) Sketch the graph of f.

(c) Find the minimum value of f.

Solution

(a) To express this quadratic function in standard form, we complete the square.

Factor 5 from the x-terms

Factor and simplify

(b) The graph is a parabola that has its vertex at and opens upward, as
sketched in Figure 2.

(c) Since the coefficient of x 2 is positive, f has a minimum value. The minimum
value is . ■

Example 3 Maximum Value of a Quadratic Function

Consider the quadratic function .

(a) Express f in standard form.

(b) Sketch the graph of f.

(c) Find the maximum value of f.

Solution

(a) To express this quadratic function in standard form, we complete the square.

Factor �1 from the x-terms

Factor and simplify

(b) From the standard form we see that the graph is a parabola that opens down-
ward and has vertex . As an aid to sketching the graph, we find the inter-
cepts. The y-intercept is . To find the x-intercepts, we set and
factor the resulting equation.

�1x � 2 2 1x � 1 2 � 0

�1x2 � x � 2 2 � 0

�x2 � x � 2 � 0

f 1x 2 � 0f 10 2 � 2
A12, 9

4B
� �Ax � 1

2B2 � 9
4

� �Ax2 � x � 1
4B � 2 � 1�1 2 14

� �1x2 � x 2 � 2

y � �x2 � x � 2

f 1x 2 � �x2 � x � 2

f 13 2 � 4

13, 4 2� 51x � 3 2 2 � 4

Complete the square: Add 9 inside
parentheses, subtract 5 � 9 outside� 51x2 � 6x � 9 2 � 49 � 5 # 9

� 51x2 � 6x 2 � 49

f 1x 2 � 5x2 � 30x � 49

f 1x 2 � 5x2 � 30x � 49

y

x3

4

Ï=5(x-3)™+4

(3, 4)

0

49

Minimum
value 4

Complete the square: Add 
inside parentheses, subtract

outside1�1 2 14
1
4

Figure 2
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Thus, the x-intercepts are x � 2 and x � �1. The graph of f is sketched in 
Figure 3.

(c) Since the coefficient of x 2 is negative, f has a maximum value, which is
. ■

Expressing a quadratic function in standard form helps us sketch its graph as well
as find its maximum or minimum value. If we are interested only in finding the max-
imum or minimum value, then a formula is available for doing so. This formula is ob-
tained by completing the square for the general quadratic function as follows:

Factor a from the x-terms

Factor

This equation is in standard form with and . Since
the maximum or minimum value occurs at x � h, we have the following result.

k � c � b2/ 14a 2h � �b/ 12a 2� a a x �
b

2a
b 2

� c �
b2

4a

� a a x 2 �
b
a

x �
b2

4a2 b � c � a a b2

4a2 b
� a a x 2 �

b
a

x b � c

f 1x 2 � ax 2 � bx � c

f A12B � 9
4

y

x

1

10

!   ,    @
1

2

9

4 9
4

2_1

Maximum value

Figure 3

Graph of f 1x 2 � �x2 � x � 2

Complete the square: 

Add inside parentheses, 

subtract a outsidea b2

4a2
b

b2

4a2

Maximum or Minimum Value of a Quadratic Function

The maximum or minimum value of a quadratic function
occurs at

If a 	 0, then the minimum value is .

If a � 0, then the maximum value is .f a� b

2a
b

f a� b

2a
b

x � �
b

2a

f 1x 2 � ax2 � bx � c
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Example 4 Finding Maximum and Minimum Values 

of Quadratic Functions

Find the maximum or minimum value of each quadratic function.

(a) (b)

Solution

(a) This is a quadratic function with a � 1 and b � 4. Thus, the maximum or 
minimum value occurs at

Since a 	 0, the function has the minimum value

(b) This is a quadratic function with a � �2 and b � 4. Thus, the maximum or
minimum value occurs at

Since a � 0, the function has the maximum value

■

Many real-world problems involve finding a maximum or minimum value for a
function that models a given situation. In the next example we find the maximum
value of a quadratic function that models the gas mileage for a car.

Example 5 Maximum Gas Mileage for a Car

Most cars get their best gas mileage when traveling at a relatively modest speed.
The gas mileage M for a certain new car is modeled by the function

where s is the speed in mi/h and M is measured in mi/gal. What is the car’s best gas
mileage, and at what speed is it attained?

Solution The function M is a quadratic function with and b � 3. Thus,
its maximum value occurs when

The maximum is . So the car’s best gas
mileage is 32 mi/gal, when it is traveling at 42 mi/h. ■

Using Graphing Devices to Find Extreme Values

The methods we have discussed apply to finding extreme values of quadratic func-
tions only. We now show how to locate extreme values of any function that can be
graphed with a calculator or computer.

M142 2 � � 1
28 142 2 2 � 3142 2 � 31 � 32

s � �
b

2a
� �

3

2A� 1
28B � 42

a � � 1
28

M1s 2 � �
1

28
s2 � 3s � 31,  15 
 s 
 70

f 11 2 � �211 2 2 � 411 2 � 5 � �3

x � �
b

2a
� �

4

2 # 1�2 2 � 1

f 1�2 2 � 1�2 2 2 � 41�2 2 � �4

x � �
b

2a
� �

4

2 # 1 � �2

g1x 2 � �2x2 � 4x � 5f 1x 2 � x2 � 4x

4

_6

_5 2

The minimum value
occurs at x = _2.

1

_6

_2 4

The maximum value
occurs at x = 1.

15 70

40

0

The maximum gas
mileage occurs at 42 mi/h.
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If there is a viewing rectangle such that the point is the highest point on
the graph of f within the viewing rectangle (not on the edge), then the number 
is called a local maximum value of f (see Figure 4). Notice that for all
numbers x that are close to a.

Similarly, if there is a viewing rectangle such that the point is the lowest
point on the graph of f within the viewing rectangle, then the number is called 
a local minimum value of f. In this case, for all numbers x that are 
close to b.

Example 6 Finding Local Maxima and Minima 

from a Graph

Find the local maximum and minimum values of the function ,
correct to three decimals.

Solution The graph of f is shown in Figure 5. There appears to be one local
maximum between x � �2 and x � �1, and one local minimum between x � 1
and x � 2.

Let’s find the coordinates of the local maximum point first. We zoom in to 
enlarge the area near this point, as shown in Figure 6. Using the feature 
on the graphing device, we move the cursor along the curve and observe how the 
y-coordinates change. The local maximum value of y is 9.709, and this value occurs
when x is �1.633, correct to three decimals.

We locate the minimum value in a similar fashion. By zooming in to the viewing
rectangle shown in Figure 7, we find that the local minimum value is about �7.709,
and this value occurs when x � 1.633.

Figure 6 Figure 7 ■

1.6
_7.7

_7.71

1.7

_1.7

9.71

9.7
_1.6

TRACE

f 1x 2 � x3 � 8x � 1

f 1b 2 
 f 1x 2 f 1b 21b, f 1b 22
x

y

0 a b

Local minimum
value f(b)

Local maximum
value f(a)

Figure 4

f 1a 2 � f 1x 2 f 1a 21a, f 1a 22

20

_20

_5 5

Figure 5

Graph of f 1x 2 � x3 � 8x � 1
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The maximum and minimum commands on a TI-82 or TI-83 calculator provide
another method for finding extreme values of functions. We use this method in the
next example.

Example 7 A Model for the Food Price Index

A model for the food price index (the price of a representative “basket” of foods)
between 1990 and 2000 is given by the function

where t is measured in years since midyear 1990, so 0 
 t 
 10, and is scaled
so that . Estimate the time when food was most expensive during the 
period 1990–2000.

Solution The graph of I as a function of t is shown in Figure 8(a). There appears
to be a maximum between t � 4 and t � 7. Using the maximum command, as
shown in Figure 8(b), we see that the maximum value of I is about 100.38, and it
occurs when t � 5.15, which corresponds to August 1995.

2.5 Exercises

Figure 8 ■

0

102

96
10

(a)

0

102

96
10

(b)

Maximum
X=5.1514939   Y=100.38241

I13 2 � 100
I1t 2I1t 2 � �0.0113t3 � 0.0681t2 � 0.198t � 99.1

1–4 ■ The graph of a quadratic function f is given.

(a) Find the coordinates of the vertex.

(b) Find the maximum or minimum value of f.

1. 2.

5

10 x

y

1

10 x

y

f 1x 2 � � 1
2 x2 � 2x � 6f 1x 2 � �x2 � 6x � 5 3. 4.

1

10 x

y

1

10 x

y

f 1x 2 � 3x2 � 6x � 1f 1x 2 � 2x2 � 4x � 1
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5–18 ■ A quadratic function is given.

(a) Express the quadratic function in standard form.

(b) Find its vertex and its x- and y-intercept(s).

(c) Sketch its graph.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19–28 ■ A quadratic function is given.

(a) Express the quadratic function in standard form.

(b) Sketch its graph.

(c) Find its maximum or minimum value.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29–38 ■ Find the maximum or minimum value of the function.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. Find a function whose graph is a parabola with vertex
and that passes through the point .

40. Find a function whose graph is a parabola with vertex 
and that passes through the point .

41–44 ■ Find the domain and range of the function.

41. 42.

43. 44.

45–46 ■ A quadratic function is given.

(a) Use a graphing device to find the maximum or minimum
value of the quadratic function f, correct to two decimal
places.

(b) Find the exact maximum or minimum value of f, and 
compare with your answer to part (a).

f 1x 2 � �3x2 � 6x � 4f 1x 2 � 2x2 � 6x � 7

f 1x 2 � x2 � 2x � 3f 1x 2 � �x2 � 4x � 3

11, �8 2 13, 4 214, 16 211, �2 2
g1x 2 � 2x1x � 4 2 � 7f 1x 2 � 3 � x � 1

2 x2

f 1x 2 � �
x2

3
� 2x � 7h1x 2 � 1

2 x2 � 2x � 6

g1x 2 � 100x2 � 1500xf 1s 2 � s2 � 1.2s � 16

f 1t 2 � 10t2 � 40t � 113f 1t 2 � 100 � 49t � 7t2

f 1x 2 � 1 � 3x � x2f 1x 2 � x2 � x � 1

h1x 2 � 3 � 4x � 4x2h1x 2 � 1 � x � x2

g1x 2 � 2x2 � 8x � 11g1x 2 � 3x2 � 12x � 13

f 1x 2 � 1 � 6x � x2f 1x 2 � �x2 � 3x � 3

f 1x 2 � x2 � 8x � 8f 1x 2 � x2 � 2x � 1

f 1x 2 � x � x2f 1x 2 � 2x � x2

f 1x 2 � 6x2 � 12x � 5f 1x 2 � �4x2 � 16x � 3

f 1x 2 � 2x2 � x � 6f 1x 2 � 2x2 � 20x � 57

f 1x 2 � �3x2 � 6x � 2f 1x 2 � 2x2 � 4x � 3

f 1x 2 � �x2 � 4x � 4f 1x 2 � �x2 � 6x � 4

f 1x 2 � x2 � 2x � 2f 1x 2 � x2 � 4x � 3

f 1x 2 � �x2 � 10xf 1x 2 � 2x2 � 6x

f 1x 2 � x2 � 8xf 1x 2 � x2 � 6x

45.

46.

47–50 ■ Find all local maximum and minimum values of the
function whose graph is shown.

47. 48.

49. 50.

51–58 ■ Find the local maximum and minimum values of 
the function and the value of x at which each occurs. State each
answer correct to two decimal places.

51. 52.

53. 54.

55. 56.

57. 58.

Applications

59. Height of a Ball If a ball is thrown directly upward with a
velocity of 40 ft/s, its height (in feet) after t seconds is given
by y � 40t � 16t 2. What is the maximum height attained by
the ball?

60. Path of a Ball A ball is thrown across a playing field. 
Its path is given by the equation y � �0.005x 2 � x � 5,

V1x 2 �
1

x2 � x � 1
V1x 2 �

1 � x2

x3

U1x 2 � x2x � x2U1x 2 � x16 � x

g1x 2 � x5 � 8x3 � 20xg1x 2 � x4 � 2x3 � 11x2

f 1x 2 � 3 � x � x2 � x3f 1x 2 � x3 � x

1

10 x

y

1

1

0

x

y

1

10 x

y

1

10 x

y

f 1x 2 � 1 � x � 12x2

f 1x 2 � x2 � 1.79x � 3.21



202 CHAPTER 2 Functions

where x is the distance the ball has traveled horizontally,
and y is its height above ground level, both measured 
in feet.

(a) What is the maximum height attained by the ball?

(b) How far has it traveled horizontally when it hits the
ground?

61. Revenue A manufacturer finds that the revenue generated
by selling x units of a certain commodity is given by the
function , where the revenue 
is measured in dollars. What is the maximum revenue,
and how many units should be manufactured to obtain this
maximum?

62. Sales A soft-drink vendor at a popular beach analyzes his
sales records, and finds that if he sells x cans of soda pop in
one day, his profit (in dollars) is given by

What is his maximum profit per day, and how many cans
must he sell for maximum profit?

63. Advertising The effectiveness of a television com-
mercial depends on how many times a viewer watches it.
After some experiments an advertising agency found 
that if the effectiveness E is measured on a scale of 
0 to 10, then

where n is the number of times a viewer watches a given
commercial. For a commercial to have maximum effective-
ness, how many times should a viewer watch it?

64. Pharmaceuticals When a certain drug is taken orally,
the concentration of the drug in the patient’s bloodstream 
after t minutes is given by , where
0 
 t 
 240 and the concentration is measured in mg/L.
When is the maximum serum concentration reached, and
what is that maximum concentration?

65. Agriculture The number of apples produced by each tree
in an apple orchard depends on how densely the trees are
planted. If n trees are planted on an acre of land, then each
tree produces 900 � 9n apples. So the number of apples
produced per acre is

A1n 2 � n1900 � 9n 2

C1t 2 � 0.06t � 0.0002t2

E1n 2 � 2
3 n � 1

90 n2

P1x 2 � �0.001x2 � 3x � 1800

R1x 2R1x 2 � 80x � 0.4x2

How many trees should be planted per acre in order to 
obtain the maximum yield of apples?

66. Migrating Fish A fish swims at a speed √ relative to the
water, against a current of 5 mi/h. Using a mathematical
model of energy expenditure, it can be shown that the total
energy E required to swim a distance of 10 mi is given by

Biologists believe that migrating fish try to minimize the 
total energy required to swim a fixed distance. Find the
value of √ that minimizes energy required.

NOTE This result has been verified; migrating fish swim 
against a current at a speed 50% greater than the speed of the
current.

67. Highway Engineering A highway engineer wants to 
estimate the maximum number of cars that can safely travel
a particular highway at a given speed. She assumes that each
car is 17 ft long, travels at a speed s, and follows the car in
front of it at the “safe following distance” for that speed.
She finds that the number N of cars that can pass a given
point per minute is modeled by the function

At what speed can the greatest number of cars travel the
highway safely?

68. Volume of Water Between 0�C and 30 �C, the volume V
(in cubic centimeters) of 1 kg of water at a temperature T is
given by the formula

Find the temperature at which the volume of 1 kg of water is
a minimum.

V � 999.87 � 0.06426T � 0.0085043T 2 � 0.0000679T 3

N1s 2 �
88s

17 � 17 a s

20
b 2

E1√ 2 � 2.73√ 3 10

√ � 5
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2.6 Modeling with Functions

Many of the processes studied in the physical and social sciences involve under-
standing how one quantity varies with respect to another. Finding a function that de-
scribes the dependence of one quantity on another is called modeling. For example,
a biologist observes that the number of bacteria in a certain culture increases with
time. He tries to model this phenomenon by finding the precise function (or rule) that
relates the bacteria population to the elapsed time.

In this section we will learn how to find models that can be constructed using geo-
metric or algebraic properties of the object under study. (Finding models from data is
studied in the Focus on Modeling at the end of this chapter.) Once the model is found,
we use it to analyze and predict properties of the object or process being studied.

Modeling with Functions

We begin with a simple real-life situation that illustrates the modeling process.

Example 1 Modeling the Volume of a Box

A breakfast cereal company manufactures boxes to package their product. For 
aesthetic reasons, the box must have the following proportions: Its width is 3 times
its depth and its height is 5 times its depth.

(a) Find a function that models the volume of the box in terms of its depth.

(b) Find the volume of the box if the depth is 1.5 in.

(c) For what depth is the volume 90 in3?

(d) For what depth is the volume greater than 60 in3?

69. Coughing When a foreign object lodged in the trachea
(windpipe) forces a person to cough, the diaphragm thrusts
upward causing an increase in pressure in the lungs. At the
same time, the trachea contracts, causing the expelled air to
move faster and increasing the pressure on the foreign ob-
ject. According to a mathematical model of coughing, the
velocity √ of the airstream through an average-sized person’s
trachea is related to the radius r of the trachea (in centime-
ters) by the function

Determine the value of r for which √ is a maximum.

Discovery • Discussion

70. Maxima and Minima In Example 5 we saw a real-world
situation in which the maximum value of a function is im-
portant. Name several other everyday situations in which a
maximum or minimum value is important.

√ 1r 2 � 3.211 � r 2r 2,  1
2 
 r 
 1

71. Minimizing a Distance When we seek a minimum or
maximum value of a function, it is sometimes easier to work
with a simpler function instead.

(a) Suppose , where for all x.
Explain why the local minima and maxima of f and g

occur at the same values of x.

(b) Let be the distance between the point and 
the point on the graph of the parabola y � x 2.
Express g as a function of x.

(c) Find the minimum value of the function g that you
found in part (b). Use the principle described in part (a)
to simplify your work.

72. Maximum of a Fourth-Degree Polynomial Find the
maximum value of the function

[Hint: Let t � x 2.]

f 1x 2 � 3 � 4x2 � x4

1x,x2 2 13,0 2g1x 2
f 1x 2 � 0g1x 2 � 1f 1x 2
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Solution

(a) To find the function that models the volume of the box, we use the following
steps.

■ Express the Model in Words

We know that the volume of a rectangular box is

� � �

■ Choose the Variable

There are three varying quantities—width, depth, and height. Since the function 
we want depends on the depth, we let

Then we express the other dimensions of the box in terms of x.

In Words In Algebra

Depth x

Width 3x

Height 5x

■ Set up the Model

The model is the function V that gives the volume of the box in terms of the depth x.

� � �

The volume of the box is modeled by the function . The function V is
graphed in Figure 1.

V1x 2 � 15x3

V1x 2 � 15x3

V1x 2 � x # 3x # 5x

heightwidthdepthvolume

x � depth of the box

heightwidthdepthvolume

0

400

3

Figure 1

■ Thinking About the Problem

Let’s experiment with the problem. If the depth is 1 in, then the width is 3 in.
and the height is 5 in. So in this case, the volume is V � 1 � 3 � 5 � 15 in3.
The table gives other values. Notice that all the boxes have the same shape,
and the greater the depth the greater the volume.

Depth Volume

1 1 � 3 � 5 � 15

2 2 � 6 � 10 � 120

3 3 � 9 � 15 � 405

4 4 � 12 � 20 � 960

3x

5x

x
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■ Use the Model

We use the model to answer the questions in parts (b), (c), and (d).

(b) If the depth is 1.5 in., the volume is in3.

(c) We need to solve the equation or

.

The volume is 90 in3 when the depth is about 1.82 in. (We can also solve this 
equation graphically, as shown in Figure 2.)

(d) We need to solve the inequality 

The volume will be greater than 60 in3 if the depth is greater than 1.59 in. (We can
also solve this inequality graphically, as shown in Figure 3.) ■

The steps in Example 1 are typical of how we model with functions. They are 
summarized in the following box.

x 	 13 4 � 1.59

x3 	 4

 15x3 	 60

V1x 2 	 60 or

x � 13 6 � 1.82 in

x3 � 6

 15x3 � 90

V1x 2 � 90

V11.5 2 � 1511.5 2 3 � 50.625

0

400

3

15x£=90

y=15x£

y=90

Figure 2

Guidelines for Modeling with Functions

1. Express the Model in Words. Identify the quantity you want to model
and express it, in words, as a function of the other quantities in the problem.

2. Choose the Variable. Identify all the variables used to express the func-
tion in Step 1. Assign a symbol, such as x, to one variable and express the
other variables in terms of this symbol.

3. Set up the Model. Express the function in the language of algebra by 
writing it as a function of the single variable chosen in Step 2.

4. Use the Model. Use the function to answer the questions posed in the 
problem. (To find a maximum or a minimum, use the algebraic or graphical
methods described in Section 2.5.)

Example 2 Fencing a Garden

A gardener has 140 feet of fencing to fence in a rectangular vegetable garden.

(a) Find a function that models the area of the garden she can fence.

(b) For what range of widths is the area greater than or equal to 825 ft2?

(c) Can she fence a garden with area 1250 ft2?

(d) Find the dimensions of the largest area she can fence.

0

400

3

15x£>60

y=15x£

y=60

Figure 3
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Solution

(a) The model we want is a function that gives the area she can fence.

■ Express the Model in Words

We know that the area of a rectangular garden is

� �

■ Choose the Variable

There are two varying quantities—width and length. Since the function we want 
depends on only one variable, we let

Then we must express the length in terms of x. The perimeter is fixed at 140 ft, so
the length is determined once we choose the width. If we let the length be l as in 
Figure 4, then 2x � 2l � 140, so l � 70 � x. We summarize these facts.

In Words In Algebra

Width x

Length 70 � x

■ Set up the Model

The model is the function A that gives the area of the garden for any width x.

� �

The area she can fence is modeled by the function .A1x 2 � 70x � x2

A1x 2 � 70x � x2

A1x 2 � x170 � x 2 lengthwidtharea

x � width of the garden

lengthwidtharea

x

l

x

l

Figure 4

■ Thinking About the Problem

If the gardener fences a plot with width 10 ft, then the length must be 60 ft,
because 10 � 10 � 60 � 60 � 140. So the area is

The table shows various choices for fencing the garden. We see that as the
width increases, the fenced area increases, then decreases.

Width Length Area

10 60 600
20 50 1000
30 40 1200
40 30 1200
50 20 1000
60 10 600

A � width � length � 10 # 60 � 600 ft2

length

width
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■ Use the Model

We use the model to answer the questions in parts (b)–(d).

(b) We need to solve the inequality . To solve graphically, we graph 
y � 70x � x 2 and y � 825 in the same viewing rectangle (see Figure 5). We see
that 15 
 x 
 55.

(c) From Figure 6 we see that the graph of always lies below the line y � 1250,
so an area of 1250 ft2 is never attained.

(d) We need to find the maximum value of the function . Since this
is a quadratic function with a � �1 and b � 70, the maximum occurs at

So the maximum area that she can fence has width 35 ft and length 70 � 35 � 35 ft.

Figure 5 Figure 6 ■

Example 3 Maximizing Revenue from Ticket Sales

A hockey team plays in an arena with a seating capacity of 15,000 spectators. 
With the ticket price set at $14, average attendance at recent games has been 9500.
A market survey indicates that for each dollar the ticket price is lowered, the 
average attendance increases by 1000.

(a) Find a function that models the revenue in terms of ticket price.
(b) What ticket price is so high that no one attends, and hence no revenue is 

generated?
(c) Find the price that maximizes revenue from ticket sales.

1500

_100

_5 75

y=70x-≈

y=1250

1500

_100

_5 75

y=70x-≈

y=825

x � �
b

2a
� �

70

21�1 2 � 35

A1x 2 � 70x � x2

A1x 2
A1x 2 � 825

■ Thinking About the Problem

With a ticket price of $14, the revenue is 9500 � $14 � $133,000. If the
ticket price is lowered to $13, attendance increases to 9500 � 1000 � 10,500,
so the revenue becomes 10,500 � $13 � $136,500. The table shows the rev-
enue for several ticket prices. Note that if the ticket price is lowered, revenue
increases, but if the ticket price is lowered too much, revenue decreases.

Price Attendance Revenue

$15 8,500 $127,500
$14 9,500 $133,500
$13 10,500 $136,500
$12 11,500 $138,500
$11 12,500 $137,500
$10 13,500 $135,500
$9 14,500 $130,500

Maximum values of quadratic functions
are discussed on page 195.
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Solution

(a) The model we want is a function that gives the revenue for any ticket price.

■ Express the Model in Words

We know that

� �

■ Choose the Variable

There are two varying quantities—ticket price and attendance. Since the function
we want depends on price, we let

Next, we must express the attendance in terms of x.

In Words In Algebra

Ticket price x

Amount ticket price is lowered 14 � x

Increase in attendance

Attendance

■ Set up the Model

The model is the function R that gives the revenue for a given ticket price x.

� �

■ Use the Model

We use the model to answer the questions in parts (b) and (c).

(b) We want to find the ticket price x for which 
We can solve this quadratic equation algebraically or graphically. From the
graph in Figure 7 we see that when x � 0 or x � 23.5. So, according
to our model, the revenue would drop to zero if the ticket price is $23.50 or
higher. (Of course, revenue is also zero if the ticket price is zero!)

(c) Since is a quadratic function with a � �1000 and 
b � 23,500, the maximum occurs at

So a ticket price of $11.75 yields the maximum revenue. At this price the 
revenue is

■R111.75 2 � 23,500111.75 2 � 1000111.75 2 2 � $138,062.50

x � �
b

2a
� �

23,500

21�1000 2 � 11.75

R1x 2 � 23,500x � 1000x2

R1x 2 � 0

R1x 2 � 23,500x � 1000x2 � 0.

R1x 2 � 23,500x � 1000x2

R1x 2 � x123,500 � 1000x 2attendanceticket pricerevenue

9500 � 1000114 � x 2 � 23,500 � 1000x

1000114 � x 2

x � ticket price

attendanceticket pricerevenue

150,000

_50,000

_5 25

Figure 7

Maximum values of quadratic functions
are discussed on page 195.
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Example 4 Minimizing the Metal in a Can

A manufacturer makes a metal can that holds 1 L (liter) of oil. What radius 
minimizes the amount of metal in the can?

■ Thinking About the Problem

To use the least amount of metal, we must minimize the surface area of the can,
that is, the area of the top, bottom, and the sides. The area of the top and 
bottom is 2pr 2and the area of the sides is 2prh (see Figure 8), so the surface
area of the can is

The radius and height of the can must be chosen so that the volume is exactly
1 L, or 1000 cm3. If we want a small radius, say r � 3, then the height must be
just tall enough to make the total volume 1000 cm3. In other words, we must
have

Volume of the can is pr2h

Solve for h

Now that we know the radius and height, we can find the surface area of 
the can:

If we want a different radius, we can find the corresponding height and surface
area in a similar fashion.

surface area � 2p13 2 2 � 2p13 2 135.4 2 � 729.1 cm3

h �
1000

9p
� 35.4 cm

p13 2 2h � 1000

S � 2pr 2 � 2prh
h

r 2πr

h

r

r

Figure 8

Solution The model we want is a function that gives the surface area of the can.

■ Express the Model in Words

We know that for a cylindrical can

� �

■ Choose the Variable

There are two varying quantities—radius and height. Since the function we want 
depends on the radius, we let

Next, we must express the height in terms of the radius r. Since the volume of a 
cylindrical can is V � pr 2h and the volume must be 1000 cm3, we have

Volume of can is 1000 cm3

Solve for hh �
1000

pr 2

pr 2h � 1000

r � radius of can

area of sidesarea of top and bottomsurface area
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We can now express the areas of the top, bottom, and sides in terms of r only.

In Words In Algebra

Radius of can r

Height of can

Area of top and bottom 2pr2

Area of sides

■ Set up the Model

The model is the function S that gives the surface area of the can as a function of the
radius r.

� �

■ Use the Model

We use the model to find the minimum surface area of the can. We graph S in
Figure 9 and zoom in on the minimum point to find that the minimum value of 
S is about 554 cm2 and occurs when the radius is about 5.4 cm. ■

2.6 Exercises

S1r 2 � 2pr 2 �
2000

r

S1r 2 � 2pr 2 � 2pr a 1000

pr 2 b
area of sidesarea of top and bottomsurface area

2pr a 1000

pr 2 b12prh 2
1000

pr 2

0

1000

15

Figure 9

S � 2pr 2 �
2000

r

1–18 ■ In these exercises you are asked to find a function that
models a real-life situation. Use the guidelines for modeling 
described in the text to help you.

1. Area A rectangular building lot is three times as long as it
is wide. Find a function that models its area A in terms of its
width „.

2. Area A poster is 10 inches longer than it is wide. Find a
function that models its area A in terms of its width „.

3. Volume A rectangular box has a square base. Its height is
half the width of the base. Find a function that models its
volume V in terms of its width „.

4. Volume The height of a cylinder is four times its radius.
Find a function that models the volume V of the cylinder in
terms of its radius r.

5. Area A rectangle has a perimeter of 20 ft. Find a function
that models its area A in terms of the length x of one of its
sides.

6. Perimeter A rectangle has an area of 16 m2. Find a func-
tion that models its perimeter P in terms of the length x of
one of its sides.

7. Area Find a function that models the area A of an equilat-
eral triangle in terms of the length x of one of its sides.

8. Area Find a function that models the surface area S of a
cube in terms of its volume V.

9. Radius Find a function that models the radius r of a circle
in terms of its area A.

10. Area Find a function that models the area A of a circle in
terms of its circumference C.

11. Area A rectangular box with a volume of 60 ft3 has a
square base. Find a function that models its surface area S in
terms of the length x of one side of its base.

12. Length A woman 5 ft tall is standing near a street lamp
that is 12 ft tall, as shown in the figure. Find a function that
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models the length L of her shadow in terms of her distance d
from the base of the lamp.

13. Distance Two ships leave port at the same time. One sails
south at 15 mi/h and the other sails east at 20 mi/h. Find a
function that models the distance D between the ships in
terms of the time t (in hours) elapsed since their departure.

14. Product The sum of two positive numbers is 60. Find a
function that models their product P in terms of x, one of the
numbers.

15. Area An isosceles triangle has a perimeter of 8 cm. Find a
function that models its area A in terms of the length of its
base b.

16. Perimeter A right triangle has one leg twice as long as
the other. Find a function that models its perimeter P in
terms of the length x of the shorter leg.

17. Area A rectangle is inscribed in a semicircle of radius 10,
as shown in the figure. Find a function that models the area
A of the rectangle in terms of its height h.

18. Height The volume of a cone is 100 in3. Find a function
that models the height h of the cone in terms of its radius r.

h h

10

A

D

L d

12 ft

5 ft

19–36 ■ In these problems you are asked to find a function that
models a real-life situation, and then use the model to answer
questions about the situation. Use the guidelines on page 205 to
help you.

19. Maximizing a Product Consider the following problem:
Find two numbers whose sum is 19 and whose product is as
large as possible.

(a) Experiment with the problem by making a table like the
one below, showing the product of different pairs of
numbers that add up to 19. Based on the evidence in
your table, estimate the answer to the problem.

First number Second number Product

1 18 18
2 17 34
3 16 48
. . .. . .. . .

(b) Find a function that models the product in terms of one
of the two numbers.

(c) Use your model to solve the problem, and compare with
your answer to part (a).

20. Minimizing a Sum Find two positive numbers whose
sum is 100 and the sum of whose squares is a minimum.

21. Maximizing a Product Find two numbers whose sum is
�24 and whose product is a maximum.

22. Maximizing Area Among all rectangles that have a
perimeter of 20 ft, find the dimensions of the one with the
largest area.

23. Fencing a Field Consider the following problem: A
farmer has 2400 ft of fencing and wants to fence off a 
rectangular field that borders a straight river. He does not
need a fence along the river (see the figure). What are the 
dimensions of the field of largest area that he can fence?

(a) Experiment with the problem by drawing several dia-
grams illustrating the situation. Calculate the area of
each configuration, and use your results to estimate the
dimensions of the largest possible field.

(b) Find a function that models the area of the field in terms
of one of its sides.

(c) Use your model to solve the problem, and compare with
your answer to part (a).

x xA
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24. Dividing a Pen A rancher with 750 ft of fencing wants to
enclose a rectangular area and then divide it into four pens
with fencing parallel to one side of the rectangle (see the
figure).

(a) Find a function that models the total area of the four
pens.

(b) Find the largest possible total area of the four pens.

25. Fencing a Garden Plot A property owner wants to fence
a garden plot adjacent to a road, as shown in the figure. The
fencing next to the road must be sturdier and costs $5 per
foot, but the other fencing costs just $3 per foot. The garden
is to have an area of 1200 ft2.

(a) Find a function that models the cost of fencing the 
garden.

(b) Find the garden dimensions that minimize the cost of
fencing.

(c) If the owner has at most $600 to spend on fencing, find
the range of lengths he can fence along the road.

26. Maximizing Area A wire 10 cm long is cut into two
pieces, one of length x and the other of length 10 � x,
as shown in the figure. Each piece is bent into the shape 
of a square.

(a) Find a function that models the total area enclosed by
the two squares.

(b) Find the value of x that minimizes the total area of the
two squares.

10 cm

x 10-x

x

27. Stadium Revenue A baseball team plays in a stadium 
that holds 55,000 spectators. With the ticket price at $10,
the average attendance at recent games has been 27,000. 
A market survey indicates that for every dollar the ticket
price is lowered, attendance increases by 3000.

(a) Find a function that models the revenue in terms of
ticket price.

(b) What ticket price is so high that no revenue is 
generated?

(c) Find the price that maximizes revenue from ticket 
sales.

28. Maximizing Profit A community bird-watching society
makes and sells simple bird feeders to raise money for its
conservation activities. The materials for each feeder cost
$6, and they sell an average of 20 per week at a price of 
$10 each. They have been considering raising the price,
so they conduct a survey and find that for every dollar 
increase they lose 2 sales per week.

(a) Find a function that models weekly profit in terms of
price per feeder.

(b) What price should the society charge for each 
feeder to maximize profits? What is the maximum
profit?

29. Light from a Window A Norman window has the 
shape of a rectangle surmounted by a semicircle, as shown
in the figure. A Norman window with perimeter 30 ft is to
be constructed.

(a) Find a function that models the area of the 
window.

(b) Find the dimensions of the window that admits the
greatest amount of light.

30. Volume of a Box A box with an open top is to be 
constructed from a rectangular piece of cardboard with 
dimensions 12 in. by 20 in. by cutting out equal squares 
of side x at each corner and then folding up the sides 
(see the figure).

(a) Find a function that models the volume of the box.

x
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(b) Find the values of x for which the volume is greater
than 200 in3.

(c) Find the largest volume that such a box can have.

31. Area of a Box An open box with a square base is to have
a volume of 12 ft3.

(a) Find a function that models the surface area of the 
box.

(b) Find the box dimensions that minimize the amount of
material used.

32. Inscribed Rectangle Find the dimensions that give the
largest area for the rectangle shown in the figure. Its base is
on the x-axis and its other two vertices are above the x-axis,
lying on the parabola y � 8 � x 2.

33. Minimizing Costs A rancher wants to build a rectangular
pen with an area of 100 m2.

(a) Find a function that models the length of fencing 
required.

(b) Find the pen dimensions that require the minimum
amount of fencing.

34. Minimizing Time A man stands at a point A on the 
bank of a straight river, 2 mi wide. To reach point B,
7 mi downstream on the opposite bank, he first rows 
his boat to point P on the opposite bank and then walks 
the remaining distance x to B, as shown in the figure. 
He can row at a speed of 2 mi/h and walk at a speed of 
5 mi/h.

(a) Find a function that models the time needed for 
the trip.

y=8-≈

0

(x, y)

x

y

x

x

x

x x

x

x

x
12 in.

20 in.

x

(b) Where should he land so that he reaches B as soon as
possible?

35. Bird Flight A bird is released from point A on an island,
5 mi from the nearest point B on a straight shoreline. The
bird flies to a point C on the shoreline, and then flies along
the shoreline to its nesting area D (see the figure). Suppose
the bird requires 10 kcal/mi of energy to fly over land and
14 kcal/mi to fly over water (see Example 9 in Section 1.6).

(a) Find a function that models the energy expenditure of
the bird.

(b) If the bird instinctively chooses a path that minimizes
its energy expenditure, to what point does it fly?

36. Area of a Kite A kite frame is to be made from six pieces
of wood. The four pieces that form its border have been cut
to the lengths indicated in the figure. Let x be as shown in
the figure.

(a) Show that the area of the kite is given by the function

(b) How long should each of the two crosspieces be to
maximize the area of the kite?

12

5

x x

12

5

A1x 2 � x 1225 � x2 � 2144 � x2 2

Island

5 mi

B

x

A

12 mi

D

Nesting area

C

P B

A

7 mi
x
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2.7 Combining Functions

In this section we study different ways to combine functions to make new functions.

Sums, Differences, Products, and Quotients

Two functions f and g can be combined to form new functions f � g, f � g, fg, and
f/g in a manner similar to the way we add, subtract, multiply, and divide real num-
bers. For example, we define the function f � g by

The new function f � g is called the sum of the functions f and g; its value at x is
. Of course, the sum on the right-hand side makes sense only if both 

and are defined, that is, if x belongs to the domain of f and also to the domain of
g. So, if the domain of f is A and the domain of g is B, then the domain of f � g is the
intersection of these domains, that is, A � B. Similarly, we can define the difference
f � g, the product fg, and the quotient f/g of the functions f and g. Their domains
are A � B, but in the case of the quotient we must remember not to divide by 0.

g1x 2 f 1x 2f 1x 2 � g1x 2
1f � g 2 1x 2 � f 1x 2 � g1x 2

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions f � g,
f � g, fg, and f/g are defined as follows.

Domain A � B

Domain A � B

Domain A � B

Domain 5x � A � B 0 g1x 2 � 06a f

g
b 1x 2 �

f 1x 2
g1x 2

1fg 2 1x 2 � f 1x 2g1x 21f � g 2 1x 2 � f 1x 2 � g1x 21f � g 2 1x 2 � f 1x 2 � g1x 2

Example 1 Combinations of Functions and Their Domains

Let and .

(a) Find the functions f � g, f � g, fg, and f/g and their domains.

(b) Find , and .

Solution

(a) The domain of f is and the domain of g is . The 
intersection of the domains of f and g is5x 0 x � 0 and x � 26 � 30,2 2 � 12,q 2

5x 0 x � 065x 0 x � 26
1f/g 2 14 21f � g 2 14 2 , 1f � g 2 14 2 , 1fg 2 14 2

g1x 2 � 1xf 1x 2 �
1

x � 2

The sum of f and g is defined by

The name of the new function is 
“f � g.” So this � sign stands for the
operation of addition of functions.
The � sign on the right side, however,
stands for addition of the numbers
and .g1x 2 f 1x 2

1f � g 2 1x 2 � f 1x 2 � g1x 2
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Thus, we have

Domain 

Domain 

Domain 

Domain 

Note that in the domain of f/g we exclude 0 because .

(b) Each of these values exist because x � 4 is in the domain of each function.

■

The graph of the function f � g can be obtained from the graphs of f and g by
graphical addition. This means that we add corresponding y-coordinates, as illus-
trated in the next example.

Example 2 Using Graphical Addition

The graphs of f and g are shown in Figure 1. Use graphical addition to graph the
function f � g.

Solution We obtain the graph of f � g by “graphically adding” the value of 
to as shown in Figure 2. This is implemented by copying the line segment PQ
on top of PR to obtain the point S on the graph of f � g.

■

y

xP

f (x)

g(x)

y=( f+g)(x)

y=˝

y=Ï

f (x)

S

R

Q

Figure 2

Graphical addition

g1x 2 f 1x 2

a f

g
b 14 2 �

f 14 2
g14 2 �

114 � 2 2 14
�

1

4

1fg 2 14 2 � f 14 2g14 2 � a 1

4 � 2
b 14 � 1

1f � g 2 14 2 � f 14 2 � g14 2 �
1

4 � 2
� 14 � �

3

2

1f � g 2 14 2 � f 14 2 � g14 2 �
1

4 � 2
� 14 �

5

2

g10 2 � 0

5x 0 x 	 0 and x � 26a f

g
b 1x 2 �

f 1x 2
g1x 2 �

11x � 2 21x

5x 0 x � 0 and x � 261fg 2 1x 2 � f 1x 2g1x 2 �
1x

x � 2

5x 0 x � 0 and x � 261f � g 2 1x 2 � f 1x 2 � g1x 2 �
1

x � 2
� 1x

5x 0 x � 0 and x � 261f � g 2 1x 2 � f 1x 2 � g1x 2 �
1

x � 2
� 1xTo divide fractions, invert the 

denominator and multiply:

�
11x � 2 21x

�
1

x � 2
# 1

1x

1/ 1x � 22
1x

�
1/ 1x � 2 2
1x/1

y

x

y=˝

y=Ï

Figure 1



216 CHAPTER 2 Functions

Composition of Functions

Now let’s consider a very important way of combining two functions to get 
a new function. Suppose and . We may define a function 
h as

The function h is made up of the functions f and g in an interesting way: Given a num-
ber x, we first apply to it the function g, then apply f to the result. In this case, f is the
rule “take the square root,” g is the rule “square, then add 1,” and h is the rule “square,
then add 1, then take the square root.” In other words, we get the rule h by applying
the rule g and then the rule f. Figure 3 shows a machine diagram for h.

Figure 3

The h machine is composed of the g machine (first) 
and then the f machine.

In general, given any two functions f and g, we start with a number x in the do-
main of g and find its image . If this number is in the domain of f, we can
then calculate the value of . The result is a new function ob-
tained by substituting g into f. It is called the composition (or composite) of f and g

and is denoted by f � g (“f composed with g”).

h1x 2 � f 1g1x 22f 1g1x 22 g1x 2g1x 2

gx

input
f ≈+1œ∑∑∑∑∑

output
x+1

h1x 2 � f 1g1x 22 � f 1x2 � 1 2 � 2x2 � 1

g1x 2 � x2 � 1f 1x 2 � 1x

Composition of Functions

Given two functions f and g, the composite function f � g (also called the
composition of f and g) is defined by1f � g 2 1x 2 � f 1g1x 22
The domain of f � g is the set of all x in the domain of g such that is in the do-

main of f. In other words, is defined whenever both and are
defined. We can picture f � g using an arrow diagram (Figure 4).

Figure 4

Arrow diagram for f � g

x g(x) fÓ˝Ô

g f

f$g

f 1g1x 22g1x 21f � g 2 1x 2 g1x 2



Example 3 Finding the Composition of Functions

Let .

(a) Find the functions f � g and g � f and their domains.

(b) Find and .

Solution

(a) We have

Definition of f � g

Definition of g

Definition of f

and Definition of g � f

Definition of f

Definition of g

The domains of both f � g and g � f are .

(b) We have

■

You can see from Example 3 that, in general, f � g � g � f. Remember that the 
notation f � g means that the function g is applied first and then f is applied 
second.

Example 4 Finding the Composition of Functions

If and , find the following functions and 
their domains.

(a) f � g (b) g � f (c) f � f (d) g � g

Solution

(a) Definition of f � g

Definition of g

Definition of f

The domain of f � g is .

(b) Definition of g � f

Definition of f

Definition of g

For to be defined, we must have x � 0. For to be defined, we32 � 1x1x

� 32 � 1x

� g11x 21g � f 2 1x 2 � g1f 1x 225x 0 2 � x � 06 � 5x 0 x 
 26 � 1�q, 2 4� 14 2 � x

� 312 � x

� f 112 � x 21f � g 2 1x 2 � f 1g1x 22
g1x 2 � 12 � xf 1x 2 � 1x

1g � f 2 17 2 � g1f 17 22 � g149 2 � 49 � 3 � 46

1f � g 2 15 2 � f 1g15 22 � f 12 2 � 22 � 4

�

� x2 � 3

� g1x2 21g � f 2 1x 2 � g1f 1x 22� 1x � 3 2 2� f 1x � 3 21f � g 2 1x 2 � f 1g1x 22
1g � f 2 17 21f � g 2 15 2

f 1x 2 � x2 and g1x 2 � x � 3
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In Example 3, f is the rule “square”
and g is the rule “subtract 3.” The 
function f � g first subtracts 3 and then
squares; the function g � f first squares
and then subtracts 3.



must have , that is, , or x 
 4. Thus, we have 0 
 x 
 4, so
the domain of g � f is the closed interval [0, 4].

(c) Definition of f � f

Definition of f

Definition of f

The domain of f � f is .

(d) Definition of g � g

Definition of g

Definition of g

This expression is defined when both 2 � x � 0 and . The 
first inequality means x 
 2, and the second is equivalent to , or 
2 � x 
 4, or x � �2. Thus, �2 
 x 
 2, so the domain of g � g is [�2, 2]. ■

It is possible to take the composition of three or more functions. For instance, the
composite function f � g � h is found by first applying h, then g, and then f as follows:

Example 5 A Composition of Three Functions

Find f � g � h if and .

Solution

Definition of f � g � h

Definition of h

Definition of g

Definition of f ■

So far we have used composition to build complicated functions from simpler
ones. But in calculus it is useful to be able to “decompose” a complicated function
into simpler ones, as shown in the following example.

Example 6 Recognizing a Composition of Functions

Given , find functions f and g such that F � f � g.

Solution Since the formula for F says to first add 9 and then take the fourth root,
we let

g1x 2 � x � 9  and  f 1x 2 � 14 x

F1x 2 � 14 x � 9

�
1x � 3 2 101x � 3 2 10 � 1

� f 11x � 3 2 10 2� f 1g1x � 3 221f � g � h 2 1x 2 � f 1g1h1x 222
h1x 2 � x � 3f 1x 2 � x/ 1x � 1 2 , g1x 2 � x10

1f � g � h 2 1x 2 � f 1g1h1x 222

12 � x 
 2
2 � 12 � x � 0

� 32 � 12 � x

� g112 � x 21g � g 2 1x 2 � g1g1x 2230,q 2 � 14 x

� 31x

� f 11x 21f � f 2 1x 2 � f 1f 1x 22
1x 
 22 � 1x � 0
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f$g

g$f

f$f

g$g

The graphs of f and g of Example 4, as
well as f � g, g � f, f � f, and g � g, are
shown below. These graphs indicate
that the operation of composition can
produce functions quite different from
the original functions.

fg



Then

Definition of f � g

Definition of g

Definition of f

■

Example 7 An Application of Composition of Functions

A ship is traveling at 20 mi/h parallel to a straight shoreline. The ship is 5 mi 
from shore. It passes a lighthouse at noon.

(a) Express the distance s between the lighthouse and the ship as a function of d,
the distance the ship has traveled since noon; that is, find f so that .

(b) Express d as a function of t, the time elapsed since noon; that is, find g so that
.

(c) Find f � g. What does this function represent?

Solution We first draw a diagram as in Figure 5.

(a) We can relate the distances s and d by the Pythagorean Theorem. Thus, s can be
expressed as a function of d by

(b) Since the ship is traveling at 20 mi/h, the distance d it has traveled is a function
of t as follows:

(c) We have

Definition of f � g

Definition of g

Definition of f

The function f � g gives the distance of the ship from the lighthouse as a 
function of time. ■

2.7 Exercises

� 225 � 120t 2 2� f 120t 21f � g 2 1t 2 � f 1g1t 22
d � g1t 2 � 20t

s � f 1d 2 � 225 � d 2

d � g1t 2
s � f 1d 2

� F1x 2� 14 x � 9

� f 1x � 9 21f � g 2 1x 2 � f 1g1x 22
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5 mi

time=t

time=noon

s
d

Figure 5

distance � rate � time

1–6 ■ Find f � g, f � g, fg, and f/g and their domains.

1. ,

2. ,

3. ,

4. ,

5. , g1x 2 �
4

x � 4
f 1x 2 �

2
x

g1x 2 � 2x2 � 4f 1x 2 � 29 � x2

g1x 2 � 11 � xf 1x 2 � 24 � x2

g1x 2 � 3x2 � 1f 1x 2 � x2 � 2x

g1x 2 � x2f 1x 2 � x � 3
6. ,

7–10 ■ Find the domain of the function.

7. 8.

9. 10. k1x 2 �
1x � 3

x � 1
h1x 2 � 1x � 3 2�1/4

g1x 2 � 1x � 1 �
1
x

f 1x 2 � 1x � 11 � x

g1x 2 �
x

x � 1
f 1x 2 �

2

x � 1
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11–12 ■ Use graphical addition to sketch the graph of f � g.

11.

12.

13–16 ■ Draw the graphs of f, g, and f � g on a common
screen to illustrate graphical addition.

13. ,

14. ,

15. ,

16. ,

17–22 ■ Use and to evaluate the
expression.

17. (a) (b)

18. (a) (b)

19. (a) (b)

20. (a) (b)

21. (a) (b)

22. (a) (b)

23–28 ■ Use the given graphs of f and g to evaluate the 
expression.

x

y

0

f
g

2

2

1g � g 2 1x 21f � f 2 1x 2 1g � f 2 1x 21f � g 2 1x 2 1g � g 2 12 21f � f 2 1�1 2 1g � f 2 1�2 21f � g 2 1�2 2 g1g13 22f 1f 14 22 g1f 10 22f 1g10 22
g1x 2 � 2 � x2f 1x 2 � 3x � 5

g1x 2 � B1 �
x2

9
f 1x 2 � 14 1 � x

g1x 2 � 1
3 x3f 1x 2 � x2

g1x 2 � 1xf 1x 2 � x2

g1x 2 � 11 � xf 1x 2 � 11 � x

x

y

0

f

g

x

y

0

f

g

23. 24.

25. 26.

27. 28.

29–40 ■ Find the functions f � g, g � f, f � f, and g � g and their
domains.

29. ,

30. ,

31. ,

32. ,

33. ,

34. ,

35. ,

36. ,

37. ,

38. ,

39. ,

40. ,

41–44 ■ Find f � g � h.

41. , ,

42. , ,

43. , ,

44. , ,

45–50 ■ Express the function in the form f � g.

45.

46. F1x 2 � 1x � 1

F1x 2 � 1x � 9 2 5
h1x 2 � 13 xg1x 2 �

x

x � 1
f 1x 2 � 1x

h1x 2 � 1xg1x 2 � x � 5f 1x 2 � x4 � 1

h1x 2 � x2 � 2g1x 2 � x3f 1x 2 �
1
x

h1x 2 � x � 1g1x 2 � 1xf 1x 2 � x � 1

g1x 2 �
x

x � 2
f 1x 2 �

2
x

g1x 2 � 14 xf 1x 2 � 13 x

g1x 2 � x2 � 4xf 1x 2 �
1

1x

g1x 2 � 2x � 1f 1x 2 �
x

x � 1

g1x 2 � 0 x � 4 0f 1x 2 � x � 4

g1x 2 � 2x � 3f 1x 2 � 0 x 0 g1x 2 � 1x � 3f 1x 2 � x2

g1x 2 � 2x � 4f 1x 2 �
1
x

g1x 2 � 13 xf 1x 2 � x3 � 2

g1x 2 � x � 1f 1x 2 � x2

g1x 2 �
x

2
f 1x 2 � 6x � 5

g1x 2 � 4x � 1f 1x 2 � 2x � 3

1f � f 2 14 21g � g 2 1�2 2 1f � g 2 10 21g � f 2 14 2 g1f 10 22f 1g12 22
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47.

48.

49.

50.

51–54 ■ Express the function in the form f � g � h.

51.

52.

53.

54.

Applications

55–56 ■ Revenue, Cost, and Profit A print shop makes
bumper stickers for election campaigns. If x stickers are 
ordered (where x � 10,000), then the price per sticker is 
0.15 � 0.000002x dollars, and the total cost of producing 
the order is 0.095x � 0.0000005x 2 dollars.

55. Use the fact that

� �

to express , the revenue from an order of x stickers, as a
product of two functions of x.

56. Use the fact that

� �

to express , the profit on an order of x stickers, as a dif-
ference of two functions of x.

57. Area of a Ripple A stone is dropped in a lake, creating 
a circular ripple that travels outward at a speed of 60 cm/s.

(a) Find a function g that models the radius as a function 
of time.

P1x 2
costrevenueprofit

R1x 2
number of items soldprice per itemrevenue

G1x 2 �
213 � 1x 2 2

G1x 2 � 14 � 13 x 2 9F1x 2 � 33 1x � 1

F1x 2 �
1

x2 � 1

H1x 2 � 31 � 1x

H1x 2 � 0 1 � x3 0
G1x 2 �

1

x � 3

G1x 2 �
x2

x2 � 4

(b) Find a function f that models the area of the circle as 
a function of the radius.

(c) Find f � g. What does this function represent?

58. Inflating a Balloon A spherical balloon is being inflated.
The radius of the balloon is increasing at the rate of 1 cm/s.

(a) Find a function f that models the radius as a function of
time.

(b) Find a function g that models the volume as a function
of the radius.

(c) Find g � f. What does this function represent?

59. Area of a Balloon A spherical weather balloon is being
inflated. The radius of the balloon is increasing at the rate of
2 cm/s. Express the surface area of the balloon as a function
of time t (in seconds).

60. Multiple Discounts You have a $50 coupon from the
manufacturer good for the purchase of a cell phone. The
store where you are purchasing your cell phone is offering a
20% discount on all cell phones. Let x represent the regular
price of the cell phone.

(a) Suppose only the 20% discount applies. Find a function
f that models the purchase price of the cell phone as a
function of the regular price x.

(b) Suppose only the $50 coupon applies. Find a function g
that models the purchase price of the cell phone as a
function of the sticker price x.

r
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(c) If you can use the coupon and the discount, then the
purchase price is either or , depending
on the order in which they are applied to the price. Find
both and . Which composition gives the
lower price?

61. Multiple Discounts An appliance dealer advertises a
10% discount on all his washing machines. In addition, the
manufacturer offers a $100 rebate on the purchase of a
washing machine. Let x represent the sticker price of the
washing machine.

(a) Suppose only the 10% discount applies. Find a function
f that models the purchase price of the washer as a
function of the sticker price x.

(b) Suppose only the $100 rebate applies. Find a function 
g that models the purchase price of the washer as a
function of the sticker price x.

(c) Find f � g and g � f. What do these functions represent?
Which is the better deal?

62. Airplane Trajectory An airplane is flying at a speed 
of 350 mi/h at an altitude of one mile. The plane passes 
directly above a radar station at time t � 0.

(a) Express the distance s (in miles) between the plane and
the radar station as a function of the horizontal distance
d (in miles) that the plane has flown.

(b) Express d as a function of the time t (in hours) that the
plane has flown.

(c) Use composition to express s as a function of t.

s

d

1 mi 

g � f 1x 2f � g1x 2 g � f 1x 2f � g1x 2 Discovery • Discussion

63. Compound Interest A savings account earns 5% 
interest compounded annually. If you invest x dollars in
such an account, then the amount of the investment 
after one year is the initial investment plus 5%; that is,

. Find

What do these compositions represent? Find a formula for
what you get when you compose n copies of A.

64. Composing Linear Functions The graphs of the 
functions

are lines with slopes m1 and m2, respectively. Is the graph of
f � g a line? If so, what is its slope?

65. Solving an Equation for an Unknown Function

Suppose that

Find a function f such that f � g � h. (Think about what op-
erations you would have to perform on the formula for g to
end up with the formula for h.) Now suppose that

Use the same sort of reasoning to find a function g such that
f � g � h.

66. Compositions of Odd and Even Functions Suppose
that

If g is an even function, is h necessarily even? If g is odd, is
h odd? What if g is odd and f is odd? What if g is odd and f
is even?

h � f � g

h1x 2 � 3x2 � 3x � 2

f 1x 2 � 3x � 5

h1x 2 � 4x2 � 4x � 7

g1x 2 � 2x � 1

g1x 2 � m2 x � b2

f 1x 2 � m1x � b1

A � A � A � A

A � A � A

A � A

A1x 2 � x � 0.05x � 1.05x

A1x 2
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Iteration and Chaos

The iterates of a function f at a point x0 are , , , and so
on. We write

The first iterate

The second iterate

The third iterate

For example, if , then the iterates of f at 2 are x1 � 4, x2 � 16,
x3 � 256, and so on. (Check this.) Iterates can be described graphically as in
Figure 1. Start with x0 on the x-axis, move vertically to the graph of f, then 
horizontally to the line y � x, then vertically to the graph of f, and so on. The 
x-coordinates of the points on the graph of f are the iterates of f at x0.

Figure 1

Iterates are important in studying the logistic function

which models the population of a species with limited potential for growth (such
as rabbits on an island or fish in a pond). In this model the maximum population
that the environment can support is 1 (that is, 100%). If we start with a fraction
of that population, say 0.1 (10%), then the iterates of f at 0.1 give the population
after each time interval (days, months, or years, depending on the species). The
constant k depends on the rate of growth of the species being modeled; it is
called the growth constant. For example, for k � 2.6 and x0 � 0.1 the iterates
shown in the table to the left give the population of the species for the first 12
time intervals. The population seems to be stabilizing around 0.615 (that is,
61.5% of maximum).

In the three graphs in Figure 2, we plot the iterates of f at 0.1 for different
values of the growth constant k. For k � 2.6 the population appears to stabilize
at a value 0.615 of maximum, for k � 3.1 the population appears to oscillate 

f 1x 2 � kx11 � x 2
x‚

y=x

y=Ï

x⁄ x‹x¤

f(x‚)

f(x⁄)

f(x¤)

f(x‹)

x›

f(x›)

y

x

f 1x 2 � x2

x3 � f 1f 1f 1x0 222x2 � f 1f 1x0 22x1 � f 1x0 2
f 1f 1f 1x0 222f 1f 1x0 22f 1x0 2D I S C O V E R Y

P R O J E C T

n xn

0 0.1
1 0.234
2 0.46603
3 0.64700
4 0.59382
5 0.62712
6 0.60799
7 0.61968
8 0.61276
9 0.61694

10 0.61444
11 0.61595
12 0.61505



between two values, and for k � 3.8 no obvious pattern emerges. This latter situ-
ation is described mathematically by the word chaos.

1. Use the graphical procedure illustrated in Figure 1 to find the first five 
iterates of at x � 0.1.

2. Find the iterates of at x � 1.

3. Find the iterates of at x � 2.

4. Find the first six iterates of at x � 2. What is the 1000th 
iterate of f at 2?

5. Find the first 10 iterates of the logistic function at x � 0.1 for the given value
of k. Does the population appear to stabilize, oscillate, or is it chaotic?

(a) k � 2.1 (b) k � 3.2 (c) k � 3.9

6. It’s easy to find iterates using a graphing calculator. The following steps show
how to find the iterates of at 0.1 for k � 3 on a TI-83 cal-
culator. (The procedure can be adapted for any graphing calculator.)

Y1 	 K * X * 11 � X 2
3S K

0.1S X

Y1S X

0.27

0.5913

0.72499293

0.59813454435

You can also use the program in the margin to graph the iterates and study them
visually.

Use a graphing calculator to experiment with how the value of k affects the 
iterates of at 0.1. Find several different values of k that make
the iterates stabilize at one value, oscillate between two values, and exhibit
chaos. (Use values of k between 1 and 4.) Can you find a value of k that makes
the iterates oscillate between four values?

f 1x 2 � kx11 � x 2

f 1x 2 � kx11 � x 2

f 1x 2 � 1/ 11 � x 2f 1x 2 � 1/x

f 1x 2 � x2

f 1x 2 � 2x11 � x 2

1

21
0

1

21
0

k=3.8k=3.1k=2.6

1

21
0
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Figure 2

The following TI-83 program draws
the first graph in Figure 2. The other
graphs are obtained by choosing 
the appropriate value for K in the
program.
PROGRAM:ITERATE

:ClrDraw

:2.6S K

:0.1S X

:For(N, 1, 20)

:K*X*(1-X)S Z

:Pt-On(N, Z, 2)

:ZS X

:End

Enter f as Y1 on the graph list

Store 3 in the variable K

Store 0.1 in the variable X

Evaluate f at X and store result back in X

Press and obtain first iterate

Keep pressing to re-execute the 
command and obtain successive iterates

ENTER

ENTER
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2.8 One-to-One Functions and Their Inverses

The inverse of a function is a rule that acts on the output of the function and produces
the corresponding input. So, the inverse “undoes” or reverses what the function has
done. Not all functions have inverses; those that do are called one-to-one.

One-to-One Functions

Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1.
Note that f never takes on the same value twice (any two numbers in A have differ-
ent images), whereas g does take on the same value twice (both 2 and 3 have the same
image, 4). In symbols, but whenever x1 � x2. Functions
that have this latter property are called one-to-one.

Figure 1

10

7

4

2

B

f is one-to-one

f

A

4

3

2

1

10

4

2

B

g is not one-to-one

g

A

4

3

2

1

f 1x1 2 � f 1x2 2g12 2 � g13 2

Definition of a One-to-one Function

A function with domain A is called a one-to-one function if no two elements
of A have the same image, that is,

f 1x1 2 � f 1x2 2  whenever x1 � x2

Horizontal Line Test

A function is one-to-one if and only if no horizontal line intersects its graph
more than once.

An equivalent way of writing the condition for a one-to-one function is this:

.

If a horizontal line intersects the graph of f at more than one point, then we see from
Figure 2 that there are numbers x1 � x2 such that . This means that f is
not one-to-one. Therefore, we have the following geometric method for determining
whether a function is one-to-one.

f 1x1 2 � f 1x2 2
If f 1x1 2 � f 1x2 2 , then x1 � x2

y

xx⁄

y=Ï

0 x¤

f(x⁄) f(x¤)

Figure 2

This function is not one-to-one because
.f 1x1 2 � f 1x2 2
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Example 1 Deciding whether a Function Is One-to-One

Is the function one-to-one?

Solution 1 If x1 � x2, then x3
1 � x3

2 (two different numbers cannot have the same
cube). Therefore, is one-to-one.

Solution 2 From Figure 3 we see that no horizontal line intersects the graph 
of more than once. Therefore, by the Horizontal Line Test, f is
one-to-one. ■

Notice that the function f of Example 1 is increasing and is also one-to-one. In
fact, it can be proved that every increasing function and every decreasing function is
one-to-one.

Example 2 Deciding whether a Function Is One-to-One

Is the function one-to-one?

Solution 1 This function is not one-to-one because, for instance,

and so 1 and �1 have the same image.

Solution 2 From Figure 4 we see that there are horizontal lines that intersect 
the graph of g more than once. Therefore, by the Horizontal Line Test, g is not 
one-to-one. ■

Although the function g in Example 2 is not one-to-one, it is possible to restrict its
domain so that the resulting function is one-to-one. In fact, if we define

then h is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.

Example 3 Showing That a Function Is One-to-One

Show that the function is one-to-one.

Solution

Suppose there are numbers x1 and x2 such that . Then

Suppose

Subtract 4

Divide by 3

Therefore, f is one-to-one. ■

The Inverse of a Function

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

x1 � x2

 3x1 � 3x2

f 1x1 2 � f 1x2 2 3x1 � 4 � 3x2 � 4

f 1x1 2 � f 1x2 2
f 1x 2 � 3x � 4

h1x 2 � x2,    x � 0

g11 2 � 1  and    g1�1 2 � 1

g1x 2 � x2

f 1x 2 � x3

f 1x 2 � x3

f 1x 2 � x3

y

x10

1

Figure 3

is one-to-one.f 1x 2 � x3

y

x10

1

Figure 4

is not one-to-one.f1x 2 � x2

y

x10

1

Figure 5

is one-to-one.f 1x 2 � x2  1x � 0 2
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This definition says that if f takes x into y, then f�1 takes y back into x. (If f were
not one-to-one, then f�1 would not be defined uniquely.) The arrow diagram in 
Figure 6 indicates that f�1 reverses the effect of f. From the definition we have

Example 4 Finding f �1 for Specific Values

If , and , find , and .

Solution From the definition of f�1 we have

Figure 7 shows how f�1 reverses the effect of f in this case.

Figure 7 ■

By definition the inverse function f�1 undoes what f does: If we start with x,
apply f, and then apply f�1, we arrive back at x, where we started. Similarly, f undoes
what f�1 does. In general, any function that reverses the effect of f in this way must
be the inverse of f. These observations are expressed precisely as follows.

B

5

7

_10

f

A

1

3

8

A

1

3

8

f _1

B

5

7

_10

f �11�10 2 � 8  because    f 18 2 � �10

f �117 2 � 3  because  f 13 2 � 7

f �115 2 � 1  because  f 11 2 � 5

f �11�10 2f �115 2 , f �117 2f 18 2 � �10f 11 2 � 5, f 13 2 � 7

range of f �1 � domain of f

domain of f �1 � range of f

Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Then its inverse
function f�1 has domain B and range A and is defined by

for any y in B.

f �1 1y 2 � x 3  f 1x 2 � y

Don’t mistake the �1 in f�1 for
an exponent.

The reciprocal is written as
.1f 1x 22�1

1/f 1x 2f �1 does not mean 
1

f 1x 2

y=Ï

BA

x

f

f _1

Figure 6

Inverse Function Property

Let f be a one-to-one function with domain A and range B. The inverse func-
tion f�1 satisfies the following cancellation properties.

Conversely, any function f�1 satisfying these equations is the inverse of f.

f 1f �11x 22 � x  for every x in B

f �11f 1x 22 � x  for every x in A
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These properties indicate that f is the inverse function of f�1, so we say that f and
f�1 are inverses of each other.

Example 5 Verifying That Two Functions Are Inverses

Show that and are inverses of each other.

Solution Note that the domain and range of both f and g is . We have

So, by the Property of Inverse Functions, f and g are inverses of each other. These
equations simply say that the cube function and the cube root function, when com-
posed, cancel each other. ■

Now let’s examine how we compute inverse functions. We first observe from the
definition of f�1 that

So, if and if we are able to solve this equation for x in terms of y, then we
must have . If we then interchange x and y, we have , which is
the desired equation.

y � f �11x 2x � f �11y 2y � f 1x 2 y � f 1x 2 3  f �11y 2 � x

f 1g1x 22 � f 1x1/3 2 � 1x1/3 2 3 � x

g1f 1x 22 � g1x3 2 � 1x3 2 1/3 � x

�

g1x 2 � x1/3f 1x 2 � x3

How to Find the Inverse of a One-to-One Function

1. Write .

2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is .y � f �11x 2
y � f 1x 2

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x and
y first and then solve for y in terms of x.

Example 6 Finding the Inverse of a Function

Find the inverse of the function .

Solution First we write .

Then we solve this equation for x:

Add 2

Divide by 3

Finally, we interchange x and y:

Therefore, the inverse function is . ■f �11x 2 �
x � 2

3

y �
x � 2

3

x �
y � 2

3

 3x � y � 2

y � 3x � 2

y � f 1x 2f 1x 2 � 3x � 2

In Example 6 note how f�1 reverses 
the effect of f. The function f is the 
rule “multiply by 3, then subtract 2,”
whereas f�1 is the rule “add 2, then 
divide by 3.”

Check Your Answer

We use the Inverse Function Property.

� x � 2 � 2 � x

� 3 a x � 2

3
b � 2

f 1f �11x 22 � f a x � 2

3
b

�
3x

3
� x

�
13x � 2 2 � 2

3

f �11f 1x 22 � f �113x � 2 2
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Example 7 Finding the Inverse of a Function

Find the inverse of the function .

Solution We first write and solve for x.

Equation defining function

Multiply by 2

Add 3

Take fifth roots

Then we interchange x and y to get . Therefore, the inverse function
is . ■

The principle of interchanging x and y to find the inverse function also gives us a
method for obtaining the graph of f�1 from the graph of f. If , then

. Thus, the point is on the graph of f if and only if the point 
is on the graph of f�1. But we get the point from the point by reflecting
in the line y � x (see Figure 8). Therefore, as Figure 9 illustrates, the following is true.

Figure 8 Figure 9

Example 8 Finding the Inverse of a Function

(a) Sketch the graph of .

(b) Use the graph of f to sketch the graph of f�1.

(c) Find an equation for f�1.

Solution

(a) Using the transformations from Section 2.4, we sketch the graph of
by plotting the graph of the function (Example 1(c) in

Section 2.2) and moving it to the right 2 units.

(b) The graph of f�1 is obtained from the graph of f in part (a) by reflecting it in
the line y � x, as shown in Figure 10.

y � 1xy � 1x � 2

f 1x 2 � 1x � 2

y=x

f

f _¡

y

x

y=x

(b, a)

(a, b)

y

x

The graph of f�1 is obtained by reflecting the graph of f in the line y � x.

1a, b 21b, a 2 1b, a 21a, b 2f �11b 2 � a
f 1a 2 � b

f �11x 2 � 12x � 3 2 1/5
y � 12x � 3 2 1/5

x � 12y � 3 2 1/5

x5 � 2y � 3

 2y � x5 � 3

y �
x5 � 3

2

y � 1x5 � 3 2 /2

f 1x 2 �
x5 � 3

2

In Example 7 note how f�1 reverses the
effect of f. The function f is the rule
“take the fifth power, subtract 3, then
divide by 2,” whereas f�1 is the rule
“multiply by 2, add 3, then take the
fifth root.”

Check Your Answer

We use the Inverse Function Property.

�
2x

2
� x

�
2x � 3 � 3

2

�
3 12x � 3 2 1/5 4 5 � 3

2

f 1f �11x 22 � f 1 12x � 3 2 1/5 2
� 1x5 2 1/5 � x

� 1x5 � 3 � 3 2 1/5

� c2 a x5 � 3

2
b � 3 d 1/5

f �11f1x 22 � f �1 a x5 � 3

2
b

y

x2

2

y=f–¡(x)

y=Ï=œ∑x-2

y=x

Figure 10
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(c) Solve for x, noting that y � 0.

Square each side

Add 2

Interchange x and y:

Thus

This expression shows that the graph of f�1 is the right half of the parabola 
y � x 2 � 2 and, from the graph shown in Figure 10, this seems reasonable. ■

2.8 Exercises

f �11x 2 � x2 � 2,    x � 0

y � x2 � 2,    x � 0

x � y2 � 2, y � 0

x � 2 � y2

1x � 2 � y

y � 1x � 2

In Example 8 note how f�1 reverses the
effect of f. The function f is the rule
“subtract 2, then take the square root,”
whereas f�1 is the rule “square, then
add 2.”

1–6 ■ The graph of a function f is given. Determine whether f
is one-to-one.

1. 2.

3. 4.

5. 6.

7–16 ■ Determine whether the function is one-to-one.

7. 8.

9. 10. g1x 2 � 0 x 0g1x 2 � 1x

f 1x 2 � 3x � 2f 1x 2 � �2x � 4

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

11. 12.

13.

14.

15. 16.

17–18 ■ Assume f is a one-to-one function.

17. (a) If , find .

(b) If , find .

18. (a) If , find .

(b) If , find .

19. If , find .

20. If with x � �2, find .

21–30 ■ Use the Inverse Function Property to show that 
f and g are inverses of each other.

21.

22.

23.

24.

25.

26.

27. ;

g1x 2 � 1x � 4, x � �4

f 1x 2 � x2 � 4, x � 0

f 1x 2 � x5, g1x 2 � 15 x

f 1x 2 �
1
x

, g1x 2 �
1
x

f 1x 2 �
3 � x

4
; g1x 2 � 3 � 4x

f 1x 2 � 2x � 5; g1x 2 �
x � 5

2

f 1x 2 � 3x, g1x 2 �
x

3

f 1x 2 � x � 6, g1x 2 � x � 6

g�115 2g1x 2 � x2 � 4x

f �113 2f 1x 2 � 5 � 2x

f 12 2f �114 2 � 2

f �1118 2f 15 2 � 18

f 1�1 2f �113 2 � �1

f �117 2f 12 2 � 7

f 1x 2 �
1
x

f 1x 2 �
1

x2

f 1x 2 � x4 � 5, 0 
 x 
 2

f 1x 2 � x4 � 5

h1x 2 � x3 � 8h1x 2 � x2 � 2x
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28.

29. ;

30. ;

31–50 ■ Find the inverse function of f.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51–54 ■ A function f is given.

(a) Sketch the graph of f.

(b) Use the graph of f to sketch the graph of f�1.

(c) Find f�1.

51. 52.

53. 54.

55–60 ■ Draw the graph of f and use it to determine whether
the function is one-to-one.

55. 56.

57. 58.

59. 60.

61–64 ■ A one-to-one function is given.

(a) Find the inverse of the function.

(b) Graph both the function and its inverse on the same screen
to verify that the graphs are reflections of each other in the
line y � x.

f 1x 2 � x # 0 x 0f 1x 2 � 0 x 0 � 0 x � 6 0 f 1x 2 � 2x3 � 4x � 1f 1x 2 �
x � 12

x � 6

f 1x 2 � x3 � xf 1x 2 � x3 � x

f 1x 2 � x3 � 1f 1x 2 � 1x � 1

f 1x 2 � 16 � x2, x � 0f 1x 2 � 3x � 6

f 1x 2 � 1 � x3f 1x 2 � x4, x � 0

f 1x 2 � 29 � x2, 0 
 x 
 3

f 1x 2 � 1 � 11 � x

f 1x 2 � 12 � x3 2 5f 1x 2 � 4 � 13 x

f 1x 2 � 12x � 1f 1x 2 � 4 � x2, x � 0

f 1x 2 � x2 � x, x � � 1
2f 1x 2 � 12 � 5x

f 1x 2 � 5 � 4x3f 1x 2 �
1 � 3x

5 � 2x

f 1x 2 �
x � 2

x � 2
f 1x 2 �

1

x � 2

f 1x 2 �
1

x2, x 	 0f 1x 2 �
x

2

f 1x 2 � 3 � 5xf 1x 2 � 4x � 7

f 1x 2 � 6 � xf 1x 2 � 2x � 1

g1x 2 � 24 � x2, 0 
 x 
 2

f 1x 2 � 24 � x2, 0 
 x 
 2

g1x 2 �
1
x

� 1, x � 0

f 1x 2 �
1

x � 1
, x � 1

f 1x 2 � x3 � 1; g1x 2 � 1x � 1 2 1/3 61. 62.

63. 64.

65–68 ■ The given function is not one-to-one. Restrict its
domain so that the resulting function is one-to-one. Find the 
inverse of the function with the restricted domain. (There is
more than one correct answer.)

65. 66.

67. 68.

69–70 ■ Use the graph of f to sketch the graph of f�1.

69. 70.

Applications

71. Fee for Service For his services, a private investigator 
requires a $500 retention fee plus $80 per hour. Let x repre-
sent the number of hours the investigator spends working on
a case.

(a) Find a function f that models the investigator’s fee as a
function of x.

(b) Find f�1. What does f�1 represent?

(c) Find f�1(1220). What does your answer represent?

x

y

0 1

1

x

y

0 1

1

y

x0 1

1

y

x0_1

1

k1x 2 � 0 x � 3 0h1x 2 � 1x � 2 2 2

y

x0 1

1
x0 1

1

y

g1x 2 � 1x � 1 2 2f 1x 2 � 4 � x2

g1x 2 � x2 � 1, x � 0g1x 2 � 1x � 3

f 1x 2 � 2 � 1
2 xf 1x 2 � 2 � x
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72. Toricelli’s Law A tank holds 100 gallons of water, which
drains from a leak at the bottom, causing the tank to empty
in 40 minutes. Toricelli’s Law gives the volume of water 
remaining in the tank after t minutes as

(a) Find V�1. What does V�1 represent?

(b) Find V�1 . What does your answer represent?

73. Blood Flow As blood moves through a vein or artery, its
velocity √ is greatest along the central axis and decreases as
the distance r from the central axis increases (see the figure
below). For an artery with radius 0.5 cm, √ is given as a
function of r by

(a) Find √�1. What does √�1 represent?

(b) Find √�1 . What does your answer represent?

74. Demand Function The amount of a commodity 
sold is called the demand for the commodity. The 
demand D for a certain commodity is a function of the 
price given by

(a) Find D�1. What does D�1 represent?

(b) Find D�1 . What does your answer represent?

75. Temperature Scales The relationship between the
Fahrenheit (F) and Celsius (C ) scales is given by

(a) Find F�1. What does F�1 represent?

(b) Find F�1 . What does your answer represent?

76. Exchange Rates The relative value of currencies 
fluctuates every day. When this problem was written, one
Canadian dollar was worth 0.8159 U.S. dollar.

(a) Find a function f that gives the U.S. dollar value 
of x Canadian dollars.

(b) Find f�1. What does f�1 represent?

(c) How much Canadian money would $12,250 in U.S.
currency be worth?

77. Income Tax In a certain country, the tax on incomes
less than or equal to €20,000 is 10%. For incomes 

f 1x 2
186 2

F1C 2 � 9
5 C � 32

130 2
D1 p 2 � �3p � 150

r

130 2
√1r 2 � 18,50010.25 � r 2 2

115 2
V1t 2 � 100 a1 �

t

40
b 2

more than €20,000, the tax is €2000 plus 20% of the amount
over €20,000.

(a) Find a function f that gives the income tax on an 
income x. Express f as a piecewise defined function.

(b) Find f�1. What does f�1 represent?

(c) How much income would require paying a tax of
€10,000?

78. Multiple Discounts A car dealership advertises a 15%
discount on all its new cars. In addition, the manufacturer
offers a $1000 rebate on the purchase of a new car. Let x
represent the sticker price of the car.

(a) Suppose only the 15% discount applies. Find a function
f that models the purchase price of the car as a function
of the sticker price x.

(b) Suppose only the $1000 rebate applies. Find a function
g that models the purchase price of the car as a function
of the sticker price x.

(c) Find a formula for H � f � g.

(d) Find H�1. What does H�1 represent?

(e) Find H�1 . What does your answer 
represent?

79. Pizza Cost Marcello’s Pizza charges a base price of $7
for a large pizza, plus $2 for each topping. Thus, if you 
order a large pizza with x toppings, the price of your pizza is
given by the function . Find f�1. What does
the function f�1 represent?

Discovery • Discussion

80. Determining when a Linear Function Has an Inverse

For the linear function to be one-to-one,
what must be true about its slope? If it is one-to-one, find its
inverse. Is the inverse linear? If so, what is its slope?

81. Finding an Inverse “In Your Head” In the margin notes
in this section we pointed out that the inverse of a function
can be found by simply reversing the operations that make
up the function. For instance, in Example 6 we saw that the
inverse of

because the “reverse” of “multiply by 3 and subtract 2” is
“add 2 and divide by 3.” Use the same procedure to find the
inverse of the following functions.

(a) (b)

(c) (d)

Now consider another function:

f 1x 2 � x3 � 2x � 6

f 1x 2 � 12x � 5 23f 1x 2 � 2x3 � 2

f 1x 2 � 3 �
1
x

f 1x 2 �
2x � 1

5

f 1x 2 � 3x � 2  is    f �11x 2 �
x � 2

3

f 1x 2 � mx � b

f 1x 2 � 7 � 2x

113,000 2
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Is it possible to use the same sort of simple reversal of oper-
ations to find the inverse of this function? If so, do it. If not,
explain what is different about this function that makes 
this task difficult.

82. The Identity Function The function is called
the identity function. Show that for any function f we have
f � I � f, I � f � f, and f � f�1 � f�1 � f � I. (This means
that the identity function I behaves for functions and 
composition just like the number 1 behaves for real numbers
and multiplication.)

83. Solving an Equation for an Unknown Function In
Exercise 65 of Section 2.7 you were asked to solve equa-
tions in which the unknowns were functions. Now that we
know about inverses and the identity function (see Exercise
82), we can use algebra to solve such equations. For 

I1x 2 � x

instance, to solve f � g � h for the unknown function f,
we perform the following steps:

Problem: Solve for f

Compose with g�1 on the right

So the solution is f � h � g�1. Use this technique to solve
the equation f � g � h for the indicated unknown function.

(a) Solve for f, where and

(b) Solve for g, where and
h1x 2 � 3x2 � 3x � 2

f 1x 2 � 3x � 5

h1x 2 � 4x2 � 4x � 7
g1x 2 � 2x � 1

f � I � ff � h � g�1

g � g�1 � If � I � h � g�1

f � g � g�1 � h � g�1

f � g � h

2 Review

Concept Check

1. Define each concept in your own words. (Check by referring
to the definition in the text.)

(a) Function

(b) Domain and range of a function

(c) Graph of a function

(d) Independent and dependent variables

2. Give an example of each type of function.

(a) Constant function

(b) Linear function

(c) Quadratic function

3. Sketch by hand, on the same axes, the graphs of the 
following functions.

(a) (b)

(c) (d)

4. (a) State the Vertical Line Test.

(b) State the Horizontal Line Test.

5. How is the average rate of change of the function f between
two points defined?

6. Define each concept in your own words.

(a) Increasing function

(b) Decreasing function

(c) Constant function

j1x 2 � x4h1x 2 � x3

g1x 2 � x2f 1x 2 � x

7. Suppose the graph of f is given. Write an equation for each
graph that is obtained from the graph of f as follows.

(a) Shift 3 units upward

(b) Shift 3 units downward

(c) Shift 3 units to the right

(d) Shift 3 units to the left

(e) Reflect in the x-axis

(f ) Reflect in the y-axis

(g) Stretch vertically by a factor of 3

(h) Shrink vertically by a factor of 

(i) Stretch horizontally by a factor of 2

(j) Shrink horizontally by a factor of 

8. (a) What is an even function? What symmetry does its
graph possess? Give an example of an even function.

(b) What is an odd function? What symmetry does its graph
possess? Give an example of an odd function.

9. Write the standard form of a quadratic function.

10. What does it mean to say that is a local maximum
value of f?

11. Suppose that f has domain A and g has domain B.

(a) What is the domain of f � g?

(b) What is the domain of fg?

(c) What is the domain of f/g?

f 13 2

1
2

1
3
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12. How is the composite function f � g defined?

13. (a) What is a one-to-one function?

(b) How can you tell from the graph of a function whether
it is one-to-one?

(c) Suppose f is a one-to-one function with domain A and

range B. How is the inverse function f�1 defined? What
is the domain of f�1? What is the range of f�1?

(d) If you are given a formula for f, how do you find a 
formula for f�1?

(e) If you are given the graph of f, how do you find the
graph of f�1?

Exercises

1. If , find , , , , ,
, , and .

2. If , find , , , ,
, and .

3. The graph of a function f is given.

(a) Find and .

(b) Find the domain of f.

(c) Find the range of f.

(d) On what intervals is f increasing? On what intervals is 
f decreasing?

(e) Is f one-to-one?

4. Which of the following figures are graphs of functions?
Which of the functions are one-to-one?

y

x0

y

x0

y

x0

y

x0

x

y

0 2

2

f

f 12 2f 1�2 2
3f 1x 2 4 2f 1x2 2 f 1�x 2f 1a � 2 2f 19 2f 15 2f 1x 2 � 4 � 13x � 6

2f 1x 2 � 2f 12x 2f 1x � 1 2 f 1�a 2f 1a 2f 1�2 2f 12 2f 10 2f 1x 2 � x2 � 4x � 6 5–6 ■ Find the domain and range of the function.

5. 6.

7–14 ■ Find the domain of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15–32 ■ Sketch the graph of the function.

15.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31.

32.

33. Determine which viewing rectangle produces the most appro-
priate graph of the function

(i) 3�2, 24 by 3�2, 24 (ii) 3�8, 84 by 3�8, 84
(iii) 3�4, 44 by 3�12, 124 (iv) 3�100, 1004 by 3�100, 1004

f 1x 2 � 6x3 � 15x2 � 4x � 1.

f 1x 2 � c�x if x � 0

x2 if  0 
 x � 2

1 if  x � 2

f 1x 2 � e x � 6  if x � �2

x2  if x � �2

f 1x 2 � e1 � 2x if x 
 0

2x � 1 if x 	 0

f 1x 2 � e1 � x  if x � 0

1  if x � 0

G1x 2 �
11x � 3 2 2g1x 2 �

1

x2

H1x 2 � x3 � 3x2h1x 2 � 13 x

h1x 2 � 1x � 3h1x 2 � 1
2 x3

g1x 2 � � 0 x 0g1x 2 � 1 � 1x

f 1x 2 � 3 � 8x � 2x2f 1x 2 � x2 � 6x � 6

g1t 2 � t 2 � 2tf 1t 2 � 1 � 1
2 t 2

f 1x 2 � 1
3 1x � 5 2 , 2 
 x 
 8

f 1x 2 � 1 � 2x

f 1x 2 �
13 2x � 1

13 2x � 2
h1x 2 � 14 � x � 2x2 � 1

g1x 2 �
2x2 � 5x � 3

2x2 � 5x � 3
f 1x 2 �

1
x

�
1

x � 1
�

1

x � 2

f 1x 2 � 3x �
2

1x � 1
f 1x 2 � 1x � 4

f 1x 2 �
2x � 1

2x � 1
f 1x 2 � 7x � 15

F 1t 2 � t2 � 2t � 5f 1x 2 � 1x � 3

(b)(a)

(b) (d)
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34. Determine which viewing rectangle produces the most 
appropriate graph of the function .

(i) 3�4, 44 by 3�4, 44
(ii) 3�10, 104 by 3�10, 104

(iii) 3�10, 104 by 3�10, 404
(iv) 3�100, 1004 by 3�100, 1004

35–38 ■ Draw the graph of the function in an appropriate 
viewing rectangle.

35.

36.

37.

38.

39. Find, approximately, the domain of the function 

.

40. Find, approximately, the range of the function
.

41–44 ■ Find the average rate of change of the function 
between the given points.

41.

42.

43.

44.

45–46 ■ Draw a graph of the function f, and determine 
the intervals on which f is increasing and on which f is
decreasing.

45.

46.

47. Suppose the graph of f is given. Describe how the graphs 
of the following functions can be obtained from the graph 
of f.

(a) (b)

(c) (d)

(e) (f)

(g) (h) y � f �11x 2y � �f 1x 2 y � �f 1�x 2y � f 1�x 2 y � f 1x � 2 2 � 2y � 1 � 2f 1x 2 y � f 1x � 8 2y � f 1x 2 � 8

f1x 2 � 0 x4 � 16 0f1x 2 � x3 � 4x2

f 1x 2 � 1x � 1 2 2; x � a, x � a � h

f 1x 2 �
1
x

; x � 3, x � 3 � h

f 1x 2 �
1

x � 2
; x � 4, x � 8

f 1x 2 � x2 � 3x; x � 0, x � 2

f 1x 2 � x4 � x3 � x2 � 3x � 6

f 1x 2 � 2x3 � 4x � 1

f 1x 2 � 0 x1x � 2 2 1x � 4 2 0
f 1x 2 �

x

2x2 � 16

f 1x 2 � 1.1x3 � 9.6x2 � 1.4x � 3.2

f 1x 2 � x2 � 25x � 173

f 1x 2 � 2100 � x3
48. The graph of f is given. Draw the graphs of the following

functions.

(a) (b)

(c) (d)

(e) (f)

49. Determine whether f is even, odd, or neither.

(a) (b)

(c) (d)

50. Determine whether the function in the figure is even, odd,
or neither.

(a)

51. Express the quadratic function in
standard form.

52. Express the quadratic function 
in standard form.

53. Find the minimum value of the function
.

54. Find the maximum value of the function 
.f 1x 2 � 1 � x � x2

g1x 2 � 2x2 � 4x � 5

f 1x 2 � �2x2 � 12x � 12

f 1x 2 � x2 � 4x � 1

y

x0 0

y

x

y

x0

y

x0

f 1x 2 �
1

x � 2
f 1x 2 �

1 � x2

1 � x2

f 1x 2 � x3 � x7f 1x 2 � 2x5 � 3x2 � 2

y

x0 1

1

y � f 1�x 2y � f �11x 2 y � 1
2 f 1x 2 � 1y � 3 � f 1x 2 y � �f 1x 2y � f 1x � 2 2

(b)

(c) (d)
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55. A stone is thrown upward from the top of a building. Its
height (in feet) above the ground after t seconds is given by

. What maximum height does it
reach?

56. The profit P (in dollars) generated by selling x units of a
certain commodity is given by

What is the maximum profit, and how many units must be
sold to generate it?

57–58 ■ Find the local maximum and minimum values of the
function and the values of x at which they occur. State each an-
swer correct to two decimal places.

57.

58.

59. The number of air conditioners sold by an appliance store
depends on the time of year. Sketch a rough graph of the
number of A/C units sold as a function of the time of year.

60. An isosceles triangle has a perimeter of 8 cm. Express the
area A of the triangle as a function of the length b of the
base of the triangle.

61. A rectangle is inscribed in an equilateral triangle with a
perimeter of 30 cm as in the figure.

(a) Express the area A of the rectangle as a function of the
length x shown in the figure.

(b) Find the dimensions of the rectangle with the largest
area.

62. A piece of wire 10 m long is cut into two pieces. One piece,
of length x, is bent into the shape of a square. The other
piece is bent into the shape of an equilateral triangle.

(a) Express the total area enclosed as a function of x.

(b) For what value of x is this total area a minimum?

10 cm
x

x

10

f 1x 2 � x2/316 � x 2 1/3

f 1x 2 � 3.3 � 1.6x � 2.5x3

P1x 2 � �1500 � 12x � 0.0004x2

h1t 2 � �16t2 � 48t � 32

63. If and , find the 
following functions.

(a) f � g (b) f � g (c) fg

(d) f/g (e) f � g (f ) g � f

64. If and , find the following.

(a) f � g (b) g � f (c)

(d) (e) f � g � f (f ) g � f � g

65–66 ■ Find the functions f � g, g � f, f � f, and g � g and their
domains.

65.

66.

67. Find f � g � h, where , and
.

68. If , find functions f, g, and h such that 

f � g � h � T.

69–74 ■ Determine whether the function is one-to-one.

69.

70.

71.

72.

73.

74.

75–78 ■ Find the inverse of the function.

75.

76.

77.

78.

79. (a) Sketch the graph of the function

(b) Use part (a) to sketch the graph of f�1.

(c) Find an equation for f�1.

80. (a) Show that the function is one-to-one.

(b) Sketch the graph of f.

(c) Use part (b) to sketch the graph of f�1.

(d) Find an equation for f�1.

f 1x 2 � 1 � 14 x

f 1x 2 � x2 � 4, x � 0

f 1x 2 � 1 � 15 x � 2

f 1x 2 � 1x � 1 2 3f 1x 2 �
2x � 1

3

f 1x 2 � 3x � 2

q1x 2 � 3.3 � 1.6x � 2.5x3

p1x 2 � 3.3 � 1.6x � 2.5x3

r 1x 2 � 2 � 1x � 3

h1x 2 �
1

x4

g1x 2 � 2 � 2x � x2

f 1x 2 � 3 � x3

T1x 2 �
1

31 � 2x

h1x 2 � 1 � 1x
f 1x 2 � 11 � x, g1x 2 � 1 � x2

f 1x 2 � 1x,  g1x 2 �
2

x � 4

f 1x 2 � 3x � 1,  g1x 2 � 2x � x2

1f � f 2 12 2 1f � g 2 12 2g1x 2 � 1x � 1f 1x 2 � 1 � x2

g1x 2 � 4 � 3xf 1x 2 � x2 � 3x � 2
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x x x xx x

y

2 Test

1. Which of the following are graphs of functions? If the graph is that of a function, is it
one-to-one?

2. Let .

(a) Evaluate , and .

(b) Find the domain of f.

3. Determine the average rate of change for the function between t � 2 and
t � 5.

4. (a) Sketch the graph of the function .

(b) Use part (a) to graph the function .

5. (a) How is the graph of obtained from the graph of f?

(b) How is the graph of obtained from the graph of f?

6. (a) Write the quadratic function in standard form.

(b) Sketch a graph of f.

(c) What is the minimum value of f?

7. Let

(a) Evaluate and .

(b) Sketch the graph of f.

8. (a) If 1800 ft of fencing is available to build five adjacent pens, as shown in the 
diagram to the left, express the total area of the pens as a function of x.

(b) What value of x will maximize the total area?

9. If and , find the following.

(a) f � g (b) g � f

(c) (d)
(e) g � g � g

g 1f 12 22f 1g12 22
g1x 2 � x � 3f 1x 2 � x2 � 1

f 11 2f 1�2 2f 1x 2 � e1 � x2 if x 
 0

2x � 1 if x 	 0

f 1x 2 � 2x2 � 8x � 13

y � f 1�x 2y � f 1x � 3 2 � 2

g1x 2 � 1x � 1 2 3 � 2

f 1x 2 � x3

f 1t 2 � t2 � 2t

f 1a � 1 2f 13 2 , f 15 2f 1x 2 �
1x � 1

x

(d) y

x0

(c) y

x

(b) y

x0

(a) y

x0



10. (a) If , find the inverse function f�1.

(b) Sketch the graphs of f and f�1 on the same coordinate axes.

11. The graph of a function f is given.

(a) Find the domain and range of f.

(b) Sketch the graph of f�1.

(c) Find the average rate of change of f between x � 2 and x � 6.

12. Let .

(a) Draw the graph of f in an appropriate viewing rectangle.

(b) Is f one-to-one?

(c) Find the local maximum and minimum values of f and the values of x at which they
occur. State each answer correct to two decimal places.

(d) Use the graph to determine the range of f.

(e) Find the intervals on which f is increasing and on which f is decreasing.

f 1x 2 � 3x4 � 14x2 � 5x � 3

x

y

0 1

1

f 1x 2 � 13 � x
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A model is a representation of an object or process. For example, a toy Ferrari is a model
of the actual car; a road map is a model of the streets and highways in a city. A model
usually represents just one aspect of the original thing. The toy Ferrari is not an actual
car, but it does represent what a real Ferrari looks like; a road map does not contain the
actual streets in a city, but it does represent the relationship of the streets to each other.

A mathematical model is a mathematical representation of an object or process.
Often a mathematical model is a function that describes a certain phenomenon. In 
Example 12 of Section 1.10 we found that the function T � �10h � 20 models the
atmospheric temperature T at elevation h. We then used this function to predict the
temperature at a certain height. The figure below illustrates the process of mathemat-
ical modeling.

Mathematical models are useful because they enable us to isolate critical aspects
of the thing we are studying and then to predict how it will behave. Models are used
extensively in engineering, industry, and manufacturing. For example, engineers use
computer models of skyscrapers to predict their strength and how they would behave
in an earthquake. Aircraft manufacturers use elaborate mathematical models to pre-
dict the aerodynamic properties of a new design before the aircraft is actually built.

How are mathematical models developed? How are they used to predict the be-
havior of a process? In the next few pages and in subsequent Focus on Modeling sec-
tions, we explain how mathematical models can be constructed from real-world data,
and we describe some of their applications.

Linear Equations as Models

The data in Table 1 were obtained by measuring pressure at various ocean depths. From
the table it appears that pressure increases with depth. To see this trend better, we make
a scatter plot as in Figure 1. It appears that the data lie more or less along a line. We
can try to fit a line visually to approximate the points in the scatter plot (see Figure 2),

Making a
mathematical model

Using the model to make
predictions about the real world

Mathematical modelReal world

x (ft)

y (lb/in2)

0

10

15

5

20

25

30

5 10 15 20 25 30 x (ft)

y (lb/in2)

0

10

15

5

20

25

30

5 10 15 20 25 30

Figure 1

Scatter plot

Figure 2

Attempts to fit line to data visually

Depth Pressure
(ft) (lb/in2)

5 15.5
8 20.3

12 20.7
15 20.8
18 23.2
22 23.8
25 24.9
30 29.3

Table 1

Focus on Modeling

Fitting Lines to Data

239



240 Focus on Modeling240 Focus on Modeling

but this method is not accurate. So how do we find the line that fits the data as best as
possible?

It seems reasonable to choose the line that is as close as possible to all the data
points. This is the line for which the sum of the distances from the data points to the
line is as small as possible (see Figure 3). For technical reasons it is better to find 
the line where the sum of the squares of these distances is smallest. The resulting line
is called the regression line. The formula for the regression line is found using cal-
culus. Fortunately, this formula is programmed into most graphing calculators. Using
a calculator (see Figure 4(a)), we find that the regression line for the depth-pressure
data in Table 1 is

Model

The regression line and the scatter plot are graphed in Figure 4(b).

Example 1 Olympic Pole Vaults

Table 2 gives the men’s Olympic pole vault records up to 2004.

(a) Find the regression line for the data.

(b) Make a scatter plot of the data and graph the regression line. Does the regres-
sion line appear to be a suitable model for the data?

(c) Use the model to predict the winning pole vault height for the 2008 Olympics.

y=ax+b
a=.4500365586
b=14.71813307

LinReg

35

10
0 35

(b)(a) Scatter plot and regression
line for depth-pressure data

Output of the LinReg command
on a TI-83 calculator

P � 0.45d � 14.7

x

y

0

Figure 3

Distances from the points to the line

Year Gold medalist Height (m) Year Gold medalist Height (m)

1896 William Hoyt, USA 3.30 1956 Robert Richards USA 4.56
1900 Irving Baxter, USA 3.30 1960 Don Bragg, USA 4.70
1904 Charles Dvorak, USA 3.50 1964 Fred Hansen, USA 5.10
1906 Fernand Gonder, France 3.50 1968 Bob Seagren, USA 5.40
1908 A. Gilbert, E. Cook, USA 3.71 1972 W. Nordwig, E. Germany 5.64
1912 Harry Babcock, USA 3.95 1976 Tadeusz Slusarski, Poland 5.64
1920 Frank Foss, USA 4.09 1980 W. Kozakiewicz, Poland 5.78
1924 Lee Barnes, USA 3.95 1984 Pierre Quinon, France 5.75
1928 Sabin Carr, USA 4.20 1988 Sergei Bubka, USSR 5.90
1932 William Miller, USA 4.31 1992 M. Tarassob, Unified Team 5.87
1936 Earle Meadows, USA 4.35 1996 Jean Jalfione, France 5.92
1948 Guinn Smith, USA 4.30 2000 Nick Hysong, USA 5.90
1952 Robert Richards, USA 4.55 2004 Timothy Mack, USA 5.95

Table 2

Figure 4

Linear regression on a graphing
calculator
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Solution

(a) Let x � year – 1900, so that 1896 corresponds to x � �4, 1900 to x � 0, and
so on. Using a calculator, we find the regression line:

(b) The scatter plot and the regression line are shown in Figure 5. The regression
line appears to be a good model for the data.

Figure 5

Scatter plot and regression line for pole-vault data

(c) The year 2008 corresponds to x � 108 in our model. The model gives

■

If you are reading this after the 2008 Olympics, look up the actual record for
2008 and compare with this prediction. Such predictions are reasonable for points
close to our measured data, but we can’t predict too far away from the measured
data. Is it reasonable to use this model to predict the record 100 years from now?

Example 2 Asbestos Fibers and Cancer

When laboratory rats are exposed to asbestos fibers, some of them develop lung tu-
mors. Table 3 lists the results of several experiments by different scientists.

(a) Find the regression line for the data.

(b) Make a scatter plot of the data and graph the regression line. Does the regres-
sion line appear to be a suitable model for the data?

Table 3

y � 0.02661108 2 � 3.40 � 6.27 m

y

4

2

20 40 60 80 1000 x

Height
(m)

Years since 1900

6

y � 0.0266x � 3.40

y=ax+b
a=.0265652857
b=3.400989881

LinReg

Output of the LinReg
function on the TI-83 Plus

A
le

xa
nd

r 
S

at
in

sk
y/

A
FP

/G
et

ty
 Im

ag
es

Asbestos exposure Percent that develop
(fibers/mL) lung tumors

50 2
400 6
500 5
900 10

1100 26
1600 42
1800 37
2000 28
3000 50
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Solution

(a) Using a calculator, we find the regression line (see Figure 6(a)):

(b) The scatter plot and the regression line are shown in Figure 6(b). The regres-
sion line appears to be a reasonable model for the data.

■

How Good Is the Fit?

For any given set of data it is always possible to find the regression line, even if the
data do not tend to lie along a line. Consider the three scatter plots in Figure 7.

The data in the first scatter plot appear to lie along a line. In the second plot they
also appear to display a linear trend, but it seems more scattered. The third does not
have a discernible trend. We can easily find the regression lines for each scatter plot
using a graphing calculator. But how well do these lines represent the data? The cal-
culator gives a correlation coefficient r, which is a statistical measure of how well
the data lie along the regression line, or how well the two variables are correlated.
The correlation coefficient is a number between �1 and 1. A correlation coefficient r
close to 1 or �1 indicates strong correlation and a coefficient close to 0 indicates very
little correlation; the slope of the line determines whether the correlation coefficient
is positive or negative. Also, the more data points we have, the more meaningful the
correlation coefficient will be. Using a calculator we find that the correlation co-
efficient between asbestos fibers and lung tumors in the rats of Example 2 is r � 0.92.
We can reasonably conclude that the presence of asbestos and the risk of lung tumors
in rats are related. Can we conclude that asbestos causes lung tumors in rats?

If two variables are correlated, it does not necessarily mean that a change in one
variable causes a change in the other. For example, the mathematician John Allen
Paulos points out that shoe size is strongly correlated to mathematics scores among
school children. Does this mean that big feet cause high math scores? Certainly

y

x

y

x

r=0.98

y

x

r=0.84 r=0.09

y=ax+b
a=.0177212141
b=.5404689256

LinReg

55

0
0 3100

(b)(a) Scatter plot and
regression line

Output of the LinReg command
on a TI-83 calculator

y � 0.0177x � 0.5405

Figure 7

Figure 6

Linear regression for the asbestos-
tumor data
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not—both shoe size and math skills increase independently as children get older. So
it is important not to jump to conclusions: Correlation and causation are not the same
thing. Correlation is a useful tool in bringing important cause-and-effect relationships
to light, but to prove causation, we must explain the mechanism by which one vari-
able affects the other. For example, the link between smoking and lung cancer was ob-
served as a correlation long before science found the mechanism through which
smoking causes lung cancer.

Problems

1. Femur Length and Height Anthropologists use a linear model that relates femur
length to height. The model allows an anthropologist to determine the height of an indi-
vidual when only a partial skeleton (including the femur) is found. In this problem we
find the model by analyzing the data on femur length and height for the eight males
given in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) An anthropologist finds a femur of length 58 cm. How tall was the person?

Femur length Height 
(cm) (cm)

50.1 178.5
48.3 173.6
45.2 164.8
44.7 163.7
44.5 168.3
42.7 165.0
39.5 155.4
38.0 155.8

2. Demand for Soft Drinks A convenience store manager notices that sales of soft
drinks are higher on hotter days, so he assembles the data in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to predict soft-drink sales if the temperature is 95 �F.

Femur

High temperature (°F) Number of cans sold

55 340
58 335
64 410
68 460
70 450
75 610
80 735
84 780

3. Tree Diameter and Age To estimate ages of trees, forest rangers use a linear model
that relates tree diameter to age. The model is useful because tree diameter is much eas-
ier to measure than tree age (which requires special tools for extracting a representative
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cross section of the tree and counting the rings). To find the model, use the data in the
table collected for a certain variety of oaks.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to estimate the age of an oak whose diameter is 18 in.

Diameter (in.) Age (years)

2.5 15
4.0 24
6.0 32
8.0 56
9.0 49
9.5 76

12.5 90
15.5 89

4. Carbon Dioxide Levels The table lists average carbon dioxide (CO2) levels in the
atmosphere, measured in parts per million (ppm) at Mauna Loa Observatory from 1984
to 2000.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the CO2 level in the atmosphere in 2001.
Compare your answer with the actual CO2 level of 371.1 measured in 2001.

5. Temperature and Chirping Crickets Biologists have observed that the chirping
rate of crickets of a certain species appears to be related to temperature. The table shows
the chirping rates for various temperatures.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the chirping rate at 100 �F.

Year CO2 level (ppm)

1984 344.3
1986 347.0
1988 351.3
1990 354.0
1992 356.3
1994 358.9
1996 362.7
1998 366.5
2000 369.4

Temperature Chirping rate
(°F) (chirps/min)

50 20
55 46
60 79
65 91
70 113
75 140
80 173
85 198
90 211

Income Ulcer rate

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.4
$16,000 12.0
$20,000 12.5
$30,000 10.5
$45,000 9.4
$60,000 8.2

6. Ulcer Rates The table in the margin shows (lifetime) peptic ulcer rates (per 100
population) for various family incomes as reported by the 1989 National Health
Interview Survey.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.
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(c) Estimate the peptic ulcer rate for an income level of $25,000 according to the linear
model in part (b).

(d) Estimate the peptic ulcer rate for an income level of $80,000 according to the linear
model in part (b).

7. Mosquito Prevalence The table lists the relative abundance of mosquitoes (as 
measured by the mosquito positive rate) versus the flow rate (measured as a percentage
of maximum flow) of canal networks in Saga City, Japan.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the mosquito positive rate if the canal
flow is 70% of maximum.

8. Noise and Intelligibility Audiologists study the intelligibility of spoken sentences
under different noise levels. Intelligibility, the MRT score, is measured as the percent of
a spoken sentence that the listener can decipher at a certain noise level in decibels (dB).
The table shows the results of one such test.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Find the correlation coefficient. Is a linear model appropriate?

(d) Use the linear model in part (b) to estimate the intelligibility of a sentence at a 
94-dB noise level.

9. Life Expectancy The average life expectancy in the United States has been rising
steadily over the past few decades, as shown in the table.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model you found in part (b) to predict the life expectancy in the year
2004.

(d) Search the Internet or your campus library to find the actual 2004 average life ex-
pectancy. Compare to your answer in part (c).

Noise level (dB) MRT score (%)

80 99
84 91
88 84
92 70
96 47

100 23
104 11

Flow rate Mosquito positive
(%) rate (%)

0 22
10 16
40 12
60 11
90 6

100 2

Mathematics in 

the Modern World

Model Airplanes

When we think of the word
“model,” we often think of a model
car or a model airplane. In fact, this
everyday use of the word model
corresponds to its use in mathemat-
ics. A model usually represents a
certain aspect of the original thing.
So a model airplane represents
what the real airplane looks like.
Before the 1980s airplane manu-
facturers built full scale mock-ups
of new airplane designs to test their
aerodynamic properties. Today,
manufacturers “build” mathemati-
cal models of airplanes, which are
stored in the memory of computers.
The aerodynamic properties of
“mathematical airplanes” corre-
spond to those of real planes, but
the mathematical planes can be
flown and tested without leaving
the computer memory!
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Year Life expectancy

1920 54.1
1930 59.7
1940 62.9
1950 68.2
1960 69.7
1970 70.8
1980 73.7
1990 75.4
2000 76.9
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10. Heights of Tall Buildings The table gives the heights and number of stories for 11
tall buildings.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) What is the slope of your regression line? What does its value indicate?

11. Olympic Swimming Records The tables give the gold medal times in the men’s
and women’s 100-m freestyle Olympic swimming event.

(a) Find the regression lines for the men’s data and the women’s data.

(b) Sketch both regression lines on the same graph. When do these lines predict that the
women will overtake the men in the event? Does this conclusion seem reasonable?

MEN WOMEN

Year Gold medalist Time (s)

1912 F. Durack, Australia 82.2
1920 E. Bleibtrey, USA 73.6
1924 E. Lackie, USA 72.4
1928 A. Osipowich, USA 71.0
1932 H. Madison, USA 66.8
1936 H. Mastenbroek, Holland 65.9
1948 G. Andersen, Denmark 66.3
1952 K. Szoke, Hungary 66.8
1956 D. Fraser, Australia 62.0
1960 D. Fraser, Australia 61.2
1964 D. Fraser, Australia 59.5
1968 J. Henne, USA 60.0
1972 S. Nielson, USA 58.59
1976 K. Ender, E. Germany 55.65
1980 B. Krause, E. Germany 54.79
1984 (Tie) C. Steinseifer, USA 55.92

N. Hogshead, USA 55.92
1988 K. Otto, E. Germany 54.93
1992 Z. Yong, China 54.64
1996 L. Jingyi, China 54.50
2000 I. DeBruijn, Netherlands 53.83
2004 J. Henry, Australia 53.84

Year Gold medalist Time (s)

1908 C. Daniels, USA 65.6
1912 D. Kahanamoku, USA 63.4
1920 D. Kahanamoku, USA 61.4
1924 J. Weissmuller, USA 59.0
1928 J. Weissmuller, USA 58.6
1932 Y. Miyazaki, Japan 58.2
1936 F. Csik, Hungary 57.6
1948 W. Ris, USA 57.3
1952 C. Scholes, USA 57.4
1956 J. Henricks, Australia 55.4
1960 J. Devitt, Australia 55.2
1964 D. Schollander, USA 53.4
1968 M. Wenden, Australia 52.2
1972 M. Spitz, USA 51.22
1976 J. Montgomery, USA 49.99
1980 J. Woithe, E. Germany 50.40
1984 R. Gaines, USA 49.80
1988 M. Biondi, USA 48.63
1992 A. Popov, Russia 49.02
1996 A. Popov, Russia 48.74
2000 P. van den Hoogenband,

Netherlands 48.30
2004 P. van den Hoogenband,

Netherlands 48.17

Building Height (ft) Stories

Empire State Building, New York 1250 102
One Liberty Place, Philadelphia 945 61
Canada Trust Tower, Toronto 863 51
Bank of America Tower, Seattle 943 76
Sears Tower, Chicago 1450 110
Petronas Tower I, Malaysia 1483 88
Commerzbank Tower, Germany 850 60
Palace of Culture and Science, Poland 758 42
Republic Plaza, Singapore 919 66
Transamerica Pyramid, San Francisco 853 48
Taipei 101 Building, Taiwan 1679 101
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12. Parent Height and Offspring Height In 1885 Sir Francis Galton compared the
height of children to the height of their parents. His study is considered one of the first
uses of regression. The table gives some of Galton’s original data. The term “midparent
height” means the average of the heights of the father and mother.

(a) Find a linear equation that models the data.

(b) How well does the model predict your own height (based on your parents’ heights)?

13. Shoe Size and Height Do you think that shoe size and height are correlated? Find
out by surveying the shoe sizes and heights of people in your class. (Of course, the data
for men and women should be separate.) Find the correlation coefficient.

14. Demand for Candy Bars In this problem you will determine a linear demand equa-
tion that describes the demand for candy bars in your class. Survey your classmates to
determine what price they would be willing to pay for a candy bar. Your survey form
might look like the sample to the left.

(a) Make a table of the number of respondents who answered “yes” at each price level.

(b) Make a scatter plot of your data.

(c) Find and graph the regression line y � mp � b, which gives the number of 
responents y who would buy a candy bar if the price were p cents. This is the de-
mand equation. Why is the slope m negative?

(d) What is the p-intercept of the demand equation? What does this intercept tell you
about pricing candy bars?

Midparent height Offspring height
(in.) (in.)

64.5 66.2
65.5 66.2
66.5 67.2
67.5 69.2
68.5 67.2
68.5 69.2
69.5 71.2
69.5 70.2
70.5 69.2
70.5 70.2
72.5 72.2
73.5 73.2
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Chapter Overview

Functions defined by polynomial expressions are called polynomial functions. For
example,

is a polynomial function. Polynomial functions are easy to evaluate because they are
defined using only addition, subtraction, and multiplication. This property makes
them the most useful functions in mathematics.

The graphs of polynomial functions can increase and decrease several times. For
this reason they are useful in modeling many real-world situations. For example, a
factory owner notices that if she increases the number of workers, productivity in-
creases, but if there are too many workers, productivity begins to decrease. This sit-
uation is modeled by a polynomial function of degree 2 (a quadratic polynomial). In
many animal species the young experience an initial growth spurt, followed by a pe-
riod of slow growth, followed by another growth spurt. This phenomenon is modeled
by a polynomial function of degree 3 (a cubic polynomial).

The graphs of polynomial functions are beautiful, smooth curves that are used in de-
sign processes. For example, boat makers put together portions of the graphs of dif-
ferent cubic functions (called cubic splines) to design the natural curves for the hull
of a boat.

In this chapter we also study rational functions, which are quotients of polynomial
functions. We will see that rational functions also have many useful applications.

Number of workers

Productivity Length

Productivity is modeled by
a polynomial of degree 2.

Age

Growth is modeled by
a polynomial of degree 3.

P1x 2 � 2x3 � x � 1
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3.1 Polynomial Functions and Their Graphs

Before we work with polynomial functions, we must agree on some terminology.
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We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term �6.

Here are some more examples of polynomials.

Degree 0

Degree 1

Degree 2

Degree 3

If a polynomial consists of just a single term, then it is called a monomial. For 
example, and are monomials.Q1x 2 � �6x5P1x 2 � x3

S1x 2 � 2x3 � 6x2 � 10

R1x 2 � x2 � x

Q1x 2 � 4x � 7

P1x 2 � 3

3x5 � 6x4 � 2x3 � x2 � 7x � 6

Degree 5Leading
coefficient 3

Leading term 3x5

Coefficients 3, 6, �2, 1, 7, and �6

Constant coefficient �6

Polynomial Functions

A polynomial function of degree n is a function of the form

where n is a nonnegative integer and .

The numbers a0, a1, a2,p , an are called the coefficients of the 
polynomial.

The number a0 is the constant coefficient or constant term.

The number an, the coefficient of the highest power, is the leading
coefficient, and the term anxn is the leading term.

an � 0

P1x 2 � anx
n � an�1x

n�1 � . . . � a1x � a0



Graphs of Polynomials

The graphs of polynomials of degree 0 or 1 are lines (Section 1.10), and the graphs of
polynomials of degree 2 are parabolas (Section 2.5). The greater the degree of the poly-
nomial, the more complicated its graph can be. However, the graph of a polynomial
function is always a smooth curve; that is, it has no breaks or corners (see Figure 1).
The proof of this fact requires calculus.

Figure 1

The simplest polynomial functions are the monomials , whose graphs
are shown in Figure 2. As the figure suggests, the graph of has the same
general shape as y � x 2 when n is even, and the same general shape as y � x 3 when
n is odd. However, as the degree n becomes larger, the graphs become flatter around
the origin and steeper elsewhere.

Example 1 Transformations of Monomials

Sketch the graphs of the following functions.

(a) (b)

(c)

Solution We use the graphs in Figure 2 and transform them using the techniques
of Section 2.4.

(a) The graph of is the reflection of the graph of y � x 3 in the x-axis,
as shown in Figure 3(a) on the following page.

P1x 2 � �x3

R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4P1x 2 � �x3

Figure 2

Graphs of monomials

y

0 x1

1

(e) y=x∞

y

0 x1

1

(d) y=x¢

y

0 x1

1

(c) y=x£

y

0 x1

1

(b) y=≈

y

0 x1

1

(a) y=x

P1x 2 � xn
P1x 2 � xn

Not the graph of a
polynomial function

y y y

x x x

break

hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous
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End Behavior and the Leading Term

The end behavior of a polynomial is a description of what happens as x becomes
large in the positive or negative direction. To describe end behavior, we use the fol-
lowing notation:

For example, the monomial y � x 2 in Figure 2(b) has the following end behavior:

The monomial y � x 3 in Figure 2(c) has the end behavior

For any polynomial, the end behavior is determined by the term that contains the
highest power of x, because when x is large, the other terms are relatively insignificant
in size. The following box shows the four possible types of end behavior, based on
the highest power and the sign of its coefficient.

y �q as x �q  and  y � �q as x � �q

y �q as x �q  and  y �q as x � �q

(b) The graph of is the graph of y � x 4 shifted to the right 2 units,
as shown in Figure 3(b).

(c) We begin with the graph of y � x 5. The graph of y � �2x5 is obtained by
stretching the graph vertically and reflecting it in the x-axis (see the dashed
blue graph in Figure 3(c)). Finally, the graph of is obtained
by shifting upward 4 units (see the red graph in Figure 3(c)).

R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4
252 CHAPTER 3 Polynomial and Rational Functions

means “x becomes large in the positive direction”x �q

means “x becomes large in the negative direction”x � �q

y

0 x

Q(x)=(x-2)¢

8

16

2 4

y

0 x1

1

P(x)=_x£
y

0 x

R(x)=_2x∞+44

8

1_1_2

(a) (b) (c)

Figure 3 ■

Mathematics in the

Modern World

Splines

A spline is a long strip of wood that
is curved while held fixed at certain
points. In the old days shipbuilders
used splines to create the curved
shape of a boat’s hull. Splines are
also used to make the curves of a
piano, a violin, or the spout of a
teapot.

Mathematicians discovered that
the shapes of splines can be ob-
tained by piecing together parts of
polynomials. For example, the
graph of a cubic polynomial can be
made to fit specified points by ad-
justing the coefficients of the poly-
nomial (see Example 10, page 261).
Curves obtained in this way are
called cubic splines. In modern
computer design programs, such as
Adobe Illustrator or Microsoft
Paint, a curve can be drawn by fix-
ing two points, then using the
mouse to drag one or more anchor
points. Moving the anchor points
amounts to adjusting the coeffi-
cients of a cubic polynomial.



Example 2 End Behavior of a Polynomial

Determine the end behavior of the polynomial

Solution The polynomial P has degree 4 and leading coefficient �2. Thus,
P has even degree and negative leading coefficient, so it has the following end 
behavior:

The graph in Figure 4 illustrates the end behavior of P.

■

Example 3 End Behavior of a Polynomial

(a) Determine the end behavior of the polynomial .

(b) Confirm that P and its leading term have the same end behavior by
graphing them together.

Q1x 2 � 3x5

P1x 2 � 3x5 � 5x3 � 2x

30

_50

_3 5

y →  _` as
x  → _`

y →  _` as
x  → `

y � �q as x �q  and  y � �q as x � �q

P1x 2 � �2x4 � 5x3 � 4x � 7
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End Behavior of Polynomials

The end behavior of the polynomial is determined by the degree n and
the sign of the leading coefficient an, as indicated in the following graphs.

P has odd degree P has even degree

Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

y

0 x

y

0 x

y

0 x

y

0 x

y →  ` as
x  → `

y →  ` as
x  → _`

y →  ` as
x  → _`

y →  ` as
x  → `

y → _` as
x  → `

y → _` as
x  → `

y → _` as
x  → _`

y → _` as
x  → _`

Figure 4

P1x 2 � �2x4 � 5x3 � 4x � 7



Solution

(a) Since P has odd degree and positive leading coefficient, it has the following
end behavior:

(b) Figure 5 shows the graphs of P and Q in progressively larger viewing rectan-
gles. The larger the viewing rectangle, the more the graphs look alike. This
confirms that they have the same end behavior.

To see algebraically why P and Q in Example 3 have the same end behavior, fac-
tor P as follows and compare with Q.

When x is large, the terms 5/3x 2 and 2/3x 4 are close to 0 (see Exercise 79 on page 12).
So for large x, we have

So, when x is large, P and Q have approximately the same values. We can also see
this numerically by making a table like the one in the margin.

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if . In other words,
the zeros of P are the solutions of the polynomial equation . Note that if

, then the graph of P has an x-intercept at x � c, so the x-intercepts of the
graph are the zeros of the function.
P1c 2 � 0

P1x 2 � 0
P1c 2 � 0

� 3x5 � Q1x 2P1x 2 � 3x511 � 0 � 0 2
Q1x 2 � 3x5P1x 2 � 3x5 a1 �

5

3x2 �
2

3x4 b

10,000

_10,000

_10 10

50

_50

_3 3

2

_2

_2 2

Q P

1

_1

_1 1

Q

P

PQ PQ

y �q as x �q  and  y � �q as x � �q
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x

15 2,261,280 2,278,125
30 72,765,060 72,900,000
50 936,875,100 937,500,000

Q 1x 2P 1x 2

Real Zeros of Polynomials

If P is a polynomial and c is a real number, then the following are equivalent.

1. c is a zero of P.

2. x � c is a solution of the equation .

3. x � c is a factor of .

4. x � c is an x-intercept of the graph of P.

P1x 2 P1x 2 � 0

Figure 5 ■

Q1x 2 � 3x5

P1x 2 � 3x5 � 5x3 � 2x



We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive 

zeros, the values of a polynomial are either all positive or all negative. That is, between
two successive zeros the graph of a polynomial lies entirely above or entirely below
the x-axis. To see why, suppose c1 and c2 are successive zeros of P. If P has both pos-
itive and negative values between c1 and c2, then by the Intermediate Value Theorem
P must have another zero between c1 and c2. But that’s not possible because c1 and c2

are successive zeros. This observation allows us to use the following guidelines to
graph polynomial functions.
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Intermediate Value Theorem for Polynomials

If P is a polynomial function and and have opposite signs, then
there exists at least one value c between a and b for which .P1c 2 � 0

P1b 2P1a 2

Guidelines for Graphing Polynomial Functions

1. Zeros. Factor the polynomial to find all its real zeros; these are the 
x-intercepts of the graph.

2. Test Points. Make a table of values for the polynomial. Include test 
points to determine whether the graph of the polynomial lies above or below
the x-axis on the intervals determined by the zeros. Include the y-intercept
in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch a
smooth curve that passes through these points and exhibits the required end
behavior.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 47). For example, to find the zeros of , we factor P
to get

From this factored form we easily see that

1. 2 is a zero of P.

2. x � 2 is a solution of the equation x 2 � x � 6 � 0.

3. x � 2 is a factor of x 2 � x � 6.

4. x � 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, �3.
The following theorem has many important consequences. (See, for instance,

the Discovery Project on page 283.) Here we use it to help us graph polynomial 
functions.

P1x 2 � 1x � 2 2 1x � 3 2
P1x 2 � x2 � x � 6

Figure 6

0 x

y

P(b)

P(a)

a

c b

y=P(x)



Example 4 Using Zeros to Graph a Polynomial Function

Sketch the graph of the polynomial function .

Solution The zeros are x � �2, 1, and 3. These determine the intervals
, , , and . Using test points in these intervals, we get

the information in the following sign diagram (see Section 1.7).

Plotting a few additional points and connecting them with a smooth curve helps us
complete the graph in Figure 7.

Test point
P(–1) > 0

Test point
P(4) > 0

Test point
P(2) < 0

Test point
P(–3) < 0

x

5

1

y

0

_2 1

+

above
x-axis

-

below
x-axis

+

above
x-axis

3

-

below
x-axis

Test point
x = –3

P (–3) < 0

Test point
x = –1

P (–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

13,q 211, 3 21�2, 1 21�q, �2 2
P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
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Sign of

Graph of P

P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2

Figure 7

■P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
Example 5 Finding Zeros and Graphing 

a Polynomial Function

Let

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Factor x

Factor quadratic

Thus, the zeros are x � 0, x � 3, and x � �1.

� x1x � 3 2 1x � 1 2� x1x2 � 2x � 3 2P1x 2 � x3 � 2x2 � 3x

P1x 2 � x3 � 2x2 � 3x.

Mathematics in the

Modern World

Automotive Design

Computer-aided design (CAD) has
completely changed the way car
companies design and manufacture
cars. Before the 1980s automotive
engineers would build a full-scale
“nuts and bolts” model of a pro-
posed new car; this was really the
only way to tell whether the design
was feasible. Today automotive
engineers build a mathematical
model, one that exists only in the
memory of a computer. The model
incorporates all the main design
features of the car. Certain polyno-
mial curves, called splines, are used
in shaping the body of the car. The
resulting “mathematical car” can
be tested for structural stability,
handling, aerodynamics, suspen-
sion response, and more. All this
testing is done before a prototype is
built. As you can imagine, CAD
saves car manufacturers millions of
dollars each year. More impor-
tantly, CAD gives automotive engi-
neers far more flexibility in design;
desired changes can be created and
tested within seconds. With the
help of computer graphics, design-
ers can see how good the “mathe-
matical car” looks before they build
the real one. Moreover, the mathe-
matical car can be viewed from any
perspective; it can be moved, ro-
tated, or seen from the inside. These
manipulations of the car on the
computer monitor translate mathe-
matically into solving large sys-
tems of linear equations.

Test point �

Test point �

Test point �

Test point �

x P1x2
�3 �24
�2 0
�1 8

0 6
1 0
2 �4
3 0
4 18

C
ou

rt
es

y 
of

 F
or

d 
M

ot
or

 C
o.



(b) The x-intercepts are x � 0, x � 3, and x � �1. The y-intercept is . We
make a table of values of , making sure we choose test points between (and
to the right and left of) successive zeros.

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

We plot the points in the table and connect them by a smooth curve to complete
the graph, as shown in Figure 8.

Example 6 Finding Zeros and Graphing 

a Polynomial Function

Let .

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Factor �x2

Factor quadratic

Thus, the zeros are x � 0, , and x � 1.

(b) The x-intercepts are x � 0, , and x � 1. The y-intercept is .
We make a table of values of , making sure we choose test points between
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior:

y � �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 0x � � 3
2

x � � 3
2

� �x212x � 3 2 1x � 1 2� �x212x2 � x � 3 2P1x 2 � �2x4 � x3 � 3x2

P1x 2 � �2x4 � x3 � 3x2

y

0 x

1
5

y �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 0
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x P1x2
�2 �10
�1 � 0

�
�0 � 0
�1 �4
�2 �6
�3 � 0
�4 �20

7
8�1

2

Test point �

Test point �

Test point �

Test point �

Figure 8

■P1x 2 � x3 � 2x2 � 3x



We plot the points from the table and connect the points by a smooth curve to
complete the graph in Figure 9.

Example 7 Finding Zeros and Graphing 

a Polynomial Function

Let .

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Group and factor

Factor x � 2

Difference of squares

Simplify

Thus, the zeros are x � �2 and x � 2.

(b) The x-intercepts are x � �2 and x � 2. The y-intercept is . The table
gives additional values of .

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

We connect the points by a smooth curve to complete the graph in Figure 10.

y �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 8

� 1x � 2 2 1x � 2 22� 1x � 2 2 1x � 2 2 1x � 2 2� 1x2 � 4 2 1x � 2 2� x21x � 2 2 � 41x � 2 2P1x 2 � x3 � 2x2 � 4x � 8

P1x 2 � x3 � 2x2 � 4x � 8

y

0 x1

2

_12
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Table of values are most easily calcu-
lated using a programmable calculator
or a graphing calculator.

x P1x2
�2 �12
�1.5 0
�1 2
�0.5 0.75

0 0
0.5 0.5
1 0
1.5 �6.75

Figure 9

■P1x 2 � �2x4 � x3 � 3x2

y

0 x1

5

Figure 10

■P1x 2 � x3 � 2x2 � 4x � 8

x P1x2
�3 �25
�2 0
�1 9

0 8
1 3
2 0
3 5



Shape of the Graph Near a Zero

Although x � 2 is a zero of the polynomial in Example 7, the graph does not cross
the x-axis at the x-intercept 2. This is because the factor corresponding to
that zero is raised to an even power, so it doesn’t change sign as we test points on 
either side of 2. In the same way, the graph does not cross the x-axis at x � 0 in 
Example 6.

In general, if c is a zero of P and the corresponding factor x � c occurs exactly m
times in the factorization of P then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept c, we conclude that the graph
crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is
even. Moreover, it can be shown using calculus that near x � c the graph has the same
general shape as .A1x � c 2m

1x � 2 2 2
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Shape of the Graph Near a Zero of Multiplicity m

Suppose that c is a zero of P of multiplicity m. Then the shape of the graph of
P near c is as follows.

Multiplicity of c Shape of the graph of P near the x-intercept c

m odd, m 	 1

m even, m 	 1

OR

y

xc

y

xc

OR

y

xc

y

xc

Example 8 Graphing a Polynomial Function Using Its Zeros

Graph the polynomial .

Solution The zeros of P are �1, 0, and 2, with multiplicities 2, 4, and 3,
respectively.

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2.
But the zeros 0 and �1 have even multiplicity, so the graph does not cross the x-axis
at the x-intercepts 0 and �1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has
the following end behavior:

y �q as x �q  and  y � �q as x � �q

P1x 2 � x41x � 2 2 31x � 1 2 2

P1x 2 � x41x � 2 2 31x � 1 2 2
0 is a zero of
multiplicity 4.

2 is a zero of
multiplicity 3.

�1 is a zero of
multiplicity 2.



With this information and a table of values, we sketch the graph in Figure 11.

Local Maxima and Minima of Polynomials

Recall from Section 2.5 that if the point is the highest point on the graph of
f within some viewing rectangle, then is a local maximum value of f, and if

is the lowest point on the graph of f within a viewing rectangle, then is
a local minimum value (see Figure 12). We say that such a point is a local
maximum point on the graph and that is a local minimum point. The set
of all local maximum and minimum points on the graph of a function is called its 
local extrema.

Figure 12

For a polynomial function the number of local extrema must be less than the de-
gree, as the following principle indicates. (A proof of this principle requires calculus.)

0 a b

Ób, f(b)Ô

Local minimum point

Óa, f(a)Ô

Local maximum point

y=Ï

x

y

1b, f 1b 22 1a, f 1a 22 f 1b 21b, f 1b 22 f 1a 21a, f 1a 22

y

0 x

1

5Even
multiplicities

Odd multiplicity
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x P1x2
�1.3 �9.2
�1 0
�0.5 �3.9

0 0
1 �4
2 0
2.3 8.2

Local Extrema of Polynomials

If is a polynomial of degree n,
then the graph of P has at most n � 1 local extrema.

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

Figure 11

■P1x 2 � x41x � 2 2 31x � 1 2 2

A polynomial of degree n may in fact have less than n � 1 local extrema. For ex-
ample, (graphed in Figure 2) has no local extrema, even though it is of de-P1x 2 � x5



gree 5. The preceding principle tells us only that a polynomial of degree n can have
no more than n � 1 local extrema.

Example 9 The Number of Local Extrema

Determine how many local extrema each polynomial has.

(a)

(b) (c)

Solution The graphs are shown in Figure 13.

(a) P1 has two local minimum points and one local maximum point, for a total of
three local extrema.

(b) P2 has two local minimum points and two local maximum points, for a total of
four local extrema.

(c) P3 has just one local extremum, a local minimum.

Figure 13 ■

With a graphing calculator we can quickly draw the graphs of many functions at
once, on the same viewing screen. This allows us to see how changing a value in the
definition of the functions affects the shape of its graph. In the next example we ap-
ply this principle to a family of third-degree polynomials.

Example 10 A Family of Polynomials

Sketch the family of polynomials for c � 0, 1, 2, and 3. How does
changing the value of c affect the graph?

Solution The polynomials

are graphed in Figure 14. We see that increasing the value of c causes the graph to
develop an increasingly deep “valley” to the right of the y-axis, creating a local
maximum at the origin and a local minimum at a point in quadrant IV. This local
minimum moves lower and farther to the right as c increases. To see why this 
happens, factor . The polynomial P has zeros at 0 and c, and 
the larger c gets, the farther to the right the minimum between 0 and c will be. ■

P1x 2 � x21x � c 2

P31x 2 � x3 � 3x2P21x 2 � x3 � 2x2

P11x 2 � x3 � x2P01x 2 � x3

P1x 2 � x3 � cx2

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48

(a)

100

_100

_5 5

P¤(x)=x∞+3x¢-5x£-15≈+4x-15

(b)

100

_100

_5 5

P‹(x)=7x¢+3≈-10x

(c)

P31x 2 � 7x4 � 3x2 � 10xP21x 2 � x5 � 3x4 � 5x3 � 15x2 � 4x � 15

P11x 2 � x4 � x3 � 16x2 � 4x � 48
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10

_10

_2 4

c=0 c=1 c=2
c=3

Figure 14

A family of polynomials
P1x 2 � x3 � cx2
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1–4 ■ Sketch the graph of each function by transforming 
the graph of an appropriate function of the form y � xn from
Figure 2. Indicate all x- and y-intercepts on each graph.

1. (a) (b)

(c) (d)

2. (a) (b)

(c) (d)

3. (a) (b)

(c) (d)

4. (a) (b)

(c) (d)

5–10 ■ Match the polynomial function with one of the graphs
I–VI. Give reasons for your choice.

5. 6.

7. 8.

9. 10. U1x 2 � �x3 � 2x2T1x 2 � x4 � 2x3

S1x 2 � 1
2 x6 � 2x4R1x 2 � �x5 � 5x3 � 4x

Q1x 2 � �x21x2 � 4 2P1x 2 � x 1x2 � 4 2
S1x 2 � � 1

2 1x � 2 2 5 � 16R1x 2 � � 1
2 1x � 2 2 5 Q1x 2 � 21x � 3 2 5 � 64P1x 2 � 1x � 3 2 5 S1x 2 � 1

2 1x � 1 2 3 � 4R1x 2 � �1x � 2 2 3 Q1x 2 � �x3 � 27P1x 2 � x3 � 8

S1x 2 � �21x � 2 2 4R1x 2 � 1x � 2 2 4 � 16

Q1x 2 � 1x � 2 2 4P1x 2 � x4 � 16

S1x 2 � 21x � 2 2 2R1x 2 � 2x2 � 2

Q1x 2 � 1x � 4 2 2P1x 2 � x2 � 4

11–22 ■ Sketch the graph of the polynomial function. Make
sure your graph shows all intercepts and exhibits the proper 
end behavior.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23–36 ■ Factor the polynomial and use the factored form to
find the zeros. Then sketch the graph.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37–42 ■ Determine the end behavior of P. Compare the 
graphs of P and Q on large and small viewing rectangles,
as in Example 3(b).

37.

38. P1x 2 � �1
8 x3 � 1

4 x2 � 12x; Q1x 2 � �1
8 x3

P1x 2 � 3x3 � x2 � 5x � 1; Q1x 2 � 3x3

P1x 2 � x6 � 2x3 � 1

P1x 2 � x4 � 3x2 � 4

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � 1
8 12x4 � 3x3 � 16x � 24 2 2P1x 2 � 2x3 � x2 � 18x � 9

P1x 2 � x3 � 3x2 � 4x � 12

P1x 2 � x3 � x2 � x � 1

P1x 2 � x5 � 9x3

P1x 2 � x4 � 3x3 � 2x2

P1x 2 � �2x3 � x2 � x

P1x 2 � �x3 � x2 � 12x

P1x 2 � x3 � 2x2 � 8x

P1x 2 � x3 � x2 � 6x

P1x 2 � 1x � 3 2 21x � 1 2 2P1x 2 � x31x � 2 2 1x � 3 2 2P1x 2 � 1x � 1 2 21x � 2 2 3P1x 2 � 1
12 1x � 2 2 21x � 3 2 2P1x 2 � 1
4 1x � 1 2 31x � 3 2P1x 2 � 1x � 1 2 21x � 3 2P1x 2 � 1
5 x 1x � 5 2 2P1x 2 � 1x � 3 2 1x � 2 2 13x � 2 2P1x 2 � 12x � 1 2 1x � 1 2 1x � 3 2P1x 2 � x 1x � 3 2 1x � 2 2P1x 2 � 1x � 1 2 1x � 1 2 1x � 2 2P1x 2 � 1x � 1 2 1x � 2 2

3.1 Exercises

I II

III IV

y

x0 1

1

y

x0 1

1

y

x0 1

1

y

x0 1

1

V VI

y

x0 1

1

y

x0 1

1
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39.

40.

41.

42.

43–46 ■ The graph of a polynomial function is given. From the
graph, find

(a) the x- and y-intercepts

(b) the coordinates of all local extrema

43. 44.

45. 46.

47–54 ■ Graph the polynomial in the given viewing rectangle.
Find the coordinates of all local extrema. State each answer 
correct to two decimal places.

47. y � �x 2 � 8x, 3�4, 124 by 3�50, 304
48. y � x 3 � 3x 2, 3�2, 54 by 3�10, 104
49. y � x 3 � 12x � 9, 3�5, 54 by 3�30, 304
50. y � 2x 3 � 3x 2 � 12x � 32, 3�5, 54 by 3�60, 304
51. y � x 4 � 4x 3, 3�5, 54 by 3�30, 304
52. y � x 4 � 18x 2 � 32, 3�5, 54 by 3�100, 1004

0

y

x2

1

0

y

x

1
1

P1x 2 � 1
9 x4 � 4

9 x3P1x 2 � �1
2 x3 � 3

2 x � 1

0

y

x1

1

y

0 1

1

x

P1x 2 � 2
9 x3 � x2P1x 2 � �x2 � 4x

P1x 2 � 2x2 � x12; Q1x 2 � �x12

P1x 2 � x11 � 9x9; Q1x 2 � x11

P1x 2 � �x5 � 2x2 � x; Q1x 2 � �x5

P1x 2 � x4 � 7x2 � 5x � 5; Q1x 2 � x4 53. y � 3x 5 � 5x 3 � 3, 3�3, 34 by 3�5, 104
54. y � x 5 � 5x 2 � 6, 3�3, 34 by 3�5, 104
55–64 ■ Graph the polynomial and determine how many local
maxima and minima it has.

55. y � �2x 2 � 3x � 5

56. y � x 3 � 12x

57. y � x 3 � x 2 � x

58. y � 6x 3 � 3x � 1

59. y � x 4 � 5x 2 � 4

60. y � 1.2x 5 � 3.75x 4 � 7x 3 � 15x 2 � 18x

61.

62.

63.

64.

65–70 ■ Graph the family of polynomials in the same viewing
rectangle, using the given values of c. Explain how changing the
value of c affects the graph.

65.

66.

67.

68.

69.

70.

71. (a) On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

(b) Based on your sketch in part (a), at how many points do
the two graphs appear to intersect?

(c) Find the coordinates of all intersection points.

72. Portions of the graphs of y � x 2, y � x 3, y � x 4, y � x 5, and
y � x 6 are plotted in the figures. Determine which function
belongs to each graph.

y

0 x1

1

➃
➄

y

0 x1

1

➀

➁

➂

y � x3 � 2x2 � x � 2  and  y � �x2 � 5x � 2

P1x 2 � xc; c � 1, 3, 5, 7

P1x 2 � x4 � cx; c � 0, 1, 8, 27

P1x 2 � x3 � cx; c � 2, 0, �2, �4

P1x 2 � x4 � c; c � �1, 0, 1, 2

P1x 2 � 1x � c 2 4; c � �1, 0, 1, 2

P1x 2 � cx3; c � 1, 2, 5, 12

y � 1
3 x7 � 17x2 � 7

y � x8 � 3x4 � x

y � 1x2 � 2 2 3y � 1x � 2 2 5 � 32
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73. Recall that a function f is odd if or even if
for all real x.

(a) Show that a polynomial that contains only odd
powers of x is an odd function.

(b) Show that a polynomial that contains only even
powers of x is an even function.

(c) Show that if a polynomial contains both odd and
even powers of x, then it is neither an odd nor an even
function.

(d) Express the function

as the sum of an odd function and an even function.

74. (a) Graph the function and
find all local extrema, correct to the nearest tenth.

(b) Graph the function

and use your answers to part (a) to find all local extrema,
correct to the nearest tenth.

75. (a) Graph the function and
determine how many local extrema it has.

(b) If a � b � c, explain why the function

must have two local extrema.

76. (a) How many x-intercepts and how many local extrema
does the polynomial have?

(b) How many x-intercepts and how many local extrema
does the polynomial have?

(c) If a 	 0, how many x-intercepts and how many local
extrema does each of the polynomials 
and have? Explain your answer.

Applications

77. Market Research A market analyst working for a small-
appliance manufacturer finds that if the firm produces and
sells x blenders annually, the total profit (in dollars) is

Graph the function P in an appropriate viewing rectangle
and use the graph to answer the following questions.

(a) When just a few blenders are manufactured, the firm
loses money (profit is negative). (For example,

, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders
must the firm produce to break even?

P110 2 � �263.3

P1x 2 � 8x � 0.3x2 � 0.0013x3 � 372

Q1x 2 � x3 � ax
P1x 2 � x3 � ax

Q1x 2 � x3 � 4x

P1x 2 � x3 � 4x

P1x 2 � 1x � a 2 1x � b 2 1x � c 2
P1x 2 � 1x � 2 2 1x � 4 2 1x � 5 2

Q1x 2 � 1x � 1 2 1x � 3 2 1x � 4 2 � 5

P1x 2 � 1x � 1 2 1x � 3 2 1x � 4 2
P1x 2 � x5 � 6x3 � x2 � 2x � 5

P1x 2
P1x 2
P1x 2f 1�x 2 � f 1x 2 f 1�x 2 � �f 1x 2 (b) Does profit increase indefinitely as more blenders are

produced and sold? If not, what is the largest possible
profit the firm could have?

78. Population Change The rabbit population on a small is-
land is observed to be given by the function

where t is the time (in months) since observations of the 
island began.

(a) When is the maximum population attained, and what is
that maximum population?

(b) When does the rabbit population disappear from the
island?

79. Volume of a Box An open box is to be constructed from
a piece of cardboard 20 cm by 40 cm by cutting squares of
side length x from each corner and folding up the sides, as
shown in the figure.

(a) Express the volume V of the box as a function of x.

(b) What is the domain of V? (Use the fact that length and
volume must be positive.)

(c) Draw a graph of the function V and use it to estimate
the maximum volume for such a box.

80. Volume of a Box A cardboard box has a square base,
with each edge of the base having length x inches, as shown
in the figure. The total length of all 12 edges of the box is
144 in.

(a) Show that the volume of the box is given by the func-
tion .V1x 2 � 2x2118 � x 2

20 cm

40 cm

x
x

t

P

0

P1t 2 � 120t � 0.4t4 � 1000



3.2 Dividing Polynomials

So far in this chapter we have been studying polynomial functions graphically. In this
section we begin to study polynomials algebraically. Most of our work will be con-
cerned with factoring polynomials, and to factor, we need to know how to divide
polynomials.

Long Division of Polynomials

Dividing polynomials is much like the familiar process of dividing numbers. When
we divide 38 by 7, the quotient is 5 and the remainder is 3. We write

To divide polynomials, we use long division, as in the next example.

38

7
� 5 �

3

7
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(b) What is the domain of V? (Use the fact that length and
volume must be positive.)

(c) Draw a graph of the function V and use it to estimate
the maximum volume for such a box.

Discovery • Discussion

81. Graphs of Large Powers Graph the functions y � x 2,
y � x 3, y � x 4, and y � x 5, for �1 
 x 
 1, on the same 
coordinate axes. What do you think the graph of y � x100

would look like on this same interval? What about y � x101?
Make a table of values to confirm your answers.

x
x

82. Maximum Number of Local Extrema What is the
smallest possible degree that the polynomial whose graph is
shown can have? Explain.

83. Possible Number of Local Extrema Is it possible for 
a third-degree polynomial to have exactly one local ex-
tremum? Can a fourth-degree polynomial have exactly two
local extrema? How many local extrema can polynomials of
third, fourth, fifth, and sixth degree have? (Think about the
end behavior of such polynomials.) Now give an example of
a polynomial that has six local extrema.

84. Impossible Situation? Is it possible for a polynomial to
have two local maxima and no local minimum? Explain.

0 x

y

Dividend

Quotient

Remainder

Divisor



Example 1 Long Division of Polynomials

Divide 6x 2 � 26x � 12 by x � 4.

Solution The dividend is 6x 2 � 26x � 12 and the divisor is x � 4. We begin by
arranging them as follows:

Next we divide the leading term in the dividend by the leading term in the divisor 
to get the first term of the quotient: 6x 2/x � 6x. Then we multiply the divisor by 
6x and subtract the result from the dividend.

We repeat the process using the last line �2x � 12 as the dividend.

The division process ends when the last line is of lesser degree than the divisor. The
last line then contains the remainder, and the top line contains the quotient. The 
result of the division can be interpreted in either of two ways.

or

■

We summarize the long division process in the following theorem.

6x2 � 26x � 12 � 1x � 4 2 16x � 2 2 � 4

6x2 � 26x � 12

x � 4
� 6x � 2 �

4

x � 4

6x2 � 2

x � 4�6x2 � 26x � 12

6x2 � 24x

�2x � 12

�2x � 8

4

6x

x � 4�6x2 � 26x � 12

6x2 � 24x

�2x � 12

x � 4�6x2 � 26x � 12
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Divide leading terms: 

Multiply:
Subtract and “bring down” 12

6x1x � 4 2 � 6x2 � 24x

6x2

x
� 6x

Divide leading terms: 

Multiply:
Subtract

�21x � 4 2 � �2x � 8

�2x
x

� �2

Dividend Divisor Quotient

Remainder

Division Algorithm

If and are polynomials, with , then there exist unique
polynomials and , where is either 0 or of degree less than the
degree of , such that

The polynomials and are called the dividend and divisor, respec-
tively, is the quotient, and is the remainder.R1x 2Q1x 2 D1x 2P1x 2

P1x 2 � D1x 2 # Q1x 2 � R1x 2D1x 2 R1x 2R1x 2Q1x 2 D1x 2 � 0D1x 2P1x 2

Dividend Divisor Quotient
Remainder

To write the division algorithm another
way, divide through by D1x2:

P1x 2
D1x 2 � Q1x 2 �

R1x 2
D1x 2



Example 2 Long Division of Polynomials

Let and . Find polynomials
and such that .

Solution We use long division after first inserting the term 0x 3 into the dividend
to ensure that the columns line up correctly.

The process is complete at this point because �7x � 1 is of lesser degree than the
divisor 2x 2 � x � 2. From the above long division we see that 
and , so

■

Synthetic Division

Synthetic division is a quick method of dividing polynomials; it can be used when
the divisor is of the form x � c. In synthetic division we write only the essential parts
of the long division. Compare the following long and synthetic divisions, in which we
divide 2x 3 � 7x 2 � 5 by x � 3. (We’ll explain how to perform the synthetic division
in Example 3.)

Long Division Synthetic Division

Note that in synthetic division we abbreviate 2x 3 � 7x 2 � 5 by writing only the
coefficients: 2 �7 0 5, and instead of x � 3, we simply write 3. (Writing 3 in-
stead of �3 allows us to add instead of subtract, but this changes the sign of all the
numbers that appear in the gold boxes.)

The next example shows how synthetic division is performed.

2x2 � x � 3

x � 3�2x3 � 7x2 � 0x � 5

2x3 � 6x2

�x2 � 0x

�x2 � 3x

�3x � 5

�3x � 9

�4

8x4 � 6x2 � 3x � 1 � 12x2 � x � 2 2 14x2 � 2x 2 � 1�7x � 1 2R1x 2 � �7x � 1
Q1x 2 � 4x2 � 2x

Multiply divisor by 4x2

Subtract
Multiply divisor by 2x
Subtract

4x2 � 2x

2x2 � x � 2�8x4 � 0x3 � 6x2 � 3x � 1

8x4 � 4x3 � 8x2

4x3 � 2x2 � 3x

4x3 � 2x2 � 4x

�7x � 1

P1x 2 � D1x 2 # Q1x 2 � R1x 2R1x 2Q1x 2 D1x 2 � 2x2 � x � 2P1x 2 � 8x4 � 6x2 � 3x � 1
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3 2 �7 0 5

6 �3 �9

2 �1 �3 �4
144424443

Quotient Remainder

Quotient

Remainder



Example 3 Synthetic Division

Use synthetic division to divide 2x 3 � 7x 2 � 5 by x � 3.

Solution We begin by writing the appropriate coefficients to represent the divi-
sor and the dividend.

3 � 2 �7 0 5

We bring down the 2, multiply 3 � 2 � 6, and write the result in the middle row.
Then we add:

We repeat this process of multiplying and then adding until the table is complete.

From the last line of the synthetic division, we see that the quotient is 2x 2 � x � 3
and the remainder is �4. Thus

■

The Remainder and Factor Theorems

The next theorem shows how synthetic division can be used to evaluate polynomials
easily.

2x3 � 7x2 � 5 � 1x � 3 2 12x2 � x � 3 2 � 4

3 2

2

−7

−3 −9

0 5

6

−3 −4−1

Quotient
2x2 – x – 3

Remainder
–4

3 2

2

−7

−3

0 5

6

−3−1

Multiply: 3 # 2 � 6

Add: �7 � 6 � �1

3 2

2

-7 0 5

6

-1
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Dividend
2x3 � 7x2 � 0x � 5

Divisor x � 3

Multiply:

Add: 0 � 1�3 2 � �3

31�1 2 � �3

Multiply:

Add: 5 � 1�9 2 � �4

31�3 2 � 9

Remainder Theorem

If the polynomial is divided by x � c, then the remainder is the value
.P1c 2 P1x 2



■ Proof If the divisor in the Division Algorithm is of the form x � c for some
real number c, then the remainder must be a constant (since the degree of the re-
mainder is less than the degree of the divisor). If we call this constant r, then

Setting x � c in this equation, we get , that
is, is the remainder r. ■

Example 4 Using the Remainder Theorem to 

Find the Value of a Polynomial

Let .

(a) Find the quotient and remainder when is divided by x � 2.

(b) Use the Remainder Theorem to find .

Solution

(a) Since , the synthetic division for this problem takes the 
following form.

�2 � 3 �5 �4 �0 �7 �3 ,

�6 2 4 �8 2

3 �1 �2 4 �1 5

The quotient is 3x 4 � x 3 � 2x 2 � 4x � 1 and the remainder is 5.

(b) By the Remainder Theorem, is the remainder when is divided by 
x � 1�22 � x � 2. From part (a) the remainder is 5, so . ■

The next theorem says that zeros of polynomials correspond to factors; we used
this fact in Section 3.1 to graph polynomials.

P1�2 2 � 5
P1x 2P1�2 2

x � 2 � x � 1�2 2
P1�2 2P1x 2P1x 2 � 3x5 � 5x4 � 4x3 � 7x � 3

P1c 2 P1c 2 � 1c � c 2 # Q1x 2 � r � 0 � r � r

P1x 2 � 1x � c 2 # Q1x 2 � r
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Remainder is 5, so 
P(�2) � 5.

Factor Theorem

c is a zero of P if and only if x � c is a factor of .P1x 2
■ Proof If factors as , then

Conversely, if , then by the Remainder Theorem

so x � c is a factor of    . ■

Example 5 Factoring a Polynomial Using the Factor Theorem

Let . Show that , and use this fact to factor 
completely.

Solution Substituting, we see that . By the Factor
Theorem, this means that x � 1 is a factor of . Using synthetic or long divisionP1x 2P11 2 � 13 � 7 # 1 � 6 � 0

P1x 2P11 2 � 0P1x 2 � x3 � 7x � 6

P1x 2P1x 2 � 1x � c 2 # Q1x 2 � 0 � 1x � c 2 # Q1x 2P1c 2 � 0

P1c 2 � 1c � c 2 # Q1c 2 � 0 # Q1c 2 � 0

P1x 2 � 1x � c 2 # Q1x 2P1x 2

1 � 1 0 �7 6

1 1 �6

1 1 �6 0
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1–6 ■ Two polynomials P and D are given. Use either synthetic
or long division to divide by , and express P in the
form .

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7–12 ■ Two polynomials P and D are given. Use either syn-
thetic or long division to divide by , and express the
quotient in the form

7. ,

8. ,

9. ,

10. ,

11. ,

12. , D1x 2 � x2 � x � 1P1x 2 � x5 � x4 � 2x3 � x � 1

D1x 2 � x2 � 4P1x 2 � 2x4 � x3 � 9x2

D1x 2 � 3x � 4P1x 2 � 6x3 � x2 � 12x � 5

D1x 2 � 2x � 1P1x 2 � 4x2 � 3x � 7

D1x 2 � x � 4P1x 2 � x3 � 6x � 5

D1x 2 � x � 3P1x 2 � x2 � 4x � 8

P1x 2
D1x 2 � Q1x 2 �

R1x 2
D1x 2

P1x 2 /D1x 2 D1x 2P1x 2
D1x 2 � x2 � 2P1x 2 � 2x5 � 4x4 � 4x3 � x � 3

D1x 2 � x2 � 3P1x 2 � x4 � x3 � 4x � 2

D1x 2 � 2x � 1P1x 2 � 4x3 � 7x � 9

D1x 2 � 2x � 3P1x 2 � 2x3 � 3x2 � 2x

D1x 2 � x � 1P1x 2 � x3 � 4x2 � 6x � 1

D1x 2 � x � 3P1x 2 � 3x2 � 5x � 4

P1x 2 � D1x 2 # Q1x 2 � R1x 2 D1x 2P1x 2 13–22 ■ Find the quotient and remainder using long division.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–36 ■ Find the quotient and remainder using synthetic
division.

23. 24.

25. 26.

27. 28.

29. 30.
x4 � x3 � x2 � x � 2

x � 2

x3 � 8x � 2

x � 3

3x3 � 12x2 � 9x � 1

x � 5

x3 � 2x2 � 2x � 1

x � 2

4x2 � 3

x � 5

3x2 � 5x

x � 6

x2 � 5x � 4

x � 1

x2 � 5x � 4

x � 3

2x5 � 7x4 � 13

4x2 � 6x � 8

x6 � x4 � x2 � 1

x2 � 1

9x2 � x � 5

3x2 � 7x

6x3 � 2x2 � 22x

2x2 � 5

3x4 � 5x3 � 20x � 5

x2 � x � 3

x3 � 6x � 3

x2 � 2x � 2

x3 � 3x2 � 4x � 3

3x � 6

4x3 � 2x2 � 2x � 3

2x � 1

x3 � x2 � 2x � 6

x � 2

x2 � 6x � 8

x � 4

(shown in the margin), we see that

See margin

Factor quadratic x 2 � x � 6 ■

Example 6 Finding a Polynomial with Specified Zeros

Find a polynomial of degree 4 that has zeros �3, 0, 1, and 5.

Solution By the Factor Theorem, , x � 0, x � 1, and x � 5 must all be
factors of the desired polynomial, so let

Since is of degree 4 it is a solution of the problem. Any other solution of the
problem must be a constant multiple of , since only multiplication by a con-
stant does not change the degree. ■

The polynomial P of Example 6 is graphed in Figure 1. Note that the zeros of P
correspond to the x-intercepts of the graph.

3.2 Exercises

P1x 2P1x 2P1x 2 � 1x � 3 2 1x � 0 2 1x � 1 2 1x � 5 2 � x4 � 3x3 � 13x2 � 15x

x � 1�3 2
� 1x � 1 2 1x � 2 2 1x � 3 2� 1x � 1 2 1x2 � x � 6 2P1x 2 � x3 � 7x � 6

x2 � x � 6

x � 1�x3 � 0x2 � 7x � 6

x3 � x2

x2 � 7x

x2 � x

�6x � 6

�6x � 6

0

1

10

y

x0_3 5

Figure 1

P1x) � 1x � 32x1x � 12 1x � 52
has zeros �3, 0, 1, and 5.
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31. 32.

33.

34.

35. 36.

37–49 ■ Use synthetic division and the Remainder Theorem to
evaluate .

37. , c � �1

38. ,

39. , c � 2

40. , c � �1

41. , c � �2

42. , c � 11

43. , c � �7

44. , c � �2

45. , c � 3

46. , c � �3

47. ,

48. ,

49. , c � 0.1

50. Let

Calculate by (a) using synthetic division and (b) sub-
stituting x � 7 into the polynomial and evaluating directly.

51–54 ■ Use the Factor Theorem to show that x � c is a factor
of for the given value(s) of c.

51. , c � 1

52. , c � 2

53. ,

54. , c � 3, �3

55–56 ■ Show that the given value(s) of c are zeros of ,
and find all other zeros of .

55. , c � 3

56. , c � 1
3, �2P1x 2 � 3x4 � x3 � 21x2 � 11x � 6

P1x 2 � x3 � x2 � 11x � 15

P1x 2 P1x 2
P1x 2 � x4 � 3x3 � 16x2 � 27x � 63

c � 1
2P1x 2 � 2x3 � 7x2 � 6x � 5

P1x 2 � x3 � 2x2 � 3x � 10

P1x 2 � x3 � 3x2 � 3x � 1

P1x 2
P17 2 � 60x3 � 69x2 � 13x � 139

P1x 2 � 6x7 � 40x6 � 16x5 � 200x4

P1x 2 � x3 � 2x2 � 3x � 8

c � 1
4P1x 2 � x3 � x � 1

c � 2
3P1x 2 � 3x3 � 4x2 � 2x � 1

P1x 2 � �2x6 � 7x5 � 40x4 � 7x2 � 10x � 112

P1x 2 � x7 � 3x2 � 1

P1x 2 � 6x5 � 10x3 � x � 1

P1x 2 � 5x4 � 30x3 � 40x2 � 36x � 14

P1x 2 � 2x3 � 21x2 � 9x � 200

P1x 2 � x3 � 2x2 � 7

P1x 2 � x3 � x2 � x � 5

P1x 2 � x3 � 3x2 � 7x � 6

c � 1
2P1x 2 � 2x2 � 9x � 1

P1x 2 � 4x2 � 12x � 5

P1c 2
x4 � 16

x � 2

x3 � 27

x � 3

6x4 � 10x3 � 5x2 � x � 1

x � 2
3

2x3 � 3x2 � 2x � 1

x � 1
2

x3 � 9x2 � 27x � 27

x � 3

x5 � 3x3 � 6

x � 1

57–60 ■ Find a polynomial of the specified degree that has the
given zeros.

57. Degree 3; zeros �1, 1, 3

58. Degree 4; zeros �2, 0, 2, 4

59. Degree 4; zeros �1, 1, 3, 5

60. Degree 5; zeros �2, �1, 0, 1, 2

61. Find a polynomial of degree 3 that has zeros 1, �2, and 3,
and in which the coefficient of x 2 is 3.

62. Find a polynomial of degree 4 that has integer coefficients
and zeros 1, �1, 2, and .

63–66 ■ Find the polynomial of the specified degree whose
graph is shown.

63. Degree 3 64. Degree 3

65. Degree 4 66. Degree 4

Discovery • Discussion

67. Impossible Division? Suppose you were asked to solve
the following two problems on a test:

A. Find the remainder when 6x1000 � 17x 562 � 12x � 26 is
divided by x � 1.

B. Is x � 1 a factor of x 567 � 3x 400 � x 9 � 2?

Obviously, it’s impossible to solve these problems by divid-
ing, because the polynomials are of such large degree. Use
one or more of the theorems in this section to solve these
problems without actually dividing.

0

y

x1

1

0

y

x1

1

0

y

x1

1

0

y

x1

1

1
2



3.3 Real Zeros of Polynomials

The Factor Theorem tells us that finding the zeros of a polynomial is really the same
thing as factoring it into linear factors. In this section we study some algebraic meth-
ods that help us find the real zeros of a polynomial, and thereby factor the poly-
nomial. We begin with the rational zeros of a polynomial.

Rational Zeros of Polynomials

To help us understand the next theorem, let’s consider the polynomial

Factored form

Expanded form

From the factored form we see that the zeros of P are 2, 3, and �4. When the poly-
nomial is expanded, the constant 24 is obtained by multiplying .
This means that the zeros of the polynomial are all factors of the constant term. The
following generalizes this observation.

1�2 2 � 1�3 2 � 4

� x3 � x2 � 14x � 24

P1x 2 � 1x � 2 2 1x � 3 2 1x � 4 2
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68. Nested Form of a Polynomial Expand Q to prove that
the polynomials P and Q are the same.

Try to evaluate and in your head, using the Q12 2P12 2Q1x 2 � 1 1 13x � 5 2x � 1 2x � 3 2x � 5

P1x 2 � 3x4 � 5x3 � x2 � 3x � 5

forms given. Which is easier? Now write the polynomial
in “nested” form,

like the polynomial Q. Use the nested form to find in
your head.

Do you see how calculating with the nested form follows
the same arithmetic steps as calculating the value of a poly-
nomial using synthetic division?

R13 2R1x 2 � x5 � 2x4 � 3x3 � 2x2 � 3x � 4

Rational Zeros Theorem

If the polynomial has integer
coefficients, then every rational zero of P is of the form

where p is a factor of the constant coefficient a0

and q is a factor of the leading coefficient an.

p

q

P1x 2 � an x n � an�1x
n�1 � . . . � a1x � a0

■ Proof If p/q is a rational zero, in lowest terms, of the polynomial P, then 
we have

Multiply by qn

Subtract a0qn

and factor LHS

Now p is a factor of the left side, so it must be a factor of the right as well. Since
p/q is in lowest terms, p and q have no factor in common, and so p must be a factor
of a0. A similar proof shows that q is a factor of an. ■

We see from the Rational Zeros Theorem that if the leading coefficient is 1 or �1,
then the rational zeros must be factors of the constant term.

p1an pn�1 � an�1 pn�2q � . . . � a1q
n�1 2 � �a0q

n

an pn � an�1 pn�1q � . . . � a1pqn�1 � a0q
n � 0

an a p

q
b n

� an�1 a p

q
b n�1

� . . . � a1 a p

q
b � a0 � 0



Example 1 Finding Rational Zeros (Leading Coefficient 1)

Find the rational zeros of .

Solution Since the leading coefficient is 1, any rational zero must be a divisor of
the constant term 2. So the possible rational zeros are �1 and �2. We test each of
these possibilities.

The rational zeros of P are 1 and �2. ■

Example 2 Using the Rational Zeros Theorem 

to Factor a Polynomial

Factor the polynomial .

Solution By the Rational Zeros Theorem the rational zeros of P are of the form

The constant term is 6 and the leading coefficient is 2, so

The factors of 6 are �1, �2, �3, �6 and the factors of 2 are �1, �2. Thus, the
possible rational zeros of P are

Simplifying the fractions and eliminating duplicates, we get the following list of
possible rational zeros:

To check which of these possible zeros actually are zeros, we need to evaluate P at
each of these numbers. An efficient way to do this is to use synthetic division.

Test if 1 is a zero Test if 2 is a zero

1 � 2 �11 �13 �16 2 � 2 �11 �13 �6

2 3 �10 4 �10 �6

2 3 �10 �4 2 � 5 �3 �0

�1, �2, �3, �6, �
1

2
, �

3

2

�
1

1
, �

2

1
, �

3

1
, �

6

1
, �

1

2
, �

2

2
, �

3

2
, �

6

2

possible rational zero of P �
factor of 6

factor of 2

possible rational zero of P �
factor of constant term

factor of leading coefficient

P1x 2 � 2x3 � x2 � 13x � 6

P1�2 2 � 1�2 2 3 � 31�2 2 � 2 � 0

P12 2 � 12 2 3 � 312 2 � 2 � 4

P1�1 2 � 1�1 2 3 � 31�1 2 � 2 � 4

P11 2 � 11 2 3 � 311 2 � 2 � 0

P1x 2 � x3 � 3x � 2
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Evariste Galois (1811–1832) is
one of the very few mathematicians
to have an entire theory named in
his honor. Not yet 21 when he died,
he completely settled the central
problem in the theory of equations
by describing a criterion that re-
veals whether a polynomial equa-
tion can be solved by algebraic
operations. Galois was one of the
greatest mathematicians in the
world at that time, although no one
knew it but him. He repeatedly sent
his work to the eminent mathemati-
cians Cauchy and Poisson, who
either lost his letters or did not
understand his ideas. Galois wrote
in a terse style and included few de-
tails, which probably played a role
in his failure to pass the entrance
exams at the Ecole Polytechnique
in Paris. A political radical, Galois
spent several months in prison for
his revolutionary activities. His
brief life came to a tragic end when
he was killed in a duel over a love
affair. The night before his duel,
fearing he would die, Galois wrote
down the essence of his ideas and
entrusted them to his friend Au-
guste Chevalier. He concluded by
writing “. . . there will, I hope, be
people who will find it to their ad-
vantage to decipher all this mess.”
The mathematician Camille Jordan
did just that, 14 years later.

Remainder is not 0,
so 1 is not a zero.

Remainder is 0,
so 2 is a zero.



From the last synthetic division we see that 2 is a zero of P and that P factors as

Factor 2x2 � 5x � 3 ■

The following box explains how we use the Rational Zeros Theorem with syn-
thetic division to factor a polynomial.

� 1x � 2 2 12x � 1 2 1x � 3 2� 1x � 2 2 12x2 � 5x � 3 2P1x 2 � 2x3 � x2 � 13x � 6
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Finding the Rational Zeros of a Polynomial

1. List Possible Zeros. List all possible rational zeros using the Rational 
Zeros Theorem.

2. Divide. Use synthetic division to evaluate the polynomial at each of the
candidates for rational zeros that you found in Step 1. When the remainder 
is 0, note the quotient you have obtained.

3. Repeat. Repeat Steps 1 and 2 for the quotient. Stop when you reach a
quotient that is quadratic or factors easily, and use the quadratic formula or
factor to find the remaining zeros.

Example 3 Using the Rational Zeros Theorem 

and the Quadratic Formula

Let .

(a) Find the zeros of P.

(b) Sketch the graph of P.

Solution

(a) The leading coefficient of P is 1, so all the rational zeros are integers: They are
divisors of the constant term 10. Thus, the possible candidates are

Using synthetic division (see the margin) we find that 1 and 2 are not zeros,
but that 5 is a zero and that P factors as

We now try to factor the quotient x 3 � 5x � 2. Its possible zeros are the 
divisors of �2, namely,

Since we already know that 1 and 2 are not zeros of the original polynomial 
P, we don’t need to try them again. Checking the remaining candidates �1
and �2, we see that �2 is a zero (see the margin), and P factors as

� 1x � 5 2 1x � 2 2 1x2 � 2x � 1 2x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2
�1, �2

x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2
�1, �2, �5, �10

P1x 2 � x4 � 5x 3 � 5x 2 � 23x � 10

1 � 1 �5 �5 �23 �10

1 �4 �9 14

1 �4 �9 14 24

2 � 1 �5 �5 23 10

2 �6 �22 2

1 �3 �11 1 12

5 �� 1 �5 �5 23 10

5 0 �25 �10

1 0 �5 �2 0

�2 � 1 �0 �5 �2

�2 4 2

1 �2 �1 0



Now we use the quadratic formula to obtain the two remaining zeros of P:

The zeros of P are 5, �2, , and .

(b) Now that we know the zeros of P, we can use the methods of Section 3.1 to
sketch the graph. If we want to use a graphing calculator instead, knowing the
zeros allows us to choose an appropriate viewing rectangle—one that is wide
enough to contain all the x-intercepts of P. Numerical approximations to the 
zeros of P are

So in this case we choose the rectangle 3�3, 64 by 3�50, 504 and draw the graph
shown in Figure 1. ■

Descartes’ Rule of Signs and 

Upper and Lower Bounds for Roots

In some cases, the following rule—discovered by the French philosopher and math-
ematician René Descartes around 1637 (see page 112)—is helpful in eliminating can-
didates from lengthy lists of possible rational roots. To describe this rule, we need the
concept of variation in sign. If is a polynomial with real coefficients, written
with descending powers of x (and omitting powers with coefficient 0), then a varia-
tion in sign occurs whenever adjacent coefficients have opposite signs. For example,

has three variations in sign.

P1x 2 � 5x7 � 3x5 � x4 � 2x2 � x � 3

P1x 2

5,  �2,  2.4,  and  �0.4

1 � 121 � 12

x �
2 � 21�2 2 2 � 411 2 1�1 2

2
� 1 � 12
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50

_50

_3 6

Figure 1

P1x 2 � x4 � 5x3 � 5x2 � 23x � 10

Descartes’ Rule of Signs

Let P be a polynomial with real coefficients.

1. The number of positive real zeros of is either equal to the number of
variations in sign in or is less than that by an even whole number.

2. The number of negative real zeros of is either equal to the number of
variations in sign in or is less than that by an even whole number.P1�x 2 P1x 2P1x 2 P1x 2

Example 4 Using Descartes’ Rule

Use Descartes’ Rule of Signs to determine the possible number of positive
and negative real zeros of the polynomial

Solution The polynomial has one variation in sign and so it has one positive
zero. Now

So, has three variations in sign. Thus, has either three or one negative
zero(s), making a total of either two or four real zeros. ■

P1x 2P1�x 2 � 3x6 � 4x5 � 3x3 � x � 3

P1�x 2 � 31�x 2 6 � 41�x 2 5 � 31�x 2 3 � 1�x 2 � 3

P1x 2 � 3x6 � 4x5 � 3x3 � x � 3

Variations 
Polynomial in sign

x 2 � 4x � 1 0
2x 3 � x � 6 1

x 4 � 3x 2 � x � 4 2



We say that a is a lower bound and b is an upper bound for the zeros of a poly-
nomial if every real zero c of the polynomial satisfies a 
 c 
 b. The next theorem
helps us find such bounds for the zeros of a polynomial.
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The Upper and Lower Bounds Theorem

Let P be a polynomial with real coefficients.

1. If we divide by x � b (with b 	 0) using synthetic division, and if the
row that contains the quotient and remainder has no negative entry, then b
is an upper bound for the real zeros of P.

2. If we divide by x � a (with a � 0) using synthetic division, and if the
row that contains the quotient and remainder has entries that are alternately
nonpositive and nonnegative, then a is a lower bound for the real zeros of P.

P1x 2
P1x 2

A proof of this theorem is suggested in Exercise 91. The phrase “alternately non-
positive and nonnegative” simply means that the signs of the numbers alternate,
with 0 considered to be positive or negative as required.

Example 5 Upper and Lower Bounds for Zeros 

of a Polynomial

Show that all the real zeros of the polynomial lie
between �3 and 2.

Solution We divide by x � 2 and x � 3 using synthetic division.

2 � 1 0 �3 2 �5 �3 � 1 �0 �3 �2 �5

2 4 2 8 �3 9 �18 48

1 2 1 4 3 1 �3 6 �16 43

By the Upper and Lower Bounds Theorem, �3 is a lower bound and 2 is an upper
bound for the zeros. Since neither �3 nor 2 is a zero (the remainders are not 0 in
the division table), all the real zeros lie between these numbers. ■

Example 6 Factoring a Fifth-Degree Polynomial

Factor completely the polynomial

Solution The possible rational zeros of P are , �1, , �3, , and �9.
We check the positive candidates first, beginning with the smallest.

� 2 5 �8 �14 6 9 1 � 2 �5 �8 �14 6 9

1 3 2 7 �1 �15 �9

2 6 �5 2 7 �1 �15 �9 063
8�9

4�33
2

�9
8�33

4�5
2

1
2

� 9
2� 3

2� 1
2

P1x 2 � 2x5 � 5x4 � 8x3 � 14x2 � 6x � 9

P1x 2
P1x 2 � x4 � 3x2 � 2x � 5

Entries
alternate
in sign.

All entries
positive

is not a
zero

1
2

P11 2 � 0



So 1 is a zero, and . We continue by
factoring the quotient. We still have the same list of possible zeros except that has
been eliminated.

1 � 2 �7 �1 �15 �9 � 2 �7 �1 �15 �9

2 9 8 �7 3 15 21 9

2 9 8 �7 �16 2 10 14 6 0

We see that is both a zero and an upper bound for the zeros of , so we don’t
need to check any further for positive zeros, because all the remaining candidates
are greater than .

Factor 2 from last factor,
multiply into second factor

By Descartes’ Rule of Signs, x3 � 5x 2 � 7x � 3 has no positive zero, so its only
possible rational zeros are �1 and �3.

�1 � 1 5 7 3

�1 �4 �3

1 4 3 0

Therefore

Factor quadratic

This means that the zeros of P are 1, , �1, and �3. The graph of the polynomial is
shown in Figure 2. ■

Using Algebra and Graphing 

Devices to Solve Polynomial Equations

In Section 1.9 we used graphing devices to solve equations graphically. We can now
use the algebraic techniques we’ve learned to select an appropriate viewing rectangle
when solving a polynomial equation graphically.

Example 7 Solving a Fourth-Degree Equation Graphically

Find all real solutions of the following equation, correct to the nearest tenth.

Solution To solve the equation graphically, we graph

P1x 2 � 3x4 � 4x3 � 7x2 � 2x � 3

3x4 � 4x3 � 7x2 � 2x � 3 � 0

3
2

� 1x � 1 2 12x � 3 2 1x � 1 2 21x � 3 2P1x 2 � 1x � 1 2 12x � 3 2 1x � 1 2 1x2 � 4x � 3 2

� 1x � 1 2 12x � 3 2 1x3 � 5x2 � 7x � 3 2P1x 2 � 1x � 1 2 1x � 3
2 2 12x3 � 10x2 � 14x � 6 23

2

P1x 23
2

3
2

1
2

P1x 2 � 1x � 1 2 12x4 � 7x3 � x2 � 15x � 9 2
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,
all entries
nonnegative

P A32 B � 01 is not a
zero.

P (�1) � 0

9

40

_20

_4 2

Figure 2

1x � 1 2 21x � 3 2� 1x � 1 2 12x � 3 2� 14x2 � 6x � 9P1x 2 � 2x5 � 5x4 � 8x3



First we use the Upper and Lower Bounds Theorem to find two numbers between
which all the solutions must lie. This allows us to choose a viewing rectangle that is
certain to contain all the x-intercepts of P. We use synthetic division and proceed by
trial and error.

To find an upper bound, we try the whole numbers, 1, 2, 3, . . . as potential
candidates. We see that 2 is an upper bound for the roots.

2 � 3 4 �7 �2 �3

6 20 26 48

3 10 13 24 45

Now we look for a lower bound, trying the numbers �1, �2, and �3 as potential
candidates. We see that �3 is a lower bound for the roots.

�3 � 3 4 �7 �2 �3

�9 15 �24 78

3 �5 8 �26 75

Thus, all the roots lie between �3 and 2. So the viewing rectangle 3�3, 24
by 3�20, 204 contains all the x-intercepts of P. The graph in Figure 3 has two 
x-intercepts, one between �3 and �2 and the other between 1 and 2. Zooming in,
we find that the solutions of the equation, to the nearest tenth, are �2.3 and 1.3. ■

Example 8 Determining the Size of a Fuel Tank

A fuel tank consists of a cylindrical center section 4 ft long and two hemispherical
end sections, as shown in Figure 4. If the tank has a volume of 100 ft3, what is the
radius r shown in the figure, correct to the nearest hundredth of a foot?

Solution Using the volume formula listed on the inside front cover of this book,
we see that the volume of the cylindrical section of the tank is

The two hemispherical parts together form a complete sphere whose volume is

Because the total volume of the tank is 100 ft3, we get the following equation:

A negative solution for r would be meaningless in this physical situation, and by
substitution we can verify that r � 3 leads to a tank that is over 226 ft3 in volume,
much larger than the required 100 ft3. Thus, we know the correct radius lies some-
where between 0 and 3 ft, and so we use a viewing rectangle of 30, 34 by 350, 1504

4
3pr 3 � 4pr 2 � 100

4
3pr 3

p # r 2 # 4

r

4 ft

Figure 4
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We use the Upper and Lower Bounds
Theorem to see where the roots can 
be found.

20

_20

_3 2

Figure 3

y � 3x4 � 4x3 � 7x2 � 2x � 3

All
positive

Entries
alternate
in sign.

Volume of a cylinder: V � pr 2h

Volume of a sphere: V � 4
3pr 3
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1–6 ■ List all possible rational zeros given by the Rational 
Zeros Theorem (but don’t check to see which actually are zeros).

1.

2.

3.

4.

5.

6.

7–10 ■ A polynomial function P and its graph are given.

(a) List all possible rational zeros of P given by the Rational
Zeros Theorem.

(b) From the graph, determine which of the possible rational 
zeros actually turn out to be zeros.

7.

8.

0

y

x1

1

P1x 2 � 3x 3 � 4x2 � x � 2

0 1

y

x

1

P1x 2 � 5x 3 � x 2 � 5x � 1

U1x 2 � 12x5 � 6x3 � 2x � 8

T1x 2 � 4x4 � 2x2 � 7

S1x 2 � 6x4 � x2 � 2x � 12

R1x 2 � 2x5 � 3x3 � 4x2 � 8

Q1x 2 � x4 � 3x3 � 6x � 8

P1x 2 � x3 � 4x2 � 3

9.

10.

11–40 ■ Find all rational zeros of the polynomial.

11.

12.

13.

14.

15.

16.

17.

18.

19. P1x 2 � x3 � 3x2 � 6x � 4

P1x 2 � x3 � 4x2 � 7x � 10

P1x 2 � x3 � 4x2 � x � 6

P1x 2 � x3 � x2 � 8x � 12

P1x 2 � x3 � 6x2 � 12x � 8

P1x 2 � x3 � 4x2 � 3x � 18

P1x 2 � x3 � 3x � 2

P1x 2 � x3 � 7x2 � 14x � 8

P1x 2 � x3 � 3x2 � 4

0

y

x1

1

P1x 2 � 4x4 � x3 � 4x � 1

0

y

x1

1

P1x 2 � 2x 4 � 9x 3 � 9x 2 � x � 3

to graph the function , as shown in Figure 5. Since we want the
value of this function to be 100, we also graph the horizontal line y � 100 in the
same viewing rectangle. The correct radius will be the x-coordinate of the point of
intersection of the curve and the line. Using the cursor and zooming in, we see that
at the point of intersection x � 2.15, correct to two decimal places. Thus, the tank
has a radius of about 2.15 ft. ■

Note that we also could have solved the equation in Example 8 by first writing it as

and then finding the x-intercept of the function .

3.3 Exercises

y � 4
3px3 � 4px 2 � 100

4
3pr 3 � 4pr 2 � 100 � 0

y � 4
3px3 � 4px 2

150

50
0 3

Figure 5

and y � 100y � 4
3px3 � 4px 2
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41–50 ■ Find all the real zeros of the polynomial. Use the
quadratic formula if necessary, as in Example 3(a).

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51–58 ■ A polynomial P is given.

(a) Find all the real zeros of P.

(b) Sketch the graph of P.

51.

52. P1x 2 � �x3 � 2x2 � 5x � 6

P1x 2 � x3 � 3x2 � 4x � 12

P1x 2 � 4x5 � 18x4 � 6x3 � 91x2 � 60x � 9

P1x 2 � 2x4 � 15x3 � 17x2 � 3x � 1

P1x 2 � 3x3 � 5x2 � 8x � 2

P1x 2 � 4x3 � 6x2 � 1

P1x 2 � x5 � 4x4 � x3 � 10x2 � 2x � 4

P1x 2 � x4 � 7x3 � 14x2 � 3x � 9

P1x 2 � x4 � 2x3 � 2x2 � 3x � 2

P1x 2 � x4 � 6x3 � 4x2 � 15x � 4

P1x 2 � x3 � 5x2 � 2x � 12

P1x 2 � x3 � 4x2 � 3x � 2

P1x 2 � 2x6 � 3x5 � 13x4 � 29x3 � 27x2 � 32x � 12

P1x 2 � 3x5 � 14x4 � 14x3 � 36x2 � 43x � 10

P1x 2 � x5 � 4x4 � 3x3 � 22x2 � 4x � 24

P1x 2 � x5 � 3x4 � 9x3 � 31x2 � 36

P1x 2 � 6x4 � 7x3 � 12x2 � 3x � 2

P1x 2 � 2x4 � 7x3 � 3x2 � 8x � 4

P1x 2 � 6x3 � 11x2 � 3x � 2

P1x 2 � 4x3 � 8x2 � 11x � 15

P1x 2 � 8x3 � 10x2 � x � 3

P1x 2 � 4x3 � 7x � 3

P1x 2 � 2x3 � 3x2 � 2x � 3

P1x 2 � 4x3 � 4x2 � x � 1

P1x 2 � 2x3 � 7x2 � 4x � 4

P1x 2 � x4 � 8x3 � 24x2 � 32x � 16

P1x 2 � x4 � x3 � 5x2 � 3x � 6

P1x 2 � 4x4 � 25x2 � 36

P1x 2 � x4 � x3 � 23x2 � 3x � 90

P1x 2 � x4 � 6x3 � 7x2 � 6x � 8

P1x 2 � x4 � 2x3 � 3x2 � 8x � 4

P1x 2 � x4 � 5x2 � 4

P1x 2 � x3 � 2x2 � 2x � 3 53.

54.

55.

56.

57.

58.

59–64 ■ Use Descartes’ Rule of Signs to determine how many
positive and how many negative real zeros the polynomial can
have. Then determine the possible total number of real zeros.

59.

60.

61.

62.

63.

64.

65–68 ■ Show that the given values for a and b are lower and
upper bounds for the real zeros of the polynomial.

65.

66.

67.

68.

69–72 ■ Find integers that are upper and lower bounds for the
real zeros of the polynomial.

69.

70.

71.

72.

73–78 ■ Find all rational zeros of the polynomial, and then 
find the irrational zeros, if any. Whenever appropriate, use 
the Rational Zeros Theorem, the Upper and Lower Bounds 
Theorem, Descartes’ Rule of Signs, the quadratic formula, or
other factoring techniques.

73.

74.

75.

76.

77.

78. P1x 2 � 8x5 � 14x4 � 22x3 � 57x2 � 35x � 6

P1x 2 � x5 � 7x4 � 9x3 � 23x2 � 50x � 24

P1x 2 � 6x4 � 7x3 � 8x2 � 5x

P1x 2 � 4x4 � 21x2 � 5

P1x 2 � 2x4 � 15x3 � 31x2 � 20x � 4

P1x 2 � 2x4 � 3x3 � 4x2 � 3x � 2

P1x 2 � x5 � x4 � 1

P1x 2 � x4 � 2x3 � x2 � 9x � 2

P1x 2 � 2x3 � 3x2 � 8x � 12

P1x 2 � x3 � 3x2 � 4

P1x 2 � 3x4 � 17x3 � 24x2 � 9x � 1; a � 0, b � 6

P1x 2 � 8x3 � 10x2 � 39x � 9; a � �3, b � 2

P1x 2 � x4 � 2x3 � 9x2 � 2x � 8; a � �3, b � 5

P1x 2 � 2x3 � 5x2 � x � 2; a � �3, b � 1

P1x 2 � x8 � x5 � x4 � x3 � x2 � x � 1

P1x 2 � x5 � 4x3 � x2 � 6x

P1x 2 � x4 � x3 � x2 � x � 12

P1x 2 � 2x6 � 5x4 � x3 � 5x � 1

P1x 2 � 2x3 � x2 � 4x � 7

P1x 2 � x3 � x2 � x � 3

P1x 2 � x5 � x4 � 6x3 � 14x2 � 11x � 3

P1x 2 � x5 � x4 � 5x3 � x2 � 8x � 4

P1x 2 � �x4 � 10x2 � 8x � 8

P1x 2 � x4 � 5x3 � 6x2 � 4x � 8

P1x 2 � 3x3 � 17x2 � 21x � 9

P1x 2 � 2x3 � 7x2 � 4x � 4
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79–82 ■ Show that the polynomial does not have any 
rational zeros.

79.

80.

81.

82.

83–86 ■ The real solutions of the given equation are rational.
List all possible rational roots using the Rational Zeros 
Theorem, and then graph the polynomial in the given viewing
rectangle to determine which values are actually solutions. 
(All solutions can be seen in the given viewing rectangle.)

83. x 3 � 3x 2 � 4x � 12 � 0; 3�4, 44 by 3�15, 154
84. x 4 � 5x 2 � 4 � 0; 3�4, 44 by 3�30, 304
85. 2x 4 � 5x 3 � 14x 2 � 5x � 12 � 0; 3�2, 54 by 3�40, 404
86. 3x 3 � 8x 2 � 5x � 2 � 0; 3�3, 34 by 3�10, 104
87–90 ■ Use a graphing device to find all real solutions of the
equation, correct to two decimal places.

87. x 4 � x � 4 � 0

88. 2x 3 � 8x 2 � 9x � 9 � 0

89. 4.00x 4 � 4.00x 3 � 10.96x 2 � 5.88x � 9.09 � 0

90. x 5 � 2.00x 4 � 0.96x 3 � 5.00x 2 � 10.00x � 4.80 � 0

91. Let be a polynomial with real coefficients and let
b 	 0. Use the Division Algorithm to write

Suppose that r � 0 and that all the coefficients in are
nonnegative. Let z 	 b.

(a) Show that .

(b) Prove the first part of the Upper and Lower Bounds
Theorem.

(c) Use the first part of the Upper and Lower Bounds Theo-
rem to prove the second part. [Hint: Show that if 
satisfies the second part of the theorem, then 
satisfies the first part.]

92. Show that the equation

has exactly one rational root, and then prove that it must
have either two or four irrational roots.

Applications

93. Volume of a Silo A grain silo consists of a cylindrical
main section and a hemispherical roof. If the total volume 
of the silo (including the part inside the roof section) is

x5 � x4 � x3 � 5x2 � 12x � 6 � 0

P1�x 2P1x 2
P1z 2 	 0

Q1x 2P1x 2 � 1x � b 2 # Q1x 2 � r

P1x 2

P1x 2 � x50 � 5x25 � x2 � 1

P1x 2 � 3x3 � x2 � 6x � 12

P1x 2 � 2x4 � x3 � x � 2

P1x 2 � x3 � x � 2

15,000 ft3 and the cylindrical part is 30 ft tall, what is the 
radius of the silo, correct to the nearest tenth of a foot?

94. Dimensions of a Lot A rectangular parcel of land has an
area of 5000 ft2. A diagonal between opposite corners is
measured to be 10 ft longer than one side of the parcel.
What are the dimensions of the land, correct to the nearest
foot?

95. Depth of Snowfall Snow began falling at noon on 
Sunday. The amount of snow on the ground at a certain 
location at time t was given by the function

where t is measured in days from the start of the snowfall
and is the depth of snow in inches. Draw a graph of 
this function and use your graph to answer the following
questions.

(a) What happened shortly after noon on Tuesday?

(b) Was there ever more than 5 in. of snow on the ground?
If so, on what day(s)?

(c) On what day and at what time (to the nearest hour) did
the snow disappear completely?

96. Volume of a Box An open box with a volume of
1500 cm3 is to be constructed by taking a piece of cardboard
20 cm by 40 cm, cutting squares of side length x cm from
each corner, and folding up the sides. Show that this can be

h1t 2
� 1.58t4 � 0.20t 5 � 0.01t 6

h1t 2 � 11.60t � 12.41t 2 � 6.20t 3

x

x+10

30 ft
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done in two different ways, and find the exact dimensions of
the box in each case.

97. Volume of a Rocket A rocket consists of a right circular
cylinder of height 20 m surmounted by a cone whose height
and diameter are equal and whose radius is the same as that
of the cylindrical section. What should this radius be (correct
to two decimal places) if the total volume is to be 500p/3 m3?

98. Volume of a Box A rectangular box with a volume of
ft3 has a square base as shown below. The diagonal of

the box (between a pair of opposite corners) is 1 ft longer
than each side of the base.

(a) If the base has sides of length x feet, show that

(b) Show that two different boxes satisfy the given condi-
tions. Find the dimensions in each case, correct to the
nearest hundredth of a foot.

99. Girth of a Box A box with a square base has length plus
girth of 108 in. (Girth is the distance “around” the box.)
What is the length of the box if its volume is 2200 in3?

b

l

b

x
x

x6 � 2x5 � x4 � 8 � 0

212

20 m

Discovery • Discussion

100. How Many Real Zeros Can a Polynomial Have?

Give examples of polynomials that have the following
properties, or explain why it is impossible to find such a
polynomial.

(a) A polynomial of degree 3 that has no real zeros

(b) A polynomial of degree 4 that has no real zeros

(c) A polynomial of degree 3 that has three real zeros, only
one of which is rational

(d) A polynomial of degree 4 that has four real zeros, none
of which is rational

What must be true about the degree of a polynomial with
integer coefficients if it has no real zeros?

101. The Depressed Cubic The most general cubic 
(third-degree) equation with rational coefficients can 
be written as

(a) Show that if we replace x by X � a /3 and simplify, we
end up with an equation that doesn’t have an X 2 term,
that is, an equation of the form

This is called a depressed cubic, because we have
“depressed” the quadratic term.

(b) Use the procedure described in part (a) to depress the
equation x 3 � 6x 2 � 9x � 4 � 0.

102. The Cubic Formula The quadratic formula can be used
to solve any quadratic (or second-degree) equation. You
may have wondered if similar formulas exist for cubic
(third-degree), quartic (fourth-degree), and higher-degree
equations. For the depressed cubic x 3 � px � q � 0,
Cardano (page 296) found the following formula for one
solution:

A formula for quartic equations was discovered by the
Italian mathematician Ferrari in 1540. In 1824 the Norwe-
gian mathematician Niels Henrik Abel proved that it is 
impossible to write a quintic formula, that is, a formula for
fifth-degree equations. Finally, Galois (page 273) gave a
criterion for determining which equations can be solved by
a formula involving radicals.

Use the cubic formula to find a solution for the follow-
ing equations. Then solve the equations using the methods
you learned in this section. Which method is easier?

(a) x 3 � 3x � 2 � 0

(b) x 3 � 27x � 54 � 0

(c) x 3 � 3x � 4 � 0

x �C3
�q

2
� B

q2

4
�

p3

27
�C3

�q

2
� B

q2

4
�

p3

27

X 3 � pX � q � 0

x 3 � ax 2 � bx � c � 0

20 cm

40 cm

x
x
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Zeroing in on a Zero

We have seen how to find the zeros of a polynomial algebraically and graphically.
Let’s work through a numerical method for finding the zeros. With this method
we can find the value of any real zero to as many decimal places as we wish.

The Intermediate Value Theorem states: If P is a polynomial and if and
are of opposite sign, then P has a zero between a and b. (See page 255.) The

Intermediate Value Theorem is an example of an existence theorem—it tells us
that a zero exists, but doesn’t tell us exactly where it is. Nevertheless, we can use
the theorem to zero in on the zero.

For example, consider the polynomial . Notice that
and . By the Intermediate Value Theorem P must have a zero

between 2 and 3. To “trap” the zero in a smaller interval, we evaluate P at suc-
cessive tenths between 2 and 3 until we find where P changes sign, as in Table 1.
From the table we see that the zero we are looking for lies between 2.2 and 2.3,
as shown in Figure 1.

P13 2 	 0P12 2 � 0
P1x 2 � x3 � 8x � 30

P1b 2 P1a 2
D I S C O V E R Y

P R O J E C T

x

2.1 �3.94
2.2 �1.75
2.3 0.57

P 1x 2 x

2.26 �0.38
2.27 �0.14
2.28 0.09

P 1x 2

y

1

_1

2.20 x2.3

y=P(x)

y

0.1

_0.1

2.270 x2.28

y=P(x)

2.275

Figure 1 Figure 2

We can repeat this process by evaluating P at successive 100ths between 
2.2 and 2.3, as in Table 2. By repeating this process over and over again, we 
can get a numerical value for the zero as accurately as we want. From Table 2
we see that the zero is between 2.27 and 2.28. To see whether it is closer to 
2.27 or 2.28, we check the value of P halfway between these two numbers:

. Since this value is negative, the zero we are looking for lies
between 2.275 and 2.28, as illustrated in Figure 2. Correct to the nearest 100th,
the zero is 2.28.

P12.275 2 � �0.03

}change of sign }change of sign

Table 1 Table 2



1. (a) Show that has a zero between 1 and 2.

(b) Find the zero of P to the nearest tenth.

(c) Find the zero of P to the nearest 100th.

(d) Explain why the zero you found is an approximation to . Repeat 
the process several times to obtain correct to three decimal places.
Compare your results to obtained by a calculator.

2. Find a polynomial that has as a zero. Use the process described here to
zero in on to four decimal places.

3. Show that the polynomial has a zero between the given integers, and then
zero in on that zero, correct to two decimals.

(a) ; between 1 and 2

(b) ; between 2 and 3

(c) ; between 1 and 2

(d) ; between �1 and 0

4. Find the indicated irrational zero, correct to two decimals.

(a) The positive zero of 

(b) The negative zero of 

5. In a passageway between two buildings, two ladders are propped up from the
base of each building to the wall of the other so that they cross, as shown in
the figure. If the ladders have lengths a � 3 m and b � 2 m and the crossing
point is at height c � 1 m, then it can be shown that the distance x between
the buildings is a solution of the equation

(a) This equation has two positive solutions, which lie between 1 and 2. Use
the technique of “zeroing in” to find both of these correct to the nearest
tenth.

(b) Draw two scale diagrams, like the figure, one for each of the two values
of x that you found in part (a). Measure the height of the crossing point
on each. Which value of x seems to be the correct one?

(c) Here is how to get the above equation. First, use similar triangles to
show that

Then use the Pythagorean Theorem to rewrite this as

Substitute a � 3, b � 2, and c � 1, then simplify to obtain the desired 
equation. [Note that you must square twice in this process to eliminate
both square roots. This is why you obtain an extraneous solution in 
part (a). (See the Warning on page 53.)]

1
c

�
1

2a2 � x2
�

1

2b2 � x2

1
c

�
1

h
�

1

k

x8 � 22x6 � 163x4 � 454x2 � 385 � 0

P1x 2 � x4 � 2x3 � x2 � 1

P1x 2 � x4 � 2x3 � x2 � 1

P1x 2 � 2x4 � 4x2 � 1

P1x 2 � 2x4 � 4x2 � 1

P1x 2 � x3 � x2 � 5

P1x 2 � x3 � x � 7

13 5
13 5

12
12

12

P1x 2 � x2 � 2
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c

a

b

x

h

k



3.4 Complex Numbers

In Section 1.5 we saw that if the discriminant of a quadratic equation is negative, the
equation has no real solution. For example, the equation

has no real solution. If we try to solve this equation, we get x 2 � �4, so

But this is impossible, since the square of any real number is positive. [For example,
, a positive number.] Thus, negative numbers don’t have real square roots.

To make it possible to solve all quadratic equations, mathematicians invented an
expanded number system, called the complex number system. First they defined the
new number

This means i 2 � �1. A complex number is then a number of the form a � bi, where
a and b are real numbers.

i � 1�1

1�2 2 2 � 4

x � �1�4

x2 � 4 � 0

SECTION 3.4 Complex Numbers 285

See the note on Cardano, page 296, for
an example of how complex numbers
are used to find real solutions of poly-
nomial equations.

Definition of Complex Numbers

A complex number is an expression of the form

where a and b are real numbers and i 2 � �1. The real part of this complex
number is a and the imaginary part is b. Two complex numbers are equal if
and only if their real parts are equal and their imaginary parts are equal.

a � bi

Note that both the real and imaginary parts of a complex number are real numbers.

Example 1 Complex Numbers

The following are examples of complex numbers.

Real part 3, imaginary part 4

Real part , imaginary part 

Real part 0, imaginary part 6

Real part �7, imaginary part 0 ■

A number such as 6i, which has real part 0, is called a pure imaginary number.
A real number like �7 can be thought of as a complex number with imaginary 
part 0.

In the complex number system every quadratic equation has solutions. The num-
bers 2i and �2i are solutions of x 2 � �4 because12i 2 2 � 22i2 � 41�1 2 � �4  and  1�2i 2 2 � 1�2 2 2i2 � 41�1 2 � �4

�7

6i

� 2
3

1
2

1
2 � 2

3i

3 � 4i



Example 2 Adding, Subtracting, and Multiplying

Complex Numbers

Express the following in the form a � bi.

(a) (b)

(c) (d) i 23

Solution

(a) According to the definition, we add the real parts and we add the imaginary
parts. 13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 15 � 2 2 i � 7 � 3i

13 � 5i 2 14 � 2i 2 13 � 5i 2 � 14 � 2i 213 � 5i 2 � 14 � 2i 2

Although we use the term imaginary in this context, imaginary numbers should
not be thought of as any less “real” (in the ordinary rather than the mathematical
sense of that word) than negative numbers or irrational numbers. All numbers (except
possibly the positive integers) are creations of the human mind—the numbers �1 and

as well as the number i. We study complex numbers because they complete, in a
useful and elegant fashion, our study of the solutions of equations. In fact, imaginary
numbers are useful not only in algebra and mathematics, but in the other sciences as
well. To give just one example, in electrical theory the reactance of a circuit is a quan-
tity whose measure is an imaginary number.

Arithmetic Operations on Complex Numbers

Complex numbers are added, subtracted, multiplied, and divided just as we would
any number of the form . The only difference we need to keep in mind is
that i 2 � �1. Thus, the following calculations are valid.

Multiply and collect like terms

i 2 � �1

Combine real and imaginary
parts

We therefore define the sum, difference, and product of complex numbers as follows.

� 1ac � bd 2 � 1ad � bc 2 i� ac � 1ad � bc 2 i � bd1�1 21a � bi 2 1c � di 2 � ac � 1ad � bc 2 i � bdi2

a � b1c

12
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Graphing calculators can perform arith-
metic operations on complex numbers.

Adding, Subtracting, and Multiplying Complex Numbers

Definition Description

Addition

To add complex numbers, add the real parts and the 
imaginary parts.

Subtraction

To subtract complex numbers, subtract the real parts 
and the imaginary parts.

Multiplication

Multiply complex numbers like binomials, using i 2 � �1.1a � bi 2 # 1c � di 2 � 1ac � bd 2 � 1ad � bc 2 i
1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i
1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

(3+5i)+(4-2i)
7+3i

(3+5i)*(4-2i)
22+14i



(b)

(c)

(d) ■

Division of complex numbers is much like rationalizing the denominator of a 
radical expression, which we considered in Section 1.2. For the complex number 
z � a � bi we define its complex conjugate to be . Note that

So the product of a complex number and its conjugate is always a nonnegative real
number. We use this property to divide complex numbers.

z # z � 1a � bi 2 1a � bi 2 � a2 � b2

z � a � bi

i 23 � i 22�1 � 1i 2 2 11i � 1�1 2 11i � 1�1 2 i � �i

13 � 5i 2 14 � 2i 2 � 33 # 4 � 51�2 2 4 � 331�2 2 � 5 # 4 4 i � 22 � 14i

13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 35 � 1�2 2 4 i � �1 � 7i
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Dividing Complex Numbers

To simplify the quotient , multiply the numerator and the denominator

by the complex conjugate of the denominator:

a � bi

c � di
� a a � bi

c � di
b a c � di

c � di
b �

1ac � bd 2 � 1bc � ad 2 i
c2 � d 2

a � bi

c � di

Rather than memorize this entire formula, it’s easier to just remember the first step
and then multiply out the numerator and the denominator as usual.

Example 3 Dividing Complex Numbers

Express the following in the form a � bi.

(a) (b)

Solution We multiply both the numerator and denominator by the complex 
conjugate of the denominator to make the new denominator a real number.

(a) The complex conjugate of 1 � 2i is .

(b) The complex conjugate of 4i is �4i. Therefore

■

Square Roots of Negative Numbers

Just as every positive real number r has two square roots 1 and 2, every neg-
ative number has two square roots as well. If �r is a negative number, then its square
roots are , because and .1�i1r 2 2 � i2r � �r1i1r 2 2 � i2r � �r�i1r

�1r1r

7 � 3i

4i
� a 7 � 3i

4i
b a�4i

�4i
b �

12 � 28i

16
�

3

4
�

7

4
i

3 � 5i

1 � 2i
� a 3 � 5i

1 � 2i
b a 1 � 2i

1 � 2i
b �

�7 � 11i

5
� �

7

5
�

11

5
i

1 � 2i � 1 � 2i

7 � 3i

4i

3 � 5i

1 � 2i

Number Conjugate

3 � 2i 3 � 2i
1 � i 1 � i

4i �4i
5 5

Complex Conjugates



We usually write instead of to avoid confusion with .

Example 4 Square Roots of Negative Numbers

(a)

(b)

(c) ■

Special care must be taken when performing calculations involving square roots
of negative numbers. Although when a and b are positive, this is
not true when both are negative. For example,

but

so

When multiplying radicals of negative numbers, express them first in the form
(where r 	 0) to avoid possible errors of this type.

Example 5 Using Square Roots of Negative Numbers

Evaluate and express in the form a � bi.

Solution

■

Complex Roots of Quadratic Equations

We have already seen that, if a � 0, then the solutions of the quadratic equation 
ax 2 � bx � c � 0 are

If b 2 � 4ac � 0, then the equation has no real solution. But in the complex number
system, this equation will always have solutions, because negative numbers have
square roots in this expanded setting.

x �
�b � 2b2 � 4ac

2a

� 813 � i13

� 1613 � 213 2 � i12 # 213 � 313 2� 1213 � i13 2 13 � 2i 21112 � 1�3 2 13 � 1�4 2 � 1112 � i13 2 13 � i14 2
1112 � 1�3 2 13 � 1�4 2

i1r

1�2 # 1�3 � 11�2 2 1�3 211�2 2 1�3 2 � 16

1�2 # 1�3 � i12 # i13 � i216 � �16

1a # 1b � 1ab

1�3 � i13

1�16 � i116 � 4i

1�1 � i11 � i

1bi1bii1b
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Square Roots of Negative Numbers

If �r is negative, then the principal square root of �r is

The two square roots of �r are and .�i1ri1r

1�r � i1r

Leonhard Euler (1707–1783) was
born in Basel, Switzerland, the son
of a pastor. At age 13 his father sent
him to the University at Basel to
study theology, but Euler soon 
decided to devote himself to the
sciences. Besides theology he stud-
ied mathematics, medicine, astron-
omy, physics, andAsian languages.
It is said that Euler could calculate
as effortlessly as “men breathe or
as eagles fly.” One hundred years
before Euler, Fermat (see page
652) had conjectured that 
is a prime number for all n. The
first five of these numbers are 5,
17, 257, 65537, and 4,294,967,297.
It’s easy to show that the first four
are prime. The fifth was also
thought to be prime until Euler,
with his phenomenal calculating
ability, showed that it is the prod-
uct 641 � 6,700,417 and so is not
prime. Euler published more than
any other mathematician in history.
His collected works comprise 75
large volumes. Although he was
blind for the last 17 years of his
life, he continued to work and pub-
lish. In his writings he popularized
the use of the symbols p, e, and i,
which you will find in this text-
book. One of Euler’s most lasting
contributions is his development of
complex numbers.

22n

� 1
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1–10 ■ Find the real and imaginary parts of the complex number.

1. 5 � 7i 2. �6 � 4i

3. 4.

5. 3 6.

7. 8.

9. 10. 2 � 1�513 � 1�4

i13� 2
3 i

� 1
2

4 � 7i

2

�2 � 5i

3

11–22 ■ Perform the addition or subtraction and write the result
in the form a � bi.

11.

12.

13.

14.

15. 3i � 16 � 4i 213 � 2i 2 � A�5 � 1
3 iB1�6 � 6i 2 � 19 � i 212 � 5i 2 � 14 � 6i 212 � 5i 2 � 13 � 4i 2

Example 6 Quadratic Equations with Complex Solutions

Solve each equation.

(a) x 2 � 9 � 0 (b) x 2 � 4x � 5 � 0

Solution

(a) The equation x 2 � 9 � 0 means x 2 � �9, so

The solutions are therefore 3i and �3i.

(b) By the quadratic formula we have

So, the solutions are �2 � i and �2 � i. ■

Example 7 Complex Conjugates as Solutions

of a Quadratic

Show that the solutions of the equation

are complex conjugates of each other.

Solution We use the quadratic formula to get

So, the solutions are and , and these are complex conjugates. ■

3.4 Exercises

3 � 1
2 i3 � 1

2 i

�
24 � 1�16

8
�

24 � 4i

8
� 3 �

1

2
i

x �
24 � 2124 2 2 � 414 2 137 2

214 2

4x2 � 24x � 37 � 0

�
�4 � 2i

2
�

21�2 � i 2
2

� �2 � i

�
�4 � 1�4

2

x �
�4 � 242 � 4 # 5

2

x � �1�9 � �i19 � �3i

The two solutions of any quadratic
equation that has real coefficients are
complex conjugates of each other. To
understand why this is true, think about
the � sign in the quadratic formula.
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16.

17.

18.

19.

20.

21.

22.

23–56 ■ Evaluate the expression and write the result in the
form a � bi.

23.

24.

25.

26.

27.

28.

29.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. i 3 44.

45. i 100 46. i 1002

47. 48.

49. 50.

51.

52.

53.
2 � 1�8

1 � 1�2

1 � 1�1

1 � 1�1

13 � 1�5 2 11 � 1�1 2 21
31�271�31�12

B
�9

4
1�25

12i 2 4
11 � 2i 2 13 � i 2

2 � i

1

1 � i
�

1

1 � i

�3 � 5i

15i

4 � 6i

3i

12 � 3i 2�110i

1 � 2i

25

4 � 3i

26 � 39i

2 � 3i

5 � i

3 � 4i

2 � 3i

1 � 2i

1

1 � i

1

i

1�2 � i 2 13 � 7i 216 � 5i 2 12 � 3i 2A23 � 12iB A16 � 24iB13 � 4i 2 15 � 12i 215 � 3i 2 11 � i 217 � i 2 14 � 2i 22iA12 � iB41�1 � 2i 2
10.1 � 1.1i 2 � 11.2 � 3.6i 21
3 i � A14 � 1

6 iB6i � 14 � i 21�12 � 8i 2 � 17 � 4i 21�4 � i 2 � 12 � 5i 2A7 � 1
2 iB � A5 � 3

2 iBA12 � 1
3 iB � A12 � 1

3 iB 54.

55.

56.

57–70 ■ Find all solutions of the equation and express them in
the form a � bi.

57. x 2 � 9 � 0 58. 9x 2 � 4 � 0

59. x 2 � 4x � 5 � 0 60. x 2 � 2x � 2 � 0

61. x 2 � x � 1 � 0 62. x 2 � 3x � 3 � 0

63. 2x 2 � 2x � 1 � 0 64. 2x 2 � 3 � 2x

65. 66.

67. 6x 2 � 12x � 7 � 0 68. 4x 2 � 16x � 19 � 0

69. 70.

71–78 ■ Recall that the symbol represents the complex conju-
gate of z. If z � a � bi and „ � c � di, prove each statement.

71.

72.

73.

74.

75. is a real number

76. is a pure imaginary number

77. is a real number

78. if and only if z is real

Discovery • Discussion

79. Complex Conjugate Roots Suppose that the equation
ax 2 � bx � c � 0 has real coefficients and complex roots.
Why must the roots be complex conjugates of each other?
(Think about how you would find the roots using the 
quadratic formula.)

80. Powers of i Calculate the first 12 powers of i, that is,
i, i 2, i 3, . . . , i 12. Do you notice a pattern? Explain how
you would calculate any whole number power of i, using 
the pattern you have discovered. Use this procedure to cal-
culate i 4446.

81. Complex Radicals The number 8 has one real cube root,
. Calculate and to 

verify that 8 has at least two other complex cube roots. Can
you find four fourth roots of 16?

1�1 � i13 2 31�1 � i13 2 313 8 � 2

z � z

z # z
z � z

z � z

z � z

1z 2 2 � z2

z„ � z # „
z � „ � z � „

z

x2 � 1
2 x � 1 � 01

2 x2 � x � 5 � 0

z � 4 �
12
z

� 0t � 3 �
3

t
� 0

1�71�49

128

1�36

1�21�9

113 � 1�4 2 116 � 1�8 2



3.5 Complex Zeros and the Fundamental 
Theorem of Algebra

We have already seen that an nth-degree polynomial can have at most n real zeros. In
the complex number system an nth-degree polynomial has exactly n zeros, and so can
be factored into exactly n linear factors. This fact is a consequence of the Fundamental
Theorem of Algebra, which was proved by the German mathematician C. F. Gauss in
1799 (see page 294).

The Fundamental Theorem of Algebra 

and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and
solving polynomial equations.

SECTION 3.5 Complex Zeros and the Fundamental Theorem of Algebra 291

Fundamental Theorem of Algebra

Every polynomial

with complex coefficients has at least one complex zero.

P1x 2 � an xn � an�1xn�1 � . . . � a1x � a0  1n � 1, an � 0 2
Because any real number is also a complex number, the theorem applies to poly-

nomials with real coefficients as well.
The Fundamental Theorem of Algebra and the Factor Theorem together show that

a polynomial can be factored completely into linear factors, as we now prove.

Complete Factorization Theorem

If is a polynomial of degree n � 1, then there exist complex numbers a,
c1, c2, . . . , cn (with a � 0) such that

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
P1x 2

■ Proof By the Fundamental Theorem of Algebra, P has at least one zero. Let’s
call it c1. By the Factor Theorem, can be factored as

where is of degree n � 1. Applying the Fundamental Theorem to the quotient
gives us the factorization

where is of degree n � 2 and c2 is a zero of . Continuing this process
for n steps, we get a final quotient of degree 0, a nonzero constant that we
will call a. This means that P has been factored as

■P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
Qn1x 2 Q11x 2Q21x 2 P1x 2 � 1x � c1 2 # 1x � c2 2 # Q21x 2Q11x 2 Q11x 2 P1x 2 � 1x � c1 2 # Q11x 2P1x 2



To actually find the complex zeros of an nth-degree polynomial, we usually first
factor as much as possible, then use the quadratic formula on parts that we can’t fac-
tor further.

Example 1 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

Solution

(a) We first factor P as follows.

Given

Group terms

Factor x � 3

We find the zeros of P by setting each factor equal to 0:

Setting x � 3 � 0, we see that x � 3 is a zero. Setting x 2 � 1 � 0, we get 
x 2 � �1, so x � �i. So the zeros of P are 3, i, and �i.

(b) Since the zeros are 3, i, and �i, by the Complete Factorization Theorem P
factors as

■

Example 2 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

Solution

(a) The possible rational zeros are the factors of 4, which are �1, �2, �4. Using
synthetic division (see the margin) we find that �2 is a zero, and the polyno-
mial factors as

P1x 2 � 1x � 2 2 1x2 � 2x � 2 2

P1x 2 � x3 � 2x � 4

� 1x � 3 2 1x � i 2 1x � i 2P1x 2 � 1x � 3 2 1x � i 2 3x � 1�i 2 4

P1x 2 � 1x � 3 2 1x2 � 1 2
� 1x � 3 2 1x2 � 1 2� x21x � 3 2 � 1x � 3 2P1x 2 � x3 � 3x2 � x � 3

P1x 2 � x3 � 3x2 � x � 3
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This factor is 0 when x � 3. This factor is 0 when x � i or �i.

�2 � 1 �0 �2 �4

�2 4 �4

1 �2 �2 0

This factor is 0 when x � �2. Use the quadratic formula to find
when this factor is 0.



To find the zeros, we set each factor equal to 0. Of course, x � 2 � 0 means 
x � �2. We use the quadratic formula to find when the other factor is 0.

Set factor equal to 0

Quadratic formula

Take square root

Simplify

So the zeros of P are �2, 1 � i, and 1 � i.

(b) Since the zeros are �2, 1 � i, and 1 � i, by the Complete Factorization 
Theorem P factors as

■

Zeros and Their Multiplicities

In the Complete Factorization Theorem the numbers c1, c2, . . . , cn are the zeros of P.
These zeros need not all be different. If the factor x � c appears k times in the com-
plete factorization of , then we say that c is a zero of multiplicity k (see page
259). For example, the polynomial

has the following zeros:

The polynomial P has the same number of zeros as its degree—it has degree 10 and
has 10 zeros, provided we count multiplicities. This is true for all polynomials, as we
prove in the following theorem.

1 1multiplicity 3 2 ,  �2 1multiplicity 2 2 ,  �3 1multiplicity 5 2
P1x 2 � 1x � 1 2 31x � 2 2 21x � 3 2 5

P1x 2

� 1x � 2 2 1x � 1 � i 2 1x � 1 � i 2P1x 2 � 3x � 1�2 2 4 3x � 11 � i 2 4 3x � 11 � i 2 4
x � 1 � i

x �
2 � 2i

2

x �
2 � 14 � 8

2

x2 � 2x � 2 � 0
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Zeros Theorem

Every polynomial of degree n � 1 has exactly n zeros, provided that a zero 
of multiplicity k is counted k times.

■ Proof Let P be a polynomial of degree n. By the Complete Factorization
Theorem

Now suppose that c is a zero of P other than c1, c2, . . . , cn. Then

Thus, by the Zero-Product Property one of the factors c � ci must be 0, so c � ci

for some i. It follows that P has exactly the n zeros c1, c2, . . . , cn. ■

P1c 2 � a1c � c1 2 1c � c2 2 p 1c � cn 2 � 0

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2



Example 3 Factoring a Polynomial with

Complex Zeros

Find the complete factorization and all five zeros of the polynomial

Solution Since 3x is a common factor, we have

To factor x 2 � 4, note that 2i and �2i are zeros of this polynomial. Thus
, and so

The zeros of P are 0, 2i, and �2i. Since the factors x � 2i and x � 2i each occur
twice in the complete factorization of P, the zeros 2i and �2i are of multiplicity 2
(or double zeros). Thus, we have found all five zeros. ■

The following table gives further examples of polynomials with their complete
factorizations and zeros.

� 3x1x � 2i 2 21x � 2i 2 2P1x 2 � 3x 3 1x � 2i 2 1x � 2i 2 4 2
x2 � 4 � 1x � 2i 2 1x � 2i 2

� 3x1x2 � 4 2 2P1x 2 � 3x1x4 � 8x2 � 16 2
P1x 2 � 3x5 � 24x3 � 48x
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This factor is 0 when x � 0. This factor is 0 when 
x � 2i or x � �2i.

Degree Polynomial Zero(s) Number of zeros

1 4 1

2 5 1multiplicity 22 2

3 0, i, �i 3

4 3i 1multiplicity 22, 4
�3i 1multiplicity 22

5 0 1multiplicity 32, 5
1 1multiplicity 22� x31x � 1 2 2P1x 2 � x5 � 2x4 � x3

� 1x � 3i 2 21x � 3i 2 2P1x 2 � x4 � 18x2 � 81

� x1x � i 2 1x � i 2P1x 2 � x3 � x

� 1x � 5 2 1x � 5 2P1x 2 � x2 � 10x � 25

P1x 2 � x � 4

0 is a zero of
multiplicity 1.

2i is a zero of
multiplicity 2.

�2i is a zero of
multiplicity 2.

Carl Friedrich Gauss (1777–
1855) is considered the greatest
mathematician of modern times.
His contemporaries called him the
“Prince of Mathematics.” He was
born into a poor family; his father
made a living as a mason. As a very
small child, Gauss found a calcula-
tion error in his father’s accounts,
the first of many incidents that
gave evidence of his mathematical
precocity. (See also page 834.) At
19 Gauss demonstrated that the
regular 17-sided polygon can be
constructed with straight-edge and
compass alone. This was remark-
able because, since the time of Eu-
clid, it was thought that the only
regular polygons constructible in
this way were the triangle and pen-
tagon. Because of this discovery
Gauss decided to pursue a career in
mathematics instead of languages,
his other passion. In his doctoral
dissertation, written at the age of
22, Gauss proved the Fundamen-
tal Theorem of Algebra: A poly-
nomial of degree n with complex
coefficients has n roots. His other
accomplishments range over every
branch of mathematics, as well as
physics and astronomy.

Co
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Example 4 Finding Polynomials with Specified Zeros

(a) Find a polynomial of degree 4, with zeros i, �i, 2, and �2 and with
.

(b) Find a polynomial of degree 4, with zeros �2 and 0, where �2 is a zero
of multiplicity 3.

Solution

(a) The required polynomial has the form

Difference of squares

Multiply

We know that , so . Thus

(b) We require

Special Product Formula 4 (Section 1.3)

Since we are given no information about Q other than its zeros and their multiplic-
ity, we can choose any number for a. If we use a � 1, we get

■

Example 5 Finding All the Zeros of a Polynomial

Find all four zeros of .

Solution Using the Rational Zeros Theorem from Section 3.3, we obtain the fol-
lowing list of possible rational zeros: �1, �2, �4, , , . Checking these 
using synthetic division, we find that 2 and are zeros, and we get the following
factorization.

Factor x � 2

Factor x �

Factor 3

The zeros of the quadratic factor are

Quadratic formula

so the zeros of are

■2, �
1

3
, �

1

2
� i
17

2
,  and  �

1

2
� i
17

2

P1x 2x �
�1 � 11 � 8

2
� �

1

2
� i
17

2

� 31x � 2 2 Ax � 1
3B 1x2 � x � 2 2 1

3� 1x � 2 2 Ax � 1
3B 13x2 � 3x � 6 2� 1x � 2 2 13x3 � 4x2 � 7x � 2 2P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

� 1
3

�4
3�2

3�1
3

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

Q1x 2 � x4 � 6x3 � 12x2 � 8x

� a1x4 � 6x3 � 12x2 � 8x 2� a1x3 � 6x2 � 12x � 8 2x� a1x � 2 2 3xQ1x 2 � a 3x � 1�2 2 4 31x � 0 2
P1x 2 � 1

2x4 � 3
2x2 � 2

a � 1
2P13 2 � a134 � 3 # 32 � 4 2 � 50a � 25

� a1x4 � 3x2 � 4 2� a1x2 � 1 2 1x2 � 4 2P1x 2 � a1x � i 2 1x � 1�i 22 1x � 2 2 1x � 1�2 22
Q1x 2P13 2 � 25
P1x 2
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40

_20

_2 4

Figure 1

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

Figure 1 shows the graph of the polyno-
mial P in Example 5. The x-intercepts
correspond to the real zeros of P. The
imaginary zeros cannot be determined
from the graph.



Complex Zeros Come in Conjugate Pairs

As you may have noticed from the examples so far, the complex zeros of poly-
nomials with real coefficients come in pairs. Whenever a � bi is a zero, its complex
conjugate a � bi is also a zero.
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Conjugate Zeros Theorem

If the polynomial P has real coefficients, and if the complex number z is a
zero of P, then its complex conjugate is also a zero of P.z

■ Proof Let

where each coefficient is real. Suppose that . We must prove that .
We use the facts that the complex conjugate of a sum of two complex numbers is
the sum of the conjugates and that the conjugate of a product is the product of the
conjugates (see Exercises 71 and 72 in Section 3.4).

Because the coefficients are real

This shows that is also a zero of , which proves the theorem. ■

Example 6 A Polynomial with a Specified Complex Zero

Find a polynomial of degree 3 that has integer coefficients and zeros and
3 � i.

Solution Since 3 � i is a zero, then so is 3 � i by the Conjugate Zeros 
Theorem. This means that has the form

Regroup

Difference of Squares Formula

Expand

Expand

To make all coefficients integers, we set a � 2 and get

Any other polynomial that satisfies the given requirements must be an integer 
multiple of this one. ■

P1x 2 � 2x3 � 13x2 � 26x � 10

� aAx3 � 13
2 x2 � 13x � 5B� aAx � 1

2B 1x2 � 6x � 10 2� aAx � 1
2B 3 1x � 3 2 2 � i2 4� aAx � 1
2B 3 1x � 3 2 � i 4 3 1x � 3 2 � i 4P1x 2 � aAx � 1
2B 3x � 13 � i 2 4 3x � 13 � i 2 4P1x 2

1
2P1x 2

P1x 2z

� P1z 2 � 0 � 0

� anz
n � an�1z

n�1 � . . . � a1z � a0

� an zn � an�1zn�1 � . . . � a1z � a0

� an zn � an�1 zn�1 � . . . � a1 z � a0

P1z 2 � an1z 2 n � an�11z 2 n�1 � . . . � a1z � a0

P1z 2 � 0P1z 2 � 0

P1x 2 � an xn � an�1x
n�1 � . . . � a1x � a0

Gerolamo Cardano (1501–1576)
is certainly one of the most color-
ful figures in the history of math-
ematics. He was the most 
well-known physician in Europe in
his day, yet throughout his life he
was plagued by numerous mal-
adies, including ruptures, hemor-
rhoids, and an irrational fear of
encountering rabid dogs. A doting
father, his beloved sons broke his
heart—his favorite was eventually
beheaded for murdering his own
wife. Cardano was also a compul-
sive gambler; indeed, this vice may
have driven him to write the Book
on Games of Chance, the first
study of probability from a mathe-
matical point of view.

In Cardano’s major mathemati-
cal work, the Ars Magna, he de-
tailed the solution of the general
third- and fourth-degree polyno-
mial equations. At the time of its
publication, mathematicians were
uncomfortable even with negative
numbers, but Cardano’s formulas
paved the way for the acceptance
not just of negative numbers, but
also of imaginary numbers, be-
cause they occurred naturally in
solving polynomial equations. For
example, for the cubic equation

one of his formulas gives the 
solution

(See page 282, Exercise 102). This
value for x actually turns out to be
the integer 4, yet to find it Cardano
had to use the imaginary number

.1�121 � 11i

� 23 2 � 1�121

x � 23 2 � 1�121

x3 � 15x � 4 � 0



Example 7 Using Descartes’ Rule to Count Real 

and Imaginary Zeros

Without actually factoring, determine how many positive real zeros, negative real
zeros, and imaginary zeros the following polynomial could have:

Solution Since there is one change of sign, by Descartes’ Rule of Signs, P has
one positive real zero. Also, has three
changes of sign, so there are either three or one negative real zero(s). So P has a 
total of either four or two real zeros. Since P is of degree 4, it has four zeros in all,
which gives the following possibilities.

P1�x 2 � x4 � 6x3 � 12x2 � 14x � 24

P1x 2 � x4 � 6x3 � 12x2 � 14x � 24
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Positive real zeros Negative real zeros Imaginary zeros

1 3 0
1 1 2

Linear and Quadratic Factors

We have seen that a polynomial factors completely into linear factors if we use com-
plex numbers. If we don’t use complex numbers, then a polynomial with real
coefficients can always be factored into linear and quadratic factors. We use this prop-
erty in Section 9.8 when we study partial fractions. A quadratic polynomial with no
real zeros is called irreducible over the real numbers. Such a polynomial cannot be
factored without using complex numbers.

■

Linear and Quadratic Factors Theorem

Every polynomial with real coefficients can be factored into a product of 
linear and irreducible quadratic factors with real coefficients.

■ Proof We first observe that if c � a � bi is a complex number, then

The last expression is a quadratic with real coefficients.
Now, if P is a polynomial with real coefficients, then by the Complete 

Factorization Theorem

Since the complex roots occur in conjugate pairs, we can multiply the factors corre-
sponding to each such pair to get a quadratic factor with real coefficients. This results
in P being factored into linear and irreducible quadratic factors. ■

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
� x2 � 2ax � 1a2 � b2 2� 1x � a 2 2 � 1bi 2 2� 3 1x � a 2 � bi 4 3 1x � a 2 � bi 41x � c 2 1x � c 2 � 3x � 1a � bi 2 4 3x � 1a � bi 2 4
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1–12 ■ A polynomial P is given.

(a) Find all zeros of P, real and complex.

(b) Factor P completely.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13–30 ■ Factor the polynomial completely and find all its 
zeros. State the multiplicity of each zero.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. P1x 2 � x6 � 16x3 � 64P1x 2 � x5 � 6x3 � 9x

P1x 2 � x5 � 7x3P1x 2 � x4 � 3x2 � 4

Q1x 2 � x4 � 10x2 � 25Q1x 2 � x4 � 2x2 � 1

P1x 2 � x6 � 729P1x 2 � x3 � x2 � 9x � 9

P1x 2 � x3 � 64P1x 2 � 16x4 � 81

Q1x 2 � x4 � 625Q1x 2 � x4 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 4x

Q1x 2 � x2 � 8x � 17Q1x 2 � x2 � 2x � 2

P1x 2 � 4x2 � 9P1x 2 � x2 � 25

P1x 2 � x6 � 7x3 � 8P1x 2 � x6 � 1

P1x 2 � x3 � 8P1x 2 � x3 � 8

P1x 2 � x4 � 6x2 � 9P1x 2 � x4 � 16

P1x 2 � x4 � x2 � 2P1x 2 � x4 � 2x2 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 2x2 � 2x

P1x 2 � x5 � 9x3P1x 2 � x4 � 4x2

31–40 ■ Find a polynomial with integer coefficients that
satisfies the given conditions.

31. P has degree 2, and zeros 1 � i and 1 � i.

32. P has degree 2, and zeros and .

33. Q has degree 3, and zeros 3, 2i, and �2i.

34. Q has degree 3, and zeros 0 and i.

35. P has degree 3, and zeros 2 and i.

36. Q has degree 3, and zeros �3 and 1 � i.

37. R has degree 4, and zeros 1 � 2i and 1, with 1 a zero of
multiplicity 2.

38. S has degree 4, and zeros 2i and 3i.

39. T has degree 4, zeros i and 1 � i, and constant term 12.

40. U has degree 5, zeros , �1, and �i, and leading coefficient
4; the zero �1 has multiplicity 2.

41–58 ■ Find all zeros of the polynomial.

41.

42.

43.

44.

45. P1x 2 � x3 � 3x2 � 3x � 2

P1x 2 � x3 � 7x2 � 18x � 18

P1x 2 � x3 � 2x2 � 2x � 1

P1x 2 � x3 � 7x2 � 17x � 15

P1x 2 � x3 � 2x2 � 4x � 8

1
2

1 � i121 � i12

Example 8 Factoring a Polynomial into Linear 

and Quadratic Factors

Let .

(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

Solution

(a)

The factor x 2 � 4 is irreducible since it has only the imaginary zeros �2i.

(b) To get the complete factorization, we factor the remaining quadratic factor.

■

3.5 Exercises

� 1x � 12 2 1x � 12 2 1x � 2i 2 1x � 2i 2P1x 2 � 1x � 12 2 1x � 12 2 1x2 � 4 2
� 1x � 12 2 1x � 12 2 1x2 � 4 2� 1x2 � 2 2 1x2 � 4 2P1x 2 � x4 � 2x2 � 8

P1x 2 � x4 � 2x2 � 8



SECTION 3.6 Rational Functions 299

46.

47.

48.

49.

50.

51.

52. [Hint: Factor by grouping.]

53.

54.

55.

56.

57.

58.

59–64 ■ A polynomial P is given.

(a) Factor P into linear and irreducible quadratic factors with
real coefficients.

(b) Factor P completely into linear factors with complex
coefficients.

59.

60.

61.

62.

63.

64.

65. By the Zeros Theorem, every nth-degree polynomial equa-
tion has exactly n solutions (including possibly some that
are repeated). Some of these may be real and some may be
imaginary. Use a graphing device to determine how many
real and imaginary solutions each equation has.

(a) x 4 � 2x 3 � 11x 2 � 12x � 0

(b) x 4 � 2x 3 � 11x 2 � 12x � 5 � 0

(c) x 4 � 2x 3 � 11x 2 � 12x � 40 � 0

P1x 2 � x5 � 16x

P1x 2 � x6 � 64

P1x 2 � x4 � 8x2 � 16

P1x 2 � x4 � 8x2 � 9

P1x 2 � x3 � 2x � 4

P1x 2 � x3 � 5x2 � 4x � 20

P1x 2 � x5 � 2x4 � 2x3 � 4x2 � x � 2

P1x 2 � x5 � 3x4 � 12x3 � 28x2 � 27x � 9

P1x 2 � 4x4 � 2x3 � 2x2 � 3x � 1

P1x 2 � 4x4 � 4x3 � 5x2 � 4x � 1

P1x 2 � x4 � x2 � 2x � 2

P1x 2 � x4 � 6x3 � 13x2 � 24x � 36

P1x 2 � x5 � x3 � 8x2 � 8

P1x 2 � x5 � x4 � 7x3 � 7x2 � 12x � 12

P1x 2 � x4 � 2x3 � 2x2 � 2x � 3

P1x 2 � x4 � x3 � 7x2 � 9x � 18

P1x 2 � 2x3 � 8x2 � 9x � 9

P1x 2 � 2x3 � 7x2 � 12x � 9

P1x 2 � x3 � x � 6 66–68 ■ So far we have worked only with polynomials that
have real coefficients. These exercises involve polynomials with
real and imaginary coefficients.

66. Find all solutions of the equation.

(a) 2x � 4i � 1

(b) x 2 � ix � 0

(c) x 2 � 2ix � 1 � 0

(d) ix 2 � 2x � i � 0

67. (a) Show that 2i and 1 � i are both solutions of the 
equation

but that their complex conjugates �2i and 1 � i are not.

(b) Explain why the result of part (a) does not violate the
Conjugate Zeros Theorem.

68. (a) Find the polynomial with real coefficients of the small-
est possible degree for which i and 1 � i are zeros and
in which the coefficient of the highest power is 1.

(b) Find the polynomial with complex coefficients of the
smallest possible degree for which i and 1 � i are zeros
and in which the coefficient of the highest power is 1.

Discovery • Discussion

69. Polynomials of Odd Degree The Conjugate Zeros The-
orem says that the complex zeros of a polynomial with real
coefficients occur in complex conjugate pairs. Explain how
this fact proves that a polynomial with real coefficients and
odd degree has at least one real zero.

70. Roots of Unity There are two square roots of 1, namely 1
and �1. These are the solutions of x 2 � 1. The fourth roots of
1 are the solutions of the equation x 4 � 1 or x 4 � 1 � 0. How
many fourth roots of 1 are there? Find them. The cube roots
of 1 are the solutions of the equation x 3 � 1 or x 3 � 1 � 0.
How many cube roots of 1 are there? Find them. How would
you find the sixth roots of 1? How many are there? Make a
conjecture about the number of nth roots of 1.

x2 � 11 � i 2x � 12 � 2i 2 � 0

3.6 Rational Functions

A rational function is a function of the form

where P and Q are polynomials. We assume that and have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs
look quite different than the graphs of polynomial functions.

Q1x 2P1x 2r 1x 2 �
P1x 2
Q1x 2



Rational Functions and Asymptotes

The domain of a rational function consists of all real numbers x except those for
which the denominator is zero. When graphing a rational function, we must pay spe-
cial attention to the behavior of the graph near those x-values. We begin by graphing
a very simple rational function.

Example 1 A Simple Rational Function

Sketch a graph of the rational function .

Solution The function f is not defined for x � 0. The following tables show that
when x is close to zero, the value of is large, and the closer x gets to zero,
the larger gets.0 f 1x 2 0 0 f 1x 2 0

f 1x 2 �
1
x
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x

�0.1 �10
�0.01 �100
�0.00001 �100,000

f 1x 2For positive real numbers,

1

small number
� BIG NUMBER

1

BIG NUMBER
� small number

Domains of rational expressions are
discussed in Section 1.4.

x

0.1 10
0.01 100
0.00001 100,000

f 1x 2

We describe this behavior in words and in symbols as follows. The first table shows
that as x approaches 0 from the left, the values of decrease without bound.
In symbols,

“y approaches negative infinity 
as x approaches 0 from the left”

The second table shows that as x approaches 0 from the right, the values of 
increase without bound. In symbols,

The next two tables show how changes as becomes large.0 x 0f 1x 2
“y approaches infinity as x
approaches 0 from the right”

f 1x 2 �q as x � 0�

f 1x 2
f 1x 2 � �q as x � 0�

y � f 1x 2
Approaching 0� Approaching �� Approaching 0� Approaching �

x

�10 �0.1
�100 �0.01

�100,000 �0.00001

f 1x 2 x

10 0.1
100 0.01

100,000 0.00001

f 1x 2

Approaching �� Approaching 0 Approaching � Approaching 0

These tables show that as becomes large, the value of gets closer and closer
to zero. We describe this situation in symbols by writing

f 1x 2 � 0 as x � �q  and  f 1x 2 � 0 as x �q

f 1x 20 x 0



Using the information in these tables and plotting a few additional points, we obtain
the graph shown in Figure 1.
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x

2

2

y

0

f(x) → `
as x → 0+

as x → 0_

f(x) → 0 as
x → `

f(x) → 0 as
x → _`

f(x) → _`
Figure 1

■f 1x 2 � 1
x

x

�2

�1 �1

�2

2

1 1

2 1
2

1
2

�1
2

�1
2

f 1x 2 � 1
x

In Example 1 we used the following arrow notation.

Symbol Meaning

x � a� x approaches a from the left
x � a� x approaches a from the right
x � �q x goes to negative infinity; that is, x decreases without bound
x �q x goes to infinity; that is, x increases without bound

The line x � 0 is called a vertical asymptote of the graph in Figure 1, and the line
y � 0 is a horizontal asymptote. Informally speaking, an asymptote of a function is a
line that the graph of the function gets closer and closer to as one travels along that line.

Definition of Vertical and Horizontal Asymptotes

1. The line x � a is a vertical asymptote of the function if y approaches �q as x approaches a from the
right or left.

2. The line y � b is a horizontal asymptote of the function if y approaches b as x approaches �q.

y → b as x → `

x

b

y

y → b as x → −`

x

b

y

y � f 1x 2y → ` as x → a+

xa

y

y → ` as x → a−

xa

y

y → −` as x → a+

xa

y

y → −` as x → a−

xa

y

y � f 1x 2



A rational function has vertical asymptotes where the function is undefined, that
is, where the denominator is zero.

Transformations of 

A rational function of the form

can be graphed by shifting, stretching, and/or reflecting the graph of shown
in Figure 1, using the transformations studied in Section 2.4. (Such functions are
called linear fractional transformations.)

Example 2 Using Transformations to Graph 

Rational Functions

Sketch a graph of each rational function.

(a)

(b)

Solution

(a) Let . Then we can express r in terms of f as follows:

Factor 2

Since f(x) �

From this form we see that the graph of r is obtained from the graph of f by
shifting 3 units to the right and stretching vertically by a factor of 2. Thus, r has
vertical asymptote x � 3 and horizontal asymptote y � 0. The graph of r is
shown in Figure 2.

(b) Using long division (see the margin), we get . Thus, we can
express s in terms of f as follows:

Rearrange terms

Since f(x) �

From this form we see that the graph of s is obtained from the graph of f
by shifting 2 units to the left, reflecting in the x-axis, and shifting upward

1
x� �f 1x � 2 2 � 3

� �
1

x � 2
� 3

s1x 2 � 3 �
1

x � 2

s1x 2 � 3 � 1
x � 2

1
x� 21f 1x � 3 22� 2 a 1

x � 3
b

r 1x 2 �
2

x � 3

f 1x 2 � 1
x

s1x 2 �
3x � 5

x � 2

r 1x 2 �
2

x � 3

f 1x 2 � 1
x

r 1x 2 �
ax � b

cx � d

y �
1
x
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Horizontal
asymptote
y = 0

Vertical
asymptote
x = 3

2

x-3
r(x)=

x

1

3

y

0

Figure 2

3

x � 2�3x � 5

3x � 6

�1



3 units. Thus, s has vertical asymptote x � �2 and horizontal asymptote 
y � 3. The graph of s is shown in Figure 3.

Figure 3 ■

Asymptotes of Rational Functions

The methods of Example 2 work only for simple rational functions. To graph more
complicated ones, we need to take a closer look at the behavior of a rational function
near its vertical and horizontal asymptotes.

Example 3 Asymptotes of a Rational Function

Graph the rational function .

Solution

VERTICAL ASYMPTOTE: We first factor the denominator

The line x � 1 is a vertical asymptote because the denominator of r is zero when
x � 1.

To see what the graph of r looks like near the vertical asymptote, we make tables
of values for x-values to the left and to the right of 1. From the tables shown below
we see that

x � 1�x � 1�

y �q as x � 1�  and  y �q as x � 1�

r 1x 2 �
2x2 � 4x � 51x � 1 2 2

r 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

x

3

y

0_2

3x+5

x+2
s(x)=

Vertical asymptote
x = −2

Horizontal asymptote
y = 3
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x y

0 5
0.5 14
0.9 302
0.99 30,002

x y

2 5
1.5 14
1.1 302
1.01 30,002

Approaching 1� Approaching � Approaching 1� Approaching �



Thus, near the vertical asymptote x � 1, the graph of r has the shape shown in 
Figure 4.

HORIZONTAL ASYMPTOTE: The horizontal asymptote is the value y approaches
as x � �q. To help us find this value, we divide both numerator and denominator
by x 2, the highest power of x that appears in the expression:

The fractional expressions , , , and all approach 0 as x � �q (see Exercise 79,

Section 1.1). So as x � �q, we have

Thus, the horizontal asymptote is the line y � 2.
Since the graph must approach the horizontal asymptote, we can complete it as in

Figure 5.

From Example 3 we see that the horizontal asymptote is determined by the 
leading coefficients of the numerator and denominator, since after dividing through
by x 2 (the highest power of x) all other terms approach zero. In general, if

x

1

5

−1 1 2

y

0

y → 2 as
x → −`

y → 2 as
x → `

y �

2 �
4
x

�
5

x2

1 �
2
x

�
1

x2

  �   
2 � 0 � 0

1 � 0 � 0
� 2

1
x 2

2
x

5
x 2

4
x

y �
2x2 � 4x � 5

x2 � 2x � 1
#

1

x2

1

x2

�

2 �
4
x

�
5

x2

1 �
2
x

�
1

x2
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These terms approach 0.

These terms approach 0.

Figure 5

■
r1x 2 �

2x2 � 4x � 5

x2 � 2x � 1

y → ` as
x → 1−

y → ` as
x → 1+

x

1

5

−1 1 2

y

0

Figure 4



and the degrees of P and Q are the same (both n, say), then divid-
ing both numerator and denominator by xn shows that the horizontal asymptote is

The following box summarizes the procedure for finding asymptotes.

y �
leading coefficient of P

leading coefficient of Q

r 1x 2 � P1x 2 /Q1x 2
SECTION 3.6 Rational Functions 305

Asymptotes of Rational Functions

Let r be the rational function

1. The vertical asymptotes of r are the lines x � a, where a is a zero of the
denominator.

2. (a) If n � m, then r has horizontal asymptote y � 0.

(b) If n � m, then r has horizontal asymptote .

(c) If n 	 m, then r has no horizontal asymptote.

y �
an

bm

r 1x 2 �
an xn � an�1x

n�1 � . . . � a1x � a0

bm xm � bm�1x
m�1 � . . . � b1x � b0

Example 4 Asymptotes of a Rational Function

Find the vertical and horizontal asymptotes of .

Solution

VERTICAL ASYMPTOTES: We first factor

r 1x 2 �
3x2 � 2x � 112x � 1 2 1x � 2 2

r 1x 2 �
3x2 � 2x � 1

2x2 � 3x � 2

This factor is O
when .x � 1

2

This factor is O
when x � �2.

The vertical asymptotes are the lines and x � �2.

HORIZONTAL ASYMPTOTE: The degrees of the numerator and denominator are
the same and

Thus, the horizontal asymptote is the line .y � 3
2

leading coefficient of numerator

leading coefficient of denominator
�

3

2

x � 1
2



To confirm our results, we graph r using a graphing calculator (see Figure 6).

Graphing Rational Functions

We have seen that asymptotes are important when graphing rational functions. In
general, we use the following guidelines to graph rational functions.

10

_10

_6 3
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Figure 6

■
r1x 2 �

3x2 � 2x � 1

2x2 � 3x � 2

Sketching Graphs of Rational Functions

1. Factor. Factor the numerator and denominator.

2. Intercepts. Find the x-intercepts by determining the zeros of the numera-
tor, and the y-intercept from the value of the function at x � 0.

3. Vertical Asymptotes. Find the vertical asymptotes by determining the
zeros of the denominator, and then see if y �q or y � �q on each side of
each vertical asymptote by using test values.

4. Horizontal Asymptote. Find the horizontal asymptote (if any) by divid-
ing both numerator and denominator by the highest power of x that appears
in the denominator, and then letting x � �q.

5. Sketch the Graph. Graph the information provided by the first four
steps. Then plot as many additional points as needed to fill in the rest of the
graph of the function.

Example 5 Graphing a Rational Function

Graph the rational function .

Solution We factor the numerator and denominator, find the intercepts and 
asymptotes, and sketch the graph.

FACTOR:

x-INTERCEPTS: The x-intercepts are the zeros of the numerator, and 
x � �4.

x � 1
2

y �
12x � 1 2 1x � 4 21x � 1 2 1x � 2 2

r 1x 2 �
2x2 � 7x � 4

x2 � x � 2

Graph is drawn using dot mode to
avoid extraneous lines.

A fraction is 0 if and only if its 
numerator is 0.



y-INTERCEPT: To find the y-intercept, we substitute x � 0 into the original form
of the function:

The y-intercept is 2.

VERTICAL ASYMPTOTES: The vertical asymptotes occur where the denominator
is 0, that is, where the function is undefined. From the factored form we see that the
vertical asymptotes are the lines x � 1 and x � �2.

BEHAVIOR NEAR VERTICAL ASYMPTOTES: We need to know whether y �q
or y � �q on each side of each vertical asymptote. To determine the sign of y for
x-values near the vertical asymptotes, we use test values. For instance, as x � 1�,
we use a test value close to and to the left of to check whether y is
positive or negative to the left of x � 1:

So y � �q as x � 1�. On the other hand, as x � 1�, we use a test value close to
and to the right of 1 , to get

So y �q as x � 1�. The other entries in the following table are calculated similarly.

y �
1211.1 2 � 1 2 1 11.1 2 � 4 21 11.1 2 � 1 2 1 11.1 2 � 2 2   whose sign is  

1� 2 1� 21� 2 1� 2 1positive 21x � 1.1, say 2
y �
1210.9 2 � 1 2 1 10.9 2 � 4 21 10.9 2 � 1 2 1 10.9 2 � 2 2   whose sign is  

1� 2 1� 21� 2 1� 2 1negative 2
1 1x � 0.9, say 2

r 10 2 �
210 2 2 � 710 2 � 410 22 � 10 2 � 2

�
�4

�2
� 2
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When choosing test values, we must
make sure that there is no x-intercept
between the test point and the vertical
asymptote.

HORIZONTAL ASYMPTOTE: The degrees of the numerator and denominator are
the same and

Thus, the horizontal asymptote is the line y � 2.

ADDITIONAL VALUES: GRAPH:

leading coefficient of numerator

leading coefficient of denominator
�

2

1
� 2

x

5

3

y

0

x y

�6 0.93
�3 �1.75
�1 4.50

1.5 6.29
2 4.50
3 3.50

Figure 7

■
r 1x 2 �

2x2 � 7x � 4

x2 � x � 2

As x �

the sign of is

so y �

y �
12x � 1 2 1x � 4 21x � 1 2 1x � 2 2

�2� �2� 1� 1�

�q q �q q

1� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 2



HORIZONTAL ASYMPTOTE: y � 0, because degree of numerator is less than 
degree of denominator

ADDITIONAL VALUES: GRAPH:

Example 6 Graphing a Rational Function

Graph the rational function .

Solution

FACTOR:

x-INTERCEPT: , from 5x � 21 � 0

y-INTERCEPT: , because 

VERTICAL ASYMPTOTE: x � �5, from the zeros of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE:

�
21

25

r 10 2 �
5 # 0 � 21

02 � 10 # 0 � 25

21

25

�
21

5

y �
5x � 211x � 5 2 2

r 1x 2 �
5x � 21

x2 � 10x � 25

308 CHAPTER 3 Polynomial and Rational Functions

Mathematics in the

Modern World

Unbreakable Codes

If you read spy novels, you know
about secret codes, and how the
hero “breaks” the code. Today se-
cret codes have a much more com-
mon use. Most of the information
stored on computers is coded to
prevent unauthorized use. For ex-
ample, your banking records, med-
ical records, and school records are
coded. Many cellular and cordless
phones code the signal carrying
your voice so no one can listen in.
Fortunately, because of recent ad-
vances in mathematics, today’s
codes are “unbreakable.”

Modern codes are based on a
simple principle: Factoring is
much harder than multiplying. For
example, try multiplying 78 and
93; now try factoring 9991. It takes
a long time to factor 9991 because
it is a product of two primes 97 �
103, so to factor it we had to find
one of these primes. Now imagine
trying to factor a number N that is
the product of two primes p and q,
each about 200 digits long. Even
the fastest computers would take
many millions of years to factor
such a number! But the same com-
puter would take less than a second
to multiply two such numbers. This
fact was used by Ron Rivest, Adi
Shamir, and Leonard Adleman in
the 1970s to devise the RSA code.
Their code uses an extremely large
number to encode a message but
requires us to know its factors to
decode it. As you can see, such a
code is practically unbreakable.

(continued)

x

1

5

y

0

Figure 8

■
r 1x 2 �

5x � 21

x2 � 10x � 25

x y

�15 �0.5
�10 �1.2
�3 1.5
�1 1.0

3 0.6
5 0.5

10 0.3

From the graph in Figure 8 we see that, contrary to the common misconception, a
graph may cross a horizontal asymptote. The graph in Figure 8 crosses the x-axis (the
horizontal asymptote) from below, reaches a maximum value near x � �3, and then
approaches the x-axis from above as x �q.

As x �

the sign of is

so y �

y �
5x � 211x � 5 2 2

�5� �5�

�q �q

1� 21� 2 1� 21� 21� 2 1� 2



As x �

the sign of is

so y �

y �
1x � 1 2 1x � 4 2

2x1x � 2 2

Example 7 Graphing a Rational Function

Graph the rational function .

Solution

FACTOR:

x-INTERCEPTS: �1 and 4, from x � 1 � 0 and x � 4 � 0

y-INTERCEPT: None, because is undefined

VERTICAL ASYMPTOTES: x � 0 and x � �2, from the zeros of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTES:

r 10 2
y �
1x � 1 2 1x � 4 2

2x1x � 2 2
r 1x 2 �

x2 � 3x � 4

2x2 � 4x
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The RSA code is an example of
a “public key encryption” code. In
such codes, anyone can code a
message using a publicly known
procedure based on N, but to de-
code the message they must know
p and q, the factors of N. When the
RSA code was developed, it was
thought that a carefully selected
80-digit number would provide an
unbreakable code. But interest-
ingly, recent advances in the study
of factoring have made much
larger numbers necessary.

HORIZONTAL ASYMPTOTE: , because degree of numerator and denomina-
tor are the same and

ADDITIONAL VALUES: GRAPH:

leading coefficient of numerator

leading coefficient of denominator
�

1

2

y � 1
2

x

2

y

3

Figure 9

■
r 1x 2 �

x2 � 3x � 4

2x2 � 4x

x y

�3 2.33
�2.5 3.90
�0.5 1.50

1 �1.00
3 �0.13
5 0.09

Slant Asymptotes and End Behavior

If is a rational function in which the degree of the numerator is one
more than the degree of the denominator, we can use the Division Algorithm to ex-
press the function in the form

where the degree of R is less than the degree of Q and a � 0. This means that as 

r 1x 2 � ax � b �
R1x 2
Q1x 2

r 1x 2 � P1x 2 /Q1x 2

�2� �2� 0� 0�

q �q q �q

1� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 21� 2 1� 2



x � �q, , so for large values of , the graph of ap-
proaches the graph of the line y � ax � b. In this situation we say that y � ax � b is
a slant asymptote, or an oblique asymptote.

Example 8 A Rational Function with a Slant Asymptote

Graph the rational function .

Solution

FACTOR:

x-INTERCEPTS: �1 and 5, from x � 1 � 0 and x � 5 � 0

y-INTERCEPTS: , because 

HORIZONTAL ASYMPTOTE: None, because degree of numerator is greater than
degree of denominator

VERTICAL ASYMPTOTE: x � 3, from the zero of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE: y �q as x � 3� and y � �q as
x � 3�

SLANT ASYMPTOTE: Since the degree of the numerator is one more than the 
degree of the denominator, the function has a slant asymptote. Dividing (see the
margin), we obtain

Thus, y � x � 1 is the slant asymptote.

ADDITIONAL VALUES: GRAPH:

r 1x 2 � x � 1 �
8

x � 3

r 10 2 �
02 � 4 # 0 � 5

0 � 3
�

5

3

5

3

y �
1x � 1 2 1x � 5 2

x � 3

r 1x 2 �
x2 � 4x � 5

x � 3

y � r 1x 20 x 0R1x 2 /Q1x 2 � 0
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x � 1

x � 3�x2 � 4x � 5

x2 � 3x

�x � 5

�x � 3

�8

x

5

y

2

≈-4x-5

x-3
r(x)=

y=x-1

Slant
asymptote

Figure 10 ■

x y

�2 �1.4
1 4
2 9
4 �5
6 2.33

So far we have considered only horizontal and slant asymptotes as end behaviors
for rational functions. In the next example we graph a function whose end behavior
is like that of a parabola.



Example 9 End Behavior of a Rational Function

Graph the rational function

and describe its end behavior.

Solution

FACTOR:

x-INTERCEPTS: �1, from x � 1 � 0 (The other factor in the numerator has no
real zeros.)

y-INTERCEPTS: , because 

VERTICAL ASYMPTOTE: x � 2, from the zero of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE: y � �q as x � 2� and y �q as
x � 2�

HORIZONTAL ASYMPTOTE: None, because degree of numerator is greater than
degree of denominator

END BEHAVIOR: Dividing (see the margin), we get

This shows that the end behavior of r is like that of the parabola y � x 2 because
is small when is large. That is, as x � �q. This means

that the graph of r will be close to the graph of y � x 2 for large .

GRAPH: In Figure 11(a) we graph r in a small viewing rectangle; we can see the
intercepts, the vertical asymptotes, and the local minimum. In Figure 11(b) we
graph r in a larger viewing rectangle; here the graph looks almost like the graph of
a parabola. In Figure 11(c) we graph both and y � x 2; these graphs are
very close to each other except near the vertical asymptote.

y � r 1x 2
0 x 03/ 1x � 2 2 � 00 x 03/ 1x � 2 2

r 1x 2 � x2 �
3

x � 2

r 10 2 �
03 � 2 # 02 � 3

0 � 2
� �

3

2
�

3

2

y �
1x � 1 2 1x2 � 3x � 3 2

x � 2

r 1x 2 �
x3 � 2x2 � 3

x � 2
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x2

x � 2�x3 � 2x2 � 0x � 3

x3 � 2x2

3

20

_20

_4 4

(a)

200

_200

_30 30

(b)

20

_5

_8 8

(c)

y=≈

Applications

Rational functions occur frequently in scientific applications of algebra. In the next
example we analyze the graph of a function from the theory of electricity.

■

Figure 11

r 1x 2 �
x3 � 2x2 � 3

x � 2
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1–4 ■ A rational function is given. (a) Complete each table 
for the function. (b) Describe the behavior of the function near
its vertical asymptote, based on Tables 1 and 2. (c) Determine
the horizontal asymptote, based on Tables 3 and 4.

1. 2.

3. 4. r 1x 2 �
3x2 � 11x � 2 2 2r 1x 2 �

3x � 101x � 2 2 2
r 1x 2 �

4x � 1

x � 2
r 1x 2 �

x

x � 2

Example 10 Electrical Resistance

When two resistors with resistances R1 and R2 are connected in parallel, their 
combined resistance R is given by the formula

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor,
as shown in Figure 12. If the resistance of the variable resistor is denoted by x, then
the combined resistance R is a function of x. Graph R and give a physical interpre-
tation of the graph.

Solution Substituting R1 � 8 and R2 � x into the formula gives the function

Since resistance cannot be negative, this function has physical meaning only when
x 	 0. The function is graphed in Figure 13(a) using the viewing rectangle 30, 204
by 30, 104. The function has no vertical asymptote when x is restricted to positive
values. The combined resistance R increases as the variable resistance x increases.
If we widen the viewing rectangle to 30,1004 by 30, 104, we obtain the graph in 
Figure 13(b). For large x, the combined resistance R levels off, getting closer and
closer to the horizontal asymptote R � 8. No matter how large the variable resis-
tance x, the combined resistance is never greater than 8 ohms.

3.6 Exercises

10

0 20

(a)

10

0 100

(b)

R1x 2 �
8x

8 � x

R �
R1R2

R1 � R2
x

8 ohms

Figure 12

Figure 13

■
R1x 2 �

8x

8 � x

x

1.5
1.9
1.99
1.999

r 1x 2 x

2.5
2.1
2.01
2.001

r 1x 2
x

10
50

100
1000

r 1x 2 x

�10
�50

�100
�1000

r 1x 2
Table 1 Table 2

Table 3 Table 4
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5–10 ■ Find the x- and y-intercepts of the rational function.

5. 6.

7. 8.

9. 10.

11–14 ■ From the graph, determine the x- and y-intercepts and
the vertical and horizontal asymptotes.

11. 12.

13. 14.

15–24 ■ Find all horizontal and vertical asymptotes (if any).

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25–32 ■ Use transformations of the graph of to graph the
rational function, as in Example 2.

25. 26.

27. 28. s 1x 2 �
�2

x � 2
s 1x 2 �

3

x � 1

r 1x 2 �
1

x � 4
r 1x 2 �

1

x � 1

y � 1
x

r 1x 2 �
x3 � 3x2

x2 � 4
t 1x 2 �

x2 � 2

x � 1

s 1x 2 �
3x2

x2 � 2x � 5
r 1x 2 �

6x � 2

x2 � 5x � 6

t 1x 2 �
1x � 1 2 1x � 2 21x � 3 2 1x � 4 2s 1x 2 �

6

x2 � 2

r 1x 2 �
2x � 4

x2 � 2x � 1
t 1x 2 �

x2

x2 � x � 6

s 1x 2 �
2x � 3

x � 1
r 1x 2 �

3

x � 2

2

0 x

y

−4 4

−6

10

2

3−3

y

x

y

x0

1
2

y

x0

4

4

r 1x 2 �
x3 � 8

x2 � 4
r 1x 2 �

x2 � 9

x2

r 1x 2 �
2

x2 � 3x � 4
t 1x 2 �

x2 � x � 2

x � 6

s 1x 2 �
3x

x � 5
r 1x 2 �

x � 1

x � 4

29. 30.

31. 32.

33–56 ■ Find the intercepts and asymptotes, and then sketch a
graph of the rational function. Use a graphing device to confirm
your answer.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57–64 ■ Find the slant asymptote, the vertical asymptotes, and
sketch a graph of the function.

57. 58.

59. 60.

61. 62.

63. 64. r 1x 2 �
2x3 � 2x

x2 � 1
r 1x 2 �

x3 � x2

x2 � 4

r 1x 2 �
x3 � 4

2x2 � x � 1
r 1x 2 �

x2 � 5x � 4

x � 3

r 1x 2 �
3x � x2

2x � 2
r 1x 2 �

x2 � 2x � 8
x

r 1x 2 �
x2 � 2x

x � 1
r 1x 2 �

x2

x � 2

t 1x 2 �
x3 � x2

x3 � 3x � 2
s 1x 2 �

x2 � 2x � 1

x3 � 3x2

r 1x 2 �
5x2 � 5

x2 � 4x � 4
r 1x 2 �

3x2 � 6

x2 � 2x � 3

r 1x 2 �
x2 � 3x

x2 � x � 6
r 1x 2 �

x2 � x � 6

x2 � 3x

r 1x 2 �
2x2 � 2x � 4

x2 � x
r 1x 2 �

2x2 � 10x � 12

x2 � x � 6

r 1x 2 �
4x2

x2 � 2x � 3
r 1x 2 �

x2 � 2x � 1

x2 � 2x � 1

r 1x 2 �
2x 1x � 2 21x � 1 2 1x � 4 2r 1x 2 �

1x � 1 2 1x � 2 21x � 1 2 1x � 3 2
t 1x 2 �

x � 2

x2 � 4x
t 1x 2 �

3x � 6

x2 � 2x � 8

s 1x 2 �
2x � 4

x2 � x � 2
s 1x 2 �

6

x2 � 5x � 6

s 1x 2 �
x � 21x � 3 2 1x � 1 2s 1x 2 �

4x � 81x � 4 2 1x � 1 2
r 1x 2 �

x � 21x � 1 2 2r 1x 2 �
181x � 3 2 2

s 1x 2 �
1 � 2x

2x � 3
s 1x 2 �

4 � 3x

x � 7

r 1x 2 �
2x � 6

�6x � 3
r 1x 2 �

4x � 4

x � 2

r 1x 2 �
2x � 9

x � 4
r 1x 2 �

x � 2

x � 3

t 1x 2 �
3x � 3

x � 2
t 1x 2 �

2x � 3

x � 2
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65–68 ■ Graph the rational function f and determine all 
vertical asymptotes from your graph. Then graph f and g in a
sufficiently large viewing rectangle to show that they have the
same end behavior.

65.

66.

67.

68.

69–74 ■ Graph the rational function and find all vertical 
asymptotes, x- and y-intercepts, and local extrema, correct to 
the nearest decimal. Then use long division to find a polynomial
that has the same end behavior as the rational function, and
graph both functions in a sufficiently large viewing rectangle to
verify that the end behaviors of the polynomial and the rational
function are the same.

69.

70.

71. 72.

73. 74.

Applications

75. Population Growth Suppose that the rabbit population
on Mr. Jenkins’ farm follows the formula

where t � 0 is the time (in months) since the beginning of
the year.

(a) Draw a graph of the rabbit population.

(b) What eventually happens to the rabbit population?

p1t 2 �
3000t

t � 1

r 1x 2 �
4 � x2 � x4

x2 � 1
r 1x 2 �

x4 � 3x3 � 6

x � 3

y �
x4

x2 � 2
y �

x5

x3 � 1

y �
x4 � 3x3 � x2 � 3x � 3

x2 � 3x

y �
2x2 � 5x

2x � 3

f 1x 2 �
�x4 � 2x3 � 2x1x � 1 2 2 , g1x 2 � 1 � x2

f 1x 2 �
x3 � 2x2 � 16

x � 2
, g1x 2 � x2

f 1x 2 �
�x3 � 6x2 � 5

x2 � 2x
, g1x 2 � �x � 4

f 1x 2 �
2x2 � 6x � 6

x � 3
, g1x 2 � 2x

76. Drug Concentration After a certain drug is injected into
a patient, the concentration c of the drug in the bloodstream
is monitored. At time t � 0 (in minutes since the injection),
the concentration (in mg/L) is given by

(a) Draw a graph of the drug concentration.

(b) What eventually happens to the concentration of drug in
the bloodstream?

77. Drug Concentration A drug is administered to a patient
and the concentration of the drug in the bloodstream is 
monitored. At time t � 0 (in hours since giving the drug),
the concentration (in mg/L) is given by

Graph the function c with a graphing device.

(a) What is the highest concentration of drug that is
reached in the patient’s bloodstream?

(b) What happens to the drug concentration after a long 
period of time?

(c) How long does it take for the concentration to drop 
below 0.3 mg/L?

78. Flight of a Rocket Suppose a rocket is fired upward from
the surface of the earth with an initial velocity √ (measured
in m/s). Then the maximum height h (in meters) reached by
the rocket is given by the function

where R � 6.4 � 106 m is the radius of the earth and 
g � 9.8 m/s2 is the acceleration due to gravity. Use a graph-
ing device to draw a graph of the function h. (Note that 
h and √ must both be positive, so the viewing rectangle 
need not contain negative values.) What does the vertical 
asymptote represent physically?

h1√ 2 �
R√ 2

2gR � √ 2

c 1t 2 �
5t

t2 � 1

c 1t 2 �
30t

t2 � 2
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79. The Doppler Effect As a train moves toward an observer
(see the figure), the pitch of its whistle sounds higher to the
observer than it would if the train were at rest, because the
crests of the sound waves are compressed closer together.
This phenomenon is called the Doppler effect. The observed
pitch P is a function of the speed √ of the train and is given by

where P0 is the actual pitch of the whistle at the source and
s0 � 332 m/s is the speed of sound in air. Suppose that a
train has a whistle pitched at P0 � 440 Hz. Graph the 
function using a graphing device. How can 
the vertical asymptote of this function be interpreted 
physically?

80. Focusing Distance For a camera with a lens of fixed 
focal length F to focus on an object located a distance x
from the lens, the film must be placed a distance y behind
the lens, where F, x, and y are related by

(See the figure.) Suppose the camera has a 55-mm lens 
(F � 55).

(a) Express y as a function of x and graph the function.

(b) What happens to the focusing distance y as the object
moves far away from the lens?

(c) What happens to the focusing distance y as the object
moves close to the lens?

x F

y

1
x

�
1
y

�
1

F

y � P1√ 2
P1√ 2 � P0 a s0

s0 � √
b

Discovery • Discussion

81. Constructing a Rational Function from Its Asymptotes

Give an example of a rational function that has vertical as-
ymptote x � 3. Now give an example of one that has verti-
cal asymptote x � 3 and horizontal asymptote y � 2. Now
give an example of a rational function with vertical asymp-
totes x � 1 and x � �1, horizontal asymptote y � 0, and 
x-intercept 4.

82. A Rational Function with No Asymptote Explain how
you can tell (without graphing it) that the function

has no x-intercept and no horizontal, vertical, or slant 
asymptote. What is its end behavior?’

83. Graphs with Holes In this chapter we adopted the 
convention that in rational functions, the numerator and 
denominator don’t share a common factor. In this exercise
we consider the graph of a rational function that doesn’t 
satisfy this rule.

(a) Show that the graph of

is the line y � 3x � 3 with the point 12, 92 removed.
[Hint: Factor. What is the domain of r?]

(b) Graph the rational functions:

84. Transformations of y 	 1/x2 In Example 2 we saw that
some simple rational functions can be graphed by shifting,
stretching, or reflecting the graph of y � 1/x. In this exercise
we consider rational functions that can be graphed by trans-
forming the graph of y � 1/x 2, shown on the following
page.

(a) Graph the function

by transforming the graph of y � 1/x 2.

r 1x 2 �
11x � 2 2 2

u 1x 2 �
x � 2

x2 � 2x

t 1x 2 �
2x2 � x � 1

x � 1

s 1x 2 �
x2 � x � 20

x � 5

r 1x 2 �
3x2 � 3x � 6

x � 2

r 1x 2 �
x6 � 10

x4 � 8x2 � 15
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1. (a) Write the defining equation for a polynomial P of
degree n.

(b) What does it mean to say that c is a zero of P?

2. Sketch graphs showing the possible end behaviors of 
polynomials of odd degree and of even degree.

3. What steps would you follow to graph a polynomial by
hand?

4. (a) What is meant by a local maximum point or local 
minimum point of a polynomial?

(b) How many local extrema can a polynomial of degree n
have?

5. State the Division Algorithm and identify the dividend,
divisor, quotient, and remainder.

6. How does synthetic division work?

7. (a) State the Remainder Theorem.

(b) State the Factor Theorem.

8. (a) State the Rational Zeros Theorem.

(b) What steps would you take to find the rational zeros of
a polynomial?

9. State Descartes’ Rule of Signs.

10. (a) What does it mean to say that a is a lower bound and b
is an upper bound for the zeros of a polynomial?

(b) State the Upper and Lower Bounds Theorem.

11. (a) What is a complex number?

(b) What are the real and imaginary parts of a complex
number?

(c) What is the complex conjugate of a complex number?

(d) How do you add, subtract, multiply, and divide complex
numbers?

12. (a) State the Fundamental Theorem of Algebra.

(b) State the Complete Factorization Theorem.

(c) What does it mean to say that c is a zero of multiplicity
k of a polynomial P?

(d) State the Zeros Theorem.

(e) State the Conjugate Zeros Theorem.

13. (a) What is a rational function?

(b) What does it mean to say that x � a is a vertical 
asymptote of ?

(c) How do you locate a vertical asymptote?

(d) What does it mean to say that y � b is a horizontal 
asymptote of ?

(e) How do you locate a horizontal asymptote?

(f ) What steps do you follow to sketch the graph of a 
rational function by hand?

(g) Under what circumstances does a rational function have
a slant asymptote? If one exists, how do you find it?

(h) How do you determine the end behavior of a rational
function?

y � f 1x 2
y � f 1x 2

(b) Use long division and factoring to show that the function

can be written as

Then graph s by transforming the graph of y � 1/x 2.

(c) One of the following functions can be graphed by 
transforming the graph of y � 1/x 2; the other cannot.
Use transformations to graph the one that can be,

s 1x 2 � 2 �
31x � 1 2 2

s 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

and explain why this method doesn’t work for the 
other one.

y

x

1

10

y=
1

≈

p1x 2 �
2 � 3x2

x2 � 4x � 4
   q 1x 2 �

12x � 3x2

x2 � 4x � 4

3 Review

Concept Check
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1–6 ■ Graph the polynomial by transforming an appropriate
graph of the form y � xn. Show clearly all x- and y-intercepts.

1. 2.

3. 4.

5. 6.

7–10 ■ Use a graphing device to graph the polynomial. Find
the x- and y-intercepts and the coordinates of all local extrema,
correct to the nearest decimal. Describe the end behavior of the
polynomial.

7. 8.

9.

10.

11. The strength S of a wooden beam of width x and depth y is
given by the formula S � 13.8xy 2. A beam is to be cut from
a log of diameter 10 in., as shown in the figure.

(a) Express the strength S of this beam as a function of x
only.

(b) What is the domain of the function S?

(c) Draw a graph of S.

(d) What width will make the beam the strongest?

12. A small shelter for delicate plants is to be constructed of thin
plastic material. It will have square ends and a rectangular
top and back, with an open bottom and front, as shown in the
figure. The total area of the four plastic sides is to be 1200 in2.

(a) Express the volume V of the shelter as a function of the
depth x.

(b) Draw a graph of V.

(c) What dimensions will maximize the volume of the 
shelter?

x

y

x

P1x 2 � x5 � x4 � 7x3 � x2 � 6x � 3

P1x 2 � 3x4 � 4x3 � 10x � 1

P1x 2 � �2x3 � 6x2 � 2P1x 2 � x3 � 4x � 1

P1x 2 � �31x � 2 2 5 � 96P1x 2 � 32 � 1x � 1 2 5 P1x 2 � 81 � 1x � 3 2 4P1x 2 � 21x � 1 2 4 � 32

P1x 2 � 2x3 � 16P1x 2 � �x3 � 64

13–20 ■ Find the quotient and remainder.

13. 14.

15. 16.

17. 18.

19. 20.

21–22 ■ Find the indicated value of the polynomial using the
Remainder Theorem.

21. ; find 

22. ; find 

23. Show that is a zero of the polynomial

24. Use the Factor Theorem to show that x � 4 is a factor of the
polynomial

25. What is the remainder when the polynomial

is divided by x � 1?

26. What is the remainder when x101 � x4 � 2 is divided by 
x � 1?

27–28 ■ A polynomial P is given.

(a) List all possible rational zeros (without testing to see if they
actually are zeros).

(b) Determine the possible number of positive and negative real
zeros using Descartes’ Rule of Signs.

27.

28.

29–36 ■ A polynomial P is given.

(a) Find all real zeros of P and state their multiplicities.

(b) Sketch the graph of P.

29. 30.

31. 32.

33.

34.

35. P1x 2 � 2x4 � x3 � 2x2 � 3x � 2

P1x 2 � x4 � 2x3 � 2x2 � 8x � 8

P1x 2 � x4 � 2x3 � 7x2 � 8x � 12

P1x 2 � x4 � 5x2 � 4P1x 2 � x4 � x3 � 2x2

P1x 2 � x3 � 3x2 � 4xP1x 2 � x3 � 16x

P1x 2 � 6x4 � 3x3 � x2 � 3x � 4

P1x 2 � x5 � 6x3 � x2 � 2x � 18

P1x 2 � x500 � 6x201 � x2 � 2x � 4

P1x 2 � x5 � 4x4 � 7x3 � 23x2 � 23x � 12

P1x 2 � 2x4 � x3 � 5x2 � 10x � 4

1
2

Q1�3 2Q1x 2 � x4 � 4x3 � 7x2 � 10x � 15

P15 2P1x 2 � 2x3 � 9x2 � 7x � 13

x4 � 2x2 � 7x

x2 � x � 3

2x3 � x2 � 8x � 15

x2 � 2x � 1

2x4 � 3x3 � 12

x � 4

x4 � 8x2 � 2x � 7

x � 5

x3 � 2x2 � 10

x � 3

x3 � x2 � 11x � 2

x � 4

x2 � x � 12

x � 3

x2 � 3x � 5

x � 2

Exercises
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36.

37–46 ■ Evaluate the expression and write in the form a � bi.

37. 38.

39. 40.

41. 42.

43. i 25 44.

45. 46.

47. Find a polynomial of degree 3 with constant coefficient 12
and zeros , 2, and 3.

48. Find a polynomial of degree 4 having integer coefficients
and zeros 3i and 4, with 4 a double zero.

49. Does there exist a polynomial of degree 4 with integer
coefficients that has zeros i, 2i, 3i, and 4i? If so, find it. If
not, explain why.

50. Prove that the equation 3x 4 � 5x 2 � 2 � 0 has no real root.

51–60 ■ Find all rational, irrational, and complex zeros (and
state their multiplicities). Use Descartes’ Rule of Signs, the 
Upper and Lower Bounds Theorem, the quadratic formula, or
other factoring techniques to help you whenever possible.

51.

52.

53.

54.

55.

56.

57.

58. P1x 2 � 18x3 � 3x2 � 4x � 1

P1x 2 � x6 � 64

P1x 2 � x4 � 81

P1x 2 � x5 � 3x4 � x3 � 11x2 � 12x � 4

P1x 2 � x4 � 7x3 � 9x2 � 17x � 20

P1x 2 � x4 � 6x3 � 17x2 � 28x � 20

P1x 2 � 2x3 � 5x2 � 6x � 9

P1x 2 � x3 � 3x2 � 13x � 15

� 1
2

1�10 # 1�4011 � 1�1 2 11 � 1�1 2 11 � i 2 3
8 � 3i

4 � 3i

4 � 2i

2 � i

4i12 � 1
2i 212 � i 2 13 � 2i 2 13 � 6i 2 � 16 � 4i 212 � 3i 2 � 11 � 4i 2

P1x 2 � 9x5 � 21x4 � 10x3 � 6x2 � 3x � 1 59.

60.

61–64 ■ Use a graphing device to find all real solutions of the
equation.

61. 2x 2 � 5x � 3

62. x 3 � x 2 � 14x � 24 � 0

63. x 4 � 3x 3 � 3x 2 � 9x � 2 � 0

64. x 5 � x � 3

65–70 ■ Graph the rational function. Show clearly all x- and 
y-intercepts and asymptotes.

65. 66.

67. 68.

69. 70.

71–74 ■ Use a graphing device to analyze the graph of the ra-
tional function. Find all x- and y-intercepts; and all vertical, hori-
zontal, and slant asymptotes. If the function has no horizontal or
slant asymptote, find a polynomial that has the same end behav-
ior as the rational function.

71. 72.

73. 74.

75. Find the coordinates of all points of intersection of the
graphs of

y � x4 � x2 � 24x  and  y � 6x3 � 20

r 1x 2 �
2x3 � x2

x � 1
r 1x 2 �

x3 � 8

x2 � x � 2

r 1x 2 �
2x � 7

x2 � 9
r 1x 2 �

x � 3

2x � 6

r 1x 2 �
x3 � 27

x � 4
r 1x 2 �

x2 � 9

2x2 � 1

r 1x 2 �
2x2 � 6x � 7

x � 4
r 1x 2 �

x � 2

x2 � 2x � 8

r 1x 2 �
11x � 2 2 2r 1x 2 �

3x � 12

x � 1

P1x 2 � x4 � 15x2 � 54

P1x 2 � 6x4 � 18x3 � 6x2 � 30x � 36



3 Test

1. Graph the polynomial , showing clearly all x- and y-intercepts.

2. (a) Use synthetic division to find the quotient and remainder when x 4 � 4x 2 � 2x � 5
is divided by x � 2.

(b) Use long division to find the quotient and remainder when 2x 5 � 4x 4 � x 3 � x 2 �
7 is divided by 2x 2 � 1.

3. Let .

(a) List all possible rational zeros of P.

(b) Find the complete factorization of P.

(c) Find the zeros of P.

(d) Sketch the graph of P.

4. Perform the indicated operation and write the result in the form a � bi.

(a) (b)

(c) (d)

(e) i 48 (f)

5. Find all real and complex zeros of .

6. Find the complete factorization of .

7. Find a fourth-degree polynomial with integer coefficients that has zeros 3i and �1, with
�1 a zero of multiplicity 2.

8. Let .

(a) Use Descartes’ Rule of Signs to determine how many positive and how many 
negative real zeros P can have.

(b) Show that 4 is an upper bound and �1 is a lower bound for the real zeros of P.

(c) Draw a graph of P and use it to estimate the real zeros of P, correct to two decimal
places.

(d) Find the coordinates of all local extrema of P, correct to two decimals.

9. Consider the following rational functions:

(a) Which of these rational functions has a horizontal asymptote?

(b) Which of these functions has a slant asymptote?

(c) Which of these functions has no vertical asymptote?

(d) Graph , showing clearly any asymptotes and x- and y-intercepts the 
function may have.

(e) Use long division to find a polynomial P that has the same end behavior as t. Graph
both P and t on the same screen to verify that they have the same end behavior.

y � u1x 2
r1x 2 �

2x � 1

x2 � x � 2
  s1x 2 �

x3 � 27

x2 � 4
  t1x 2 �

x3 � 9x

x � 2
  u1x 2 �

x2 � x � 6

x2 � 25

P1x 2 � 2x4 � 7x3 � x2 � 18x � 3

P1x 2 � x4 � 2x3 � 5x2 � 8x � 4

P1x 2 � x3 � x2 � 4x � 6

112 � 1�2 2 118 � 1�2 2
3 � 2i

4 � 3i
13 � 2i 2 14 � 3i 2 13 � 2i 2 � 14 � 3i 213 � 2i 2 � 14 � 3i 2

P1x 2 � 2x3 � 5x2 � 4x � 3

P1x 2 � �1x � 2 2 3 � 27
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We have learned how to fit a line to data (see Focus on Modeling, page 239). The line
models the increasing or decreasing trend in the data. If the data exhibits more vari-
ability, such as an increase followed by a decrease, then to model the data we need to
use a curve rather than a line. Figure 1 shows a scatter plot with three possible mod-
els that appear to fit the data. Which model fits the data best?

Polynomial Functions as Models

Polynomial functions are ideal for modeling data where the scatter plot has peaks or
valleys (that is, local maxima or minima). For example, if the data have a single peak
as in Figure 2(a), then it may be appropriate to use a quadratic polynomial to model
the data. The more peaks or valleys the data exhibit, the higher the degree of the poly-
nomial needed to model the data (see Figure 2).

Graphing calculators are programmed to find the polynomial of best fit of a
specified degree. As is the case for lines (see pages 239–240), a polynomial of a given
degree fits the data best if the sum of the squares of the distances between the graph
of the polynomial and the data points is minimized.

(a) (b) (c)

y

x

y

x

y

x

y

x

y

x

Linear model Quadratic model Cubic model

y

x
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Fitting Polynomial Curves to Data

Figure 1

Figure 2



Example 1 Rainfall and Crop Yield

Rain is essential for crops to grow, but too much rain can diminish crop yields. The
data give rainfall and cotton yield per acre for several seasons in a certain county.
(a) Make a scatter plot of the data. What degree polynomial seems appropriate for

modeling the data?
(b) Use a graphing calculator to find the polynomial of best fit. Graph the polyno-

mial on the scatter plot.
(c) Use the model you found to estimate the yield if there are 25 in. of rainfall.
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Season Rainfall (in.) Yield (kg/acre)

1 23.3 5311
2 20.1 4382
3 18.1 3950
4 12.5 3137
5 30.9 5113
6 33.6 4814
7 35.8 3540
8 15.5 3850
9 27.6 5071

10 34.5 3881

Solution

(a) The scatter plot is shown in Figure 3. The data appear to have a peak, so it is
appropriate to model the data by a quadratic polynomial (degree 2).

(b) Using a graphing calculator, we find that the quadratic polynomial of best 
fit is

y � �12.6x2 � 651.5x � 3283.2

Figure 3

Scatter plot of yield vs. rainfall data

6000

1500
4010



The calculator output and the scatter plot, together with the graph of the 
quadratic model, are shown in Figure 4.

(c) Using the model with x � 25, we get

We estimate the yield to be about 5130 kg per acre. ■

Example 2 Length-at-Age Data for Fish

Otoliths (“earstones”) are tiny structures found in the heads of fish. Microscopic
growth rings on the otoliths, not unlike growth rings on a tree, record the age of a
fish. The table gives the lengths of rock bass of different ages, as determined by the
otoliths. Scientists have proposed a cubic polynomial to model this data.

(a) Use a graphing calculator to find the cubic polynomial of best fit for the data.

(b) Make a scatter plot of the data and graph the polynomial from part (a).

(c) A fisherman catches a rock bass 20 in. long. Use the model to estimate 
its age.

y � �12.6125 2 2 � 651.5125 2 � 3283.2 � 5129.3

Figure 4

6000

1500
4010

(a) (b)
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Age (yr) Length (in.) Age (yr) Length (in.)

1 4.8 9 18.2
2 8.8 9 17.1
2 8.0 10 18.8
3 7.9 10 19.5
4 11.9 11 18.9
5 14.4 12 21.7
6 14.1 12 21.9
6 15.8 13 23.8
7 15.6 14 26.9
8 17.8 14 25.1

Cod Redfish Hake

Otoliths for several fish species.



Solution

(a) Using a graphing calculator (see Figure 5(a)), we find the cubic polynomial of
best fit

(b) The scatter plot of the data and the cubic polynomial are graphed in 
Figure 5(b).

(c) Moving the cursor along the graph of the polynomial, we find that y � 20 when
x � 10.8. Thus, the fish is about 11 years old. ■

Problems

1. Tire Inflation and Treadware Car tires need to be inflated properly. Overinflation
or underinflation can cause premature treadwear. The data and scatter plot show tire life
for different inflation values for a certain type of tire.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of 
the data.

(c) Use your result from part (b) to estimate the pressure that gives the longest 
tire life.

30

0
150

(a) (b)Figure 5

y � 0.0155x3 � 0.372x2 � 3.95x � 1.21
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2. Too Many Corn Plants per Acre? The more corn a farmer plants per acre the
greater the yield that he can expect, but only up to a point. Too many plants per acre can
cause overcrowding and decrease yields. The data give crop yields per acre for various
densities of corn plantings, as found by researchers at a university test farm.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of 
the data.

(c) Use your result from part (b) to estimate the yield for 37,000 plants per acre.

Pressure Tire life
(lb/in2) (mi)

26 50,000
28 66,000
31 78,000
35 81,000
38 74,000
42 70,000
45 59,000

y (mi)

x (lb/in2)
0

50,000

60,000

70,000

80,000

0 25 30 35 40 45 50
Density Crop yield

(plants/acre) (bushels/acre)

15,000 43
20,000 98
25,000 118
30,000 140
35,000 142
40,000 122
45,000 93
50,000 67



3. How Fast Can You List Your Favorite Things? If you are asked to make a list 
of objects in a certain category, how fast you can list them follows a predictable pattern.
For example, if you try to name as many vegetables as you can, you’ll probably think 
of several right away—for example, carrots, peas, beans, corn, and so on. Then after 
a pause you may think of ones you eat less frequently—perhaps zucchini, eggplant,
and asparagus. Finally a few more exotic vegetables might come to mind—artichokes,
jicama, bok choy, and the like. A psychologist performs this experiment on a number 
of subjects. The table below gives the average number of vegetables that the subjects
named by a given number of seconds.

(a) Find the cubic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Use your result from part (b) to estimate the number of vegetables that subjects
would be able to name in 40 seconds.

(d) According to the model, how long (to the nearest 0.1 s) would it take a person to
name five vegetables?

324 Focus on Modeling

Number of 
Seconds Vegetables

1 2
2 6
5 10

10 12
15 14
20 15
25 18
30 21

4. Clothing Sales Are Seasonal Clothing sales tend to vary by season with more
clothes sold in spring and fall. The table gives sales figures for each month at a certain
clothing store.

(a) Find the quartic (fourth-degree) polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Do you think that a quartic polynomial is a good model for these data? 
Explain.

Month Sales ($)

January 8,000
February 18,000
March 22,000
April 31,000
May 29,000
June 21,000
July 22,000
August 26,000
September 38,000
October 40,000
November 27,000
December 15,000



5. Height of a Baseball A baseball is thrown upward and its height measured 
at 0.5-second intervals using a strobe light. The resulting data are given in the table.

(a) Draw a scatter plot of the data. What degree polynomial is appropriate for modeling
the data?

(b) Find a polynomial model that best fits the data, and graph it on the scatter plot.

(c) Find the times when the ball is 20 ft above the ground.

(d) What is the maximum height attained by the ball?

6. Torricelli’s Law Water in a tank will flow out of a small hole in the bottom faster
when the tank is nearly full than when it is nearly empty. According to Torricelli’s Law,
the height of water remaining at time t is a quadratic function of t.

A certain tank is filled with water and allowed to drain. The height of the water is
measured at different times as shown in the table.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Use your graph from part (b) to estimate how long it takes for the tank to drain
completely.

h1t 2
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Time (min) Height (ft)

0 5.0
4 3.1
8 1.9

12 0.8
16 0.2

Time (s) Height (ft)

0 4.2
0.5 26.1
1.0 40.1
1.5 46.0
2.0 43.9
2.5 33.7
3.0 15.8



4 Exponential and
Logarithmic Functions



Chapter Overview

In this chapter we study a new class of functions called exponential functions. For 
example,

is an exponential function (with base 2). Notice how quickly the values of this 
function increase:

Compare this with the function , where . The point is,
when the variable is in the exponent, even a small change in the variable can cause a
dramatic change in the value of the function.

In spite of this incomprehensibly huge growth, exponential functions are 
appropriate for modeling population growth for all living things, from bacteria to ele-
phants. To understand how a population grows, consider the case of a single bac-
terium, which divides every hour. After one hour we would have 2 bacteria, after two
hours 22 or 4 bacteria, after three hours 23 or 8 bacteria, and so on. After x hours we
would have 2x bacteria. This leads us to model the bacteria population by the func-
tion .

The principle governing population growth is the following: The larger the popu-
lation, the greater the number of offspring. This same principle is present in many
other real-life situations. For example, the larger your bank account, the more inter-
est you get. So we also use exponential functions to find compound interest.

We use logarithmic functions, which are inverses of exponential functions, to help
us answer such questions as, When will my investment grow to $100,000? In Focus
on Modeling (page 386) we explore how to fit exponential and logarithmic models 
to data.

0 1 2 3 4 5 6

f 1x 2 � 2x

g130 2 � 302 � 900g1x 2 � x2

f 130 2 � 230 � 1,073,741,824

f 110 2 � 210 � 1024

f 13 2 � 23 � 8

f 1x 2 � 2x
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4.1 Exponential Functions

4.2 Logarithmic Functions

4.3 Laws of Logarithms

4.4 Exponential and Logarithmic Equations

4.5 Modeling with Exponential and Logarithmic Functions
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4.1 Exponential Functions

So far, we have studied polynomial and rational functions. We now study one of the
most important functions in mathematics, the exponential function. This function is
used to model such natural processes as population growth and radioactive decay.

Exponential Functions

In Section 1.2 we defined ax for a 	 0 and x a rational number, but we have not yet
defined irrational powers. So, what is meant by or 2p? To define ax when x is ir-
rational, we approximate x by rational numbers. For example, since

is an irrational number, we successively approximate by the following rational
powers:

Intuitively, we can see that these rational powers of a are getting closer and closer to
. It can be shown using advanced mathematics that there is exactly one number

that these powers approach. We define to be this number.
For example, using a calculator we find

The more decimal places of we use in our calculation, the better our approxima-
tion of .

It can be proved that the Laws of Exponents are still true when the exponents are
real numbers.

513
13

� 16.2411. . .

 513 � 51.732

a13
a13

a1.7, a1.73, a1.732, a1.7320, a1.73205, . . .

a13

13 � 1.73205. . .

513
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Exponential Functions

The exponential function with base a is defined for all real numbers x by

where and .a � 1a 	 0

f 1x 2 � ax

We assume a � 1 because the function is just a constant function.
Here are some examples of exponential functions:

Base 10Base 3Base 2

h1x 2 � 10 xg1x 2 � 3xf 1x 2 � 2x

f1x 2 � 1x � 1

The Laws of Exponents are listed 
on page 14.



Example 1 Evaluating Exponential Functions

Let and evaluate the following:

(a) (b) (c) (d)

Solution We use a calculator to obtain the values of f.

Calculator keystrokes Output

(a)

(b)

(c)

(d)
■

Graphs of Exponential Functions

We first graph exponential functions by plotting points. We will see that the graphs of
such functions have an easily recognizable shape.

Example 2 Graphing Exponential Functions 

by Plotting Points

Draw the graph of each function.

(a) (b)

Solution We calculate values of and and plot points to sketch the
graphs in Figure 1.

g1x 2f 1x 2g1x 2 � a 1

3
b x

f 1x 2 � 3x

4.7288043ENTER21^3f A12 B � 312 � 4.7288

31.5442807ENTERP^3f 1p 2 � 3p � 31.544

0.4807498ENTER)3�2(_)(^3fA�2
3 B � 3�2/3 � 0.4807

9ENTER2^3f 12 2 � 32 � 9

f 112 2f 1p 2f 1� 2
3 2f 12 2f 1x 2 � 3x
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x

�3 27

�2 9

�1 3
0 1 1
1 3

2 9

3 27 1
27

1
9

1
3

1
3

1
9

1
27

g1x 2 � A 13 Bxf 1x 2 � 3x

0 x

y

1

1

y=3˛y=!  @˛
1

3

Figure 1

Notice that

and so we could have obtained the graph of g from the graph of f by reflecting in
the y-axis. ■

g1x 2 � a 1

3
b x

�
1

3x � 3�x � f 1�x 2
Reflecting graphs is explained in 
Section 2.4.



Figure 2 shows the graphs of the family of exponential functions 
for various values of the base a. All of these graphs pass through the point 
because a0 � 1 for a � 0. You can see from Figure 2 that there are two kinds of 
exponential functions: If 0 � a � 1, the exponential function decreases rapidly. 
If a 	 1, the function increases rapidly (see the margin note).

The x-axis is a horizontal asymptote for the exponential function . 
This is because when a 	 1, we have ax � 0 as x � �q, and when 0 � a � 1, we
have ax � 0 as x � q (see Figure 2). Also, ax 	 0 for all , so the function

has domain and range . These observations are summarized in the
following box.

10, q 2�f 1x 2 � ax
x � �

f 1x 2 � ax

10, 1 2f 1x 2 � ax
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Graphs of Exponential Functions

The exponential function

has domain and range . The line y � 0 (the x-axis) is a horizontal 
asymptote of f. The graph of f has one of the following shapes.

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

10, q 2�

f 1x 2 � ax   1a 	 0, a � 1 2

0 x

y

1

2

y=2˛

y=5˛y=10 ˛

y=3˛y=!  @˛
1

5

y=!  @˛
1

2

y=!  @˛
1

3

y=!  @˛
1

10

Figure 2

A family of exponential functions

To see just how quickly 
increases, let’s perform the following
thought experiment. Suppose we start
with a piece of paper a thousandth of an
inch thick, and we fold it in half 50
times. Each time we fold the paper, the
thickness of the paper stack doubles, so
the thickness of the resulting stack
would be 250/1000 inches. How thick
do you think that is? It works out to be
more than 17 million miles!

f 1x 2 � 2x

See Section 3.6, page 301, where 
the “arrow notation” used here is 
explained.



Example 3 Identifying Graphs of Exponential Functions

Find the exponential function whose graph is given.

Solution

(a) Since , we see that the base is a � 5. So .

(b) Since , we see that the base is . So . ■

In the next example we see how to graph certain functions, not by plotting points,
but by taking the basic graphs of the exponential functions in Figure 2 and 
applying the shifting and reflecting transformations of Section 2.4.

Example 4 Transformations of Exponential Functions

Use the graph of to sketch the graph of each function.

(a) (b) (c)

Solution

(a) To obtain the graph of , we start with the graph of 
and shift it upward 1 unit. Notice from Figure 3(a) that the line y � 1 is now 
a horizontal asymptote.

(b) Again we start with the graph of , but here we reflect in the x-axis to
get the graph of shown in Figure 3(b).

(c) This time we start with the graph of and shift it to the right by 1 unit,
to get the graph of shown in Figure 3(c).k1x 2 � 2x�1

f 1x 2 � 2x

h1x 2 � �2x
f 1x 2 � 2x

f 1x 2 � 2xg1x 2 � 1 � 2x

k1x 2 � 2x�1h1x 2 � �2xg1x 2 � 1 � 2x

f 1x 2 � 2x

f 1x 2 � A12B xa � 1
2f 13 2 � a3 � 1

8

f 1x 2 � 5xf 12 2 � a2 � 25

0 x

y

(2, 25)

5

_1 1 2 0 x

y

1

_3

1

8
!3,   @

3

f 1x 2 � ax
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The Gateway Arch in St. Louis,
Missouri, is shaped in the form of
the graph of a combination of expo-
nential functions (not a parabola, as
it might first appear). Specifically,
it is a catenary, which is the graph
of an equation of the form

(see Exercise 57). This shape was
chosen because it is optimal for
distributing the internal structural
forces of the arch. Chains and ca-
bles suspended between two points
(for example, the stretches of cable
between pairs of telephone poles)
hang in the shape of a catenary.

y � a1ebx � e�bx 2

0 x

y

(c)

1

y=2˛

y=2˛–¡11

0 x

y

(b)

1

y=2˛

y=_2˛_1

0 x

y

y=2˛

(a)

1

y=1+2˛

2

Horizontal
asymptote
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Figure 3 ■

Shifting and reflecting of graphs is 
explained in Section 2.4.

(a) (b)



Example 5 Comparing Exponential and Power Functions

Compare the rates of growth of the exponential function and the power
function by drawing the graphs of both functions in the following view-
ing rectangles.

(a) 30, 34 by 30, 84 (b) 30, 64 by 30, 254
(c) 30, 204 by 30, 10004
Solution

(a) Figure 4(a) shows that the graph of catches up with, and becomes
higher than, the graph of at x � 2.

(b) The larger viewing rectangle in Figure 4(b) shows that the graph of 
overtakes that of when x � 4.

(c) Figure 4(c) gives a more global view and shows that, when x is large,
is much larger than .g1x 2 � x 2f 1x 2 � 2x

g1x 2 � x2
f 1x 2 � 2x

f 1x 2 � 2x
g1x 2 � x2

g1x 2 � x2
f 1x 2 � 2x
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˝=≈
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(b)

˝=≈

Ï=2x

Figure 4 ■

The Natural Exponential Function

Any positive number can be used as the base for an exponential function, but some
bases are used more frequently than others. We will see in the remaining sections of
this chapter that the bases 2 and 10 are convenient for certain applications, but the
most important base is the number denoted by the letter e.

The number e is defined as the value that approaches as n becomes
large. (In calculus this idea is made more precise through the concept of a limit. See
Exercise 55.) The table in the margin shows the values of the expression 
for increasingly large values of n. It appears that, correct to five decimal places,
e � 2.71828; in fact, the approximate value to 20 decimal places is

It can be shown that e is an irrational number, so we cannot write its exact value in
decimal form.

Why use such a strange base for an exponential function? It may seem at first that
a base such as 10 is easier to work with. We will see, however, that in certain appli-
cations the number e is the best possible base. In this section we study how e occurs
in the description of compound interest.

e � 2.71828182845904523536

11 � 1/n 2 n11 � 1/n 2 n
n

1 2.00000
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828

a 1 �
1
n
b n

The notation e was chosen by Leon-
hard Euler (see page 288), probably 
because it is the first letter of the word
exponential.



Since 2 � e � 3, the graph of the natural exponential function lies between the
graphs of y � 2 x and y � 3 x, as shown in Figure 5.

Scientific calculators have a special key for the function . We use this
key in the next example.

Example 6 Evaluating the Exponential Function

Evaluate each expression correct to five decimal places.

(a) e3 (b) 2e�0.53 (c) e4.8

Solution We use the key on a calculator to evaluate the exponential function.

(a) e3 � 20.08554

(b) 2e�0.53 � 1.17721

(c) e4.8 � 121.51042 ■

Example 7 Transformations of the Exponential Function

Sketch the graph of each function.

(a) (b)

Solution

(a) We start with the graph of y � ex and reflect in the y-axis to obtain the graph of
y � e�x as in Figure 6.

(b) We calculate several values, plot the resulting points, then connect the points
with a smooth curve. The graph is shown in Figure 7.

g1x 2 � 3e 0.5xf 1x 2 � e�x

eX

f 1x 2 � e x
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The Natural Exponential Function

The natural exponential function is the exponential function

with base e. It is often referred to as the exponential function.

f 1x 2 � e x

0 x

y

1

y=3˛

1

y=2˛

y=e ˛

Figure 5

Graph of the natural exponential
function
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1

1

y=e ˛y=e–˛

Figure 6

x
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2 8.15
3 13.45
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(c) From the graph in Figure 8, we see that the number of infected people first rises
slowly; then rises quickly between day 3 and day 8, and then levels off when
about 2000 people are infected. ■

The graph in Figure 8 is called a logistic curve or a logistic growth model. Curves
like it occur frequently in the study of population growth. (See Exercises 69–72.)

Compound Interest

Exponential functions occur in calculating compound interest. If an amount of money
P, called the principal, is invested at an interest rate i per time period, then after one
time period the interest is Pi, and the amount A of money is

If the interest is reinvested, then the new principal is , and the amount after
another time period is . Similarly, after a third
time period the amount is . In general, after k periods the amount is

Notice that this is an exponential function with base 1 � i.
If the annual interest rate is r and if interest is compounded n times per year, then

in each time period the interest rate is i � r/n, and there are nt time periods in t years.
This leads to the following formula for the amount after t years.

A � P11 � i 2 kA � P11 � i 2 3A � P11 � i 2 11 � i 2 � P11 � i 2 2P11 � i 2A � P � Pi � P11 � i 2

Example 8 An Exponential Model for the Spread 

of a Virus

An infectious disease begins to spread in a small city of population 10,000. After 
t days, the number of persons who have succumbed to the virus is modeled by 
the function

(a) How many infected people are there initially (at time t � 0)?

(b) Find the number of infected people after one day, two days, and five days.

(c) Graph the function √ and describe its behavior.

Solution

(a) Since , we conclude that 
8 people initially have the disease.

(b) Using a calculator, we evaluate , and , and then round off to 
obtain the following values.

√ 15 2√ 11 2 , √ 12 2√ 10 2 � 10,000/15 � 1245e0 2 � 10,000/1250 � 8

√ 1t 2 �
10,000

5 � 1245e�0.97t
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Days Infected people

1 21
2 54
5 678

3000

0 12

Figure 8

√1t 2 �
10,000

5 � 1245e�0.97t



Example 9 Calculating Compound Interest

A sum of $1000 is invested at an interest rate of 12% per year. Find the amounts 
in the account after 3 years if interest is compounded annually, semiannually,
quarterly, monthly, and daily.

Solution We use the compound interest formula with P � $1000, r � 0.12,
and t � 3.

Compounding n Amount after 3 years

Annual 1

Semiannual 2

Quarterly 4

Monthly 12

Daily 365
■

We see from Example 9 that the interest paid increases as the number of com-
pounding periods n increases. Let’s see what happens as n increases indefinitely. If
we let m � n/r, then

Recall that as m becomes large, the quantity approaches the number e.
Thus, the amount approaches A � Pert. This expression gives the amount when the
interest is compounded at “every instant.”

11 � 1/m 2mA1t 2 � P a1 �
r
n
b nt

� P c a 1 �
r
n
b n/r d rt

� P c a 1 �
1
m
bm d rt

1000 a1 �
0.12

365
b 365132

� $1433.24

1000 a1 �
0.12

12
b 12132

� $1430.77

1000 a1 �
0.12

4
b 4132

� $1425.76

1000 a1 �
0.12

2
b 2132

� $1418.52

1000 a1 �
0.12

1
b 1132

� $1404.93
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Compound Interest

Compound interest is calculated by the formula

where

t � number of years

n � number of times interest is compounded per year

r � interest rate per year

P � principal

A1t 2 � amount after t  years

A1t 2 � P a1 �
r
n
b nt

r is often referred to as the nominal
annual interest rate.



Example 10 Calculating Continuously Compounded Interest

Find the amount after 3 years if $1000 is invested at an interest rate of 12% per
year, compounded continuously.

Solution We use the formula for continuously compounded interest with 
P � $1000, r � 0.12, and t � 3 to get

Compare this amount with the amounts in Example 9. ■

4.1 Exercises

A13 2 � 1000e10.1223 � 1000e0.36 � $1433.33
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1–4 ■ Use a calculator to evaluate the function at the indicated
values. Round your answers to three decimals.

1.

2.

3.

4.

5–10 ■ Sketch the graph of the function by making a table of
values. Use a calculator if necessary.

5. 6.

7. 8.

9. 10.

11–14 ■ Graph both functions on one set of axes.

11.

12.

13.

14. f 1x 2 � A23B x and g1x 2 � A43B xf 1x 2 � 4x and g1x 2 � 7x

f 1x 2 � 3�x and g1x 2 � A13B xf 1x 2 � 2x and g1x 2 � 2�x

h1x 2 � 2e�0.5xg1x 2 � 3e x

h1x 2 � 11.1 2 xf 1x 2 � A13B x g1x 2 � 8xf 1x 2 � 2x

g1x 2 � A34B 2x; g10.7 2 , g117/2 2 , g11/p 2 , gA23Bg1x 2 � A23B x�1; g11.3 2 , g115 2 , g12p 2 , gA� 1
2Bf 1x 2 � 3x�1; f 1�1.5 2 , f 113 2 , f 1e 2 , f A� 5

4Bf 1x 2 � 4x; f 10.5 2 , f 112 2 , f 1p 2 , f A13B
15–18 ■ Find the exponential function whose graph
is given.

15. 16.

17. 18.

0 x

y

3

1

_3

(_3, 8)

1

16
!2,    @

0 x

y

3

1

_3

0 x

y

3

1

_3

1

5
!_1,   @

0 x

y

3

1

_3

(2, 9)

f 1x 2 � ax

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula

where

t � number of years

r � interest rate per year

P � principal

A1t 2 � amount after t years

A1t 2 � Pe rt
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19–24 ■ Match the exponential function with one of the graphs
labeled I–VI.

19. 20.

21. 22.

23. 24.

25–38 ■ Graph the function, not by plotting points, but by start-
ing from the graphs in Figures 2 and 5. State the domain, range,
and asymptote.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. y � 1 � ex

35. y � e�x � 1 36.

37. 38. y � ex�3 � 4f 1x 2 � e x�2

f 1x 2 � �e�x

f 1x 2 � �e x

f 1x 2 � � A15B xf 1x 2 � 10x�3

h1x 2 � 6 � 3xh1x 2 � 4 � A12B x g1x 2 � 2x�3g1x 2 � 2x � 3

f 1x 2 � 10�xf 1x 2 � �3x

III IV

x

y

3_3

(_1, _3)

0

1

x

y

(0, 1)

_3 30

V VI

x

y

(0, _1)

_3 3

x

y

0

(0, 4)

3_3

I II

0 x

y

(_1, 5)

_3 3

1

0 x

y

(3, 1)

5

1

f 1x 2 � 5x�1 � 4f 1x 2 � 5x�3

f1x 2 � 5x � 3f 1x 2 � 5�x

f 1x 2 � �5xf 1x 2 � 5x

39–40 ■ Find the function of the form whose graph
is given.

39. 40.

41. (a) Sketch the graphs of and .

(b) How are the graphs related?

42. (a) Sketch the graphs of and .

(b) Use the Laws of Exponents to explain the relationship
between these graphs.

43. If , show that

44. Compare the functions and by evalu-
ating both of them for x � 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,
and 20. Then draw the graphs of f and g on the same set
of axes.

45. The hyperbolic cosine function is defined by

Sketch the graphs of the functions and on
the same axes and use graphical addition (see Section 2.7)
to sketch the graph of .

46. The hyperbolic sine function is defined by

Sketch the graph of this function using graphical addition as
in Exercise 45.

47–50 ■ Use the definitions in Exercises 45 and 46 to prove the
identity.

47.

48.

49.

50. sinh1x � y 2 � sinh1x 2cosh1y 2 � cosh1x 2sinh1y 23cosh1x 2 42 � 3sinh1x 2 4 2 � 1

sinh1�x 2 � �sinh1x 2cosh1�x 2 � cosh1x 2

sinh1x 2 �
e x � e�x

2

y � cosh1x 2 y � 1
2e�xy � 1

2e x

cosh1x 2 �
e x � e�x

2

g1x 2 � 3xf 1x 2 � x 3

f 1x � h 2 � f 1x 2
h

� 10x a 10h � 1

h
b

f 1x 2 � 10x

g1x 2 � 3xf 1x 2 � 9x/2

g1x 2 � 312x 2f 1x 2 � 2x

0 x

y

3

5

_3

(_1, 15)

0 x

y

3

3

_3

(2, 12)

f 1x 2 � Cax
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51. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions
in the following viewing rectangles.

(i) 30, 54 by 30, 204
(ii) 30, 254 by 30, 1074

(iii) 30, 504 by 30, 1084
(b) Find the solutions of the equation 2 x � x 5, correct to

one decimal place.

52. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions
in the following viewing rectangles:

(i) 3�4, 44 by 30, 204 (ii) 30, 104 by 30, 50004
(iii) 30, 204 by 30, 1054

(b) Find the solutions of the equation 3 x � x 4, correct to
two decimal places.  

53–54 ■ Draw graphs of the given family of functions for
c � 0.25, 0.5, 1, 2, 4. How are the graphs related?

53. 54.

55. Illustrate the definition of the number e by graphing the
curve and the line y � e on the same screen
using the viewing rectangle 30, 404 by 30, 44.

56. Investigate the behavior of the function

as x �q by graphing f and the line y � 1/e on the same
screen using the viewing rectangle 30, 204 by 30, 14.

57. (a) Draw the graphs of the family of functions

for a � 0.5, 1, 1.5, and 2.

(b) How does a larger value of a affect the graph?

58–59 ■ Graph the function and comment on vertical and 
horizontal asymptotes.

58. y � 21/x 59.

60–61 ■ Find the local maximum and minimum values of the
function and the value of x at which each occurs. State each 
answer correct to two decimal places.

60. 61.

62–63 ■ Find, correct to two decimal places, (a) the intervals
on which the function is increasing or decreasing, and (b) the
range of the function.

62. 63. y � xe�xy � 10x�x2

g1x 2 � e x � e�3xg1x 2 � x x  1x 	 0 2

y �
e x

x

f 1x 2 �
a

2
1ex/a � e�x/a 2

f 1x 2 � a1 �
1
x
b x

y � 11 � 1/x 2 x
f 1x 2 � 2cxf 1x 2 � c2x

g1x 2 � x 4
f 1x 2 � 3x

g1x 2 � x 5
f 1x 2 � 2x

Applications

64. Medical Drugs When a certain medical drug is adminis-
tered to a patient, the number of milligrams remaining in the
patient’s bloodstream after t hours is modeled by

How many milligrams of the drug remain in the patient’s
bloodstream after 3 hours?

65. Radioactive Decay A radioactive substance decays in
such a way that the amount of mass remaining after t days is
given by the function

where is measured in kilograms.

(a) Find the mass at time t � 0.

(b) How much of the mass remains after 45 days?

66. Radioactive Decay Radioactive iodine is used by 
doctors as a tracer in diagnosing certain thyroid gland 
disorders. This type of iodine decays in such a way that 
the mass remaining after t days is given by the function

where is measured in grams.

(a) Find the mass at time t � 0.

(b) How much of the mass remains after 20 days?

67. Sky Diving A sky diver jumps from a reasonable height
above the ground. The air resistance she experiences is pro-
portional to her velocity, and the constant of proportionality
is 0.2. It can be shown that the downward velocity of the sky
diver at time t is given by

where t is measured in seconds and is measured in feet
per second (ft/s).

(a) Find the initial velocity of the sky diver.

(b) Find the velocity after 5 s and after 10 s.

(c) Draw a graph of the velocity function .

(d) The maximum velocity of a falling object with wind 
resistance is called its terminal velocity. From the graph
in part (c) find the terminal velocity of this sky diver.

√(t)=80(1-e_º.™t)

√1t 2
√ 1t 2√ 1t 2 � 8011 � e�0.2t 2

m1t 2 m1t 2 � 6e�0.087t

m1t 2 m1t 2 � 13e�0.015t

D1t 2 � 50e�0.2t
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68. Mixtures and Concentrations A 50-gallon barrel is
filled completely with pure water. Salt water with a concen-
tration of 0.3 lb/gal is then pumped into the barrel, and the
resulting mixture overflows at the same rate. The amount of
salt in the barrel at time t is given by

where t is measured in minutes and is measured in
pounds.

(a) How much salt is in the barrel after 5 min?

(b) How much salt is in the barrel after 10 min?

(c) Draw a graph of the function .

(d) Use the graph in part (c) to determine the value that the
amount of salt in the barrel approaches as t becomes
large. Is this what you would expect?

69. Logistic Growth Animal populations are not capable 
of unrestricted growth because of limited habitat and food
supplies. Under such conditions the population follows a 
logistic growth model

where c, d, and k are positive constants. For a certain fish
population in a small pond d � 1200, k � 11, c � 0.2, and t
is measured in years. The fish were introduced into the pond
at time t � 0.

(a) How many fish were originally put in the pond?

(b) Find the population after 10, 20, and 30 years.

(c) Evaluate for large values of t. What value does the
population approach as t �q? Does the graph shown
confirm your calculations?

t

P

0 10 20 4030

1200

1000

800

600

400

200

P1t 2

P1t 2 �
d

1 � ke�ct

Q(t)=15(1-e_º.º¢ t)

Q1t 2
Q1t 2Q1t 2 � 1511 � e�0.04t 2

70. Bird Population The population of a certain species of
bird is limited by the type of habitat required for nesting.
The population behaves according to the logistic
growth model

where t is measured in years.

(a) Find the initial bird population.

(b) Draw a graph of the function .

(c) What size does the population approach as time 
goes on?

71. Tree Diameter For a certain type of tree the diameter 
D (in feet) depends on the tree’s age t (in years) according
to the logistic growth model

Find the diameter of a 20-year-old tree.

72. Rabbit Population Assume that a population of rabbits
behaves according to the logistic growth model

where n0 is the initial rabbit population.

(a) If the initial population is 50 rabbits, what will the pop-
ulation be after 12 years?

(b) Draw graphs of the function for n0 � 50, 500,
2000, 8000, and 12,000 in the viewing rectangle 30, 154
by 30, 12,0004.

(c) From the graphs in part (b), observe that, regardless of
the initial population, the rabbit population seems to 
approach a certain number as time goes on. What is that
number? (This is the number of rabbits that the island
can support.)

n1t 2

n1t 2 �
300

0.05 � a 300
n0

� 0.05 b e�0.55t

t

D

0 100 700300 500

5

4

3

2

1

D1t 2 �
5.4

1 � 2.9e�0.01t

n1t 2
n1t 2 �

5600

0.5 � 27.5e�0.044t
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73–74 ■ Compound Interest An investment of $5000 is 
deposited into an account in which interest is compounded
monthly. Complete the table by filling in the amounts to which
the investment grows at the indicated times or interest rates.

73. r � 4% 74. t � 5 years

75. Compound Interest If $10,000 is invested at an interest
rate of 10% per year, compounded semiannually, find the
value of the investment after the given number of years.

(a) 5 years

(b) 10 years

(c) 15 years

76. Compound Interest If $4000 is borrowed at a rate of
16% interest per year, compounded quarterly, find the
amount due at the end of the given number of years.

(a) 4 years

(b) 6 years

(c) 8 years

77. Compound Interest If $3000 is invested at an interest
rate of 9% per year, find the amount of the investment 
at the end of 5 years for the following compounding 
methods.

(a) Annual

(b) Semiannual

(c) Monthly

(d) Weekly

(e) Daily

(f ) Hourly

(g) Continuously

78. Compound Interest If $4000 is invested in an account
for which interest is compounded quarterly, find the amount
of the investment at the end of 5 years for the following 
interest rates.

(a) 6% (b) 6 %

(c) 7% (d) 8%

1
2

79. Compound Interest Which of the given interest rates
and compounding periods would provide the best 
investment?

(i) 8 % per year, compounded semiannually

(ii) 8 % per year, compounded quarterly

(iii) 8% per year, compounded continuously

80. Compound Interest Which of the given interest rates
and compounding periods would provide the better 
investment?

(i) 9 % per year, compounded semiannually

(ii) 9% per year, compounded continuously

81. Present Value The present value of a sum of money is
the amount that must be invested now, at a given rate of 
interest, to produce the desired sum at a later date.

(a) Find the present value of $10,000 if interest is paid at a
rate of 9% per year, compounded semiannually, for 
3 years.

(b) Find the present value of $100,000 if interest is paid 
at a rate of 8% per year, compounded monthly, for 
5 years.

82. Investment A sum of $5000 is invested at an interest rate
of 9% per year, compounded semiannually.

(a) Find the value of the investment after t years.

(b) Draw a graph of .

(c) Use the graph of to determine when this invest-
ment will amount to $25,000.

Discovery • Discussion

83. Growth of an Exponential Function Suppose you are
offered a job that lasts one month, and you are to be very
well paid. Which of the following methods of payment is
more profitable for you?

(a) One million dollars at the end of the month

(b) Two cents on the first day of the month, 4 cents on the
second day, 8 cents on the third day, and, in general, 2n

cents on the nth day

84. The Height of the Graph of an Exponential Function

Your mathematics instructor asks you to sketch a graph of
the exponential function

for x between 0 and 40, using a scale of 10 units to one inch.
What are the dimensions of the sheet of paper you will need
to sketch this graph?

f 1x 2 � 2x

A1t 2A1t 2A1t 2

1
4

1
4

1
2

Rate
per year Amount

1%
2%
3%
4%
5%
6%

Time
(years) Amount

1
2
3
4
5
6



Exponential Explosion

To help us grasp just how explosive exponential growth is, let’s try a thought 
experiment.

Suppose you put a penny in your piggy bank today, two pennies tomorrow,
four pennies the next day, and so on, doubling the number of pennies you add to
the bank each day (see the table). How many pennies will you put in your piggy
bank on day 30? The answer is 230 pennies. That’s simple, but can you guess
how many dollars that is? 230 pennies is more than 10 million dollars!

D I S C O V E R Y
P R O J E C T
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Day Pennies

0 1
1 2
2 4
3 8
4 16
. .. .. .
n 2n

. .. .. .

As you can see, the exponential function grows extremely fast.
This is the principle behind atomic explosions. An atom splits releasing two 
neutrons, which cause two atoms to split, each releasing two neutrons, causing
four atoms to split, and so on. At the nth stage 2n atoms split—an exponential
explosion!

Populations also grow exponentially. Let’s see what this means for a type 
of bacteria that splits every minute. Suppose that at 12:00 noon a single bac-
terium colonizes a discarded food can. The bacterium and his descendants are 
all happy, but they fear the time when the can is completely full of bacteria—
doomsday.

1. How many bacteria are in the can at 12:05? At 12:10?

2. The can is completely full of bacteria at 1:00 P.M. At what time was the can
only half full of bacteria?

3. When the can is exactly half full, the president of the bacteria colony reas-
sures his constituents that doomsday is far away—after all, there is as much
room left in the can as has been used in the entire previous history of the
colony. Is the president correct? How much time is left before doomsday?

4. When the can is one-quarter full, how much time remains till doomsday?

5. A wise bacterium decides to start a new colony in another can and slow down
splitting time to 2 minutes. How much time does this new colony have?

f 1x 2 � 2x



4.2 Logarithmic Functions

In this section we study the inverse of exponential functions.

Logarithmic Functions

Every exponential function , with a 	 0 and a � 1, is a one-to-one function
by the Horizontal Line Test (see Figure 1 for the case a 	 1) and therefore has an 
inverse function. The inverse function f �1 is called the logarithmic function with base
a and is denoted by loga. Recall from Section 2.8 that f�1 is defined by

This leads to the following definition of the logarithmic function.

f �11x 2 � y 3  f 1y 2 � x

f 1x 2 � ax
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0 x

y

f(x)=a ,̨

a>1

Figure 1

is one-to-onef 1x 2 � ax

Definition of the Logarithmic Function

Let a be a positive number with a � 1. The logarithmic function with base
a, denoted by loga, is defined by

So, loga x is the exponent to which the base a must be raised to give x.

loga x � y 3  ay � x

When we use the definition of logarithms to switch back and forth between the
logarithmic form loga x � y and the exponential form ay � x, it’s helpful to notice
that, in both forms, the base is the same:

Logarithmic form Exponential form

loga x � y ay � x

Example 1 Logarithmic and Exponential Forms

The logarithmic and exponential forms are equivalent equations—if one is true,
then so is the other. So, we can switch from one form to the other as in 
the following illustrations.

■

It’s important to understand that loga x is an exponent. For example, the numbers
in the right column of the table in the margin are the logarithms (base 10) of the 

Exponent Exponent

BaseBase

Logarithmic form Exponential form

log10 100,000 � 5 105 � 100,000

log28 � 3 23 � 8

log2 !�
1
8�@ � �3 2�3 � �

1
8�

log5 s � r 5r � s

We read loga x � y as “log base a of
x is y.”

By tradition, the name of the logarith-
mic function is loga, not just a single
letter. Also, we usually omit the paren-
theses in the function notation and
write

loga1x 2 � loga x



numbers in the left column. This is the case for all bases, as the following example 
illustrates.

Example 2 Evaluating Logarithms

(a) log10 1000 � 3 because 103 � 1000

(b) log2 32 � 5 because 25 � 32

(c) log10 0.1 � �1 because 10�1 � 0.1

(d) because 161/2 � 4 ■

When we apply the Inverse Function Property described on page 227 to 
and , we get

We list these and other properties of logarithms discussed in this section.

alogax � x  x 	 0

 loga1ax 2 � x  x � �

f �11x 2 � loga x
f 1x 2 � ax

log16 4 � 1
2
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x log10 x

104 4
103 3
102 2
10 1
1 0

10�1 �1
10�2 �2
10�3 �3
10�4 �4

Properties of Logarithms

Property Reason

1. loga 1 � 0 We must raise a to the power 0 to get 1.

2. loga a � 1 We must raise a to the power 1 to get a.

3. loga ax � x We must raise a to the power x to get ax.

4. loga x is the power to which a must be raised to get x.alogax � x

Example 3 Applying Properties of Logarithms

We illustrate the properties of logarithms when the base is 5.

Property 1 Property 2

Property 3 Property 4 ■

Graphs of Logarithmic Functions

Recall that if a one-to-one function f has domain A and range B, then its inverse func-
tion f�1 has domain B and range A. Since the exponential function with 
a � 1 has domain and range , we conclude that its inverse function,

, has domain and range .
The graph of is obtained by reflecting the graph of in

the line y � x. Figure 2 shows the case a 	 1. The fact that y � ax (for a 	 1) is a
very rapidly increasing function for x 	 0 implies that y � loga x is a very slowly in-
creasing function for x 	 1 (see Exercise 84).

Since loga 1 � 0, the x-intercept of the function y � loga x is 1. The y-axis is a ver-
tical asymptote of y � loga x because loga x � �q as x � 0�.

f 1x 2 � axf �11x 2 � loga x
�10, q 2f �11x 2 � loga x

10, q 2�

f 1x 2 � ax

5log5 12 � 12log5 58 � 8

log5 5 � 1log51 � 0

y=a ,̨  a>1

y=log a x

y=x

x

y

1

1

Figure 2

Graph of the logarithmic function
f 1x 2 � loga x

Inverse Function Property:

f1f�11x 22 � x

f�11f 1x 22 � x

Arrow notation is explained on 
page 301.



Example 4 Graphing a Logarithmic Function

by Plotting Points

Sketch the graph of .

Solution To make a table of values, we choose the x-values to be powers of 
2 so that we can easily find their logarithms. We plot these points and connect 
them with a smooth curve as in Figure 3.

f 1x 2 � log2 x
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x log2 x

23 3
22 2
2 1
1 0
2�1 �1
2�2 �2
2�3 �3
2�4 �4

x

y

1

2

3

1 2 4 6 8
_1

_2

_3

_4

f(x)=log¤ x

Figure 4 shows the graphs of the family of logarithmic functions with bases 
2, 3, 5, and 10. These graphs are drawn by reflecting the graphs of y � 2x, y � 3x,
y � 5x, and y � 10 x (see Figure 2 in Section 4.1) in the line y � x. We can also plot
points as an aid to sketching these graphs, as illustrated in Example 4.

y=log‹ x

y=log¤ x

y=logfi x

y=log⁄‚ x

0 x

y

1

1

Figure 4

A family of logarithmic functions

In the next two examples we graph logarithmic functions by starting with the ba-
sic graphs in Figure 4 and using the transformations of Section 2.4.

Figure 3 ■

Mathematics in 

the Modern World

Law Enforcement

Mathematics aids law enforcement
in numerous and surprising ways,
from the reconstruction of bullet
trajectories, to determining the time
of death, to calculating the proba-
bility that a DNA sample is from a
particular person. One interesting
use is in the search for missing per-
sons. If a person has been missing
for several years, that person may
look quite different from their most
recent available photograph. This
is particularly true if the missing
person is a child. Have you ever
wondered what you will look like
5, 10, or 15 years from now?

Researchers have found that
different parts of the body grow at
different rates. For example, you
have no doubt noticed that a baby’s
head is much larger relative to its
body than an adult’s. As another
example, the ratio of arm length to
height is �

1
3� in a child but about �5

2
� in

an adult. By collecting data and an-
alyzing the graphs, researchers are
able to determine the functions that
model growth. As in all growth
phenomena, exponential and loga-
rithmic functions play a crucial role.
For instance, the formula that re-
lates arm length l to height h is
l � aekh where a and k are con-
stants. By studying various physical
characteristics of a person, mathe-
matical biologists model each char-
acteristic by a function that de-
scribes how it changes over time.
Models of facial characteristics can 

(continued)

Bettmann /Corbis Hulton /Deutch Collection /
Corbis



Example 5 Reflecting Graphs of Logarithmic Functions

Sketch the graph of each function.

(a) (b)

Solution

(a) We start with the graph of and reflect in the x-axis to get the
graph of in Figure 5(a).

(b) We start with the graph of and reflect in the y-axis to get the
graph of in Figure 5(b).h1x 2 � log21�x 2 f 1x 2 � log2 x

g1x 2 � �log2 x
f 1x 2 � log2 x

h1x 2 � log21�x 2g1x 2 � �log2 x
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Example 6 Shifting Graphs of Logarithmic Functions

Find the domain of each function, and sketch the graph.

(a) (b)

Solution

(a) The graph of g is obtained from the graph of (Figure 4) by 
shifting upward 2 units (see Figure 6). The domain of f is .10, q 2f 1x 2 � log5 x

h1x 2 � log101x � 3 2g1x 2 � 2 � log5 x

f(x)=log¤ x f(x)=log¤ x

h(x)=log¤(−x)

g(x)=−log ¤ x

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

Figure 5 ■

3

0 x

y

1

1

2

g(x)=2+logfi x

f(x)=logfi x

Figure 6

(b) The graph of h is obtained from the graph of (Figure 4) by 
shifting to the right 3 units (see Figure 7 on the next page). The line x � 3
is a vertical asymptote. Since log10 x is defined only when x 	 0, the domain 

f 1x 2 � log10 x

be programmed into a computer to
give a picture of how a person’s ap-
pearance changes over time. These
pictures aid law enforcement agen-
cies in locating missing persons.



of is

■

Common Logarithms

We now study logarithms with base 10.

f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1

Asymptote
x = 3

5x 0 x � 3 	 06 � 5x 0 x 	 36 � 13, q 2h1x 2 � log101x � 3 2
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Figure 7

Common Logarithm

The logarithm with base 10 is called the common logarithm and is denoted
by omitting the base:

log x � log10 x

From the definition of logarithms we can easily find that

But how do we find log 50? We need to find the exponent y such that 10 y � 50.
Clearly, 1 is too small and 2 is too large. So

To get a better approximation, we can experiment to find a power of 10 closer to 50.
Fortunately, scientific calculators are equipped with a key that directly gives
values of common logarithms.

Example 7 Evaluating Common Logarithms

Use a calculator to find appropriate values of and use the values to
sketch the graph.

Solution We make a table of values, using a calculator to evaluate the function
at those values of x that are not powers of 10. We plot those points and connect
them by a smooth curve as in Figure 8.

f 1x 2 � log x

LOG

1 � log 50 � 2

log 10 � 1  and  log 100 � 2

John Napier (1550–1617) was a
Scottish landowner for whom
mathematics was a hobby. We
know him today because of his key
invention—logarithms, which he
published in 1614 under the title A
Description of the Marvelous Rule
of Logarithms. In Napier’s time,
logarithms were used exclusively
for simplifying complicated calcu-
lations. For example, to multiply
two large numbers we would write
them as powers of 10. The expo-
nents are simply the logarithms of
the numbers. For instance,

The idea is that multiplying powers
of 10 is easy (we simply add their
exponents). Napier produced ex-
tensive tables giving the loga-
rithms (or exponents) of numbers.
Since the advent of calculators 
and computers, logarithms are no
longer used for this purpose. The
logarithmic functions, however,
have found many applications,
some of which are described in this
chapter.

Napier wrote on many topics.
One of his most colorful works is a
book entitled A Plaine Discovery
of the Whole Revelation of Saint
John, in which he predicted that the
world would end in the year 1700.

� 261,872,564

� 108.41809

� 103.65629 � 104.76180

4532 � 57783
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x log x

0.01 �2
0.1 �1
0.5 �0.301
1 0
4 0.602
5 0.699

10 1

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

Figure 8 ■

Scientists model human response to stimuli (such as sound, light, or pressure) us-
ing logarithmic functions. For example, the intensity of a sound must be increased
manyfold before we “feel” that the loudness has simply doubled. The psychologist
Gustav Fechner formulated the law as

where S is the subjective intensity of the stimulus, I is the physical intensity of the
stimulus, I0 stands for the threshold physical intensity, and k is a constant that is dif-
ferent for each sensory stimulus.

Example 8 Common Logarithms and Sound

The perception of the loudness B (in decibels, dB) of a sound with physical 
intensity I (in W/m2) is given by

where I0 is the physical intensity of a barely audible sound. Find the decibel level
(loudness) of a sound whose physical intensity I is 100 times that of I0.

Solution We find the decibel level B by using the fact that I � 100I0.

Definition of B

I � 100I0

Cancel I0

Definition of log

The loudness of the sound is 20 dB. ■

Natural Logarithms

Of all possible bases a for logarithms, it turns out that the most convenient choice for
the purposes of calculus is the number e, which we defined in Section 4.1.

� 10 # 2 � 20

� 10 log 100

� 10 log a 100I0

I0
b

B � 10 log a I

I0
b

B � 10 log a I

I0
b

S � k log a I

I0
b

Human response to sound and
light intensity is logarithmic.

0
1
2 3 4

5
6

We study the decibel scale in more 
detail in Section 4.5.



The natural logarithmic function y � ln x is the inverse function of the exponen-
tial function y � ex. Both functions are graphed in Figure 9. By the definition of in-
verse functions we have

If we substitute a � e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.
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Natural Logarithm

The logarithm with base e is called the natural logarithm and is denoted 
by ln:

ln x � loge x

Properties of Natural Logarithms

Property Reason

1. ln 1 � 0 We must raise e to the power 0 to get 1.

2. ln e � 1 We must raise e to the power 1 to get e.

3. ln ex � x We must raise e to the power x to get ex.

4. eln x � x ln x is the power to which e must be raised to get x.

Calculators are equipped with an key that directly gives the values of natural
logarithms.

Example 9 Evaluating the Natural Logarithm Function

(a) ln e8 � 8 Definition of natural logarithm

(b) Definition of natural logarithm

(c) ln 5 � 1.609 Use key on calculator ■LN

ln a 1

e 2 b � ln e�2 � �2

LN

Figure 9

Graph of the natural 
logarithmic function

The notation ln is an abbreviation for
the Latin name logarithmus naturalis.

ln x � y 3  e y � x

y=x

y=e˛

y=ln x

x

y

1

1



Example 10 Finding the Domain of a Logarithmic Function

Find the domain of the function .

Solution As with any logarithmic function, ln x is defined when x 	 0. Thus,
the domain of f is @

■

Example 11 Drawing the Graph of a Logarithmic Function

Draw the graph of the function and use it to find the asymptotes
and local maximum and minimum values.

Solution As in Example 10 the domain of this function is the interval ,
so we choose the viewing rectangle 3�3, 34 by 3�3, 34. The graph is shown in Figure
10, and from it we see that the lines x � �2 and x � 2 are vertical asymptotes.

The function has a local maximum point to the right of x � 1 and a local 
minimum point to the left of x � �1. By zooming in and tracing along the graph
with the cursor, we find that the local maximum value is approximately 1.13 and
this occurs when x � 1.15. Similarly (or by noticing that the function is odd), we
find that the local minimum value is about �1.13, and it occurs when x � �1.15. ■

4.2 Exercises

1�2, 2 2
y � x ln14 � x2 2

� 5x 0 �2 � x � 26 � 1�2, 2 20 x 0 � 265x 0 4 � x2 	 06 � 5x 0 x2 � 46 � 5x
f 1x 2 � ln14 � x2 2
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3

_3

_3 3

Figure 10

y � x ln14 � x2 2

1–2 ■ Complete the table by finding the appropriate logarithmic
or exponential form of the equation, as in Example 1.

3–8 ■ Express the equation in exponential form.

3. (a) log5 25 � 2 (b) log5 1 � 0

4. (a) log10 0.1 � �1 (b) log8 512 � 3

5. (a) (b)

6. (a) log3 81 � 4 (b)

7. (a) ln 5 � x (b) ln y � 5

8. (a) (b)

9–14 ■ Express the equation in logarithmic form.

9. (a) 53 � 125 (b) 10�4 � 0.0001

10. (a) 103 � 1000 (b) 811/2 � 9

11. (a) (b)

12. (a) 4�3/2 � 0.125 (b) 73 � 343

13. (a) ex � 2 (b) e 3 � y

14. (a) ex�1 � 0.5 (b) e0.5x � t

15–24 ■ Evaluate the expression.

15. (a) log3 3 (b) log3 1 (c) log3 32

16. (a) log5 54 (b) log4 64 (c) log9 9

2�3 � 1
88�1 � 1

8

ln1x � 1 2 � 4ln1x � 1 2 � 2

log8 4 � 2
3

log2A18B � �3log8 2 � 1
3

Logarithmic Exponential 
form form

log8 8 � 1

log8 64 � 2

82/3 � 4

83 � 512

8�2 � 1
64

log8 A18B � �1

Logarithmic Exponential 
form form

43 � 64

43/2� 8

4�5/2 � 1
32

log4 A12B � �1
2

log4 A 1
16B � �2

log 4 2 � 1
2

1.

2.
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17. (a) log6 36 (b) log9 81 (c) log7 710

18. (a) log2 32 (b) log8 817 (c) log6 1

19. (a) (b) (c) log5 0.2

20. (a) log5 125 (b) log49 7 (c)

21. (a) (b) (c)

22. (a) eln p (b) 10log 5 (c) 10log 87

23. (a) log8 0.25 (b) ln e4 (c)

24. (a) (b) (c) log4 8

25–32 ■ Use the definition of the logarithmic function to find x.

25. (a) log2 x � 5 (b) log2 16 � x

26. (a) log5 x � 4 (b) log10 0.1 � x

27. (a) log3 243 � x (b) log3 x � 3

28. (a) log4 2 � x (b) log4 x � 2

29. (a) log10 x � 2 (b) log5 x � 2

30. (a) logx 1000 � 3 (b) logx 25 � 2

31. (a) logx 16 � 4 (b)

32. (a) (b)

33–36 ■ Use a calculator to evaluate the expression, correct to
four decimal places.

33. (a) log 2 (b) log 35.2 (c)

34. (a) log 50 (b) (c)

35. (a) ln 5 (b) ln 25.3 (c)

36. (a) ln 27 (b) ln 7.39 (c) ln 54.6

37–40 ■ Find the function of the form y � loga x whose graph
is given.

37. 38.

39. 40.

0 x

y

1 963

(9, 2)

1

0 x

y

1 3

1 !3,   @
1

2

0 x

y

1

!   , _1@
1

2

_1

1

x

y

0 1 5

(5, 1)
1

ln11 � 13 2log1312 2log12

logA23B
logx 3 � 1

3logx 6 � 1
2

logx 8 � 3
2

log4A12Blog412

ln11/e 2
e ln153log3 82log2 37

log913

log10110log3A 1
27 B

41–46 ■ Match the logarithmic function with one of the graphs
labeled I–VI.

41. 42.

43. 44.

45. 46. f 1x 2 � �ln1�x 2f 1x 2 � ln12 � x 2 f 1x 2 � ln1�x 2f 1x 2 � 2 � ln x

f 1x 2 � ln1x � 2 2f 1x 2 � �ln x

V VI

x

y

10

x=2
y

(3, 0)

x1 30

x=2

(1, 0)

y

(_1, 0)

x_1

(1, 0)

x

y

10

I II

y

(1, 2)

x0 1

2

y

x_1

(_1, 0)

III IV

47. Draw the graph of y � 4x, then use it to draw the graph of 
y � log4 x.

48. Draw the graph of y � 3x, then use it to draw the graph of 
y � log3 x.

49–58 ■ Graph the function, not by plotting points, but by 
starting from the graphs in Figures 4 and 9. State the domain,
range, and asymptote.

49. 50.

51. 52.

53. y � 2 � log3 x 54.

55. y � 1 � log10 x 56.

57. 58. y � ln 0 x 0y � 0 ln x 0 y � 1 � ln1�x 2y � log31x � 1 2 � 2

g1x 2 � ln1x � 2 2g1x 2 � log51�x 2 f 1x 2 � �log10 xf 1x 2 � log21x � 4 2
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59–64 ■ Find the domain of the function.

59. 60.

61. 62.

63.

64.

65–70 ■ Draw the graph of the function in a suitable viewing
rectangle and use it to find the domain, the asymptotes, and the
local maximum and minimum values.

65. 66.

67. 68.

69. 70.

71. Compare the rates of growth of the functions 
and by drawing their graphs on a common
screen using the viewing rectangle 3�1, 304 by 3�1, 64.

72. (a) By drawing the graphs of the functions

in a suitable viewing rectangle, show that even when 
a logarithmic function starts out higher than a root 
function, it is ultimately overtaken by the root function.

(b) Find, correct to two decimal places, the solutions of the
equation .

73–74 ■ A family of functions is given.

(a) Draw graphs of the family for c � 1, 2, 3, and 4.

(b) How are the graphs in part (a) related?

73. 74.

75–76 ■ A function is given.

(a) Find the domain of the function f.

(b) Find the inverse function of f.

75.

76.

77. (a) Find the inverse of the function .

(b) What is the domain of the inverse function?

Applications

78. Absorption of Light A spectrophotometer measures the
concentration of a sample dissolved in water by shining a
light through it and recording the amount of light that
emerges. In other words, if we know the amount of light 
absorbed, we can calculate the concentration of the sample.

f 1x 2 �
2x

1 � 2x

f 1x 2 � ln1ln1ln x 22f 1x 2 � log21log10 x 2
f 1x 2

f 1x 2 � c log xf 1x 2 � log1cx 2

1x � 1 � ln11 � x 2

f 1x 2 � 1 � ln11 � x 2     and    g1x 2 � 1x

g1x 2 � 1x
f 1x 2 � ln x

y � x log101x � 10 2y �
ln x

x

y � x1ln x 2 2y � x � ln x

y � ln1x2 � x 2y � log1011 � x2 2

h1x 2 � 1x � 2 � log5110 � x 2h1x 2 � ln x � ln12 � x 2 g1x 2 � ln1x � x2 2g1x 2 � log31x2 � 1 2 f 1x 2 � log518 � 2x 2f 1x 2 � log101x � 3 2 For a certain substance, the concentration (in moles/ liter) 
is found using the formula

where I0 is the intensity of the incident light and I is the 
intensity of light that emerges. Find the concentration of the
substance if the intensity I is 70% of I0.

79. Carbon Dating The age of an ancient artifact can be 
determined by the amount of radioactive carbon-14 
remaining in it. If D0 is the original amount of carbon-14
and D is the amount remaining, then the artifact’s age A
(in years) is given by

Find the age of an object if the amount D of carbon-14 that
remains in the object is 73% of the original amount D0.

80. Bacteria Colony A certain strain of bacteria divides
every three hours. If a colony is started with 50 bacteria,
then the time t (in hours) required for the colony to grow to
N bacteria is given by

Find the time required for the colony to grow to a million
bacteria.

81. Investment The time required to double the amount of an
investment at an interest rate r compounded continuously is
given by

Find the time required to double an investment at 6%, 7%,
and 8%.

82. Charging a Battery The rate at which a battery charges
is slower the closer the battery is to its maximum charge C0.
The time (in hours) required to charge a fully discharged
battery to a charge C is given by

where k is a positive constant that depends on the battery.
For a certain battery, k � 0.25. If this battery is fully 
discharged, how long will it take to charge to 90% of its
maximum charge C0?

t � �k ln a1 �
C

C0
b

t �
ln 2

r

t � 3
log1N/50 2

log 2

A � �8267 ln a D

D0
b

I0 I

C � �2500 ln a I

I0
b
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83. Difficulty of a Task The difficulty in “acquiring a target”
(such as using your mouse to click on an icon on your 
computer screen) depends on the distance to the target and
the size of the target. According to Fitts’s Law, the index 
of difficulty (ID) is given by

where W is the width of the target and A is the distance to
the center of the target. Compare the difficulty of clicking
on an icon that is 5 mm wide to one that is 10 mm wide. In
each case, assume the mouse is 100 mm from the icon.

ID �
log12A/W 2

log 2

Discovery • Discussion

84. The Height of the Graph of a Logarithmic Function

Suppose that the graph of y � 2x is drawn on a coordinate
plane where the unit of measurement is an inch.

(a) Show that at a distance 2 ft to the right of the origin the
height of the graph is about 265 mi.

(b) If the graph of y � log2 x is drawn on the same set of
axes, how far to the right of the origin do we have to go
before the height of the curve reaches 2 ft?

85. The Googolplex A googol is 10100, and a googolplex is
10googol. Find

and

86. Comparing Logarithms Which is larger, log4 17 or
log5 24? Explain your reasoning.

87. The Number of Digits in an Integer Compare log 1000
to the number of digits in 1000. Do the same for 10,000.
How many digits does any number between 1000 and
10,000 have? Between what two values must the common
logarithm of such a number lie? Use your observations to
explain why the number of digits in any positive integer 
x is “log x‘ � 1. (The symbol “n‘ is the greatest integer 
function defined in Section 2.2.) How many digits does the
number 2100 have?

log1log1log1googolplex 222log1log1googol 22

4.3 Laws of Logarithms

In this section we study properties of logarithms. These properties give logarithmic
functions a wide range of applications, as we will see in Section 4.5.

Laws of Logarithms

Since logarithms are exponents, the Laws of Exponents give rise to the Laws of 
Logarithms.

Laws of Logarithms

Let a be a positive number, with a � 1. Let A, B, and C be any real numbers
with A 	 0 and B 	 0.

Law Description

1. The logarithm of a product of numbers is
the sum of the logarithms of the numbers.

2.
The logarithm of a quotient of numbers is
the difference of the logarithms of the
numbers.

3. The logarithm of a power of a number is
the exponent times the logarithm of the
number.

 loga1AC 2 � C loga A

 loga a A

B
b � loga A � loga B

 loga1AB 2 � loga A � loga B



■ Proof We make use of the property loga ax � x from Section 4.2.

Law 1. Let . When written in exponential form, these
equations become

Thus

Law 2. Using Law 1, we have

so

Law 3. Let loga A � u. Then au � A, so

■

Example 1 Using the Laws of Logarithms 

to Evaluate Expressions

Evaluate each expression.

(a) log4 2 � log4 32 (b) log2 80 � log2 5 (c)

Solution

(a) Law 1

Because 64 � 43

(b) Law 2

Because 16 � 24

(c) Law 3

Property of negative exponents

Calculator ■

Expanding and Combining Logarithmic Expressions

The laws of logarithms allow us to write the logarithm of a product or a quotient as
the sum or difference of logarithms. This process, called expanding a logarithmic 
expression, is illustrated in the next example.

Example 2 Expanding Logarithmic Expressions

Use the Laws of Logarithms to expand each expression.

(a) (b) (c)

Solution

(a) Law 1 log216x 2 � log2 6 � log2 x

ln a ab

13 c
blog51x3y6 2log216x 2

� �0.301

� logA12B� 1
3 log 8 � log 8�1/3

� log2 16 � 4

 log2 80 � log2 5 � log2A 80
5 B� log4 64 � 3

 log4 2 � log4 32 � log412 # 32 2
� 1

3 log 8

loga1AC 2 � loga1au 2C � loga1auC 2 � uC � C loga A

loga a A

B
b � loga A � loga B

loga A � loga c a A

B
bB d � loga a A

B
b � loga B

� u � √ � loga A � loga B

loga1AB 2 � loga1aua√ 2 � loga1au�√ 2au � A  and  a√ � B

loga A � u and loga B � √
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(b) Law 1

Law 3

(c) Law 2

Law 1

Law 3 ■

The laws of logarithms also allow us to reverse the process of expanding done in
Example 2. That is, we can write sums and differences of logarithms as a single log-
arithm. This process, called combining logarithmic expressions, is illustrated in the
next example.

Example 3 Combining Logarithmic Expressions

Combine into a single logarithm.

Solution

Law 3

Law 1 ■

Example 4 Combining Logarithmic Expressions

Combine into a single logarithm.

Solution

Law 3

Law 1

Law 2 ■

WARNING Although the Laws of Logarithms tell us how to compute the log-
arithm of a product or a quotient, there is no corresponding rule for the logarithm of
a sum or a difference. For instance,

In fact, we know that the right side is equal to . Also, don’t improperly sim-
plify quotients or powers of logarithms. For instance,

Logarithmic functions are used to model a variety of situations involving human
behavior. One such behavior is how quickly we forget things we have learned. For ex-
ample, if you learn algebra at a certain performance level (say 90% on a test) and then
don’t use algebra for a while, how much will you retain after a week, a month, or a
year? Hermann Ebbinghaus (1850–1909) studied this phenomenon and formulated
the law described in the next example.

log 6

log 2
� log a 6

2
b  and  1log2 x 2 3 � 3 log2 x

loga1xy 2loga1x � y 2 � loga x � loga y

� ln a s31t1t 2 � 1 2 4 b
� ln1s3t1/2 2 � ln1t 2 � 1 2 4 3 ln s � 1

2 ln t � 4 ln1t 2 � 1 2 � ln s3 � ln t1/2 � ln1t 2 � 1 2 4
3 ln s � 1

2 ln t � 4 ln1t 2 � 1 2
� log1x31x � 1 2 1/2 2 3 log x � 1

2 log1x � 1 2 � log x3 � log1x � 1 2 1/2

3 log x � 1
2 log1x � 1 2

� ln a � ln b � 1
3 ln c

� ln a � ln b � ln c1/3

 ln a ab

13 c
b � ln1ab 2 � ln13 c

� 3 log5 x � 6 log5 y

 log51x3y6 2 � log5 x3 � log5 y6
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Example 5 The Law of Forgetting

Ebbinghaus’ Law of Forgetting states that if a task is learned at a performance level
P0, then after a time interval t the performance level P satisfies

where c is a constant that depends on the type of task and t is measured in months.

(a) Solve for P.

(b) If your score on a history test is 90, what score would you expect to get on a
similar test after two months? After a year? (Assume c � 0.2.)

Solution

(a) We first combine the right-hand side.

Given equation

Law 3

Law 2

Because log is 
one-to-one

(b) Here P0 � 90, c � 0.2, and t is measured in months.

Your expected scores after two months and one year are 72 and 54,
respectively. ■

Change of Base

For some purposes, we find it useful to change from logarithms in one base to 
logarithms in another base. Suppose we are given loga x and want to find logb x. Let

We write this in exponential form and take the logarithm, with base a, of each 
side.

Exponential form

Take loga of each side

Law 3

Divide by loga b

This proves the following formula.

y �
loga x

loga b

y loga b � loga x

 loga1b y 2 � loga x

by � x

y � logb x

 In one year:    t � 12     and    P �
90112 � 1 2 0.2 � 54

 In two months:    t � 2     and    P �
9012 � 1 2 0.2 � 72

P �
P01t � 1 2 c

 log P � log
P01t � 1 2 c

 log P � log P0 � log1t � 1 2 c log P � log P0 � c log1t � 1 2

log P � log P0 � c log1t � 1 2
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Forgetting what we’ve learned
depends logarithmically on how
long ago we learned it.



In particular, if we put x � a, then loga a � 1 and this formula becomes

We can now evaluate a logarithm to any base by using the Change of Base For-
mula to express the logarithm in terms of common logarithms or natural logarithms
and then using a calculator.

Example 6 Evaluating Logarithms with the

Change of Base Formula

Use the Change of Base Formula and common or natural logarithms to evaluate
each logarithm, correct to five decimal places.

(a) log8 5 (b) log9 20

Solution

(a) We use the Change of Base Formula with b � 8 and a � 10:

(b) We use the Change of Base Formula with b � 9 and a � e:

■

Example 7 Using the Change of Base Formula 

to Graph a Logarithmic Function

Use a graphing calculator to graph .

Solution Calculators don’t have a key for log6, so we use the Change of Base
Formula to write

Since calculators do have an key, we can enter this new form of the function
and graph it. The graph is shown in Figure 1. ■

4.3 Exercises

LN

f 1x 2 � log6 x �
ln x

ln 6

f 1x 2 � log6 x

log9 20 �
ln 20

ln 9
� 1.36342

log8 5 �
log10 5

log10 8
� 0.77398

logb a �
1

loga b
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Change of Base Formula

logb x �
loga x

loga b

1–12 ■ Evaluate the expression.

1. 2. log2 160 � log2 5

3. log 4 � log 25 4. log
1

11000

log3127
5. log4 192 � log4 3 6. log12 9 � log12 16

7. log2 6 � log2 15 � log2 20

8. log3 100 � log3 18 � log3 50

2

_1

0 36

Figure 1

f 1x 2 � log6 x �
ln x

ln 6

We get the same answer whether we
use log10 or ln:

log8 5 �
ln 5

ln 8
� 0.77398

We may write the Change of Base 
Formula as

So, logb x is just a constant multiple 

of loga x; the constant is .
1

loga b

logb x � a 1

loga b
b loga x
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9. log4 16100 10. log2 833

11. 12.

13–38 ■ Use the Laws of Logarithms to expand the expression.

13. 14.

15. 16.

17. log 610 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39–48 ■ Use the Laws of Logarithms to combine the 
expression.

39. log3 5 � 5 log3 2 40.

41. log2 A � log2 B � 2 log2 C

42.

43.

44.

45.

46.

47.

48. loga b � c loga d � r loga s

49–56 ■ Use the Change of Base Formula and a calculator to
evaluate the logarithm, correct to six decimal places. Use either
natural or common logarithms.

49. log2 5 50. log5 2

51. log3 16 52. log6 92

1
3 log12x � 1 2 � 1

2 3 log1x � 4 2 � log1x4 � x2 � 1 2 421log5 x � 2 log5 y � 3 log5 z 2ln 5 � 2 ln x � 3 ln1x2 � 5 2ln1a � b 2 � ln1a � b 2 � 2 ln c

4 log x � 1
3 log1x2 � 1 2 � 2 log1x � 1 2log51x2 � 1 2 � log51x � 1 2

log 12 � 1
2  log 7 � log 2

log a 10x

x1x2 � 1 2 1x4 � 2 2 bln a x31x � 1

3x � 4
b

log3x2y1zlogB
x2 � 41x2 � 1 2 1x3 � 7 2 2

log a x

13 1 � x
blog24 x2 � y2

ln
3x21x � 1 2 10ln a xB

y

z
b

log5B
x � 1

x � 1
log2 a x1x2 � 1 2

2x2 � 1
b

log a a2

b41c
blog a x3y4

z6 b
ln23 3r 2sln1ab

loga a x2

yz3 blog523 x2 � 1

log21xy 2 10log31x1y 2 log614 17log21AB2 2 ln 1 z

log5
x

2
log21x1x � 1 22 log315y 2log212x 2

ln1ln ee200 2log1log 1010,000 2 53. log7 2.61 54. log6 532

55. log4 125 56. log12 2.5

57. Use the Change of Base Formula to show that

Then use this fact to draw the graph of the function
.

58. Draw graphs of the family of functions y � loga x for
a � 2, e, 5, and 10 on the same screen, using the 
viewing rectangle 30, 54 by 3�3, 34. How are these graphs 
related?

59. Use the Change of Base Formula to show that

60. Simplify:

61. Show that .

Applications

62. Forgetting Use the Ebbinghaus Forgetting Law 
(Example 5) to estimate a student’s score on a biology 
test two years after he got a score of 80 on a test covering
the same material. Assume c � 0.3 and t is measured in
months.

63. Wealth Distribution Vilfredo Pareto (1848–1923) 
observed that most of the wealth of a country is owned 
by a few members of the population. Pareto’s Principle is

where W is the wealth level (how much money a person has)
and P is the number of people in the population having that
much money.

(a) Solve the equation for P.

(b) Assume k � 2.1, c � 8000, and W is measured in 
millions of dollars. Use part (a) to find the number of
people who have $2 million or more. How many people
have $10 million or more?

64. Biodiversity Some biologists model the number of 
species S in a fixed area A (such as an island) by the 
Species-Area relationship

where c and k are positive constants that depend on the type
of species and habitat.

(a) Solve the equation for S.

log S � log c � k log A

log P � log c � k log W

�ln1x � 2x2 � 1 2 � ln1x � 2x2 � 1 21log2 5 2 1log5 7 2log e �
1

ln 10

f 1x 2 � log3 x

log3 x �
ln x

ln 3
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(b) Use part (a) to show that if k � 3 then doubling the area
increases the number of species eightfold.

65. Magnitude of Stars The magnitude M of a star is a 
measure of how bright a star appears to the human eye. It 
is defined by 

where B is the actual brightness of the star and B0 is a 
constant.

(a) Expand the right-hand side of the equation.

(b) Use part (a) to show that the brighter a star, the less its
magnitude.

(c) Betelgeuse is about 100 times brighter than Albiero.
Use part (a) to show that Betelgeuse is 5 magnitudes
less than Albiero.
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66. True or False? Discuss each equation and determine
whether it is true for all possible values of the variables. 
(Ignore values of the variables for which any term is
undefined.)

M � �2.5 log a B

B0
b

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

( j)

67. Find the Error What is wrong with the following 
argument?

68. Shifting, Shrinking, and Stretching Graphs of 

Functions Let . Show that , and
explain how this shows that shrinking the graph of f
horizontally has the same effect as stretching it vertically.
Then use the identities e2�x � e2ex and
to show that for , a horizontal shift is the same as a
vertical stretch and for , a horizontal shrinking is
the same as a vertical shift.

h1x 2 � ln x
g1x 2 � ex

ln12x 2 � ln 2 � ln x

f 12x 2 � 4f 1x 2f 1x 2 � x2

 0.1 � 0.01

 log 0.1 � log 0.01

� log 0.01

� log10.1 2 2 log 0.1 � 2 log 0.1

�ln a 1

A
b � ln A

log1x � y 2 �
log x

log y

loga aa � a

1log2 7 2 x � x log2 7

log a

log b
� log a � log b

1log P 2 1log Q 2 � log P � log Q

log 2z � z log 2

log5 a a

b2 b � log5 a � 2 log5 b

log21x � y 2 � log2 x � log2 y

log a x

y
b �

log x

log y

4.4 Exponential and Logarithmic Equations

In this section we solve equations that involve exponential or logarithmic functions.
The techniques we develop here will be used in the next section for solving applied
problems.

Exponential Equations

An exponential equation is one in which the variable occurs in the exponent. For 
example,

The variable x presents a difficulty because it is in the exponent. To deal with this 

2x � 7
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difficulty, we take the logarithm of each side and then use the Laws of Logarithms to
“bring down x” from the exponent.

Given equation

Take ln of each side

Law 3 (bring down exponent)

Solve for x

Calculator

Recall that Law 3 of the Laws of Logarithms says that loga AC � C loga A.
The method we used to solve 2x � 7 is typical of how we solve exponential 

equations in general.

� 2.807

x �
ln 7

ln 2

x ln 2 � ln 7

 ln 2x � ln 7

 2x � 7

Guidelines for Solving Exponential Equations

1. Isolate the exponential expression on one side of the equation.

2. Take the logarithm of each side, then use the Laws of Logarithms to “bring
down the exponent.”

3. Solve for the variable.

Example 1 Solving an Exponential Equation

Find the solution of the equation 3x�2 � 7, correct to six decimal places.

Solution We take the common logarithm of each side and use Law 3.

Given equation

Take log of each side

Law 3 (bring down exponent)

Divide by log 3

Subtract 2

Calculator ■

Check Your Answer Substituting x � �0.228756 into the original equation and using a 
calculator, we get

31�0.2287562�2 � 7

� �0.228756

x �
log 7

log 3
� 2

x � 2 �
log 7

log 3

1x � 2 2 log 3 � log 7

 log13x�2 2 � log 7

 3x�2 � 7

We could have used natural logarithms
instead of common logarithms. In 
fact, using the same steps, we get

x �
ln 7

ln 3
� 2 � �0.228756



Example 2 Solving an Exponential Equation

Solve the equation 8e2x � 20.

Solution We first divide by 8 in order to isolate the exponential term on one 
side of the equation.

Given equation

Divide by 8

Take ln of each side

Property of ln

Divide by 2

Calculator ■

Example 3 Solving an Exponential Equation

Algebraically and Graphically

Solve the equation e3�2x � 4 algebraically and graphically.

Solution 1: Algebraic

Since the base of the exponential term is e, we use natural logarithms to solve this
equation.

Given equation

Take ln of each side

Property of ln

You should check that this answer satisfies the original equation.

Solution 2: Graphical

We graph the equations y � e3�2x and y � 4 in the same viewing rectangle as in
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point
of intersection of the two graphs, we see that x � 0.81. ■

x � 1
2 13 � ln 4 2 � 0.807

 2x � 3 � ln 4

 3 � 2x � ln 4

 ln1e3�2x 2 � ln 4

e3�2x � 4

� 0.458

x �
ln 2.5

2

 2x � ln 2.5

 ln e2x � ln 2.5

e2x � 20
8

 8e2x � 20
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Check Your Answer Substituting x � 0.458 into the original equation and using a
calculator, we get

8e210.4582 � 20

Radiocarbon dating is a method
archeologists use to determine the
age of ancient objects. The carbon
dioxide in the atmosphere always
contains a fixed fraction of ra-
dioactive carbon, carbon-14 ,
with a half-life of about 5730 years.
Plants absorb carbon dioxide from
the atmosphere, which then makes
its way to animals through the food
chain. Thus, all living creatures
contain the same fixed proportions
of 14C to nonradioactive 12C as the
atmosphere.

After an organism dies, it stops
assimilating 14C, and the amount of
14C in it begins to decay exponen-
tially. We can then determine the
time elapsed since the death of the
organism by measuring the amount
of 14C left in it.

For example, if a donkey bone
contains 73% as much 14C as a liv-
ing donkey and it died t years ago,
then by the formula for radioactive
decay (Section 4.5),

We solve this exponential equation
to find t � 2600, so the bone is
about 2600 years old.

0.73 � 11.00 2e�1t ln 22/5730

114C 2

5

0
2

y=4

y=e3_2x

Figure 1



Example 4 An Exponential Equation of Quadratic Type

Solve the equation e2x � ex � 6 � 0.

Solution To isolate the exponential term, we factor.

Given equation

Law of Exponents

Factor (a quadratic in ex)

Zero-Product Property

The equation ex � 3 leads to x � ln 3. But the equation ex � �2 has no solution 
because ex 	 0 for all x. Thus, x � ln 3 � 1.0986 is the only solution. You should
check that this answer satisfies the original equation. ■

Example 5 Solving an Exponential Equation

Solve the equation 3xex � x 2ex � 0.

Solution First we factor the left side of the equation.

Given equation

Factor out common factors

Divide by ex (because ex � 0)

Zero-Product Property

Thus, the solutions are x � 0 and x � �3. ■

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable occurs. For 
example,

To solve for x, we write the equation in exponential form.

Exponential form

Solve for x

Another way of looking at the first step is to raise the base, 2, to each side of the 
equation.

Raise 2 to each side

Property of logarithms

Solve for x

The method used to solve this simple problem is typical. We summarize the steps as
follows.

x � 32 � 2 � 30

x � 2 � 25

 2log21x�22 � 25

x � 32 � 2 � 30

x � 2 � 25

log21x � 2 2 � 5

x � 0  or  3 � x � 0

x13 � x 2 � 0

x13 � x 2e x � 0

 3xe x � x2e x � 0

e x � �2e x � 3

e x � 3 � 0  or  e x � 2 � 0

1ex � 3 2 1ex � 2 2 � 0

1ex 2 2 � ex � 6 � 0

e2x � ex � 6 � 0
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Check Your Answers

:

x � �3:

� �9e�3 � 9e�3 � 0

31�3 2e�3 � 1�3 2 2e�3

310 2e0 � 02e0 � 0

x � 0

If we let „ � ex, we get the quadratic
equation

which factors as1„ � 3 2 1„ � 2 2 � 0

„2 � „ � 6 � 0



Example 6 Solving Logarithmic Equations

Solve each equation for x.

(a) ln x � 8 (b)

Solution

(a) Given equation

Exponential form

Therefore, x � e8 � 2981.
We can also solve this problem another way:

Given equation

Raise e to each side

Property of ln

(b) The first step is to rewrite the equation in exponential form.

Given equation

Exponential form (or raise 2 to each side)

■

Example 7 Solving a Logarithmic Equation

Solve the equation .

Solution We first isolate the logarithmic term. This allows us to write the 
equation in exponential form.

Given equation

Subtract 4

Divide by 3

Exponential form (or raise 10 to each side)

Divide by 2 ■x � 5000

 2x � 104

 log12x 2 � 4

 3 log12x 2 � 12

 4 � 3 log12x 2 � 16

4 � 3 log12x 2 � 16

x � 25 � 8 � 17

 25 � x � 8

 25 � x � 23

 log2125 � x 2 � 3

x � e8

eln x � e8

 ln x � 8

x � e8

 ln x � 8

log2125 � x 2 � 3
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Guidelines for Solving Logarithmic Equations

1. Isolate the logarithmic term on one side of the equation; you may first need
to combine the logarithmic terms.

2. Write the equation in exponential form (or raise the base to each side of the
equation).

3. Solve for the variable.

Check Your Answer

If x � 17, we get

log2125 � 17 2 � log2 8 � 3

Check Your Answer

If x � 5000, we get

� 16

� 4 � 314 2 4 � 3 log 215000 2 � 4 � 3 log 10,000



Example 8 Solving a Logarithmic Equation 

Algebraically and Graphically

Solve the equation algebraically and graphically.

Solution 1: Algebraic

We first combine the logarithmic terms using the Laws of Logarithms.

Law 1

Exponential form (or raise 10 to each side)

Expand left side

Subtract 10

Factor

We check these potential solutions in the original equation and find that x � �4
is not a solution (because logarithms of negative numbers are undefined), but x � 3
is a solution. (See Check Your Answers.)

Solution 2: Graphical

We first move all terms to one side of the equation:

Then we graph

as in Figure 2. The solutions are the x-intercepts of the graph. Thus, the only 
solution is x � 3.

■

Example 9 Solving a Logarithmic Equation Graphically

Solve the equation .

Solution We first move all terms to one side of the equation

Then we graph

y � x2 � 2 ln1x � 2 2
x2 � 2 ln1x � 2 2 � 0

x2 � 2 ln1x � 2 2

3

0 6

_3Figure 2

y � log1x � 2 2 � log1x � 1 2 � 1

log1x � 2 2 � log1x � 1 2 � 1 � 0

x � �4  or  x � 3

1x � 4 2 1x � 3 2 � 0

x2 � x � 12 � 0

x2 � x � 2 � 10

1x � 2 2 1x � 1 2 � 10

 log 3 1x � 2 2 1x � 1 2 4 � 1

log1x � 2 2 � log1x � 1 2 � 1
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Check Your Answers

x � �4:

undefined

x � 3:

� log 10 � 1

� log 5 � log 2 � log15 # 2 2log13 � 2 2 � log13 � 1 2
� log1�2 2 � log1�5 2log1�4 � 2 2 � log1�4 � 1 2

In Example 9, it’s not possible to 
isolate x algebraically, so we must 
solve the equation graphically.



as in Figure 3. The solutions are the x-intercepts of the graph. Zooming in on the 
x-intercepts, we see that there are two solutions:

■

Logarithmic equations are used in determining the amount of light that reaches
various depths in a lake. (This information helps biologists determine the types of life
a lake can support.) As light passes through water (or other transparent materials such
as glass or plastic), some of the light is absorbed. It’s easy to see that the murkier the
water the more light is absorbed. The exact relationship between light absorption and
the distance light travels in a material is described in the next example.

Example 10 Transparency of a Lake

If I0 and I denote the intensity of light before and after going through a material 
and x is the distance (in feet) the light travels in the material, then according to the
Beer-Lambert Law

where k is a constant depending on the type of material.

(a) Solve the equation for I.

(b) For a certain lake k � 0.025 and the light intensity is I0 � 14 lumens (lm). Find
the light intensity at a depth of 20 ft.

Solution

(a) We first isolate the logarithmic term.

Given equation

Multiply by �k

Exponential form

Multiply by I0

(b) We find I using the formula from part (a).

From part (a)

I0 � 14, k � 0.025, x � 20

Calculator

The light intensity at a depth of 20 ft is about 8.5 lm. ■

� 8.49

� 14e1�0.02521202I � I0e
�kx

I � I0e
�kx

I

I0
� e�kx

 ln a I

I0
b � �kx

�
1

k
 ln a I

I0
b � x

�
1

k
 ln a I

I0
b � x

2

_2 3

_2Figure 3

x � �0.71  and  x � 1.60
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The intensity of light in a lake
diminishes with depth.



Compound Interest

Recall the formulas for interest that we found in Section 4.1. If a principal P is
invested at an interest rate r for a period of t years, then the amount A of the invest-
ment is given by

Simple interest (for one year)

Interest compounded n times per year

Interest compounded continuously

We can use logarithms to determine the time it takes for the principal to increase
to a given amount.

Example 11 Finding the Term for an Investment to Double

A sum of $5000 is invested at an interest rate of 5% per year. Find the time required
for the money to double if the interest is compounded according to the following
method.

(a) Semiannual (b) Continuous

Solution

(a) We use the formula for compound interest with P � $5000, A(t) � $10,000,
r � 0.05, n � 2, and solve the resulting exponential equation for t.

Divide by 5000

Take log of each side

Law 3 (bring down the exponent)

Divide by 2 log 1.025

Calculator

The money will double in 14.04 years.

(b) We use the formula for continuously compounded interest with P � $5000,
, r � 0.05, and solve the resulting exponential equation for t.

Pert � A

Divide by 5000

Take ln of each side

Property of ln

Divide by 0.05

Calculator

The money will double in 13.86 years. ■

t � 13.86

t �
ln 2

0.05

 0.05t � ln 2

 ln e0.05t � ln 2

e0.05t � 2

 5000e0.05t � 10,000

A1t 2 � $10,000

t � 14.04

t �
log 2

2 log 1.025

 2t log 1.025 � log 2

 log 1.0252t � log 2

11.025 2 2t � 2

P a 1 �
r
n
b nt

� A 5000 a1 �
0.05

2
b 2t

� 10,000

A1t 2 � Pert

A1t 2 � P a1 �
r
n
b nt

A � P11 � r 2
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Example 12 Time Required to Grow an Investment

A sum of $1000 is invested at an interest rate of 4% per year. Find the time required
for the amount to grow to $4000 if interest is compounded continuously.

Solution We use the formula for continuously compounded interest with 
P � $1000, , r � 0.04, and solve the resulting exponential 
equation for t.

Pert � A

Divide by 1000

Take ln of each side

Divide by 0.04

Calculator

The amount will be $4000 in about 34 years and 8 months. ■

If an investment earns compound interest, then the annual percentage yield
(APY) is the simple interest rate that yields the same amount at the end of one year.

Example 13 Calculating the Annual Percentage Yield

Find the annual percentage yield for an investment that earns interest at a rate of
6% per year, compounded daily.

Solution After one year, a principal P will grow to the amount

The formula for simple interest is

Comparing, we see that 1 � r � 1.06183, so r � 0.06183. Thus the annual 
percentage yield is 6.183%. ■

4.4 Exercises

A � P11 � r 2
A � P a1 �

0.06

365
b 365

� P11.06183 2

t � 34.66

t �
ln 4

0.04

 0.04t � ln 4

e0.04t � 4

 1000e0.04t � 4000

A1t 2 � $4000
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1–26 ■ Find the solution of the exponential equation, correct to
four decimal places.

1. 10x � 25 2. 10�x � 4

3. e�2x � 7 4. e3x � 12

5. 21�x � 3 6. 32x�1 � 5

7. 3ex � 10 8. 2e12x � 17

9. e1�4x � 2 10.

11. 4 � 35x � 8 12. 23x � 34

411 � 105x 2 � 9

13. 80.4x � 5 14. 3x/14 � 0.1

15. 5�x/100 � 2 16. e3�5x � 16

17. e2x�1 � 200 18.

19. 5 x � 4x�1 20. 101�x � 6x

21. 23x�1 � 3 x�2 22. 7x/2 � 51�x

23. 24.

25. 26. 11.00625 2 12t � 210011.04 2 2t � 300

10

1 � e�x � 2
50

1 � e�x � 4

A14Bx � 75
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27–34 ■ Solve the equation.

27. x 22x � 2x � 0 28.

29. 4x 3e�3x � 3x 4e�3x � 0 30. x 2ex � xex � ex � 0

31. e2x � 3ex � 2 � 0 32. e2x � ex � 6 � 0

33. e4x � 4e 2x � 21 � 0 34. ex � 12e�x � 1 � 0

35–50 ■ Solve the logarithmic equation for x.

35. ln x � 10 36.

37. log x � �2 38.

39. 40.

41. 42.

43.

44.

45.

46.

47.

48.

49.

50.

51. For what value of x is the following true?

52. For what value of x is it true that ?

53. Solve for x:

54. Solve for x:

55–62 ■ Use a graphing device to find all solutions of the 
equation, correct to two decimal places.

55. ln x � 3 � x

56. log x � x 2 � 2

57.

58.

59. ex � �x

60. 2�x � x � 1

61.

62.

63–66 ■ Solve the inequality.

63.

64. 3 
 log2 x 
 4

65. 2 � 10 x � 5 66. x 2ex � 2ex � 0

log1x � 2 2 � log19 � x 2 � 1

ex2

� 2 � x3 � x

4�x � 1x

x � ln14 � x2 2x3 � x � log1x � 1 2

log2 1log3 x 2 � 4

22/log5 x � 1
16

1log x 2 3 � 3log x

log1x � 3 2 � log x � log 3

ln1x � 1 2 � ln1x � 2 2 � 1

log9 1x � 5 2 � log9 1x � 3 2 � 1

log x � log1x � 3 2 � 1

log51x � 1 2 � log51x � 1 2 � 2

log5 x � log51x � 1 2 � log5 20

log x � log1x � 1 2 � log14x 22 log x � log 2 � log13x � 4 2log2 3 � log2 x � log2 5 � log21x � 2 2log21x2 � x � 2 2 � 22 � ln13 � x 2 � 0

log312 � x 2 � 3log13x � 5 2 � 2

log1x � 4 2 � 3

ln12 � x 2 � 1

x210x � x10x � 2110x 2 Applications

67. Compound Interest A man invests $5000 in an account
that pays 8.5% interest per year, compounded quarterly.

(a) Find the amount after 3 years.

(b) How long will it take for the investment to double?

68. Compound Interest A man invests $6500 in an 
account that pays 6% interest per year, compounded 
continuously.

(a) What is the amount after 2 years?

(b) How long will it take for the amount to be $8000?

69. Compound Interest Find the time required for an invest-
ment of $5000 to grow to $8000 at an interest rate of 7.5%
per year, compounded quarterly.

70. Compound Interest Nancy wants to invest $4000 in 
saving certificates that bear an interest rate of 9.75% 
per year, compounded semiannually. How long a time 
period should she choose in order to save an amount of
$5000?

71. Doubling an Investment How long will it take for an in-
vestment of $1000 to double in value if the interest rate is
8.5% per year, compounded continuously?

72. Interest Rate A sum of $1000 was invested for 4 years,
and the interest was compounded semiannually. If this sum
amounted to $1435.77 in the given time, what was the 
interest rate?

73. Annual Percentage Yield Find the annual percentage
yield for an investment that earns 8% per year, compounded
monthly.

74. Annual Percentage Yield Find the annual percentage
yield for an investment that earns  5 % per year, com-
pounded continuously.

75. Radioactive Decay A 15-g sample of radioactive iodine
decays in such a way that the mass remaining after t days is
given by where is measured in grams.
After how many days is there only 5 g remaining?

76. Skydiving The velocity of a sky diver t seconds after
jumping is given by . After how many
seconds is the velocity 70 ft/s?

77. Fish Population A small lake is stocked with a certain
species of fish. The fish population is modeled by the 
function

where P is the number of fish in thousands and t is
measured in years since the lake was stocked.

(a) Find the fish population after 3 years.

P �
10

1 � 4e�0.8t

√ 1t 2 � 8011 � e�0.2t 2
m1t 2m1t 2 � 15e�0.087t

1
2
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(b) After how many years will the fish population reach
5000 fish?

78. Transparency of a Lake Environmental scientists mea-
sure the intensity of light at various depths in a lake to find
the “transparency” of the water. Certain levels of trans-
parency are required for the biodiversity of the submerged
macrophyte population. In a certain lake the intensity of
light at depth x is given by

where I is measured in lumens and x in feet.

(a) Find the intensity I at a depth of 30 ft.

(b) At what depth has the light intensity dropped to I � 5?

79. Atmospheric Pressure Atmospheric pressure P
(in kilopascals, kPa) at altitude h (in kilometers, km) is 
governed by the formula

where k � 7 and P0 � 100 kPa are constants.

(a) Solve the equation for P.

(b) Use part (a) to find the pressure P at an altitude of 4 km.

80. Cooling an Engine Suppose you’re driving your car on a
cold winter day (20 �F outside) and the engine overheats (at
about 220 �F). When you park, the engine begins to cool
down. The temperature T of the engine t minutes after you
park satisfies the equation

(a) Solve the equation for T.

(b) Use part (a) to find the temperature of the engine after
20 min (t � 20).

ln a T � 20

200
b � �0.11t

ln a P

P0
b � �

h

k

I � 10e�0.008x

81. Electric Circuits An electric circuit contains a battery that
produces a voltage of 60 volts (V), a resistor with a resis-
tance of 13 ohms (�), and an inductor with an inductance of
5 henrys (H), as shown in the figure. Using calculus, it can
be shown that the current (in amperes, A) t seconds
after the switch is closed is .

(a) Use this equation to express the time t as a function of
the current I.

(b) After how many seconds is the current 2 A?

82. Learning Curve A learning curve is a graph of a function
that measures the performance of someone learning a

skill as a function of the training time t. At first, the rate of
learning is rapid. Then, as performance increases and ap-
proaches a maximal value M, the rate of learning decreases.
It has been found that the function

where k and C are positive constants and C � M is a 
reasonable model for learning.

(a) Express the learning time t as a function of the per-
formance level P.

(b) For a pole-vaulter in training, the learning curve is
given by

where is the height he is able to pole-vault after
t months. After how many months of training is he able
to vault 12 ft?

(c) Draw a graph of the learning curve in part (b).

P1t 2 P1t 2 � 20 � 14e�0.024t

P1t 2 � M � Ce�kt

P1t 2

60 V

13 �

5 H

Switch

I � 60
13 11 � e�13t/5 2I � I1t 2
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Discovery • Discussion

83. Estimating a Solution Without actually solving the
equation, find two whole numbers between which the 
solution of 9x � 20 must lie. Do the same for 9x � 100.
Explain how you reached your conclusions.

84. A Surprising Equation Take logarithms to show that the
equation

has no solution. For what values of k does the equation

x1/log x � k

x1/log x � 5

have a solution? What does this tell us about the graph of
the function ? Confirm your answer using a
graphing device.

85. Disguised Equations Each of these equations can be
transformed into an equation of linear or quadratic type by
applying the hint. Solve each equation.

(a) [Take log of each side.]

(b) log2 x � log4 x � log8 x � 11 [Change all logs to 
base 2.]

(c) 4x � 2x�1 � 3 [Write as a quadratic 
in 2x.]

1x � 1 2 log1x�12 � 1001x � 1 2

f 1x 2 � x1/log x

4.5 Modeling with Exponential
and Logarithmic Functions

Many processes that occur in nature, such as population growth, radioactive decay,
heat diffusion, and numerous others, can be modeled using exponential functions.
Logarithmic functions are used in models for the loudness of sounds, the intensity of
earthquakes, and many other phenomena. In this section we study exponential and
logarithmic models.

Exponential Models of Population Growth

Biologists have observed that the population of a species doubles its size in a fixed
period of time. For example, under ideal conditions a certain population of bacteria
doubles in size every 3 hours. If the culture is started with 1000 bacteria, then after 
3 hours there will be 2000 bacteria, after another 3 hours there will be 4000, and so
on. If we let be the number of bacteria after t hours, then

From this pattern it appears that the number of bacteria after t hours is modeled by
the function

In general, suppose that the initial size of a population is n0 and the doubling pe-
riod is a. Then the size of the population at time t is modeled by

where c � 1/a. If we knew the tripling time b, then the formula would be 
where c � 1/b. These formulas indicate that the growth of the bacteria is modeled by

n1t 2 � n03
ct

n1t 2 � n02ct

n1t 2 � 1000 # 2t/3

n112 2 � 11000 # 23 2 # 2 � 1000 # 24

n19 2 � 11000 # 22 2 # 2 � 1000 # 23

n16 2 � 11000 # 2 2 # 2 � 1000 # 22

n13 2 � 1000 # 2
n10 2 � 1000

n � n1t 2



an exponential function. But what base should we use? The answer is e, because then
it can be shown (using calculus) that the population is modeled by

where r is the relative rate of growth of population, expressed as a proportion of the
population at any time. For instance, if r � 0.02, then at any time t the growth rate is
2% of the population at time t.

Notice that the formula for population growth is the same as that for continuously
compounded interest. In fact, the same principle is at work in both cases: The growth
of a population (or an investment) per time period is proportional to the size of the
population (or the amount of the investment). A population of 1,000,000 will increase
more in one year than a population of 1000; in exactly the same way, an investment
of $1,000,000 will increase more in one year than an investment of $1000.

n1t 2 � n0ert
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In the following examples we assume that the populations grow exponentially.

Example 1 Predicting the Size of a Population

The initial bacterium count in a culture is 500. A biologist later makes a sample
count of bacteria in the culture and finds that the relative rate of growth is 40% 
per hour.

(a) Find a function that models the number of bacteria after t hours.

(b) What is the estimated count after 10 hours?

(c) Sketch the graph of the function .

Solution

(a) We use the exponential growth model with n0 � 500 and r � 0.4 to get

where t is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is

(c) The graph is shown in Figure 1. ■

n110 2 � 500e0.4 1102 � 500e4 � 27,300

n1t 2 � 500e0.4t

n1t 2

Exponential Growth Model

A population that experiences exponential growth increases according to the
model

where � population at time t

n0 � initial size of the population

r � relative rate of growth (expressed as a proportion of the
population)

t � time

n1t 2 n1t 2 � n0e
rt

0

5000

6
500

n(t)=500eº—¢‰

Figure 1



Example 2 Comparing Different Rates 

of Population Growth

In 2000 the population of the world was 6.1 billion and the relative rate of 
growth was 1.4% per year. It is claimed that a rate of 1.0% per year would make 
a significant difference in the total population in just a few decades. Test this 
claim by estimating the population of the world in the year 2050 using a relative
rate of growth of (a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative 
growth rates in the same viewing rectangle.

Solution

(a) By the exponential growth model, we have

where is measured in billions and t is measured in years since 2000. 
Because the year 2050 is 50 years after 2000, we find

The estimated population in the year 2050 is about 12.3 billion.

(b) We use the function

and find

The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 2 show that a small change in the relative rate of growth will,
over time, make a large difference in population size. ■

Example 3 Finding the Initial Population

A certain breed of rabbit was introduced onto a small island about 8 years ago. The
current rabbit population on the island is estimated to be 4100, with a relative
growth rate of 55% per year.

(a) What was the initial size of the rabbit population?

(b) Estimate the population 12 years from now.

Solution

(a) From the exponential growth model, we have

and we know that the population at time t � 8 is . We substitute
what we know into the equation and solve for n0:

Thus, we estimate that 50 rabbits were introduced onto the island.

n0 �
4100

e0.55182 �
4100

81.45
� 50

 4100 � n0e
0.55182

n18 2 � 4100

n1t 2 � n0e
0.55t

n150 2 � 6.1e0.010 1502 � 6.1e0.50 � 10.1

n1t 2 � 6.1e0.010t

n150 2 � 6.1e0.014 1502 � 6.1e0.7 � 12.3

n1t 2 n1t 2 � 6.1e0.014t
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30

0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

Figure 2



(b) Now that we know n0, we can write a formula for population growth:

Twelve years from now, t � 20 and

We estimate that the rabbit population on the island 12 years from now will be
about 3 million. ■

Can the rabbit population in Example 3(b) actually reach such a high number? In
reality, as the island becomes overpopulated with rabbits, the rabbit population
growth will be slowed due to food shortage and other factors. One model that 
takes into account such factors is the logistic growth model described in the Focus on
Modeling, page 392.

Example 4 World Population Projections

The population of the world in 2000 was 6.1 billion, and the estimated relative
growth rate was 1.4% per year. If the population continues to grow at this rate,
when will it reach 122 billion?

Solution We use the population growth function with n0 � 6.1 billion,
r � 0.014, and billion. This leads to an exponential equation, which 
we solve for t.

n0ert � n(t)

Divide by 6.1

Take ln of each side

Property of ln

Divide by 0.014

Calculator

Thus, the population will reach 122 billion in approximately 214 years, that is, in
the year 2000 � 214 � 2214. ■

Example 5 The Number of Bacteria in a Culture

A culture starts with 10,000 bacteria, and the number doubles every 40 min.

(a) Find a function that models the number of bacteria at time t.

(b) Find the number of bacteria after one hour.

(c) After how many minutes will there be 50,000 bacteria?

(d) Sketch a graph of the number of bacteria at time t.

Solution

(a) To find the function that models this population growth, we need to find the 
rate r. To do this, we use the formula for population growth with n0 � 10,000,
t � 40, and , and then solve for r.n1t 2 � 20,000

t � 213.98

t �
ln 20

0.014

 0.014t � ln 20

 lne0.014t � ln 20

e0.014t � 20

 6.1e0.014t � 122

n1t 2 � 122

n120 2 � 50e0.551202 � 2,993,707

n1t 2 � 50e0.55t
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Another way to solve part (b) is to let 
t be the number of years from now. In
this case, n0 � 4100 (the current popu-
lation), and the population 12 years
from now will be

n112 2 � 4100e0.551122 � 3 million

Standing Room Only

The population of the world was
about 6.1 billion in 2000, and was
increasing at 1.4% per year. As-
suming that each person occupies
an average of 4 ft2 of the surface of
the earth, the exponential model
for population growth projects that
by the year 2801 there will be stand-
ing room only! (The total land 
surface area of the world is about
1.8 � 1015 ft2.)



n0ert � n(t)

Divide by 10,000

Take ln of each side

Property of ln

Divide by 40

Calculator

Now that we know r � 0.01733, we can write the function for the population
growth:

(b) Using the function we found in part (a) with t � 60 min (one hour), we get

Thus, the number of bacteria after one hour is approximately 28,000.

(c) We use the function we found in part (a) with and solve the 
resulting exponential equation for t.

n0ert � n(t)

Divide by 10,000

Take ln of each side

Property of ln

Divide by 0.01733

Calculator

The bacterium count will reach 50,000 in approximately 93 min.

(d) The graph of the function is shown in Figure 3. ■

Radioactive Decay

Radioactive substances decay by spontaneously emitting radiation. The rate of decay
is directly proportional to the mass of the substance. This is analogous to population
growth, except that the mass of radioactive material decreases. It can be shown that
the mass remaining at time t is modeled by the function

where r is the rate of decay expressed as a proportion of the mass and m0 is the ini-
tial mass. Physicists express the rate of decay in terms of half-life, the time required
for half the mass to decay. We can obtain the rate r from this as follows. If h is the

m1t 2 � m0e
�rt

m1t 2

n1t 2 � 10,000e0.01733t

t � 92.9

t �
ln 5

0.01733

 0.01733t � ln 5

 lne0.01733t � ln 5

e0.01733t � 5

 10,000e0.01733t � 50,000

n1t 2 � 50,000

n160 2 � 10,000e0.017331602 � 28,287

n1t 2 � 10,000e0.01733t

r � 0.01733

r �
ln 2

40

 40r � ln 2

 ln e40r � ln 2

e40r � 2

 10,000er1402 � 20,000
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The half-lives of radioactive ele-
ments vary from very long to very
short. Here are some examples.

Element Half-life

Thorium-232 14.5 billion years
Uranium-235 4.5 billion years
Thorium-230 80,000 years
Plutonium-239 24,360 years
Carbon-14 5,730 years
Radium-226 1,600 years
Cesium-137 30 years
Strontium-90 28 years
Polonium-210 140 days
Thorium-234 25 days
Iodine-135 8 days
Radon-222 3.8 days
Lead-211 3.6 minutes
Krypton-91 10 seconds



Example 6 Radioactive Decay

Polonium-210 has a half-life of 140 days. Suppose a sample of this
substance has a mass of 300 mg.

(a) Find a function that models the amount of the sample remaining at time t.

(b) Find the mass remaining after one year.

(c) How long will it take for the sample to decay to a mass of 200 mg?

(d) Draw a graph of the sample mass as a function of time.

Solution

(a) Using the model for radioactive decay with m0 � 300 and
, we have

(b) We use the function we found in part (a) with t � 365 (one year).

Thus, approximately 49 mg of 210Po remains after one year.

(c) We use the function we found in part (a) with and solve the result-
ing exponential equation for t.

Divided by 300

Take ln of each side ln e�0.00495t � ln 2
3

e�0.00495t � 2
3

m1t 2 � moe�rt 300e�0.00495t � 200

m1t 2 � 200

m1365 2 � 300e�0.0049513652 � 49.256

m1t 2 � 300e�0.00495t

r � 1ln2/140 2 � 0.00495

1210Po 2

half-life, then a mass of 1 unit becomes unit when t � h. Substituting this into the
model, we get

Take ln of each side

Solve for r

ln 2�1 � �In 2 by Law 3

This last equation allows us to find the rate r from the half-life h.

r �
ln 2

h

r � �
1

h
 ln12�1 2lnA12B � �rh

m1t 2 � moe�rt1
2 � 1 # e�rh

1
2
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Radioactive Decay Model

If m0 is the initial mass of a radioactive substance with half-life h, then the
mass remaining at time t is modeled by the function

where .r �
ln 2

h

m1t 2 � m0e
�rt

Radioactive Waste

Harmful radioactive isotopes are
produced whenever a nuclear reac-
tion occurs, whether as the result of
an atomic bomb test, a nuclear ac-
cident such as the one at Chernobyl
in 1986, or the uneventful produc-
tion of electricity at a nuclear
power plant.

One radioactive material pro-
duced in atomic bombs is the 
isotope strontium-90 1 90Sr2, with a
half-life of 28 years. This is depos-
ited like calcium in human bone
tissue, where it can cause leukemia
and other cancers. However, in the
decades since atmospheric testing
of nuclear weapons was halted,
90Sr levels in the environment have
fallen to a level that no longer
poses a threat to health.

Nuclear power plants produce
radioactive plutonium-239 1239Pu2,
which has a half-life of 24,360
years. Because of its long half-life,
239Pu could pose a threat to the en-
vironment for thousands of years.
So, great care must be taken to dis-
pose of it properly. The difficulty
of ensuring the safety of the dis-
posed radioactive waste is one rea-
son that nuclear power plants
remain controversial.
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Example 7 Newton’s Law of Cooling

A cup of coffee has a temperature of 200 �F and is placed in a room that has a tem-
perature of 70 �F. After 10 min the temperature of the coffee is 150 �F.

(a) Find a function that models the temperature of the coffee at time t.

(b) Find the temperature of the coffee after 15 min.

(c) When will the coffee have cooled to 100 �F?

(d) Illustrate by drawing a graph of the temperature function.

Solution

(a) The temperature of the room is Ts � 70 �F, and the initial temperature 
difference is

So, by Newton’s Law of Cooling, the temperature after t minutes is modeled by
the function

We need to find the constant k associated with this cup of coffee. To do 
this, we use the fact that when t � 10, the temperature is .T110 2 � 150

T1t 2 � 70 � 130e�kt

D0 � 200 � 70 � 130°F

Property of ln

Divide by �0.00495

Calculator

The time required for the sample to decay to 200 mg is about 82 days.

(d) A graph of the function is shown in Figure 4. ■

Newton’s Law of Cooling

Newton’s Law of Cooling states that the rate of cooling of an object is proportional
to the temperature difference between the object and its surroundings, provided that
the temperature difference is not too large. Using calculus, the following model can
be deduced from this law.

m1t 2 � 300e�0.00495t

t � 81.9

t � �
ln 2

3

0.00495

�0.00495t � ln 2
3
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Newton’s Law of Cooling

If D0 is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature Ts, then the temperature of 
the object at time t is modeled by the function

where k is a positive constant that depends on the type of object.

T1t 2 � Ts � D0e
�kt

0 50

m(t)=300 e_º.ºº¢ª∞t

t

100
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So we have

Ts � Doe�kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Divide by �10

Caculator

Substituting this value of k into the expression for , we get

(b) We use the function we found in part (a) with t � 15.

(c) We use the function we found in part (a) with and solve the result-
ing exponential equation for t.

Ts � Doe�kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Divide by �0.04855

Calculator

The coffee will have cooled to 100�F after about half an hour.

(d) The graph of the temperature function is sketched in Figure 5. Notice that the
line t � 70 is a horizontal asymptote. (Why?) ■

Logarithmic Scales

When a physical quantity varies over a very large range, it is often convenient to take
its logarithm in order to have a more manageable set of numbers. We discuss three
such situations: the pH scale, which measures acidity; the Richter scale, which mea-
sures the intensity of earthquakes; and the decibel scale, which measures the loudness
of sounds. Other quantities that are measured on logarithmic scales are light inten-
sity, information capacity, and radiation.

THE pH SCALE Chemists measured the acidity of a solution by giving its hydrogen
ion concentration until Sorensen, in 1909, proposed a more convenient measure. He
defined

t � 30.2

t �
ln 3

13

�0.04855

�0.04855t � ln 3
13

e�0.04855t � 3
13

 130e�0.04855t � 30

 70 � 130e�0.04855t � 100

T1t 2 � 100

T115 2 � 70 � 130e�0.048551152 � 133°F

T1t 2 � 70 � 130e�0.04855t

T1t 2k � 0.04855

k � � 1
10 ln 8

13

�10k � ln 8
13

e�10k � 8
13

 130e�10k � 80

 70 � 130e�10k � 150
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Figure 5

Temperature of coffee after t minutes
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where [H�] is the concentration of hydrogen ions measured in moles per liter (M). He
did this to avoid very small numbers and negative exponents. For instance,

if M, then

Solutions with a pH of 7 are defined as neutral, those with pH � 7 are acidic, and
those with pH 	 7 are basic. Notice that when the pH increases by one unit, 3H�4
decreases by a factor of 10.

Example 8 pH Scale and Hydrogen Ion Concentration

(a) The hydrogen ion concentration of a sample of human blood was measured to
be 3H�4� 3.16 � 10�8 M. Find the pH and classify the blood as acidic or basic.

(b) The most acidic rainfall ever measured occurred in Scotland in 1974; its pH
was 2.4. Find the hydrogen ion concentration.

Solution

(a) A calculator gives

Since this is greater than 7, the blood is basic.

(b) To find the hydrogen ion concentration, we need to solve for 3H�4 in the 
logarithmic equation

So, we write it in exponential form.

In this case, pH � 2.4, so

■

THE RICHTER SCALE In 1935 the American geologist Charles Richter (1900–
1984) defined the magnitude M of an earthquake to be

where I is the intensity of the earthquake (measured by the amplitude of a seismo-
graph reading taken 100 km from the epicenter of the earthquake) and S is the inten-
sity of a “standard” earthquake (whose amplitude is 1 micron � 10�4 cm). The
magnitude of a standard earthquake is

Richter studied many earthquakes that occurred between 1900 and 1950. The largest
had magnitude 8.9 on the Richter scale, and the smallest had magnitude 0. This cor-
responds to a ratio of intensities of 800,000,000, so the Richter scale provides more

M � log
S

S
� log 1 � 0

3H� 4 � 10�2.4 � 4.0 � 10�3 M

3H� 4 � 10�pH

log 3H� 4 � �pH

pH � �log 3H� 4 � �log13.16 � 10�8 2 � 7.5

pH � �log10110�4 2 � �1�4 2 � 43H� 4 � 10�4
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pH for Some Common

Substances

Substance pH

Milk of Magnesia 10.5
Seawater 8.0–8.4
Human blood 7.3–7.5
Crackers 7.0–8.5
Hominy (lye) 6.9–7.9
Cow’s milk 6.4–6.8
Spinach 5.1–5.7
Tomatoes 4.1–4.4
Oranges 3.0–4.0
Apples 2.9–3.3
Limes 1.3–2.0
Battery acid 1.0

M � log
I

S



manageable numbers to work with. For instance, an earthquake of magnitude 6 is ten
times stronger than an earthquake of magnitude 5.

Example 9 Magnitude of Earthquakes

The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the
Richter scale. In the same year a powerful earthquake occurred on the Colombia-
Ecuador border and was four times as intense. What was the magnitude of the
Colombia-Ecuador earthquake on the Richter scale?

Solution If I is the intensity of the San Francisco earthquake, then from the
definition of magnitude we have

The intensity of the Colombia-Ecuador earthquake was 4I, so its magnitude was

■

Example 10 Intensity of Earthquakes

The 1989 Loma Prieta earthquake that shook San Francisco had a magnitude of 
7.1 on the Richter scale. How many times more intense was the 1906 earthquake 
(see Example 9) than the 1989 event?

Solution If I1 and I2 are the intensities of the 1906 and 1989 earthquakes, then
we are required to find I1/I2. To relate this to the definition of magnitude, we divide
numerator and denominator by S.

Divide numerator and denominator by S

Law 2 of logarithms

Definition of earthquake magnitude

Therefore

The 1906 earthquake was about 16 times as intense as the 1989 earthquake. ■

THE DECIBEL SCALE The ear is sensitive to an extremely wide range of sound in-
tensities. We take as a reference intensity I0 � 10�12 W/m2 (watts per square meter)
at a frequency of 1000 hertz, which measures a sound that is just barely audible (the
threshold of hearing). The psychological sensation of loudness varies with the loga-
rithm of the intensity (the Weber-Fechner Law) and so the intensity level B, mea-
sured in decibels (dB), is defined as

I1

I2
� 10log1I1/I22 � 101.2 � 16

� 8.3 � 7.1 � 1.2

� log 
I1

S
� log

I2

S

 log 
I1

I2
� log

I1/S

I2/S

M � log
4I

S
� log 4 � log

I

S
� log 4 � 8.3 � 8.9

M � log
I

S
� 8.3

378 CHAPTER 4 Exponential and Logarithmic Functions
Ro

ge
r R

es
sm

ey
er

/C
or

bi
s

B � 10 log 
I

I0

Largest Earthquakes

Location Date Magnitude

Chile 1960 9.5
Alaska 1964 9.2
Alaska 1957 9.1
Kamchatka 1952 9.0
Sumatra 2004 9.0
Ecuador 1906 8.8
Alaska 1965 8.7
Tibet 1950 8.6
Kamchatka 1923 8.5
Indonesia 1938 8.5
Kuril Islands 1963 8.5
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1–13 ■ These exercises use the population growth model.

1. Bacteria Culture The number of bacteria in a culture is
modeled by the function

where t is measured in hours.

(a) What is the initial number of bacteria?

(b) What is the relative rate of growth of this bacterium
population? Express your answer as a percentage.

(c) How many bacteria are in the culture after 3 hours?

(d) After how many hours will the number of bacteria reach
10,000?

2. Fish Population The number of a certain species of fish
is modeled by the function 

where t is measured in years and is measured in millions.

(a) What is the relative rate of growth of the fish popula-
tion? Express your answer as a percentage.

(b) What will the fish population be after 5 years?

(c) After how many years will the number of fish reach 
30 million?

(d) Sketch a graph of the fish population function .

3. Fox Population The fox population in a certain region
has a relative growth rate of 8% per year. It is estimated that
the population in 2000 was 18,000.

(a) Find a function that models the population t years after
2000.

n1t 2

n1t 2n1t 2 � 12e0.012t

n1t 2 � 500e0.45t

(b) Use the function from part (a) to estimate the fox 
population in the year 2008.

(c) Sketch a graph of the fox population function for the
years 2000–2008.

4. Population of a Country The population of a country
has a relative growth rate of 3% per year. The government is 
trying to reduce the growth rate to 2%. The population in
1995 was approximately 110 million. Find the projected
population for the year 2020 for the following conditions.

(a) The relative growth rate remains at 3% per year.

(b) The relative growth rate is reduced to 2% per year.

5. Population of a City The population of a certain city was
112,000 in 1998, and the observed relative growth rate is
4% per year.

(a) Find a function that models the population after t years.

(b) Find the projected population in the year 2004.

(c) In what year will the population reach 200,000?

The intensity level of the barely audible reference sound is

Example 11 Sound Intensity of a Jet Takeoff

Find the decibel intensity level of a jet engine during takeoff if the intensity was
measured at 100 W/m2.

Solution From the definition of intensity level we see that

Thus, the intensity level is 140 dB. ■

The table in the margin lists decibel intensity levels for some common sounds
ranging from the threshold of human hearing to the jet takeoff of Example 11. The
threshold of pain is about 120 dB.

4.5 Exercises

B � 10 log 
I

I0
� 10 log 

102

10�12 � 10 log 1014 � 140 dB

B � 10 log 
I0

I0
� 10 log 1 � 0 dB

The intensity levels of sounds that
we can hear vary from very loud to
very soft. Here are some examples
of the decibel levels of commonly
heard sounds.

Source of sound B

Jet takeoff 140
Jackhammer 130
Rock concert 120
Subway 100
Heavy traffic 80
Ordinary traffic 70
Normal conversation 50
Whisper 30
Rustling leaves 10–20
Threshold of hearing 0

1dB 2
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6. Frog Population The frog population in a small pond
grows exponentially. The current population is 85 frogs, and
the relative growth rate is 18% per year.

(a) Find a function that models the population after 
t years.

(b) Find the projected population after 3 years.

(c) Find the number of years required for the frog 
population to reach 600.

7. Deer Population The graph shows the deer population in
a Pennsylvania county between 1996 and 2000. Assume that
the population grows exponentially.

(a) What was the deer population in 1996?

(b) Find a function that models the deer population t years
after 1996.

(c) What is the projected deer population in 2004?

(d) In what year will the deer population reach 100,000?

8. Bacteria Culture A culture contains 1500 bacteria 
initially and doubles every 30 min.

(a) Find a function that models the number of bacteria 
after t minutes.

(b) Find the number of bacteria after 2 hours.

(c) After how many minutes will the culture contain 4000
bacteria?

9. Bacteria Culture A culture starts with 8600 bacteria. 
After one hour the count is 10,000.

(a) Find a function that models the number of bacteria 
after t hours.

(b) Find the number of bacteria after 2 hours.

(c) After how many hours will the number of bacteria
double?

10. Bacteria Culture The count in a culture of bacteria was
400 after 2 hours and 25,600 after 6 hours.

(a) What is the relative rate of growth of the bacteria 
population? Express your answer as a percentage.

(b) What was the initial size of the culture?

n1t 2

n1t 2

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000

(4, 31,000)

Years since 1996

(c) Find a function that models the number of bacteria 
after t hours.

(d) Find the number of bacteria after 4.5 hours.

(e) When will the number of bacteria be 50,000?

11. World Population The population of the world was 
5.7 billion in 1995 and the observed relative growth rate 
was 2% per year.

(a) By what year will the population have doubled?

(b) By what year will the population have tripled?

12. Population of California The population of California
was 10,586,223 in 1950 and 23,668,562 in 1980. Assume
the population grows exponentially.

(a) Find a function that models the population t years after
1950.

(b) Find the time required for the population to double.

(c) Use the function from part (a) to predict the population
of California in the year 2000. Look up California’s 
actual population in 2000, and compare.

13. Infectious Bacteria An infectious strain of bacteria 
increases in number at a relative growth rate of 200% per
hour. When a certain critical number of bacteria are present
in the bloodstream, a person becomes ill. If a single 
bacterium infects a person, the critical level is reached in 
24 hours. How long will it take for the critical level to be
reached if the same person is infected with 10 bacteria?

14–22 ■ These exercises use the radioactive decay model.

14. Radioactive Radium The half-life of radium-226 is 1600
years. Suppose we have a 22-mg sample.

(a) Find a function that models the mass remaining after 
t years.

(b) How much of the sample will remain after 4000 years?

(c) After how long will only 18 mg of the sample remain?

15. Radioactive Cesium The half-life of cesium-137 is 
30 years. Suppose we have a 10-g sample.

(a) Find a function that models the mass remaining after 
t years.

(b) How much of the sample will remain after 80 years?

(c) After how long will only 2 g of the sample remain?

16. Radioactive Thorium The mass remaining after t
days from a 40-g sample of thorium-234 is given by

(a) How much of the sample will remain after 60 days?

(b) After how long will only 10 g of the sample remain?

(c) Find the half-life of thorium-234.

17. Radioactive Strontium The half-life of strontium-90 is
28 years. How long will it take a 50-mg sample to decay to
a mass of 32 mg?

m1t 2 � 40e�0.0277t

m1t 2

n1t 2
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18. Radioactive Radium Radium-221 has a half-life of 30 s.
How long will it take for 95% of a sample to decay?

19. Finding Half-life If 250 mg of a radioactive element de-
cays to 200 mg in 48 hours, find the half-life of the element.

20. Radioactive Radon After 3 days a sample of radon-222
has decayed to 58% of its original amount.

(a) What is the half-life of radon-222?

(b) How long will it take the sample to decay to 20% of its
original amount?

21. Carbon-14 Dating A wooden artifact from an ancient
tomb contains 65% of the carbon-14 that is present in living
trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

22. Carbon-14 Dating The burial cloth of an Egyptian
mummy is estimated to contain 59% of the carbon-14 it
contained originally. How long ago was the mummy buried?
(The half-life of carbon-14 is 5730 years.)

23–26 ■ These exercises use Newton’s Law of Cooling.

23. Cooling Soup A hot bowl of soup is served at a dinner
party. It starts to cool according to Newton’s Law of 
Cooling so that its temperature at time t is given by

where t is measured in minutes and T is measured in �F.

(a) What is the initial temperature of the soup?

(b) What is the temperature after 10 min?

(c) After how long will the temperature be 100 �F?

24. Time of Death Newton’s Law of Cooling is used in
homicide investigations to determine the time of death. The
normal body temperature is 98.6 �F. Immediately following
death, the body begins to cool. It has been determined 
experimentally that the constant in Newton’s Law of 
Cooling is approximately k � 0.1947, assuming time is
measured in hours. Suppose that the temperature of the
surroundings is 60 �F.

(a) Find a function that models the temperature t hours
after death.

(b) If the temperature of the body is now 72 �F, how long
ago was the time of death?

25. Cooling Turkey A roasted turkey is taken from an oven
when its temperature has reached 185 �F and is placed on a
table in a room where the temperature is 75 �F.

T 1t 2

T1t 2 � 65 � 145e�0.05t

(a) If the temperature of the turkey is 150 �F after half an
hour, what is its temperature after 45 min?

(b) When will the turkey cool to 100 �F?

26. Boiling Water A kettle full of water is brought to a boil
in a room with temperature 20 �C. After 15 min the 
temperature of the water has decreased from 100 �C to
75 �C. Find the temperature after another 10 min. Illustrate
by graphing the temperature function.

27–41 ■ These exercises deal with logarithmic scales.

27. Finding pH The hydrogen ion concentration of a sample
of each substance is given. Calculate the pH of the 
substance.

(a) Lemon juice: 3H�4 � 5.0 � 10�3 M

(b) Tomato juice: 3H�4 � 3.2 � 10�4 M

(c) Seawater: 3H�4 � 5.0 � 10�9 M

28. Finding pH An unknown substance has a hydrogen ion
concentration of 3H�4 � 3.1 � 10�8 M. Find the pH and
classify the substance as acidic or basic.

29. Ion Concentration The pH reading of a sample of each
substance is given. Calculate the hydrogen ion concentration
of the substance.

(a) Vinegar: pH � 3.0

(b) Milk: pH � 6.5

30. Ion Concentration The pH reading of a glass of liquid is
given. Find the hydrogen ion concentration of the liquid.

(a) Beer: pH � 4.6

(b) Water: pH � 7.3

31. Finding pH The hydrogen ion concentrations in cheeses
range from 4.0 � 10�7 M to 1.6 � 10�5 M. Find the 
corresponding range of pH readings.

32. Ion Concentration in Wine The pH readings for wines
vary from 2.8 to 3.8. Find the corresponding range of 
hydrogen ion concentrations.

33. Earthquake Magnitudes If one earthquake is 20 times
as intense as another, how much larger is its magnitude on
the Richter scale?

34. Earthquake Magnitudes The 1906 earthquake in San
Francisco had a magnitude of 8.3 on the Richter scale. 
At the same time in Japan an earthquake with magnitude 4.9
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1. (a) Write an equation that defines the exponential function
with base a.

(b) What is the domain of this function?

(c) What is the range of this function?

(d) Sketch the general shape of the graph of the exponential
function for each case.

(i) a 	 1 (ii) 0 � a � 1

2. If x is large, which function grows faster, y � 2 x or y � x 2?

3. (a) How is the number e defined?

(b) What is the natural exponential function?

4. (a) How is the logarithmic function y � loga x defined?

(b) What is the domain of this function?

(c) What is the range of this function?

(d) Sketch the general shape of the graph of the function 
y � loga x if a 	 1.

(e) What is the natural logarithm?

(f ) What is the common logarithm?

5. State the three Laws of Logarithms.

6. State the Change of Base Formula.

7. (a) How do you solve an exponential equation?

(b) How do you solve a logarithmic equation?

8. Suppose an amount P is invested at an interest rate r and A
is the amount after t years.

(a) Write an expression for A if the interest is compounded
n times per year.

(b) Write an expression for A if the interest is compounded
continuously.

9. If the initial size of a population is n0 and the population
grows exponentially with relative growth rate r, write an 
expression for the population at time t.

10. (a) What is the half-life of a radioactive substance?

(b) If a radioactive substance has initial mass m0 and
half-life h, write an expression for the mass 
remaining at time t.

11. What does Newton’s Law of Cooling say?

12. What do the pH scale, the Richter scale, and the decibel
scale have in common? What do they measure?

m1t 2
n1t 2

caused only minor damage. How many times more 
intense was the San Francisco earthquake than the Japanese
earthquake? 

35. Earthquake Magnitudes The Alaska earthquake of
1964 had a magnitude of 8.6 on the Richter scale. How
many times more intense was this than the 1906 San Fran-
cisco earthquake? (See Exercise 34.)

36. Earthquake Magnitudes The Northridge, California,
earthquake of 1994 had a magnitude of 6.8 on the Richter
scale. A year later, a 7.2-magnitude earthquake struck Kobe,
Japan. How many times more intense was the Kobe 
earthquake than the Northridge earthquake?

37. Earthquake Magnitudes The 1985 Mexico City 
earthquake had a magnitude of 8.1 on the Richter scale. The
1976 earthquake in Tangshan, China, was 1.26 times as in-
tense. What was the magnitude of the Tangshan earthquake?

38. Traffic Noise The intensity of the sound of traffic at a
busy intersection was measured at 2.0 � 10�5 W/m2.
Find the intensity level in decibels.

39. Subway Noise The intensity of the sound of a subway
train was measured at 98 dB. Find the intensity in W/m2.

40. Comparing Decibel Levels The noise from a power
mower was measured at 106 dB. The noise level at a rock
concert was measured at 120 dB. Find the ratio of the inten-
sity of the rock music to that of the power mower.

41. Inverse Square Law for Sound A law of physics states
that the intensity of sound is inversely proportional to the
square of the distance d from the source: I � k/d 2.

(a) Use this model and the equation

(described in this section) to show that the decibel 
levels B1 and B2 at distances d1 and d2 from a sound
source are related by the equation

(b) The intensity level at a rock concert is 120 dB at a 
distance 2 m from the speakers. Find the intensity level
at a distance of 10 m.

B2 � B1 � 20 log 
d1

d2

B � 10 log 
I

I0

4 Review

Concept Check
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1–12 ■ Sketch the graph of the function. State the domain,
range, and asymptote.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13–16 ■ Find the domain of the function.

13. 14.

15. 16.

17–20 ■ Write the equation in exponential form.

17. log2 1024 � 10 18. log6 37 � x

19. log x � y 20. ln c � 17

21–24 ■ Write the equation in logarithmic form.

21. 26 � 64 22.

23. 10 x � 74 24. ek � m

25–40 ■ Evaluate the expression without using a calculator.

25. log2 128 26. log8 1

27. 10log 45 28. log 0.000001

29. 30. log4 8

31. 32.

33. 34. e 2ln7

35. log 25 � log 4 36.

37. log2 1623 38. log5 250 � log5 2

39. log8 6 � log8 3 � log8 2 40. log log10100

41–46 ■ Expand the logarithmic expression.

41. 42.

43. 44.

45. 46.

47–52 ■ Combine into a single logarithm.

47. log 6 � 4 log 2 48. log x � log1x2y 2 � 3 log y

ln a 23 x4 � 121x � 16 2 1x � 3
blog5 a x211 � 5x 2 3/2

2x3 � x
b

log a 4x3

y21x � 1 2 5 blnB
x2 � 1

x2 � 1

log2 1x 2x2 � 1 2log1AB2C3 2

log31243

log515

2log213log3A 1
27 Bln1e6 2

49�1/2 � 1
7

k1x 2 � ln 0 x 0h1x 2 � ln1x2 � 4 2 g1x 2 � ln12 � x � x2 2f 1x 2 � 10x2

� log11 � 2x 2
g1x 2 � ln1x2 2g1x 2 � 2 ln x

G 1x 2 � 1
2 e x�1F1x 2 � e x � 1

f 1x 2 � 3 � log51x � 4 2f 1x 2 � 2 � log2 x

g1x 2 � log1�x 2f 1x 2 � log31x � 1 2 g1x 2 � 5�x � 5g1x 2 � 3 � 2x

f 1x 2 � 3x�2f 1x 2 � 2�x�1

49.

50.

51.

52.

53–62 ■ Solve the equation. Find the exact solution if possible;
otherwise approximate to two decimals.

53. 54. 23x�5 � 7

55. 55�3x � 26 56.

57. e3x/4 � 10 58. 21�x � 32x�5

59.

60.

61. x 2e 2x � 2xe 2x � 8e 2x 62.

63–66 ■ Use a calculator to find the solution of the equation,
correct to six decimal places.

63. 5�2x/3 � 0.63 64. 23x�5 � 7

65. 52x�1 � 34x�1 66. e�15k � 10,000

67–70 ■ Draw a graph of the function and use it to determine
the asymptotes and the local maximum and minimum values.

67. 68. y � 2x 2 � ln x

69. 70. y � 10 x � 5 x

71–72 ■ Find the solutions of the equation, correct to two 
decimal places.

71. 3 log x � 6 � 2x 72. 4 � x 2 � e�2x

73–74 ■ Solve the inequality graphically.

73. ln x 	 x � 2 74. ex � 4x 2

75. Use a graph of to find, approxi-
mately, the intervals on which f is increasing and on which
f is decreasing.

76. Find an equation of the line shown in the figure.

xea

y=ln x

y

0

f 1x 2 � e x � 3e�x � 4x

y � log1x3 � x 2y � ex/1x�22

23x

� 5

log8 1x � 5 2 � log8 1x � 2 2 � 1

log x � log1x � 1 2 � log12

ln12x � 3 2 � 14

log2 11 � x 2 � 4

1
2 3 ln1x � 4 2 � 5 ln1x2 � 4x 2 4log1x � 2 2 � log1x � 2 2 � 1

2 log1x2 � 4 2log5 2 � log5 1x � 1 2 � 1
3 log5 13x � 7 23

2 log2 1x � y 2 � 2 log2 1x2 � y2 2Exercises
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77. Evaluate log4 15, correct to six decimal places.

78. Solve the inequality: 0.2 
 logx � 2

79. Which is larger, log4 258 or log5 620?

80. Find the inverse of the function and state its 
domain and range.

81. If $12,000 is invested at an interest rate of 10% per year,
find the amount of the investment at the end of 3 years for
each compounding method.

(a) Semiannual (b) Monthly

(c) Daily (d) Continuous

82. A sum of $5000 is invested at an interest rate of % per
year, compounded semiannually.

(a) Find the amount of the investment after years.

(b) After what period of time will the investment amount
to $7000?

83. The stray-cat population in a small town grows 
exponentially. In 1999, the town had 30 stray cats 
and the relative growth rate was 15% per year.

(a) Find a function that models the stray-cat population
after t years.

(b) Find the projected population after 4 years.

(c) Find the number of years required for the stray-cat 
population to reach 500.

84. A culture contains 10,000 bacteria initially. After an hour
the bacteria count is 25,000.

(a) Find the doubling period.

(b) Find the number of bacteria after 3 hours.

85. Uranium-234 has a half-life of 2.7 � 105 years.

(a) Find the amount remaining from a 10-mg sample after a
thousand years.

(b) How long will it take this sample to decompose until its
mass is 7 mg?

86. A sample of bismuth-210 decayed to 33% of its original
mass after 8 days.

(a) Find the half-life of this element.

(b) Find the mass remaining after 12 days.

87. The half-life of radium-226 is 1590 years.

(a) If a sample has a mass of 150 mg, find a function that
models the mass that remains after t years.

(b) Find the mass that will remain after 1000 years.

(c) After how many years will only 50 mg remain?

n1t 2

11
2

8 1
2

f 1x 2 � 23x

88. The half-life of palladium-100 is 4 days. After 20 days a
sample has been reduced to a mass of 0.375 g.

(a) What was the initial mass of the sample?

(b) Find a function that models the mass remaining after
t days.

(c) What is the mass after 3 days?

(d) After how many days will only 0.15 g remain?

89. The graph shows the population of a rare species of bird,
where t represents years since 1999 and is measured in
thousands.

(a) Find a function that models the bird population at time t
in the form .

(b) What is the bird population expected to be in the 
year 2010?

90. A car engine runs at a temperature of 190 �F. When the 
engine is turned off, it cools according to Newton’s Law of
Cooling with constant k � 0.0341, where the time is 
measured in minutes. Find the time needed for the engine to
cool to 90�F if the surrounding temperature is 60 �F.

91. The hydrogen ion concentration of fresh egg whites was
measured as

Find the pH, and classify the substance as acidic or basic.

92. The pH of lime juice is 1.9. Find the hydrogen ion
concentration.

93. If one earthquake has magnitude 6.5 on the Richter scale,
what is the magnitude of another quake that is 35 times as
intense?

94. The drilling of a jackhammer was measured at 132 dB. 
The sound of whispering was measured at 28 dB. Find the
ratio of the intensity of the drilling to that of the whispering.

3H� 4 � 1.3 � 10�8 M

4000

0 1 5432 t

1000

2000

3000

n(t)

Bird
population

Years since 1999

(5, 3200)

n1t 2 � n0ert

n1t 2



4 Test

1. Graph the functions y � 2x and y � log2 x on the same axes.

2. Sketch the graph of the function and state the domain, range, and 
asymptote.

3. Evaluate each logarithmic expression.

(a) (b) log2 80 � log2 10

(c) log8 4 (d) log6 4 � log6 9

4. Use the Laws of Logarithms to expand the expression.

5. Combine into a single logarithm:

6. Find the solution of the equation, correct to two decimal places.

(a) 2x�1 � 10 (b)
(c) 10 x�3 � 62x (d)

7. The initial size of a culture of bacteria is 1000. After one hour the bacteria count
is 8000.

(a) Find a function that models the population after t hours.

(b) Find the population after 1.5 hours.

(c) When will the population reach 15,000?

(d) Sketch the graph of the population function.

8. Suppose that $12,000 is invested in a savings account paying 5.6% interest per year.

(a) Write the formula for the amount in the account after t years if interest is com-
pounded monthly.

(b) Find the amount in the account after 3 years if interest is compounded daily.

(c) How long will it take for the amount in the account to grow to $20,000 if interest is
compounded semiannually?

9. Let .

(a) Graph f in an appropriate viewing rectangle.

(b) State the asymptotes of f.

(c) Find, correct to two decimal places, the local minimum value of f and the value of x
at which it occurs.

(d) Find the range of f.

(e) Solve the equation . State each solution correct to two decimal places.
ex

x3 � 2x � 1

f1x 2 �
ex

x3

log2 1x � 2 2 � log2 1x � 1 2 � 2

5 ln13 � x 2 � 4

ln x � 2 ln1x2 � 1 2 � 1
2 ln13 � x4 2logB3

x � 2

x41x2 � 4 2

log3127

f 1x 2 � log1x � 1 2
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In Focus on Modeling (page 320) we learned that the shape of a scatter plot 
helps us choose the type of curve to use in modeling data. The first plot in Figure 1
fairly screams for a line to be fitted through it, and the second one points to a cubic
polynomial. For the third plot it is tempting to fit a second-degree polynomial. But
what if an exponential curve fits better? How do we decide this? In this section we
learn how to fit exponential and power curves to data and how to decide which type
of curve fits the data better. We also learn that for scatter plots like those in the last
two plots in Figure 1, the data can be modeled by logarithmic or logistic functions.

Figure 1

Modeling with Exponential Functions

If a scatter plot shows that the data increases rapidly, we might want to model the data
using an exponential model, that is, a function of the form

where C and k are constants. In the first example we model world population by 
an exponential model. Recall from Section 4.5 that population tends to increase 
exponentially.

Example 1 An Exponential Model for World Population

Table 1 gives the population of the world in the 20th century.

(a) Draw a scatter plot and note that a linear model is not appropriate.

(b) Find an exponential function that models population growth.

(c) Draw a graph of the function you found together with the scatter plot. How
well does the model fit the data?

(d) Use the model you found to predict world population in the year 2020.

Solution

(a) The scatter plot is shown in Figure 2. The plotted points do not appear to lie
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Fitting Exponential and Power Curves to Data

Year World population1t 2 (P in millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
2000 6060

Table 1 World population

f 1x 2 � Cekx



along a straight line, so a linear model is not appropriate.

(b) Using a graphing calculator and the ExpRegcommand (see Figure 3(a)), we get
the exponential model

This is a model of the form y � Cbt. To convert this to the form y � Cekt,
we use the properties of exponentials and logarithms as follows:

A � eln A

ln AB � B ln A

ln 1.0137186 � 0.013625

Thus, we can write the model as

(c) From the graph in Figure 3(b), we see that the model appears to fit the data
fairly well. The period of relatively slow population growth is explained by the
depression of the 1930s and the two world wars.

Figure 3

Exponential model for world population

(d) The model predicts that the world population in 2020 will be

■� 7,405,400,000

P12020 2 � 0.0082543e 10.0136252 120202

(a)

2000

6500

0
1900

(b)

P1t 2 � 0.0082543e0.013625t

� e0.013625t

� et ln 1.0137186

 1.0137186t � eln1.0137186 t

P1t 2 � 10.0082543 2 # 11.0137186 2 t
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The population of the world increases
exponentially
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Figure 2

Scatter plot of 
world population
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Modeling with Power Functions

If the scatter plot of the data we are studying resembles the graph of y � ax 2,
y � ax1.32, or some other power function, then we seek a power model, that is, a func-
tion of the form

where a is a positive constant and n is any real number.
In the next example we seek a power model for some astronomical data. In 

astronomy, distance in the solar system is often measured in astronomical units. An
astronomical unit (AU) is the mean distance from the earth to the sun. The period of
a planet is the time it takes the planet to make a complete revolution around the sun
(measured in earth years). In this example we derive the remarkable relationship, first
discovered by Johannes Kepler (see page 780), between the mean distance of a planet
from the sun and its period.

Example 2 A Power Model for Planetary Periods

Table 2 gives the mean distance d of each planet from the sun in astronomical units
and its period T in years.

(a) Sketch a scatter plot. Is a linear model appropriate?

(b) Find a power function that models the data.

(c) Draw a graph of the function you found and the scatter plot on the same graph.
How well does the model fit the data?

(d) Use the model you found to find the period of an asteroid whose mean distance
from the sun is 5 AU.

Solution

(a) The scatter plot shown in Figure 4 indicates that the plotted points do not lie
along a straight line, so a linear model is not appropriate.

(b) Using a graphing calculator and the PwrReg command (see Figure 5(a)), we
get the power model

T � 1.000396d1.49966

45

260

0
0Figure 4

Scatter plot of planetary data
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Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784
Pluto 39.507 248.350

Table 2 Distances and periods of 
the planets

Sun

Saturn

Earth
Venus

Mercury

Mars
Jupiter

f 1x 2 � axn



If we round both the coefficient and the exponent to three significant figures,
we can write the model as

This is the relationship discovered by Kepler (see page 780). Sir Isaac Newton
later used his Law of Gravity to derive this relationship theoretically, thereby
providing strong scientific evidence that the Law of Gravity must be true.

(c) The graph is shown in Figure 5(b). The model appears to fit the data very well.

(d) In this case, d � 5 AU and so our model gives

The period of the asteroid is about 11.2 years. ■

Linearizing Data

We have used the shape of a scatter plot to decide which type of model to use—
linear, exponential, or power. This works well if the data points lie on a straight line.
But it’s difficult to distinguish a scatter plot that is exponential from one that requires
a power model. So, to help decide which model to use, we can linearize the data, that
is, apply a function that “straightens” the scatter plot. The inverse of the linearizing
function is then an appropriate model. We now describe how to linearize data that can
be modeled by exponential or power functions.

■ Linearizing exponential data

If we suspect that the data points lie on an exponential curve y � Cekx, then the
points

should lie on a straight line. We can see this from the following calculations:

Assume y � Cekx and take ln

Property of ln

Property of ln

To see that ln y is a linear function of x, let Y � ln y and A � ln C; then

Y � kx � A

� kx � ln C

� ln ekx � ln C

 ln y � ln Cekx

1x, ln y 2
1x, y 2

T � 1.00039 # 51.49966 � 11.22

(a) (b)

45

260

0
0

Figure 5

Power model for planetary data

T � d 1.5
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We apply this technique to the world population data to obtain the points
in Table 3. The scatter plot in Figure 6 shows that the linearized data lie 

approximately on a straight line, so an exponential model should be appropriate.

■ Linearizing power data

If we suspect that the data points lie on a power curve y � axn, then the points

should be on a straight line. We can see this from the following calculations:

Assume y � axn and take ln

Property of ln

Property of ln

To see that ln y is a linear function of ln x, let Y � ln y, X � ln x, and A � ln a; then

We apply this technique to the planetary data in Table 2, to obtain the points
in Table 4. The scatter plot in Figure 7 shows that the data lie on a straight

line, so a power model seems appropriate.

An Exponential or Power Model?

Suppose that a scatter plot of the data points shows a rapid increase. Should we
use an exponential function or a power function to model the data? To help us decide,
we draw two scatter plots—one for the points and the other for the points

. If the first scatter plot appears to lie along a line, then an exponential
model is appropriate. If the second plot appears to lie along a line, then a power model
is appropriate.

1ln x, ln y 2 1x, ln y 21x, y 2

4

6

_2

_2Figure 7

Log-log plot of 
data in Table 4

1ln d, ln T 2 1d, T 2Y � nX � A

� ln a � n ln x

� ln a � ln xn

 ln y � ln axn

1ln x, ln y 21x, y 2
2010

23

21
1900

Figure 6

1t, ln P 2 1t, P 2
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Population P
t (in millions) ln P

1900 1650 21.224
1910 1750 21.283
1920 1860 21.344
1930 2070 21.451
1940 2300 21.556
1950 2520 21.648
1960 3020 21.829
1970 3700 22.032
1980 4450 22.216
1990 5300 22.391
2000 6060 22.525

Table 3 World population data

ln d ln T

�0.94933 �1.4230
�0.32435 �0.48613

0 0
0.42068 0.6318
1.6492 2.4733
2.2556 3.3829
2.9544 4.4309
3.4041 5.1046
3.6765 5.5148

Table 4 Log-log table



Example 3 An Exponential or Power Model?

Data points are shown in Table 5.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Is an exponential function or a power function appropriate for modeling 
this data?

(d) Find an appropriate function to model the data.

Solution

(a) The scatter plot of the data is shown in Figure 8.

(b) We use the values from Table 6 to graph the scatter plots in Figures 9 and 10.

Figure 9 Figure 10

(c) The scatter plot of in Figure 9 does not appear to be linear, so an 
exponential model is not appropriate. On the other hand, the scatter plot of

in Figure 10 is very nearly linear, so a power model is appropriate.

(d) Using the PwrReg command on a graphing calculator, we find that the power
function that best fits the data point is

The graph of this function and the original data points are shown in Figure 11.

■

11

140

0
0

Figure 11

y � 1.85x 1.82

1ln x, ln y 2 1x, ln y 2
2.5

5

0
011

6

0
0

11

140

0
0

Figure 8

1ln x, ln y 21x, ln y 2
1x,y 2

x y

1 2
2 6
3 14
4 22
5 34
6 46
7 64
8 80
9 102

10 130

Table 5

x ln x ln y

1 0 0.7
2 0.7 1.8
3 1.1 2.6
4 1.4 3.1
5 1.6 3.5
6 1.8 3.8
7 1.9 4.2
8 2.1 4.4
9 2.2 4.6

10 2.3 4.9

Table 6
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Before graphing calculators and statistical software became common, exponential
and power models for data were often constructed by first finding a linear model for
the linearized data. Then the model for the actual data was found by taking exponen-
tials. For instance, if we find that ln y � A ln x � B, then by taking exponentials we
get the model y � eB 
 eA ln x, or y � CxA (where C � eB ). Special graphing paper called
“log paper” or “log-log paper” was used to facilitate this process.

Modeling with Logistic Functions

A logistic growth model is a function of the form

where a, b, and c are positive constants. Logistic functions are used to model popu-
lations where the growth is constrained by available resources. (See Exercises 69–72
of Section 4.1.)

Example 4 Stocking a Pond with Catfish

Much of the fish sold in supermarkets today is raised on commercial fish farms, not
caught in the wild. A pond on one such farm is initially stocked with 1000 catfish,
and the fish population is then sampled at 15-week intervals to estimate its size. The
population data are given in Table 7.

(a) Find an appropriate model for the data.

(b) Make a scatter plot of the data and graph the model you found in part (a) on the
scatter plot.

(c) How does the model predict that the fish population will change with time?

Solution

(a) Since the catfish population is restricted by its habitat (the pond), a logistic
model is appropriate. Using the Logistic command on a calculator (see 
Figure 12(a)), we find the following model for the catfish population :

(b) The scatter plot and the logistic curve are shown in Figure 12(b).

(a) (b)  Catfish population y = P(t)
0

0 180

9000

Figure 12

P1t 2 �
7925

1 � 7.7e�0.052t

P1t 2
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Week Catfish

0 1000
15 1500
30 3300
45 4400
60 6100
75 6900
90 7100

105 7800
120 7900

Table 7

f 1t 2 �
c

1 � ae�bt



(c) From the graph of P in Figure 12(b), we see that the catfish population 
increases rapidly until about t � 80 weeks. Then growth slows down, and 
at about t � 120 weeks the population levels off and remains more or less 
constant at slightly over 7900. ■

The behavior exhibited by the catfish population in Example 4 is typical of logis-
tic growth. After a rapid growth phase, the population approaches a constant level
called the carrying capacity of the environment. This occurs because as t �q, we
have e�bt � 0 (see Section 4.1), and so

Thus, the carrying capacity is c.

Problems

1. U.S. Population The U.S. Constitution requires a census every 10 years. The census
data for 1790–2000 is given in the table.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model for the data.

(c) Use your model to predict the population at the 2010 census.

(d) Use your model to estimate the population in 1965.

(e) Compare your answers from parts (c) and (d) to the values in the table. Do you
think an exponential model is appropriate for these data?

P1t 2 �
c

1 � ae�bt �  
c

1 � 0
� c

Population Population Population
Year (in millions) Year (in millions) Year (in millions)

1790 3.9 1870 38.6 1950 151.3
1800 5.3 1880 50.2 1960 179.3
1810 7.2 1890 63.0 1970 203.3
1820 9.6 1900 76.2 1980 226.5
1830 12.9 1910 92.2 1990 248.7
1840 17.1 1920 106.0 2000 281.4
1850 23.2 1930 123.2
1860 31.4 1940 132.2

2. A Falling Ball In a physics experiment a lead ball is dropped from a height of 5 m.
The students record the distance the ball has fallen every one-tenth of a second. 
(This can be done using a camera and a strobe light.)

(a) Make a scatter plot of the data.

(b) Use a calculator to find a power model.

(c) Use your model to predict how far a dropped ball would fall in 3 s.

3. Health-care Expenditures The U.S. health-care expenditures for 1970–2001 are
given in the table on the next page, and a scatter plot of the data is shown in the figure.

(a) Does the scatter plot shown suggest an exponential model?

(b) Make a table of the values and a scatter plot. Does the scatter plot appear to
be linear?

1t, ln E 2

Time Distance 
(s) (m)

0.1 0.048
0.2 0.197
0.3 0.441
0.4 0.882
0.5 1.227
0.6 1.765
0.7 2.401
0.8 3.136
0.9 3.969
1.0 4.902
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(c) Find the regression line for the data in part (b).

(d) Use the results of part (c) to find an exponential model for the growth of health-care
expenditures.

(e) Use your model to predict the total health-care expenditures in 2009.

394 Focus on Modeling

Health expenditures
Year (in billions of dollars)

1970 74.3
1980 251.1
1985 434.5
1987 506.2
1990 696.6
1992 820.3
1994 937.2
1996 1039.4
1998 1150.0
2000 1310.0
2001 1424.5

400

200

1980 1990 20001970 t

Year

600

800

1000

1200

1400
E

U.S. health-care
expenditures
(in billions
of dollars)

4. Half-life of Radioactive Iodine A student is trying to determine the half-life of 
radioactive iodine-131. He measures the amount of iodine-131 in a sample solution
every 8 hours. His data are shown in the table in the margin.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model.

(c) Use your model to find the half-life of iodine-131.

5. The Beer-Lambert Law As sunlight passes through the waters of lakes and oceans,
the light is absorbed and the deeper it penetrates, the more its intensity diminishes. The
light intensity I at depth x is given by the Beer-Lambert Law:

where I0 is the light intensity at the surface and k is a constant that depends on the murk-
iness of the water (see page 364). A biologist uses a photometer to investigate light pen-
etration in a northern lake, obtaining the data in the table.

(a) Use a graphing calculator to find an exponential function of the form given by the
Beer-Lambert Law to model these data. What is the light intensity I0 at the surface
on this day, and what is the “murkiness” constant k for this lake? [Hint: If your 
calculator gives you a function of the form I � abx, convert this to the form you
want using the identities . See Example 1(b).]

(b) Make a scatter plot of the data and graph the function that you found in part (a) on
your scatter plot.

(c) If the light intensity drops below 0.15 lumens (lm), a certain species of algae can’t
survive because photosynthesis is impossible. Use your model from part (a) to 
determine the depth below which there is insufficient light to support this algae.

bx � e ln 1bx 2 � e x ln b

I � I0e
�kx

Time (h) Amount of 131I 1g2
0 4.80
8 4.66

16 4.51
24 4.39
32 4.29
40 4.14
48 4.04

Depth Light intensity Depth Light intensity 
(ft) (lm) (ft) (lm)

5 13.0 25 1.8
10 7.6 30 1.1
15 4.5 35 0.5
20 2.7 40 0.3Light intensity decreases

exponentially with depth.
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6. Experimenting with “Forgetting” Curves Every one of us is all too familiar
with the phenomenon of forgetting. Facts that we clearly understood at the time we first
learned them sometimes fade from our memory by the time the final exam rolls around.
Psychologists have proposed several ways to model this process. One such model is
Ebbinghaus’ Forgetting Curve, described on page 355. Other models use exponential or
logarithmic functions. To develop her own model, a psychologist performs an 
experiment on a group of volunteers by asking them to memorize a list of 100 related
words. She then tests how many of these words they can recall after various periods of
time. The average results for the group are shown in the table.

(a) Use a graphing calculator to find a power function of the form y � at b that models
the average number of words y that the volunteers remember after t hours. Then find
an exponential function of the form y � abt to model the data.

(b) Make a scatter plot of the data and graph both the functions that you found in part
(a) on your scatter plot.

(c) Which of the two functions seems to provide the better model?

7. Lead Emissions The table below gives U.S. lead emissions into the environment in 
millions of metric tons for 1970–1992.

(a) Find an exponential model for these data.

(b) Find a fourth-degree polynomial model for these data.

(c) Which of these curves gives a better model for the data? Use graphs of the two
models to decide.

(d) Use each model to estimate the lead emissions in 1972 and 1982.

Time Words recalled

15 min 64.3
1 h 45.1
8 h 37.3
1 day 32.8
2 days 26.9
3 days 25.6
5 days 22.9

Lead
Year emissions

1970 199.1
1975 143.8
1980 68.0
1985 18.3
1988 5.9
1989 5.5
1990 5.1
1991 4.5
1992 4.7



8. Auto Exhaust Emissions A study by the U.S. Office of Science and 
Technology in 1972 estimated the cost of reducing automobile emissions by certain 
percentages. Find an exponential model that captures the “diminishing returns” trend 
of these data shown in the table below.

9. Exponential or Power Model? Data points are shown in the table.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data—an exponential function or a
power function?

(d) Find an appropriate function to model the data.

10. Exponential or Power Model? Data points are shown in the table in the
margin.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data—an exponential function or a
power function?

(d) Find an appropriate function to model the data.

1ln x, ln y 21x, ln y 2
1x, y 2

1ln x, ln y 21x, ln y 2
1x, y 2
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x y

2 0.08
4 0.12
6 0.18
8 0.25

10 0.36
12 0.52
14 0.73
16 1.06

x y

10 29
20 82
30 151
40 235
50 330
60 430
70 546
80 669
90 797

Reduction in Cost per
emissions (%) car ($)

50 45
55 55
60 62
65 70
70 80
75 90
80 100
85 200
90 375
95 600



12. Logarithmic Models A logarithmic model is a function of the form

Many relationships between variables in the real world can be modeled by this type of
function. The table and the scatter plot show the coal production (in metric tons) from a
small mine in northern British Columbia.

(a) Use the LnReg command on your calculator to find a logarithmic model for these
production figures.

(b) Use the model to predict coal production from this mine in 2010.

y � a � b ln x

11. Logistic Population Growth The table and scatter plot give the population of
black flies in a closed laboratory container over an 18-day period.

(a) Use the Logistic command on your calculator to find a logistic model for 
these data.

(b) Use the model to estimate the time when there were 400 flies in the container.

Metric tons 
Year of coal

1950 882
1960 889
1970 894
1980 899
1990 905
2000 909

900

895

890

885

1960 1980 20001940 t

Year

905

Metric tons
of coal

C
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400

300

200

100

4 6 80 t

Days

500

Number
of flies

N

102 12 14 16 18

Time Number 
(days) of flies

0 10
2 25
4 66
6 144
8 262

10 374
12 446
16 492
18 498



Polynomial and
Rational Functions

5 Trigonometric
Functions
of Real Numbers



Chapter Overview

In this chapter and the next we introduce new functions called the trigonometric func-
tions. The trigonometric functions can be defined in two different but equivalent
ways—as functions of angles (Chapter 6) or functions of real numbers (Chapter 5).
The two approaches to trigonometry are independent of each other, so either Chapter
5 or Chapter 6 may be studied first. We study both approaches because different ap-
plications require that we view these functions differently. The approach in this chap-
ter lends itself to modeling periodic motion.

If you’ve ever taken a ferris wheel ride, then you know about periodic motion—
that is, motion that repeats over and over. This type of motion is common in nature.
Think about the daily rising and setting of the sun (day, night, day, night, . . .), the daily
variation in tide levels (high, low, high, low, . . .), the vibrations of a leaf in the wind
(left, right, left, right, . . .), or the pressure in the cylinders of a car engine (high, low,
high, low, . . .). To describe such motion mathematically we need a function whose
values increase, then decrease, then increase, . . . , repeating this pattern indefinitely.
To understand how to define such a function, let’s look at the ferris wheel again.
A person riding on the wheel goes up and down, up and down, . . . . The graph shows
how high the person is above the center of the ferris wheel at time t. Notice that as the
wheel turns the graph goes up and down repeatedly.

We define the trigonometric function called sine in a similar way. We start with a
circle of radius 1, and for each distance t along the arc of the circle ending at 
we define the value of the function sin t to be the height (or y-coordinate) of that point.
To apply this function to real-world situations we use the transformations we learned
in Chapter 2 to stretch, shrink, or shift the function to fit the variation we are 
modeling.

There are six trigonometric functions, each with its special properties. In this

1x, y 2

t

t

t

y
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chapter we study their definitions, graphs, and applications. In Section 5.5 we see
how trigonometric functions can be used to model harmonic motion.

5.1 The Unit Circle

In this section we explore some properties of the circle of radius 1 centered at the ori-
gin. These properties are used in the next section to define the trigonometric functions.

The Unit Circle

The set of points at a distance 1 from the origin is a circle of radius 1 (see Figure 1).
In Section 1.8 we learned that the equation of this circle is x 2 � y 2 � 1.

400 CHAPTER 5 Trigonometric Functions of Real Numbers

y

x0 1

≈+¥=1

The Unit Circle

The unit circle is the circle of radius 1 centered at the origin in the xy-plane.
Its equation is

x2 � y2 � 1

Example 1 A Point on the Unit Circle

Show that the point is on the unit circle.

Solution We need to show that this point satisfies the equation of the unit circle,
that is, x 2 � y 2 � 1. Since

P is on the unit circle. ■

Example 2 Locating a Point on the Unit Circle

The point is on the unit circle in quadrant IV. Find its y-coordinate.

Solution Since the point is on the unit circle, we have

Since the point is in quadrant IV, its y-coordinate must be negative, so . ■y � � 1
2

y � �
1

2

y2 � 1 �
3

4
�

1

4

a 13

2
b 2

� y2 � 1

PA13/2, yB

a 13

3
b 2

� a 16

3
b 2

�
3

9
�

6

9
� 1

P a 13

3
,
16

3
b

Figure 1

The unit circle



Terminal Points on the Unit Circle

Suppose t is a real number. Let’s mark off a distance t along the unit circle, starting
at the point and moving in a counterclockwise direction if t is positive or in a
clockwise direction if t is negative (Figure 2). In this way we arrive at a point 
on the unit circle. The point obtained in this way is called the terminal point
determined by the real number t.

The circumference of the unit circle is . So, if a point starts at
and moves counterclockwise all the way around the unit circle and returns to

, it travels a distance of 2p. To move halfway around the circle, it travels a dis-
tance of  . To move a quarter of the distance around the circle, it travels a
distance of . Where does the point end up when it travels these dis-
tances along the circle? From Figure 3 we see, for example, that when it travels a dis-
tance of p starting at , its terminal point is .

Example 3 Finding Terminal Points

Find the terminal point on the unit circle determined by each real number t.

(a) t � 3p (b) t � �p (c)

Solution From Figure 4 we get the following.

(a) The terminal point determined by 3p is .

(b) The terminal point determined by �p is .1�1, 0 21�1, 0 2
t � �

p

2

y

x0 1

P (1, 0)

t=2π

y

x0 1

P (0, _1)

t=
3π

2

y

x0 1

P (_1, 0)

t=π
P(0, 1)

y

x0 1

t=
π

2

1�1, 0 211, 0 2
1
4 12p 2 � p/2

1
2 12p 2 � p

11, 0 211, 0 2 C � 2p11 2 � 2p

(a) Terminal point P(x, y) determined
by t>0

(b) Terminal point P(x, y) determined
by t<0

y

x0 1

t<0

P(x, y)

y

x0 1

t>0P(x, y)

P1x, y 2 P1x, y 211, 0 2
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Figure 3

Terminal points determined by
, and 2pt � p

2 , p, 3p
2

Figure 2



(c) The terminal point determined by �p/2 is .

Notice that different values of t can determine the same terminal point. ■

The terminal point determined by t � p/4 is the same distance from 
as from along the unit circle (see Figure 5).

Figure 5

Since the unit circle is symmetric with respect to the line y � x, it follows that P lies
on the line y � x. So P is the point of intersection (in the first quadrant) of the circle
x 2 � y 2 � 1 and the line y � x. Substituting x for y in the equation of the circle,
we get

Combine like terms

Divide by 2

Take square roots

Since P is in the first quadrant, and since y � x, we have also.
Thus, the terminal point determined by p/4 is

P a 1

12
,

1

12
b � P a 12

2
,
12

2
b

y � 1/12x � 1/12

x � �
1

12

x2 �
1

2

 2x2 � 1

x2 � x2 � 1

y

x0 1

t=
π

4

P !     ,      @
œ∑2

2

œ∑2

2

y=x

10, 1 2 11, 0 2P1x, y 2

y

x0 1P (_1, 0)

t=3π

y

x0 1

P (_1, 0)

t=_π

y

x0 1

P (0, _1)
t=_

π

2

10, �1 2
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Figure 4



Similar methods can be used to find the terminal points determined by t � p/6 and 
t � p/3 (see Exercises 55 and 56). Table 1 and Figure 6 give the terminal points for
some special values of t.
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Terminal point
t determined by t

0

10,1 2p
2

A12, 13
2 Bp

3

A12
2 , 12

2 Bp
4

A13
2 , 1

2Bp
6

11,0 2
œ∑2

2

y

x0 0; (1, 0)

π

6
; !     ,    @

œ∑3

2

1

2

; !     ,      @
œ∑2

2

; !   ,      @
œ∑3

2

1

2

π

4

π

3

; (0, 1)
π

2

Figure 6

Example 4 Finding Terminal Points

Find the terminal point determined by each given real number t.

(a) (b) (c)

Solution

(a) Let P be the terminal point determined by �p/4, and let Q be the terminal
point determined by p/4. From Figure 7(a) we see that the point P has the same
coordinates as Q except for sign. Since P is in quadrant IV, its x-coordinate is
positive and its y-coordinate is negative. Thus, the terminal point is

.

Figure 7

(b) Let P be the terminal point determined by 3p/4, and let Q be the terminal point
determined by p/4. From Figure 7(b) we see that the point P has the same 
coordinates as Q except for sign. Since P is in quadrant II, its x-coordinate is
negative and its y-coordinate is positive. Thus, the terminal point is

.PA�12/2,12/2B

y

x0 1

Q!     ,    @
œ∑3

2

1

2

(c)

P

t=_
5π

6

π

6

y

x0 1

π

4

Q!     ,      @
œ∑2

2

œ∑2

2

t=
3π

4

(b)

P

y

x0 1

π

4

Q!     ,      @
œ∑2

2

œ∑2

2

t=_
π

4

(a)

P

PA12/2,�12/2B

t � �
5p

6
t �

3p

4
t � �

p

4

Table 1



(c) Let P be the terminal point determined by �5p/6, and let Q be the terminal
point determined by p/6. From Figure 7(c) we see that the point P has the same
coordinates as Q except for sign. Since P is in quadrant III, its coordinates are
both negative. Thus, the terminal point is . ■

The Reference Number

From Examples 3 and 4, we see that to find a terminal point in any quadrant we need
only know the “corresponding” terminal point in the first quadrant. We use the idea
of the reference number to help us find terminal points.

PA�13/2, �1
2B
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Reference Number

Let t be a real number. The reference number associated with t is the 
shortest distance along the unit circle between the terminal point determined
by t and the x-axis.

t

Figure 8 shows that to find the reference number it’s helpful to know the quad-
rant in which the terminal point determined by t lies. If the terminal point lies in quad-
rants I or IV, where x is positive, we find by moving along the circle to the positive
x-axis. If it lies in quadrants II or III, where x is negative, we find by moving along
the circle to the negative x-axis.

Figure 8

The reference number for t

Example 5 Finding Reference Numbers

Find the reference number for each value of t.

(a) (b) (c) (d) t � 5.80

Solution From Figure 9 we find the reference numbers as follows.

(a)

(b)  t � 2p �
7p

4
�
p

4

t � p �
5p

6
�
p

6

t � �
2p

3
t �

7p

4
t �

5p

6

t

y

x0 1

t

t

y

x0 1

t

t

y

x0 1

t

t

y

x0 1

t=t

t
t

t



(c)

(d)

Figure 9 ■

y

x0 1

t=
π

3 t=_
2π

3

y

x

0 1

t=5.80

tÅ0.48

y

x

0 1

t=
π

4

t=
7π

4

y

x0 1

t=
π

6

t=
5π

6

(a) (b) (c) (d)

t � 2p � 5.80 � 0.48

t � p �
2p

3
�
p

3
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Using Reference Numbers to Find Terminal Points

To find the terminal point P determined by any value of t, we use the following
steps:

1. Find the reference number .

2. Find the terminal point determined by .

3. The terminal point determined by t is , where the signs are 
chosen according to the quadrant in which this terminal point lies.

P1�a, �b 2tQ1a, b 2t

Example 6 Using Reference Numbers 

to Find Terminal Points

Find the terminal point determined by each given real number t.

(a) (b) (c)

Solution The reference numbers associated with these values of t were found in
Example 5.

(a) The reference number is , which determines the terminal point
from Table 1. Since the terminal point determined by t is in quadrant II, its
x-coordinate is negative and its y-coordinate is positive. Thus, the desired termi-
nal point is

(b) The reference number is , which determines the terminal point
from Table 1. Since the terminal point is in quadrant IV, its A12/2, 12/2B t � p/4

a�
13

2
,

1

2
b

A13/2, 1
2Bt � p/6

t � �
2p

3
t �

7p

4
t �

5p

6



x-coordinate is positive and its y-coordinate is negative. Thus, the desired 
terminal point is

(c) The reference number is , which determines the terminal point
from Table 1. Since the terminal point determined by t is in quadrant

III, its coordinates are both negative. Thus, the desired terminal point is

■

Since the circumference of the unit circle is 2p, the terminal point determined by
t is the same as that determined by t � 2p or t � 2p. In general, we can add or sub-
tract 2p any number of times without changing the terminal point determined by t.
We use this observation in the next example to find terminal points for large t.

Example 7 Finding the Terminal Point for Large t

Find the terminal point determined by .

Solution Since

we see that the terminal point of t is the same as that of 5p/6 (that is, we subtract
4p). So by Example 6(a) the terminal point is . (See Figure 10.) ■

5.1 Exercises

A�13/2, 1
2B

t �
29p

6
� 4p �

5p

6

t �
29p

6

a�
1

2
, �
13

2
b

A12, 13/2B t � p/3

a 12

2
, �
12

2
b
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y

x0 1

_!  ,  @
œ∑3

2

1

2

Figure 10

1–6 ■ Show that the point is on the unit circle.

1. 2. 3.

4. 5. 6.

7–12 ■ Find the missing coordinate of P, using the fact that P
lies on the unit circle in the given quadrant.

Coordinates Quadrant

7. III

8. IV

9. II

10. I

11. IV

12. IIPA�2
3,      BPA     , �2

7BPA25,      BPA     , 13BPA     , � 7
25 BPA�3

5,     B

a 111

6
,

5

6
ba�15

3
,

2

3
ba� 5

7
, �

216

7
b

a 7

25
,

24

25
ba� 5

13
,

12

13
ba 4

5
, �

3

5
b 13–18 ■ The point P is on the unit circle. Find from 

the given information.

13. The x-coordinate of P is and the y-coordinate is 
positive.

14. The y-coordinate of P is and the x-coordinate is 
positive.

15. The y-coordinate of P is and the x-coordinate is 
negative.

16. The x-coordinate of P is positive and the y-coordinate of 
P is .

17. The x-coordinate of P is and P lies below the 
x-axis.

18. The x-coordinate of P is and P lies above the 
x-axis.

�2
5

�12/3

�15/5

2
3

�1
3

4
5

P1x, y 2



SECTION 5.1 The Unit Circle 407

19–20 ■ Find t and the terminal point determined by t for each
point in the figure. In Exercise 19, t increases in increments of
p/4; in Exercise 20, t increases in increments of p/6.

19. 20.

21–30 ■ Find the terminal point on the unit circle 
determined by the given value of t.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Suppose that the terminal point determined by t is the point
on the unit circle. Find the terminal point determined

by each of the following.

(a) p � t (b) �t

(c) p � t (d) 2p� t

32. Suppose that the terminal point determined by t is the point
on the unit circle. Find the terminal point deter-

mined by each of the following.

(a) �t (b) 4p � t

(c) p � t (d) t � p

33–36 ■ Find the reference number for each value of t.

33. (a) (b)

(c) (d)

34. (a) (b)

(c) (d) t � �
7p

4
t �

11p

3

t �
7p

6
t �

5p

6

t �
p

6
t � �

4p

3

t �
7p

3
t �

5p

4

A34,17/4B

A35, 4
5B

t �
11p

6
t � �

3p

4

t � �
p

2
t �

2p

3

t �
5p

3
t � �

p

3

t �
7p

6
t �

5p

6

t �
3p

2
t �
p

2

P1x, y 2

y

x1_1

1

_1

t=   ;
π

6

!    ,    @
œ∑3

2

1

2

y

x1_1

1

_1

π

4
t=   ;

!    ,     @
œ∑2

2

œ∑2

2

35. (a) (b)

(c) t � �3 (d) t � 5

36. (a) (b)

(c) t � 6 (d) t � �7

37–50 ■ Find (a) the reference number for each value of t,
and (b) the terminal point determined by t.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51–54 ■ Use the figure to find the terminal point determined 
by the real number t, with coordinates correct to one decimal
place.

51. t � 1

52. t � 2.5

53. t � �1.1

54. t � 4.2

Discovery • Discussion

55. Finding the Terminal Point for P/6 Suppose the termi-
nal point determined by t � p/6 is and the points Q
and R are as shown in the figure on the next page. Why are
the distances PQ and PR the same? Use this fact, together
with the Distance Formula, to show that the coordinates of

P1x, y 2

t � �
41p

4
t �

16p

3

t �
31p

6
t � �

11p

3

t �
17p

4
t �

7p

6

t �
13p

6
t �

13p

4

t � �
7p

6
t � �

2p

3

t �
7p

3
t �

3p

4

t �
4p

3
t �

2p

3

t � �
9p

7
t �

11p

5

t � �
7p

9
t �

5p

7

y

x0 1_1

1
2

3

4

5

6



408 CHAPTER 5 Trigonometric Functions of Real Numbers

P satisfy the equation . Simplify this
equation using the fact that x 2 � y 2 � 1. Solve the
simplified equation to find .

y

x0 1

t=
π

6

Q(x, _y)

P (x, y)

R(0, 1)

P1x, y 22y � 2x2 � 1y � 1 2 2 56. Finding the Terminal Point for P/3 Now that you know
the terminal point determined by t � p/6, use symmetry to
find the terminal point determined by t � p/3 (see the
figure). Explain your reasoning.

y

x0 1

π

6
Q

P

y=x

t=
π

3

π

6

5.2 Trigonometric Functions of Real Numbers

A function is a rule that assigns to each real number another real number. In this sec-
tion we use properties of the unit circle from the preceding section to define the
trigonometric functions.

The Trigonometric Functions

Recall that to find the terminal point for a given real number t, we move a 
distance t along the unit circle, starting at the point . We move in a counter-
clockwise direction if t is positive and in a clockwise direction if t is negative (see
Figure 1). We now use the x- and y-coordinates of the point to define several
functions. For instance, we define the function called sine by assigning to each real
number t the y-coordinate of the terminal point determined by t. The functions
cosine, tangent, cosecant, secant, and cotangent are also defined using the coordi-
nates of .P1x, y 2 P1x, y 2 P1x, y 211, 0 2P1x, y 2

Definition of the Trigonometric Functions

Let t be any real number and let be the terminal point on the unit
circle determined by t. We define

cot t �
x
y
 1y � 0 2sec t �

1
x
 1x � 0 2csc t �

1
y
 1y � 0 2

tan t �
y

x
 1x � 0 2cos t � xsin t � y

P1x, y 2

Because the trigonometric functions can be defined in terms of the unit circle, they
are sometimes called the circular functions.

y

x0 1

tP (x, y)

Figure 1
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Relationship to the Trigonometric
Functions of Angles

If you have previously studied trigonometry of
right triangles (Chapter 6), you are probably won-
dering how the sine and cosine of an angle relate
to those of this section. To see how, let’s start
with a right triangle, OPQ.

Place the triangle in the coordinate plane as
shown, with angle u in standard position.

The point in the figure is the terminal
point determined by the arc t. Note that triangle
OPQ is similar to the small triangle OP �Q� whose
legs have lengths x and y.

Now, by the definition of the trigonometric
functions of the angle u we have

P ¿ 1x, y 2
P'(x, y) is the terminal
point determined by t.

y

xO 1

P'(x, y)

Q

P

¨

Q'

t

Right triangle OPQ

¨

O

P

Q

opp

adj

hyp

By the definition of the trigonometric functions 
of the real number t, we have

Now, if u is measured in radians, then u � t
(see the figure). So the trigonometric functions of
the angle with radian measure u are exactly the
same as the trigonometric functions defined in
terms of the terminal point determined by the
real number t.

Why then study trigonometry in two different
ways? Because different applications require that
we view the trigonometric functions differently.
(Compare Section 5.5 with Sections 6.2, 6.4, 
and 6.5.)

The radian measure
of angle ¨ is t.

y

xO 1

P'(x, y)

t
¨

sin t � y  cos t � x

�
x
1

� x

cos u �
adj
hyp

�
OQ
OP

�
OQ ¿
OP ¿

�
y
1

� y

sin u �
opp
hyp

�
PQ
OP

�
P ¿Q ¿
OP ¿
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Example 1 shows that some of the trigonometric functions fail to be defined 
for certain real numbers. So we need to determine their domains. The functions sine
and cosine are defined for all values of t. Since the functions cotangent and cosecant
have y in the denominator of their definitions, they are not defined whenever the 
y-coordinate of the terminal point determined by t is 0. This happens when 
t � np for any integer n, so their domains do not include these points. The functions
tangent and secant have x in the denominator in their definitions, so they are not
defined whenever x � 0. This happens when for any integer n.t � 1p/2 2 � np

P1x, y 2

Example 1 Evaluating Trigonometric Functions

Find the six trigonometric functions of each given real number t.

(a) (b)

Solution

(a) From Table 1 on page 403, we see that the terminal point determined by 
t � p/3 is . (See Figure 2.) Since the coordinates are and 

, we have

(b) The terminal point determined by p/2 is . (See Figure 3.) So

But tan p/2 and sec p/2 are undefined because x � 0 appears in the denomina-
tor in each of their definitions. ■

Some special values of the trigonometric functions are listed in Table 1. This table
is easily obtained from Table 1 of Section 5.1, together with the definitions of the
trigonometric functions.

cot
p

2
�

0

1
� 0csc

p

2
�

1

1
� 1cos

p

2
� 0sin

p

2
� 1

P10, 1 2
cot
p

4
�

1/2

13/2
�
13

3sec
p

3
� 2csc

p

3
�

213

3

tan
p

3
�
13/2

1/2
� 13cos

p

3
�

1

2
sin
p

3
�
13

2

y � 13/2
x � 1

2PA12, 13/2B
t �
p

2
t �
p

3

0 1

P

y

x

t=
π

3

!  ,     @
1

2

œ∑3

2

Figure 2

0 1

P(0, 1)

y

x

t=
π

2

Figure 3

t sin t cos t tan t csc t sec t cot t

0 0 1 0 — 1 —

2

1 1

2

1 0 — 1 — 0
p

2

13

3

213

3
13

1

2

13

2

p

3

1212
12

2

12

2

p

4

13
213

3

13

3

13

2

1

2

p

6

Table 1 Special values of the trigonometric functions

t sin t cos t

0

p/6
p/4
p/3
p/2 10/214/2

11/213/2

12/212/2

13/211/2

14/210/2

We can easily remember the sines and
cosines of the basic angles by writing
them in the form :1 /2
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Domains of the Trigonometric Functions

Function Domain

sin, cos All real numbers

tan, sec All real numbers other than for any integer n

cot, csc All real numbers other than np for any integer, n

p

2
� np

Signs of the Trigonometric Functions

Quadrant Positive Functions Negative functions

I all none

II sin, csc cos, sec, tan, cot

III tan, cot sin, csc, cos, sec

IV cos, sec sin, csc, tan, cot

Values of the Trigonometric Functions

To compute other values of the trigonometric functions, we first determine their
signs. The signs of the trigonometric functions depend on the quadrant in which the
terminal point of t lies. For example, if the terminal point determined by t lies
in quadrant III, then its coordinates are both negative. So sin t, cos t, csc t, and sec t
are all negative, whereas tan t and cot t are positive. You can check the other entries
in the following box.

P1x, y 2

Example 2 Determining the Sign 

of a Trigonometric Function

(a) , because the terminal point of is in quadrant I.

(b) tan 4 	 0, because the terminal point of t � 4 is in quadrant III.

(c) If cos t � 0 and sin t 	 0, then the terminal point of t must be in quadrant II.
■

In Section 5.1 we used the reference number to find the terminal point determined by
a real number t. Since the trigonometric functions are defined in terms of the 
coordinates of terminal points, we can use the reference number to find values of the
trigonometric functions. Suppose that is the reference number for t. Then the ter-
minal point of has the same coordinates, except possibly for sign, as the terminal
point of t. So the values of the trigonometric functions at t are the same, except pos-
sibly for sign, as their values at . We illustrate this procedure in the next example.t

t
t

t �
p

3
cos
p

3
	 0

y

x

AllSine

CosineTangent

The following mnemonic device will
help you remember which trigonometric
functions are positive in each quadrant:
All of them, Sine, Tangent, or Cosine.

You can remember this as “All Students
Take Calculus.”
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Example 3 Evaluating Trigonometric Functions

Find each value.

(a) (b) (c)

Solution

(a) The reference number for 2p/3 is p/3 (see Figure 4(a)). Since the terminal
point of 2p/3 is in quadrant II, is negative. Thus

Sign Reference From
number Table 1

(b) The reference number for �p/3 is p/3 (see Figure 4(b)). Since the terminal
point of �p/3 is in quadrant IV, is negative. Thus

Sign Reference From 
number Table 1

(c) Since , the terminal points determined by 19p/4 and
3p/4 are the same. The reference number for 3p/4 is p/4 (see Figure 4(c)).
Since the terminal point of 3p/4 is in quadrant II, is positive. Thus

Subtract 4p Sign Reference From 
number Table 1 ■

Figure 4

So far we have been able to compute the values of the trigonometric functions only
for certain values of t. In fact, we can compute the values of the trigonometric func-
tions whenever t is a multiple of p/6, p/4, p/3, and p/2. How can we compute the
trigonometric functions for other values of t? For example, how can we find sin1.5?
One way is to carefully sketch a diagram and read the value (see Exercises 37–44);
however, this method is not very accurate. Fortunately, programmed directly into sci-
entific calculators are mathematical procedures (see the margin note on page 436)
that find the values of sine, cosine, and tangent correct to the number of digits in the 

y

x

t=
19π

4π

4
t=

(c)

0

(b)

y

x

π

3
t=

π

3
t=_

0

(a)

y

x

t=
2π

3π

3
t=

0

sin
19p

4
� sin

3p

4
� �sin

p

4
�
12

2

sin13p/4 2119p/4 2 � 4p � 3p/4

tan a�p
3
b � �tan

p

3
� �13

tan1�p/3 2

cos
2p

3
� �cos

p

3
� �

1

2

cos12p/3 2
sin

19p

4
tan a�p

3
bcos

2p

3



display. The calculator must be put in radian mode to evaluate these functions. To find
values of cosecant, secant, and cotangent using a calculator, we need to use the fol-
lowing reciprocal relations:

These identities follow from the definitions of the trigonometric functions. For in-
stance, since sin t � y and csc t � 1/y, we have . The others 
follow similarly.

Example 4 Using a Calculator to Evaluate 

Trigonometric Functions

Making sure our calculator is set to radian mode and rounding the results to six
decimal places, we get

(a) sin 2.2 � 0.808496 (b) cos 1.1 � 0.453596

(c) (d) ■

Let’s consider the relationship between the trigonometric functions of t and those
of �t. From Figure 5 we see that

These equations show that sine and tangent are odd functions, whereas cosine is 
an even function. It’s easy to see that the reciprocal of an even function is even and
the reciprocal of an odd function is odd. This fact, together with the reciprocal rela-
tions, completes our knowledge of the even-odd properties for all the trigonometric
functions.

 tan1�t 2 �
�y

x
� �

y

x
� �tan t

 cos1�t 2 � x � cos t

 sin1�t 2 � �y � �sin t

csc 0.98 �
1

sin 0.98
� 1.204098cot 28 �

1

tan 28
� �3.553286

csc t � 1/y � 1/ 1sin t 2
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y

x0 1

(x, y)

_t

t

y

_y
(x, _y)

x

Figure 5

Example 5 Even and Odd Trigonometric Functions

Use the even-odd properties of the trigonometric functions to determine each value.

(a) (b) cos a�p
4
bsin a�p

6
b

Even-Odd Properties

Sine, cosecant, tangent, and cotangent are odd functions; cosine and secant
are even functions.

 csc1�t 2 � �csc t   sec1�t 2 � sec t    cot1�t 2 � �cot t

 sin1�t 2 � �sin t    cos1�t 2 � cos t    tan1�t 2 � �tan t

csc t �
1

sin t
   sec t �

1

cos t
   cot t �

1

tan t

Even and odd functions are defined in
Section 2.4.



Solution By the even-odd properties and Table 1, we have

(a) Sine is odd

(b) Cosine is even ■

Fundamental Identities

The trigonometric functions are related to each other through equations called
trigonometric identities. We give the most important ones in the following box.*

cos a�p
4
b � cos

p

4
�
12

2

sin a�p
6
b � �sin

p

6
� �

1

2
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Fundamental Identities

Reciprocal Identities

Pythagorean Identities

sin2t � cos2t � 1   tan2t � 1 � sec2t   1 � cot2t � csc2t

tan t �
sin t

cos t
   cot t �

cos t

sin t

csc t �
1

sin t
   sec t �

1

cos t
   cot t �

1

tan t

■ Proof The reciprocal identities follow immediately from the definition on
page 408. We now prove the Pythagorean identities. By definition, cos t � x and
sin t � y, where x and y are the coordinates of a point on the unit circle.
Since is on the unit circle, we have x 2 � y 2 � 1. Thus

Dividing both sides by cos2t (provided cos t � 0), we get

We have used the reciprocal identities sin t/cos t � tan t and 1/cos t � sec t.
Similarly, dividing both sides of the first Pythagorean identity by sin2t (provided 
sin t � 0) gives us 1 � cot2t � csc2t. ■

 tan2t � 1 � sec2t

a sin t

cos t
b 2

� 1 � a 1

cos t
b 2

sin2t

cos2t
�

cos2t

cos2t
�

1

cos2t

sin2t � cos2t � 1

P1x, y 2 P1x, y 2

*We follow the usual convention of writing sin2t for . In general, we write sinnt for for all integers n
except n � �1. The exponent n � �1 will be assigned another meaning in Section 7.4. Of course, the same convention
applies to the other five trigonometric functions.

1sin t 2 n1sin t 2 2

The Value of P

The number p is the ratio of the
circumference of a circle to its 
diameter. It has been known since
ancient times that this ratio is the
same for all circles. The first sys-
tematic effort to find a numerical
approximation for p was made 
by Archimedes (ca. 240 B.C.),
who proved that by
finding the perimeters of regular 
polygons inscribed in and cir-
cumscribed about a circle.

In about A.D. 480, the Chinese
physicist Tsu Ch’ung-chih gave
the approximation

which is correct to six decimals.
This remained the most accurate
estimation of p until the Dutch
mathematician Adrianus Romanus
(1593) used polygons with more
than a billion sides to compute p
correct to 15 decimals. In the 17th
century, mathematicians began to
use infinite series and trigonomet-
ric identities in the quest for p.
The Englishman William Shanks
spent 15 years (1858–1873) using
these methods to compute p to
707 decimals, but in 1946 it was
found that his figures were wrong
beginning with the 528th decimal.
Today, with the aid of computers,
mathematicians routinely deter-
mine p correct to millions of 
decimals.

p � 355
113 � 3.141592 . . .

22
7 � p � 223

71



As their name indicates, the fundamental identities play a central role in trigonom-
etry because we can use them to relate any trigonometric function to any other. So, if
we know the value of any one of the trigonometric functions at t, then we can find the
values of all the others at t.

Example 6 Finding All Trigonometric Functions 

from the Value of One

If and t is in quadrant IV, find the values of all the trigonometric functions
at t.

Solution From the Pythagorean identities we have

Substitute

Solve for sin2t

Take square roots

Since this point is in quadrant IV, sin t is negative, so . Now that we
know both sin t and cos t, we can find the values of the other trigonometric func-
tions using the reciprocal identities:

■

Example 7 Writing One Trigonometric Function

in Terms of Another

Write tan t in terms of cos t, where t is in quadrant III.

Solution Since tan t � sin t/cos t, we need to write sin t in terms of cos t. By the
Pythagorean identities we have

Solve for sin2t

Take square roots

Since sin t is negative in quadrant III, the negative sign applies here. Thus

■
tan t �

sin t

cos t
�

�21 � cos2t

cos t

 sin t � �21 � cos2t

 sin2t � 1 � cos2t

 sin2t � cos2t � 1

 cot t �
1

tan t
� �

3

4
 sec t �

1

cos t
�

5

3
 csc t �

1

sin t
� �

5

4

 tan t �
sin t

cos t
�

�4
5

3
5

� �
4

3
 cos t �

3

5
 sin t � �

4

5

sin t � �4
5

 sin t � �4
5

 sin2t � 1 � 9
25 � 16

25

cos t � 3
5 sin2t � A35B2 � 1

 sin2t � cos2t � 1

cos t � 3
5
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1–2 ■ Find sin t and cos t for the values of t whose terminal
points are shown on the unit circle in the figure. In Exercise 1,
t increases in increments of p/4; in Exercise 2, t increases in 
increments of p/6. (See Exercises 19 and 20 in Section 5.1.)

1. 2.

3–22 ■ Find the exact value of the trigonometric function at the
given real number.

3. (a) (b) (c)

4. (a) (b) (c)

5. (a) (b) (c)

6. (a) (b) (c)

7. (a) (b) (c)

8. (a) (b) (c)

9. (a) (b) (c)

10. (a) (b) (c)

11. (a) (b) (c)

12. (a) (b) (c)

13. (a) (b) (c)

14. (a) (b) (c) csc
7p

6
sec

7p

6
cos

7p

6

sec a�p
3
bcsc

11p

3
sec

11p

3

cot a� 3p

2
bcos a� 3p

2
bsin a� 3p

2
b

cot a�p
2
bcos a�p

2
bsin a�p

2
b

tan a�p
3
bsec a�p

3
bcos a�p

3
b

cot
7p

3
csc

7p

3
sin

7p

3

sin
7p

4
sin

5p

4
sin

3p

4

cos
7p

4
cos

5p

4
cos

3p

4

cos
7p

3
cos a� 5p

3
bcos

5p

3

sin
11p

6
sin a�p

6
bsin

7p

6

tan
5p

6
cos

5p

6
sin

5p

6

tan
2p

3
cos

2p

3
sin

2p

3

y

x1_1

1

_1

π

6
t=

y

x1_1

1

_1

π

4
t=

15. (a) (b) (c)

16. (a) (b) (c)

17. (a) (b) (c)

18. (a) (b) (c)

19. (a) (b) (c)

20. (a) (b) (c)

21. (a) (b) (c)

22. (a) (b) (c)

23–26 ■ Find the value of each of the six trigonometric 
functions (if it is defined) at the given real number t. Use your
answers to complete the table.

23. t � 0 24. 25. t � p 26. t �
3p

2
t �
p

2

cot
25p

2
cos

25p

2
sin

25p

2

tan 15pcos 14psin 13p

sec 4psec psec1�p 2 csc
3p

2
csc
p

2
csc a�p

2
b

tan
5p

4
sec

5p

4
sin

5p

4

cot a�p
4
bcsc a�p

4
bcos a�p

4
b

cot
5p

3
cot

2p

3
cot a�p

3
b

tan
11p

6
tan

7p

6
tan

5p

6

5.2 Exercises

t sin t cos t tan t csc t sec t cot t

0 0 1 undefined

p 0 undefined

3p
2

p
2

27–36 ■ The terminal point determined by a real 
number t is given. Find sin t, cos t, and tan t.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36. a 24

25
, �

7

25
ba� 20

29
,

21

29
b

a 15

5
,

215

5
ba� 5

13
, �

12

13
b

a 40

41
,

9

41
ba� 6

7
,
113

7
b

a� 1

3
, �

212

3
ba 15

4
, �
111

4
b

a�3

5
,

4

5
ba 3

5
,

4

5
b

P1x, y 2
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37–44 ■ Find the approximate value of the given trigonometric
function by using (a) the figure and (b) a calculator. Compare
the two values.

37. sin 1

38. cos 0.8

39. sin 1.2

40. cos 5

41. tan 0.8

42. tan(�1.3)

43. cos 4.1

44. sin(�5.2)

45–48 ■ Find the sign of the expression if the terminal point
determined by t is in the given quadrant.

45. sin t cos t, quadrant II 46. tan t sec t, quadrant IV

47. , quadrant III 48. cos t sec t, any quadrant

49–52 ■ From the information given, find the quadrant in
which the terminal point determined by t lies.

49. sin t 	 0 and cos t � 0 50. tan t 	 0 and sin t � 0

51. csc t 	 0 and sec t � 0 52. cos t � 0 and cot t � 0

53–62 ■ Write the first expression in terms of the second if the
terminal point determined by t is in the given quadrant.

53. sin t, cos t ; quadrant II 54. cos t, sin t ; quadrant IV

55. tan t, sin t ; quadrant IV 56. tan t, cos t ; quadrant III

57. sec t, tan t ; quadrant II 58. csc t, cot t ; quadrant III

59. tan t, sec t ; quadrant III 60. sin t, sec t ; quadrant IV

61. tan2t, sin t ; any quadrant

62. sec2t sin2t, cos t ; any quadrant

63–70 ■ Find the values of the trigonometric functions of t
from the given information.

63. , terminal point of t is in quadrant II

64. , terminal point of t is in quadrant III

65. sec t � 3, terminal point of t is in quadrant IV

66. , terminal point of t is in quadrant III

67. , cos t 	 0 68. sec t � 2, sin t � 0

69. , sec t � 0 70. tan t � �4, csc t 	 0sin t � �1
4

tan t � �3
4

tan t � 1
4

cos t � �4
5

sin t � 3
5

tan t  sin t

cot t

y

x0 1_1

1
2

3

4

5

6

71–78 ■ Determine whether the function is even, odd,
or neither.

71. 72.

73. 74.

75. 76.

77. 78.

Applications

79. Harmonic Motion The displacement from equilibrium 
of an oscillating mass attached to a spring is given by

where y is measured in inches and t in
seconds. Find the displacement at the times indicated in 
the table.

80. Circadian Rhythms Everybody’s blood pressure 
varies over the course of the day. In a certain individual 
the resting diastolic blood pressure at time t is given by

, where t is measured in hours
since midnight and in mmHg (millimeters of mercury).
Find this person’s diastolic blood pressure at

(a) 6:00 A.M. (b) 10:30 A.M. (c) Noon (d) 8:00 P.M.

81. Electric Circuit After the switch is closed in the circuit
shown, the current t seconds later is .
Find the current at the times

(a) t � 0.1 s and (b) t � 0.5 s.

82. Bungee Jumping A bungee jumper plummets from 
a high bridge to the river below and then bounces back 
over and over again. At time t seconds after her jump,
her height H (in meters) above the river is given by 

R

S
E

C

L

I1t 2 � 0.8e�3tsin 10t

B1t 2B1t 2 � 80 � 7 sin1pt/12 2

y1t 2 � 4 cos 3pt

f 1x 2 � cos1sin x 2f 1x 2 � x3 � cos x

f 1x 2 � x sin3xf 1x 2 � 0 x 0 cos x

f 1x 2 � sin x � cos xf 1x 2 � sin x cos x

f 1x 2 � x2 cos 2xf 1x 2 � x2 sin x

t

0
0.25
0.50
0.75
1.00
1.25

y1t 2

L � 103 h
R � 6 � 103 �

C �9.17 mf
E � 4.8 � 103 V

y>0

y<0

Equilibrium, y=0



5.3 Trigonometric Graphs

The graph of a function gives us a better idea of its behavior. So, in this section we
graph the sine and cosine functions and certain transformations of these functions.
The other trigonometric functions are graphed in the next section.

Graphs of the Sine and Cosine Functions

To help us graph the sine and cosine functions, we first observe that these functions re-
peat their values in a regular fashion. To see exactly how this happens, recall that the
circumference of the unit circle is 2p. It follows that the terminal point deter-
mined by the real number t is the same as that determined by t � 2p. Since the sine and
cosine functions are defined in terms of the coordinates of , it follows that their
values are unchanged by the addition of any integer multiple of 2p. In other words,

 cos1t � 2np 2 � cos t    for any integer n

 sin1t � 2np 2 � sin t    for any integer n

P1x, y 2 P1x, y 2
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. Find her height at the times
indicated in the table.

Discovery • Discussion 

83. Reduction Formulas A reduction formula is one that can
be used to “reduce” the number of terms in the input for a
trigonometric function. Explain how the figure shows that
the following reduction formulas are valid:

y

x1

t

(_x, _y)

(x, y)

t+π

0

tan1t � p 2 � tan t

sin1t � p 2 � �sin t   cos1t � p 2 � �cos t

H

H1t 2 � 100 � 75e�t/20cosAp4 tB 84. More Reduction Formulas By the “Angle-Side-Angle”
theorem from elementary geometry, triangles CDO and
AOB in the figure are congruent. Explain how this proves
that if B has coordinates , then D has coordinates

. Then explain how the figure shows that the follow-
ing reduction formulas are valid:

y

x1

t

B(x, y)D(_y, x)

AOC

t+
π

2

 tan a t �
p

2
b � �cot t

 cos a t �
p

2
b � �sin t

 sin a t �
p

2
b � cos t

1�y, x 2 1x, y 2
t

0
1
2
4
6
8

12

H 1t 2



So the sine and cosine functions repeat their values in any interval of length 2p.
To sketch their graphs, we first graph one period. To sketch the graphs on the interval
0 
 t 
 2p, we could try to make a table of values and use those points to draw the
graph. Since no such table can be complete, let’s look more closely at the definitions
of these functions.

Recall that sin t is the y-coordinate of the terminal point on the unit circle
determined by the real number t. How does the y-coordinate of this point vary as t in-
creases? It’s easy to see that the y-coordinate of increases to 1, then decreases
to �1 repeatedly as the point travels around the unit circle. (See Figure 1.) In
fact, as t increases from 0 to p/2, y � sin t increases from 0 to 1. As t increases from
p/2 to p, the value of y � sin t decreases from 1 to 0. Table 1 shows the variation of
the sine and cosine functions for t between 0 and 2p.

Figure 1

To draw the graphs more accurately, we find a few other values of sin t and cos t
in Table 2. We could find still other values with the aid of a calculator.

y

x0 1

t‚

(ç t‚, ß t‚)

y

t0 t‚

2π

y=ß t

P1x, y 2 P1x, y 2 P1x, y 2

Thus, the sine and cosine functions are periodic according to the following definition:
A function f is periodic if there is a positive number p such that for
every t. The least such positive number (if it exists) is the period of f. If f has period
p, then the graph of f on any interval of length p is called one complete period of f.

f 1t � p 2 � f 1t 2
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Periodic Properties of Sine and Cosine

The functions sine and cosine have period 2p:

sin1t � 2p 2 � sin t            cos1t � 2p 2 � cos t

t sin t cos t

0 � 1 1 � 0

1 � 0 0 � �1

0 � �1 �1 � 0

�1 � 0 0 � 1
3p

2
� 2p

p�
3p

2

p

2
�p

0 �
p

2

Table 1

t 0 p 2p

sin t 0 1 0 �1 0

cos t 1 0 �1 0 1
13
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2
�

1

2
�
13

2
�
13

2
�

1

2

1

2

13

2

�
1

2
�
13

2
�
13

2
�

1

2

1

2

13

2

13

2

1

2

11p

6

5p

3

3p

2

4p

3

7p

6

5p

6

2p

3

p

2

p

3

p

6

Table 2



Now we use this information to graph the functions sin t and cos t for t between
0 and 2p in Figures 2 and 3. These are the graphs of one period. Using the fact that these
functions are periodic with period 2p, we get their complete graphs by continuing the
same pattern to the left and to the right in every successive interval of length 2p.

The graph of the sine function is symmetric with respect to the origin. This is as
expected, since sine is an odd function. Since the cosine function is an even function,
its graph is symmetric with respect to the y-axis.

Figure 2

Graph of sin t

Figure 3

Graph of cos t

Graphs of Transformations of Sine and Cosine

We now consider graphs of functions that are transformations of the sine and cosine
functions. Thus, the graphing techniques of Section 2.4 are very useful here. The
graphs we obtain are important for understanding applications to physical situations
such as harmonic motion (see Section 5.5), but some of them are beautiful graphs that
are interesting in their own right.

It’s traditional to use the letter x to denote the variable in the domain of a function.
So, from here on we use the letter x and write y � sin x, y � cos x, y � tan x, and so
on to denote these functions.

Example 1 Cosine Curves

Sketch the graph of each function.

(a) (b)

Solution

(a) The graph of y � 2 � cos x is the same as the graph of y � cos x, but shifted up
2 units (see Figure 4(a)).

g1x 2 � �cos xf 1x 2 � 2 � cos x

7π

6

y

t0

One period of y=ç t

0≤t≤2π

1

_1

π

6
π

3

π

2

2π

3
5π

6

π

11π

6

2π

4π

3
3π

2

5π

3

y

t0

1

_1
π 2π 4π3π_π

Period 2π

y=ç t

7π

6

y

t0

One period of y=ß t

0≤t≤2π

1

_1

π

6
π

3

π

2
2π

3

5π

6
π

11π

6

2π

4π

3
3π

2

5π

3

y

t0

1

_1
π 2π 4π3π_π

Period 2π

y=ß t
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(b) The graph of y � �cos x in Figure 4(b) is the reflection of the graph of 
y � cos x in the x-axis.

Figure 4

Let’s graph y � 2 sin x. We start with the graph of y � sin x and multiply the 
y-coordinate of each point by 2. This has the effect of stretching the graph vertically
by a factor of 2. To graph , we start with the graph of y � sin x and multi-
ply the y-coordinate of each point by . This has the effect of shrinking the graph ver-
tically by a factor of (see Figure 5).

Figure 5

In general, for the functions

the number is called the amplitude and is the largest value these functions 
attain. Graphs of y � a sin x for several values of a are shown in Figure 6.

Figure 6

y

xπ 2π

y=3 ß x

_π

y=ß x

2

3

_3
y=_2 ß x

y=   ß x
1
2

0 a 0 y � a sin x  and  y � a cos x

y=   ß x1

2

y

x0

1

π 2π

y=2 ß x

_π

y=ß x
_2

2

3

1
2

1
2

y � 1
2 sin x

y=ç x

˝

x0

1

_1

π 2π

˝=_ç x

y=ç x

Ï

x0

1

_1
π 2π

Ï=2+ç x

(a) (b)
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Vertical stretching and shrinking of
graphs is discussed in Section 2.4.

■



Example 2 Stretching a Cosine Curve

Find the amplitude of y � �3 cos x and sketch its graph.

Solution The amplitude is , so the largest value the graph attains is 
3 and the smallest value is �3. To sketch the graph, we begin with the graph of 
y � cos x, stretch the graph vertically by a factor of 3, and reflect in the x-axis, ar-
riving at the graph in Figure 7.

Figure 7 ■

Since the sine and cosine functions have period 2p, the functions

complete one period as kx varies from 0 to 2p, that is, for 0 
 kx 
 2p or for 
0 
 x 
 2p/k. So these functions complete one period as x varies between 0 and 2p/k
and thus have period 2p/k. The graphs of these functions are called sine curves and
cosine curves, respectively. (Collectively, sine and cosine curves are often referred to
as sinusoidal curves.)

y � a sin kx  and  y � a cos kx    1k 	 0 2

y

x0

π

2π

y=_3 ç x

_π

y=ç x

2

3

_3

1

0 �3 0 � 3
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Sine and Cosine Curves

The sine and cosine curves

have amplitude and period .

An appropriate interval on which to graph one complete period is [0, 2p/k].

2p/k0 a 0y � a sin kx  and  y � a cos kx    1k 	 0 2

To see how the value of k affects the graph of y � sin kx, let’s graph the sine curve
y � sin 2x. Since the period is 2p/2 � p, the graph completes one period in the 
interval 0 
 x 
 p (see Figure 8(a)). For the sine curve , the period is

, and so the graph completes one period in the interval 0 
 x 
 4p (see
Figure 8(b)). We see that the effect is to shrink the graph horizontally if k 	 1 or to
stretch the graph horizontally if k � 1.

Figure 8 (a) (b)

y

xπ 2π

_π

_1

3π 4π_2π

1
y=ß    x

1

2

y

xπ 2π

_π

y=ß 2x
1

π

2

2p � 1
2 � 4p

y � sin 1
2xHorizontal stretching and shrinking of

graphs is discussed in Section 2.4.
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Figure 9
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x0
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π
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Figure 10

y

xπ 2π

_2

3π 4π

2
y=_2 ß   x

1

2

0

Figure 11
Shifted Sine and Cosine Curves

The sine and cosine curves

have amplitude , period 2p/k, and phase shift b.

An appropriate interval on which to graph one complete period is
.3b, b � 12p/k 2 4
0 a 0y � a sin k1x � b 2  and  y � a cos k1x � b 2  1k 	 0 2

For comparison, in Figure 9 we show the graphs of one period of the sine curve 
y � a sin kx for several values of k.

Example 3 Amplitude and Period

Find the amplitude and period of each function, and sketch its graph.

(a) y � 4 cos 3x (b)

Solution

(a) We get the amplitude and period from the form of the function as follows:

The amplitude is 4 and the period is 2p/3. The graph is shown in Figure 10.

(b) For ,

The graph is shown in Figure 11. ■

The graphs of functions of the form and
are simply sine and cosine curves shifted horizontally by an amount . They are
shifted to the right if b 	 0 or to the left if b � 0. The number b is the phase shift.
We summarize the properties of these functions in the following box.

0 b 0y � a cos k1x � b 2y � a sin k1x � b 2
period �

2p
1
2

� 4p

amplitude � 0 a 0 � 0 �2 0 � 2

y � �2 sin 1
2 x

period �
2p
k

�
2p
3

y � 4 cos 3x

amplitude � 0 a 0 � 4

y � �2 sin 1
2x

y=a ß 2x y=a ß    x
1

2
y=a ß    x

1

3

0

y

xπ 2π

_a

a
y=a ß x

4π 6π3π 5π



The graphs of and are shown in Figure 12.

Example 4 A Shifted Sine Curve

Find the amplitude, period, and phase shift of , and graph one
complete period.

Solution We get the amplitude, period, and phase shift from the form of the
function as follows:

Since the phase shift is p/4 and the period is p, one complete period occurs on
the interval

As an aid in sketching the graph, we divide this interval into four equal parts, then
graph a sine curve with amplitude 3 as in Figure 13.

Figure 13 ■
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Figure 12

Here is another way to find an appro-
priate interval on which to graph one
complete period. Since the period 
of y � sin x is 2p, the function

will go through one
complete period as varies
from 0 to 2p.

So we graph one period on the interval
.3p4 , 5p

4 4
x � 5p

4x � p
4

x � p
4 � px � p

4 � 0

21x � p
4 2 � 2p21x � p

4 2 � 0

End of period:Start of period:

21x � p
4 2y � 3 sin 21x � p

4 2



Example 5 A Shifted Cosine Curve

Find the amplitude, period, and phase shift of

and graph one complete period.

Solution We first write this function in the form . To do this,

we factor 2 from the expression to get

Thus, we have

Shift to the left

From this information it follows that one period of this cosine curve begins at 
�p/3 and ends at . To sketch the graph over the interval

, we divide this interval into four equal parts and graph a cosine 
curve with amplitude as shown in Figure 14.

Figure 14 ■

Using Graphing Devices 

to Graph Trigonometric Functions

When using a graphing calculator or a computer to graph a function, it is important
to choose the viewing rectangle carefully in order to produce a reasonable graph of
the function. This is especially true for trigonometric functions; the next example
shows that, if care is not taken, it’s easy to produce a very misleading graph of a
trigonometric function.
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We can also find one complete period
as follows:

Start of period: End of period:

So we graph one period on the interval
.3�p

3 , 2p
3 4

x � 2p
3x � �p

3

 2x � 4p
32x � � 2p

3

2x � 2p
3 � 2p2x � 2p

3 � 0

See Section 1.9 for guidelines on
choosing an appropriate viewing
rectangle.



Example 6 Choosing the Viewing Rectangle

Graph the function in an appropriate viewing rectangle.

Solution Figure 15(a) shows the graph of f produced by a graphing calculator
using the viewing rectangle 3�12, 124 by 3�1.5, 1.54. At first glance the graph 
appears to be reasonable. But if we change the viewing rectangle to the ones shown
in Figure 15, the graphs look very different. Something strange is happening.

To explain the big differences in appearance of these graphs and to find an 
appropriate viewing rectangle, we need to find the period of the function 
y � sin 50x:

This suggests that we should deal only with small values of x in order to show just a
few oscillations of the graph. If we choose the viewing rectangle 3�0.25, 0.254 by3�1.5, 1.54, we get the graph shown in Figure 16.

Now we see what went wrong in Figure 15. The oscillations of y � sin 50x are
so rapid that when the calculator plots points and joins them, it misses most of the

1.5

_1.5

_0.25 0.25

period �
2p

50
�
p

25
� 0.126

1.5

_1.5

_12 12

(a)

1.5

_1.5

_10 10

(b)

1.5

_1.5

_9 9

(c)

1.5

_1.5

_6 6

(d)

f 1x 2 � sin 50x
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Figure 15

Graphs of in
different viewing rectangles

f 1x 2 � sin 50x

The appearance of the graphs in 
Figure 15 depends on the machine
used. The graphs you get with your
own graphing device might not look
like these figures, but they will also be
quite inaccurate.

Figure 16

f 1x 2 � sin 50x



maximum and minimum points and therefore gives a very misleading impression of
the graph. ■

Example 7 A Sum of Sine and Cosine Curves

Graph , and on a common
screen to illustrate the method of graphical addition.

Solution Notice that h � f � g, so its graph is obtained by adding the cor-
responding y-coordinates of the graphs of f and g. The graphs of f, g, and h
are shown in Figure 17.

Figure 17 ■

Example 8 A Cosine Curve with Variable Amplitude

Graph the functions y � x 2, y � �x 2, and y � x 2 cos 6px on a common screen.
Comment on and explain the relationship among the graphs.

Solution Figure 18 shows all three graphs in the viewing rectangle 3�1.5, 1.54
by 3�2, 24. It appears that the graph of y � x 2 cos 6px lies between the graphs of
the functions y � x 2 and y � �x 2.

To understand this, recall that the values of cos 6px lie between �1 and 1, that is,

for all values of x. Multiplying the inequalities by x 2, and noting that x 2 � 0, we get

This explains why the functions y � x 2 and y � �x 2 form a boundary for the graph
of y � x 2 cos 6px. (Note that the graphs touch when cos 6px � �1.) ■

Example 8 shows that the function y � x 2 controls the amplitude of the graph of 
y � x 2 cos 6px. In general, if sin kx or cos kx, the function
a determines how the amplitude of f varies, and the graph of f lies between the graphs
of and . Here is another example.

Example 9 A Cosine Curve with Variable Amplitude

Graph the function .

Solution The graph is shown in Figure 19 on the next page. Although it was
drawn by a computer, we could have drawn it by hand, by first sketching the bound-

f 1x 2 � cos 2px cos 16px

y � a1x 2y � �a1x 2 f 1x 2 � a1x 2f 1x 2 � a1x 2

�x2 
 x2 cos 6px 
 x2

�1 
 cos 6px 
 1

3

_3

_
π

2

7π

2

y=2 ç x+ß 2x

y=ß 2x

y=2 ç x

h1x 2 � 2 cos x � sin 2xf 1x 2 � 2 cos x, g1x 2 � sin 2x
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The function h in Example 7 is pe-
riodic with period 2p. In general,
functions that are sums of func-
tions from the following list

are periodic. Although these func-
tions appear to be special, they are
actually fundamental to describing
all periodic functions that arise in
practice. The French mathemati-
cian J. B. J. Fourier (see page 536)
discovered that nearly every peri-
odic function can be written as a
sum (usually an infinite sum) of
these functions. This is remarkable
because it means that any situation
in which periodic variation occurs
can be described mathematically
using the functions sine and cosine.
A modern application of Fourier’s
discovery is the digital encoding of
sound on compact discs.

sin kx, sin 2kx, sin 3kx, . . .

1, cos kx, cos 2kx, cos 3kx, . . .

2

_2

_1.5 1.5

Figure 18

y � x2 cos 6px



ary curves y � cos 2px and y � �cos 2px. The graph of f is a cosine curve that
lies between the graphs of these two functions.

Figure 19

■

Example 10 A Sine Curve with Decaying Amplitude

The function is important in calculus. Graph this function and 

comment on its behavior when x is close to 0.

Solution The viewing rectangle 3�15, 154 by 3�0.5, 1.54 shown in Figure 20(a)
gives a good global view of the graph of f. The viewing rectangle 3�1, 14 by3�0.5, 1.54 in Figure 20(b) focuses on the behavior of f when x � 0. Notice that 
although is not defined when x � 0 (in other words, 0 is not in the domain 
of f), the values of f seem to approach 1 when x gets close to 0. This fact is crucial
in calculus.

Figure 20

■

The function in Example 10 can be written as

and may thus be viewed as a sine function whose amplitude is controlled by the 
function .a1x 2 � 1/x

f 1x 2 �
1
x

 sin x

f 1x 2 �
sin x

x

(a)

1.5

_0.5

_15 15

(b)

1.5

_0.5

_1 1

f 1x 2

f 1x 2 �
sin x

x

f 1x 2 � cos 2px cos 16px

y

x0 1

1

_1 y=_ç 2πx

y=ç 2πx
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AM and FM Radio

Radio transmissions consist of
sound waves superimposed on a
harmonic electromagnetic wave
form called the carrier signal.

There are two types of radio trans-
mission, called amplitude modu-
lation (AM) and frequency
modulation (FM). In AM broad-
casting the sound wave changes, or
modulates, the amplitude of the
carrier, but the frequency remains
unchanged.

In FM broadcasting the sound wave
modulates the frequency, but the
amplitude remains the same.

FM signal

AM signal

Carrier signal

Sound wave
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1–14 ■ Graph the function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–26 ■ Find the amplitude and period of the function, and
sketch its graph.

15. y � cos 2x 16. y � �sin 2x

17. y � �3 sin 3x 18.

19. 20.

21. 22.

23. y � �2 sin 2px 24. y � �3 sin px

25. 26. y � �2 � cos 4px

27–40 ■ Find the amplitude, period, and phase shift of the
function, and graph one complete period.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38.

39.

40. y � cos ap
2

� x by � sin1p � 3x 2y � 3 � 2 sin 31x � 1 2y � 3 cos p1x � 1
2 2

y � 1 � cos a3x �
p

2
b

y �
1

2
�

1

2
cos a2x �

p

3
b

y � 2 sin a 2

3
x �
p

6
b

y � 5 cos a 3x �
p

4
b

y � sin
1

2
a x �

p

4
by � �4 sin 2 a x �

p

2
b

y � 3 cos a x �
p

4
by � �2 sin a x �

p

6
b

y � 2 sin a x �
p

3
by � cos a x �

p

2
b

y � 1 � 1
2 cos px

y � 4 sin1�2x 2y � � 1
3 cos 1

3 x

y � 5 cos 14xy � 10 sin 12 x

y � 1
2 cos 4x

h1x 2 � 0 sin x 0h1x 2 � 0 cos x 0 g1x 2 � 4 � 2 sin xg1x 2 � 3 � 3 cos x

g1x 2 � � 2
3 cos xg1x 2 � � 1

2 sin x

g1x 2 � 2 sin xg1x 2 � 3 cos x

f 1x 2 � �1 � cos xf 1x 2 � �2 � sin x

f 1x 2 � 2 � cos xf 1x 2 � �sin x

f 1x 2 � 3 � sin xf 1x 2 � 1 � cos x

41–48 ■ The graph of one complete period of a sine or cosine
curve is given.

(a) Find the amplitude, period, and phase shift.

(b) Write an equation that represents the curve in the form

41. 42.

43. 44.

45. 46.

47. 48.

49–56 ■ Determine an appropriate viewing rectangle for each
function, and use it to draw the graph.

49. 50.

51. 52. f 1x 2 � cos1x/80 2f 1x 2 � sin1x/40 2 f 1x 2 � 3 sin 120xf 1x 2 � cos 100x
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y � a sin k1x � b 2  or  y � a cos k1x � b 2

5.3 Exercises
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53. y � tan 25x 54. y � csc 40x

55. y � sin220x 56.

57–58 ■ Graph f, g, and f � g on a common screen to illustrate
graphical addition.

57. ,

58. ,

59–64 ■ Graph the three functions on a common screen. How
are the graphs related?

59. y � x 2, y � �x 2, y � x 2 sin x

60. y � x, y � �x, y � x cos x

61. , ,

62. , ,

63. y � cos 3px, y � �cos 3px, y � cos 3px cos 21px

64. y � sin 2px, y � �sin 2px, y � sin 2px sin 10px

65–68 ■ Find the maximum and minimum values of the 
function.

65. y � sin x � sin 2x

66. y � x � 2 sin x, 0 
 x 
 2p

67. y � 2 sin x � sin2x

68.

69–72 ■ Find all solutions of the equation that lie in the 
interval 30, p4. State each answer correct to two decimal places.

69. cos x � 0.4 70. tan x � 2

71. csc x � 3 72. cos x � x

73–74 ■ A function f is given.

(a) Is f even, odd, or neither?

(b) Find the x-intercepts of the graph of f.

(c) Graph f in an appropriate viewing rectangle.

(d) Describe the behavior of the function as x � �q.

(e) Notice that is not defined when x � 0. What happens as
x approaches 0?

73.

74. f 1x 2 �
sin 4x

2x

f 1x 2 �
1 � cos x

x

f 1x 2

y �
cos x

2 � sin x

y �
cos 2px

1 � x2y � �
1

1 � x2y �
1

1 � x2

y � 1x sin 5pxy � �1xy � 1x

g1x 2 � sin 2xf 1x 2 � sin x

g1x 2 � sin xf 1x 2 � x

y � 1tan 10px

Applications

75. Height of a Wave As a wave passes by an offshore 
piling, the height of the water is modeled by the function

where is the height in feet above mean sea level at time
t seconds.

(a) Find the period of the wave.

(b) Find the wave height, that is, the vertical distance 
between the trough and the crest of the wave.

76. Sound Vibrations A tuning fork is struck, producing a
pure tone as its tines vibrate. The vibrations are modeled by
the function

where is the displacement of the tines in millimeters at
time t seconds.

(a) Find the period of the vibration.

(b) Find the frequency of the vibration, that is, the number
of times the fork vibrates per second.

(c) Graph the function √.

77. Blood Pressure Each time your heart beats, your blood
pressure first increases and then decreases as the heart 
rests between beats. The maximum and minimum blood
pressures are called the systolic and diastolic pressures,
respectively. Your blood pressure reading is written as 
systolic/diastolic. A reading of 120/80 is considered 
normal.

A certain person’s blood pressure is modeled by the
function

where is the pressure in mmHg, at time t measured in
minutes.

(a) Find the period of p.

(b) Find the number of heartbeats per minute.

(c) Graph the function p.

(d) Find the blood pressure reading. How does this 
compare to normal blood pressure?

p1t 2 p1t 2 � 115 � 25 sin1160pt 2

√1t 2 √1t 2 � 0.7 sin1880pt 2

crest

troughtrough

h1t 2 h1t 2 � 3 cos a p
10

t b
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78. Variable Stars Variable stars are ones whose brightness
varies periodically. One of the most visible is R Leonis; its
brightness is modeled by the function

where t is measured in days.

(a) Find the period of R Leonis.

(b) Find the maximum and minimum brightness.

(c) Graph the function b.

Discovery • Discussion

79. Compositions Involving Trigonometric Functions

This exercise explores the effect of the inner function g
on a composite function .

(a) Graph the function using the viewing 
rectangle 30, 4004 by 3�1.5, 1.54. In what ways does 
this graph differ from the graph of the sine function?

(b) Graph the function using the viewing 
rectangle 3�5, 54 by 3�1.5, 1.54. In what ways does this
graph differ from the graph of the sine function?

80. Periodic Functions I Recall that a function f is periodic
if there is a positive number p such that 
for every t, and the least such p (if it exists) is the period
of f. The graph of a function of period p looks the same on
each interval of length p, so we can easily determine the 
period from the graph. Determine whether the function
whose graph is shown is periodic; if it is periodic, find 
the period.

y

x2 4_2_4

y

x2 4 6 8 10

f 1t � p 2 � f 1t 2
y � sin1x2 2
y � sin1x

y � f 1g1x 22

b1t 2 � 7.9 � 2.1 cos a p
156

t b

81. Periodic Functions II Use a graphing device to graph the
following functions. From the graph, determine whether the
function is periodic; if it is periodic find the period. (See
page 162 for the definition of .)

(a)

(b)

(c)

(d)

(e)

(f)

82. Sinusoidal Curves The graph of y � sin x is the same as
the graph of y � cos x shifted to the right p/2 units. So the
sine curve y � sin x is also at the same time a cosine curve:

. In fact, any sine curve is also a cosine
curve with a different phase shift, and any cosine curve is
also a sine curve. Sine and cosine curves are collectively 
referred to as sinusoidal. For the curve whose graph is
shown, find all possible ways of expressing it as a sine curve

or as a cosine curve .
Explain why you think you have found all possible choices
for a and b in each case.

y

x0

5

_5

π 2π

_π

5π

2

π

2

π

2
__

3π

2

3π

2

y � a  cos1x � b 2y � a  sin1x � b 2
y � cos1x � p/2 2

y � cos1x2 2y � cos1sin x 2y � x � “x‘

y � 2cos x

y � sin 0 x 0y � 0 sin x 0 “x‘

y

x2 4_2_4

y

x_4 _2 2 4 6 8

(a)

(b)

(c)

(d)



Predator/Prey Models

Sine and cosine functions are used primarily in physics and engineering to
model oscillatory behavior, such as the motion of a pendulum or the current 
in an AC electrical circuit. (See Section 5.5.) But these functions also arise in 
the other sciences. In this project, we consider an application to biology—we
use sine functions to model the population of a predator and its prey.

An isolated island is inhabited by two species of mammals: lynx and hares.
The lynx are predators who feed on the hares, their prey. The lynx and hare 
populations change cyclically, as graphed in Figure 1. In part A of the graph,
hares are abundant, so the lynx have plenty to eat and their population increases.
By the time portrayed in part B, so many lynx are feeding on the hares that the
hare population declines. In part C, the hare population has declined so much
that there is not enough food for the lynx, so the lynx population starts to 
decrease. In part D, so many lynx have died that the hares have few enemies,
and their population increases again. This takes us back to where we started,
and the cycle repeats over and over again.
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The graphs in Figure 1 are sine curves that have been shifted upward, so they
are graphs of functions of the form

Here c is the amount by which the sine curve has been shifted vertically 
(see Section 2.4). Note that c is the average value of the function, halfway 
between the highest and lowest values on the graph. The amplitude is 0 a 0

y � a sin k1t � b 2 � c
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the amount by which the graph varies above and below the average value 
(see Figure 2).

Figure 2

1. Find functions of the form that model the lynx 
and hare populations graphed in Figure 1. Graph both functions on your 
calculator and compare to Figure 1 to verify that your functions are the 
right ones.

2. Add the lynx and hare population functions to get a new function that models
the total mammal population on this island. Graph this function on your 
calculator, and find its average value, amplitude, period, and phase shift. How
are the average value and period of the mammal population function related
to the average value and period of the lynx and hare population functions?

3. A small lake on the island contains two species of fish: hake and redfish. The
hake are predators that eat the redfish. The fish population in the lake varies
periodically with period 180 days. The number of hake varies between 500
and 1500, and the number of redfish varies between 1000 and 3000. The hake
reach their maximum population 30 days after the redfish have reached their
maximum population in the cycle.

(a) Sketch a graph (like the one in Figure 1) that shows two complete 
periods of the population cycle for these species of fish. Assume that 
t � 0 corresponds to a time when the redfish population is at a 
maximum.

(b) Find cosine functions of the form that model the
hake and redfish populations in the lake.

4. In real life, most predator/prey populations do not behave as simply as the
examples we have described here. In most cases, the populations of predator
and prey oscillate, but the amplitude of the oscillations gets smaller and
smaller, so that eventually both populations stabilize near a constant value.
Sketch a rough graph that illustrates how the populations of predator and
prey might behave in this case.

y � a cos k1t � b 2 � c

y � a sin k1t � b 2 � c

y � a sin k1t � b 2 � c

y

t

c-|a|

c+|a|

b

Phase
shift

b

Amplitude |a|

0

Period 2π

k

Average
value c

c

b+
π

k
b+

2π

k



5.4 More Trigonometric Graphs

In this section we graph the tangent, cotangent, secant, and cosecant functions, and
transformations of these functions.

Graphs of the Tangent, Cotangent, Secant, 

and Cosecant Function

We begin by stating the periodic properties of these functions. Recall that sine 
and cosine have period 2p. Since cosecant and secant are the reciprocals of sine and 
cosine, respectively, they also have period 2p (see Exercise 53). Tangent and cotan-
gent, however, have period p (see Exercise 83 of Section 5.2).
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Periodic Properties

The functions tangent and cotangent have period p:

The functions cosecant and secant have period 2p:

csc1x � 2p 2 � csc x   sec1x � 2p 2 � sec x

tan1x � p 2 � tan x   cot1x � p 2 � cot x

We first sketch the graph of tangent. Since it has period p, we need only sketch the
graph on any interval of length p and then repeat the pattern to the left and to the
right. We sketch the graph on the interval . Since tan p/2 and 
aren’t defined, we need to be careful in sketching the graph at points near p/2 and
�p/2. As x gets near p/2 through values less than p/2, the value of tan x becomes
large. To see this, notice that as x gets close to p/2, cosx approaches 0 and sinx ap-
proaches 1 and so tan x � sin x/cos x is large. A table of values of tan x for x close to
p/2 is shown in the margin.

Thus, by choosing x close enough to p/2 through values less than p/2, we can
make the value of tan x larger than any given positive number. We express this by 
writing

This is read “tan x approaches infinity as x approaches p/2 from the left.”
In a similar way, by choosing x close to �p/2 through values greater than �p/2,

we can make tan x smaller than any given negative number. We write this as

This is read “tan x approaches negative infinity as x approaches �p/2 from the right.”
Thus, the graph of y � tan x approaches the vertical lines x � p/2 and x � �p/2.

So these lines are vertical asymptotes. With the information we have so far, we
sketch the graph of y � tan x for �p/2 � x � p/2 in Figure 1. The complete graph

tan x � �q  as  x � �
p

2

�

tan x �q  as  x �
p

2

�

1� 1.570796 2
tan1�p/2 21�p/2, p/2 2x tan x

0 0

0.58

1.00

1.73

1.4 5.80

1.5 14.10

1.55 48.08

1.57 1,255.77

1.5707 10,381.33

p

3

p

4

p

6

Asymptotes are discussed in 
Section 3.6.

Arrow notation is discussed in 
Section 3.6.



of tangent (see Figure 5(a) on page 436) is now obtained using the fact that tangent
is periodic with period p.

The function y � cot x is graphed on the interval by a similar analysis (see
Figure 2). Since cot x is undefined for x � np with n an integer, its complete graph
(in Figure 5(b) on page 436) has vertical asymptotes at these values.

To graph the cosecant and secant functions, we use the reciprocal identities

So, to graph y � csc x, we take the reciprocals of the y-coordinates of the points of
the graph of y � sin x. (See Figure 3.) Similarly, to graph y � sec x, we take the re-
ciprocals of the y-coordinates of the points of the graph of y � cos x. (See Figure 4.)

Figure 3 Figure 4

One period of y � csc x One period of y � sec x

Let’s consider more closely the graph of the function y � csc x on the interval 
0 � x � p. We need to examine the values of the function near 0 and p since at these
values sin x � 0, and csc x is thus undefined. We see that

csc x �q   as  x �p�

csc x �q   as  x � 0�
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2ππ
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csc x �
1

sin x
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1
cos x

10, p 2
Figure 2

One period of y � cot x

Figure 1

One period of y � tan x
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Thus, the lines x � 0 and x � p are vertical asymptotes. In the interval p � x � 2p
the graph is sketched in the same way. The values of csc x in that interval are the same
as those in the interval 0 � x � p except for sign (see Figure 3). The complete graph
in Figure 5(c) is now obtained from the fact that the function cosecant is periodic with
period 2p. Note that the graph has vertical asymptotes at the points where sin x � 0,
that is, at x � np, for n an integer.

Figure 5

The graph of y � sec x is sketched in a similar manner. Observe that the domain
of sec x is the set of all real numbers other than , for n an integer, so
the graph has vertical asymptotes at those points. The complete graph is shown in
Figure 5(d).

It is apparent that the graphs of y � tan x, y � cot x, and y � csc x are symmetric
about the origin, whereas that of y � sec x is symmetric about the y-axis. This is be-
cause tangent, cotangent, and cosecant are odd functions, whereas secant is an even
function.

Graphs Involving Tangent and Cotangent Functions

We now consider graphs of transformations of the tangent and cotangent functions.

x � 1p/2 2 � np
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Mathematics in the 

Modern World

Evaluating Functions 

on a Calculator

How does your calculator evaluate
sin t, cos t, et, ln t, , and other
such functions? One method is to
approximate these functions by
polynomials, because polynomials
are easy to evaluate. For example,

where n! � 1 # 2 # 3 # . . . # n. These
remarkable formulas were found
by the British mathematician
Brook Taylor (1685–1731). For 
instance, if we use the first three
terms of Taylor’s series to find
cos(0.4), we get

(Compare this with the value you
get from your calculator.) The
graph shows that the more terms of
the series we use, the more closely
the polynomials approximate the
function cos t.

y

t0 5_5

2

_1

y = 1 – t2

2!

y = 1 – +t2
2!

t4
4!

y = cos t

�  0.92106667

 cos 0.4 � 1 �
10.4 2 2
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Example 1 Graphing Tangent Curves

Graph each function.

(a) y � 2 tan x (b) y � �tan x

Solution We first graph y � tan x and then transform it as required.

(a) To graph y � 2 tan x, we multiply the y-coordinate of each point on the graph 
of y � tan x by 2. The resulting graph is shown in Figure 6(a).

(b) The graph of y � �tan x in Figure 6(b) is obtained from that of y � tan x by
reflecting in the x-axis.

Figure 6 ■

Since the tangent and cotangent functions have period p, the functions

complete one period as kx varies from 0 to p, that is, for 0 
 kx 
 p. Solving this in-
equality, we get 0 
 x 
 p/k. So they each have period p/k.

y � a tan kx  and  y � a cot kx    1k 	 0 2
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Tangent and Cotangent Curves

The functions

have period p/k.

y � a tan kx  and  y � a cot kx    1k 	 0 2
Thus, one complete period of the graphs of these functions occurs on any interval

of length p/k. To sketch a complete period of these graphs, it’s convenient to select
an interval between vertical asymptotes:

To graph one period of y � a tan kx, an appropriate interval is .

To graph one period of y � a cot kx, an appropriate interval is .a0,
p

k
b

a� p
2k

,
p

2k
b



Example 2 Graphing Tangent Curves

Graph each function.

(a) y � tan 2x (b)

Solution

(a) The period is p/2 and an appropriate interval is . The endpoints 
x � �p/4 and x � p/4 are vertical asymptotes. Thus, we graph one complete
period of the function on . The graph has the same shape as that of 
the tangent function, but is shrunk horizontally by a factor of . We then repeat
that portion of the graph to the left and to the right. See Figure 7(a).

(b) The graph is the same as that in part (a), but it is shifted to the right p/4, as
shown in Figure 7(b).

■

Example 3 A Shifted Cotangent Curve

Graph .

Solution We first put this in the form by factoring 3 from 

the expression :

Thus, the graph is the same as that of y � 2 cot 3x, but is shifted to the right .
The period of y � 2 cot 3x is , and an appropriate interval is . To get the
corresponding interval for the desired graph, we shift this interval to the right .
This gives a0 �

p
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Since y � tan x completes one period
between and , the func-
tion completes one
period as varies from to .

Start of period: End of period:

So we graph one period on the 
interval .10, p2 2

x � p
2x � 0

x � p
4 � p

4x � p
4 � �p

4

21x � p
4 2 � p

221x � p
4 2 � �p

2

p
2�p221x � p

4 2y � tan 21x � p
4 2 x � p

2x � �p
2

Figure 7

Since y � cot x completes one period
between x � 0 and x � p, the function

completes one 
period as varies from 0 to p.

Start of period: End of period:

So we graph one period on the 
interval .1p6 , p2 2

x � p
2x � p

6

 3x � 3p
23x � p

2

3x � p
2 � p3x � p

2 � 0

3x � p
2

y � 2 cot13x � p
2 2



Finally, we graph one period in the shape of cotangent on the interval and
repeat that portion of the graph to the left and to the right. (See Figure 8.)

■

Graphs Involving the Cosecant 

and Secant Functions

We have already observed that the cosecant and secant functions are the reciprocals
of the sine and cosine functions. Thus, the following result is the counterpart of the
result for sine and cosine curves in Section 5.3.
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Figure 8

y � 2 cot a3x �
p

2
b

Cosecant and Secant Curves

The functions

have period 2p/k.

y � a csc kx  and  y � a sec kx    1k 	 0 2
An appropriate interval on which to graph one complete period is 30, 2p/k4.

Example 4 Graphing Cosecant Curves

Graph each function.

(a) (b)

Solution

(a) The period is 2p/2 � p. An appropriate interval is 30, p4, and the asymptotes
occur in this interval whenever sin 2x � 0. So the asymptotes in this interval 
are x � 0, x � p/2, and x � p. With this information we sketch on the interval30, p4 a graph with the same general shape as that of one period of the cosecant

y �
1

2
 csc a2x �

p

2
by �

1

2
 csc 2x



function. The complete graph in Figure 9(a) is obtained by repeating this 
portion of the graph to the left and to the right.

Figure 9

(b) We first write

From this we see that the graph is the same as that in part (a), but shifted to the left
p/4. The graph is shown in Figure 9(b). ■

Example 5 Graphing a Secant Curve

Graph .

Solution The period is . An appropriate interval is 30, 4p4, and the
asymptotes occur in this interval wherever . Thus, the asymptotes in this
interval are x � p, x � 3p. With this information we sketch on the interval 30, 4p4
a graph with the same general shape as that of one period of the secant function.
The complete graph in Figure 10 is obtained by repeating this portion of the graph
to the left and to the right.

■
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Since y � csc x completes one period
between x � 0 and x � 2p, the func-
tion completes one
period as varies from 0 to 2p.

Start of period: End of period:

So we graph one period on the interval
.1�p

4 , 3p
4 2

x � 3p
4x � �p
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Figure 10

y � 3 sec 1
2 x



SECTION 5.4 More Trigonometric Graphs 441

1–6 ■ Match the trigonometric function with one of the 
graphs I–VI.

1. 2.

3. 4.

5. 6. f 1x 2 � 1 � csc xf 1x 2 � 2 sec x

f 1x 2 � �tan xf 1x 2 � cot 2x

f 1x 2 � sec 2xf 1x 2 � tan a x �
p

4
b

21. 22.

23. 24.

25. y � tan 2x 26.

27. 28.

29. y � sec 2x 30. y � 5 csc 3x

31. y � csc 2x 32.

33. y � 2 tan 3px 34.

35. 36. y � 5 sec 2px

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. (a) Prove that if f is periodic with period p, then 1/f is also
periodic with period p.

(b) Prove that cosecant and secant each have period 2p.

54. Prove that if f and g are periodic with period p, then f/g is
also periodic, but its period could be smaller than p.

Applications

55. Lighthouse The beam from a lighthouse completes one
rotation every two minutes. At time t, the distance d shown
in the figure on the next page is

where t is measured in minutes and d in miles.

(a) Find , and .d10.45 2d10.15 2 , d10.25 2
d1t 2 � 3 tan pt

y � 2 csc13x � 3 2y � �2 tan a2x �
p

3
b

y � sec a3x �
p

2
by � 3 sec p a x �

1

2
b

y � tan
1

2
a x �

p

4
by � tan a 2

3
x �
p

6
b

y � 1
2 sec12px � p 2y � 5 sec a3x �

p

2
b

y � 2 sec a 1

2
x �
p

3
by � 2 csc apx �

p

3
b

y � 1
2 tan1px � p 2y � cot a2x �

p

2
b

y � sec 2 a x �
p

2
by � tan 21x � p 2

y � csc 2 a x �
p

2
by � tan 2 a x �

p

2
b

y � 5 csc 
3p

2
x

y � 2 tan 
p

2
x

y � csc 1
2 x

y � cot
p

2
xy � tan

p

4
x

y � tan 1
2 x

y � 3 csc a x �
p

2
by �

1

2
sec a x �

p

6
b

y � 2 csc a x �
p

3
by � cot a x �

p

4
b

5.4 Exercises
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π
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π
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π
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π

4

7–52 ■ Find the period and graph the function.

7. y � 4 tan x 8. y � �4 tan x

9. 10.

11. y � �cot x 12. y � 2 cot x

13. y � 2 csc x 14.

15. y � 3 sec x 16. y � �3 sec x

17. 18.

19. 20. y � sec a x �
p

4
by � csc a x �

p

2
b

y � tan a x �
p

4
by � tan a x �

p

2
b

y � 1
2 csc x

y � 1
2 tan xy � � 1

2 tan x



5.5 Modeling Harmonic Motion

Periodic behavior—behavior that repeats over and over again—is common in nature.
Perhaps the most familiar example is the daily rising and setting of the sun, which re-
sults in the repetitive pattern of day, night, day, night, . . . . Another example is the
daily variation of tide levels at the beach, which results in the repetitive pattern of
high tide, low tide, high tide, low tide, . . . . Certain animal populations increase and
decrease in a predictable periodic pattern: A large population exhausts the food sup-
ply, which causes the population to dwindle; this in turn results in a more plentiful
food supply, which makes it possible for the population to increase; and the pattern
then repeats over and over (see pages 432–433).

Other common examples of periodic behavior involve motion that is caused by vi-
bration or oscillation. A mass suspended from a spring that has been compressed and
then allowed to vibrate vertically is a simple example. This same “back and forth”
motion also occurs in such diverse phenomena as sound waves, light waves, alternat-
ing electrical current, and pulsating stars, to name a few. In this section we consider
the problem of modeling periodic behavior.
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77(b)Sketch a graph of the function d for .

(c) What happens to the distance d as t approaches ?

56. Length of a Shadow On a day when the sun passes 
directly overhead at noon, a six-foot-tall man casts a shadow
of length

where S is measured in feet and t is the number of hours
since 6 A.M.

(a) Find the length of the shadow at 8:00 A.M., noon,
2:00 P.M., and 5:45 P.M.

(b) Sketch a graph of the function S for 0 � t � 12.

S1t 2 � 6 ` cot
p

12
t `

 3 mi

d

1
2

0 
 t � 1
2

(c) From the graph determine the values of t at which the
length of the shadow equals the man’s height. To what
time of day does each of these values correspond?

(d) Explain what happens to the shadow as the time 
approaches 6 P.M. (that is, as t � 12�).

Discovery • Discussion

57. Reduction Formulas Use the graphs in Figure 5 to 
explain why the following formulas are true.

sec a x �
p

2
b � csc x

tan a x �
p

2
b � �cot x

 S

 6 ft



Modeling Periodic Behavior

The trigonometric functions are ideally suited for modeling periodic behavior. A
glance at the graphs of the sine and cosine functions, for instance, tells us that these
functions themselves exhibit periodic behavior. Figure 1 shows the graph of y � sin t.
If we think of t as time, we see that as time goes on, y � sin t increases and decreases
over and over again. Figure 2 shows that the motion of a vibrating mass on a spring
is modeled very accurately by y � sin t.

Notice that the mass returns to its original position over and over again. A cycle is
one complete vibration of an object, so the mass in Figure 2 completes one cycle of
its motion between O and P. Our observations about how the sine and cosine func-
tions model periodic behavior are summarized in the following box.

Figure 2

Motion of a vibrating spring is modeled by y � sin t.

Figure 1

y � sin t

t
(time)PO

y

t0

1 y=ß t

_1
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Simple Harmonic Motion

If the equation describing the displacement y of an object at time t is

then the object is in simple harmonic motion. In this case,

Maximum displacement of the object

Time required to complete one cycle

Number of cycles per unit of timefrequency �
v

2p

period �
2p
v

amplitude � 0 a 0
y � a sin vt  or  y � a cos vt

The main difference between the two
equations describing simple harmonic
motion is the starting point. At t � 0,
we get

In the first case the motion “starts”
with zero displacement, whereas in the
second case the motion “starts” with
the displacement at maximum (at the
amplitude a).

y � a cos v # 0 � a

y � a sin v # 0 � 0



Notice that the functions

have frequency n, because . Since we can immediately read the 
frequency from these equations, we often write equations of simple harmonic motion
in this form.

Example 1 A Vibrating Spring

The displacement of a mass suspended by a spring is modeled by the function

where y is measured in inches and t in seconds (see Figure 3).

(a) Find the amplitude, period, and frequency of the motion of the mass.

(b) Sketch the graph of the displacement of the mass.

Solution

(a) From the formulas for amplitude, period, and frequency, we get

(b) The graph of the displacement of the mass at time t is shown in Figure 4. ■

An important situation where simple harmonic motion occurs is in the production
of sound. Sound is produced by a regular variation in air pressure from the normal
pressure. If the pressure varies in simple harmonic motion, then a pure sound is pro-
duced. The tone of the sound depends on the frequency and the loudness depends on
the amplitude.

Example 2 Vibrations of a Musical Note

A tuba player plays the note E and sustains the sound for some time. For a 
pure E the variation in pressure from normal air pressure is given by

where V is measured in pounds per square inch and t in seconds.

(a) Find the amplitude, period, and frequency of V.

(b) Sketch a graph of V.

(c) If the tuba player increases the loudness of the note, how does the equation for
V change?

(d) If the player is playing the note incorrectly and it is a little flat, how does the
equation for V change?

V1t 2 � 0.2 sin 80pt

frequency �
v

2p
�

4p

2p
� 2 Hz

period �
2p
v

�
2p

4p
�

1

2
s

amplitude � 0 a 0 � 10 in.

y � 10 sin 4pt

2pn/ 12p 2 � n

y � a sin 2pnt  and  y � a cos 2pnt
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Rest
position

y<0

y>0

y

t0

10
y=10 ß 4πt

_10

11

2
23

2

Figure 4

Figure 3

The symbol v is the lowercase Greek
letter “omega,” and n is the letter “nu.”



Solution

(a) From the formulas for amplitude, period, and frequency, we get

(b) The graph of V is shown in Figure 5.

(c) If the player increases the loudness the amplitude increases. So the number 0.2
is replaced by a larger number.

(d) If the note is flat, then the frequency is decreased. Thus, the coefficient of t is
less than 80p. ■

Example 3 Modeling a Vibrating Spring

A mass is suspended from a spring. The spring is compressed a distance of 4 cm
and then released. It is observed that the mass returns to the compressed position
after s.

(a) Find a function that models the displacement of the mass.

(b) Sketch the graph of the displacement of the mass.

Solution

(a) The motion of the mass is given by one of the equations for simple harmonic
motion. The amplitude of the motion is 4 cm. Since this amplitude is reached at
time t � 0, an appropriate function that models the displacement is of the form

Since the period is , we can find v from the following equation:

Solve for v

So, the motion of the mass is modeled by the function

where y is the displacement from the rest position at time t. Notice that when 
t � 0, the displacement is y � 4, as we expect.

(b) The graph of the displacement of the mass at time t is shown in Figure 6. ■

y � 4 cos 6pt

v � 6p

Period � 1
3

1

3
�

2p
v

 period �
2p
v

p � 1
3

y � a cos vt

1
3

frequency �
80p

2p
� 40

period �
2p

80p
�

1

40

amplitude � 0 0.2 0 � 0.2
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Rest
position

4 cm

y

t
(s)

0

0.2

y=0.2 ß 80πt

_0.2

1

2

Figure 5

y

t0

_4

4

1

12

1

6

1

4

1

3

y=4 ç 6πt

Figure 6



In general, the sine or cosine functions representing harmonic motion may be
shifted horizontally or vertically. In this case, the equations take the form

The vertical shift b indicates that the variation occurs around an average value b. The
horizontal shift c indicates the position of the object at t � 0. (See Figure 7.)

Figure 7

Example 4 Modeling the Brightness of a Variable Star

A variable star is one whose brightness alternately increases and decreases. For 
the variable star Delta Cephei, the time between periods of maximum brightness is
5.4 days. The average brightness (or magnitude) of the star is 4.0, and its brightness
varies by �0.35 magnitude.

(a) Find a function that models the brightness of Delta Cephei as a function 
of time.

(b) Sketch a graph of the brightness of Delta Cephei as a function of time.

Solution

(a) Let’s find a function in the form

The amplitude is the maximum variation from average brightness, so the ampli-
tude is a � 0.35 magnitude. We are given that the period is 5.4 days, so

Since the brightness varies from an average value of 4.0 magnitudes, the graph
is shifted upward by b � 4.0. If we take t � 0 to be a time when the star is at
maximum brightness, there is no horizontal shift, so c � 0 (because a cosine
curve achieves its maximum at t � 0). Thus, the function we want is

where t is the number of days from a time when the star is at maximum 
brightness.

(b) The graph is sketched in Figure 8. ■

y � 0.35 cos11.16t 2 � 4.0

v �
2p

5.4
� 1.164

y � a cos1v1t � c 22 � b

(a) (b)

y

t0

b-a

c 2π

Ò
c+

b

b+a

y=a ßÓÒ(t-c)Ô+b
y

t0

b-a

c 2π

Ò
c+

b

b+a

y=a çÓÒ(t-c)Ô+b
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y

   t

(days)
0

4.35

3.65

5.42.7

4

Figure 8

y � a sin1v1t � c 22 � b  or  y � a cos1v1t � c 22 � b



The number of hours of daylight varies throughout the course of a year. In the
Northern Hemisphere, the longest day is June 21, and the shortest is December 21.
The average length of daylight is 12 h, and the variation from this average depends on
the latitude. (For example, Fairbanks, Alaska, experiences more than 20 h of daylight
on the longest day and less than 4 h on the shortest day!) The graph in Figure 9 shows
the number of hours of daylight at different times of the year for various latitudes. It’s
apparent from the graph that the variation in hours of daylight is simple harmonic.

Source: Lucia C. Harrison, Daylight, Twilight, Darkness
and Time (New York: Silver, Burdett, 1935), page 40.

Example 5 Modeling the Number of Hours of Daylight

In Philadelphia (40� N latitude), the longest day of the year has 14 h 50 min
of daylight and the shortest day has 9 h 10 min of daylight.

(a) Find a function L that models the length of daylight as a function of t, the 
number of days from January 1.

(b) An astronomer needs at least 11 hours of darkness for a long exposure astro-
nomical photograph. On what days of the year are such long exposures 
possible?

Solution

(a) We need to find a function in the form

whose graph is the 40� N latitude curve in Figure 9. From the information
given, we see that the amplitude is

Since there are 365 days in a year, the period is 365, so

v �
2p

365
� 0.0172

a � 1
2 A14 5

6 � 9 1
6B � 2.83 h

y � a sin1v1t � c 22 � b

0

2

4

6

8

10

12

14

16

18

20

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Hours

60* N
50* N
40* N
30* N
20* N
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Figure 9

Graph of the length of daylight from March 21
through December 21 at various latitudes



Since the average length of daylight is 12 h, the graph is shifted upward by 12,
so b � 12. Since the curve attains the average value (12) on March 21, the 80th
day of the year, the curve is shifted 80 units to the right. Thus, c � 80. So a
function that models the number of hours of daylight is

where t is the number of days from January 1.

(b) A day has 24 h, so 11 h of night correspond to 13 h of daylight. So we need 
to solve the inequality y 
 13. To solve this inequality graphically, we graph

and y � 13 on the same graph. From the
graph in Figure 10 we see that there are fewer than 13 h of daylight between
day 1 (January 1) and day 101 (April 11) and from day 241 (August 29) to day
365 (December 31). ■

Another situation where simple harmonic motion occurs is in alternating current
(AC) generators. Alternating current is produced when an armature rotates about its
axis in a magnetic field.

Figure 11 represents a simple version of such a generator. As the wire passes
through the magnetic field, a voltage E is generated in the wire. It can be shown that
the voltage generated is given by

where E0 is the maximum voltage produced (which depends on the strength of the
magnetic field) and is the number of revolutions per second of the armature
(the frequency).

Example 6 Modeling Alternating Current

Ordinary 110-V household alternating current varies from �155 V to �155 V 
with a frequency of 60 Hz (cycles per second). Find an equation that describes this
variation in voltage.

Solution The variation in voltage is simple harmonic. Since the frequency is 
60 cycles per second, we have

Let’s take t � 0 to be a time when the voltage is �155 V. Then

■E1t 2 � a cos vt � 155 cos 120pt

v

2p
� 60  or  v � 120p

N

Wire

Magnets

S

Figure 11

v/ 12p 2
E1t 2 � E0 cosvt

y � 2.83 sin 0.01721t � 80 2 � 12

y � 2.83 sin10.01721t � 80 22 � 12
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15

0 365

t = 101 t = 241

Figure 10

Why do we say that household 
current is 110 V when the maxi-
mum voltage produced is 155 V?
From the symmetry of the cosine
function, we see that the average
voltage produced is zero. This av-
erage value would be the same for
all AC generators and so gives no
information about the voltage gen-
erated. To obtain a more informa-
tive measure of voltage, engineers 
use the root-mean-square (rms)
method. It can be shown that the
rms voltage is times the
maximum voltage. So, for house-
hold current the rms voltage is

155 �
1

12
� 110 V

1/12



Damped Harmonic Motion

The spring in Figure 2 on page 443 is assumed to oscillate in a frictionless environ-
ment. In this hypothetical case, the amplitude of the oscillation will not change. In the
presence of friction, however, the motion of the spring eventually “dies down”; that
is, the amplitude of the motion decreases with time. Motion of this type is called
damped harmonic motion.
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Damped Harmonic Motion

If the equation describing the displacement y of an object at time t is

then the object is in damped harmonic motion. The constant c is the damp-
ing constant, k is the initial amplitude, and 2p/v is the period.*

y � ke�ct sin vt  or  y � ke�ct cos vt  1c 	 0 2
Damped harmonic motion is simply harmonic motion for which the amplitude is

governed by the function . Figure 12 shows the difference between har-
monic motion and damped harmonic motion.

Example 7 Modeling Damped Harmonic Motion

Two mass-spring systems are experiencing damped harmonic motion, both at 0.5
cycles per second, and both with an initial maximum displacement of 10 cm. The
first has a damping constant of 0.5 and the second has a damping constant of 0.1.

(a) Find functions of the form to model the motion in each case.

(b) Graph the two functions you found in part (a). How do they differ?

Solution

(a) At time t � 0, the displacement is 10 cm. Thus ,
and so k � 10. Also, the frequency is f � 0.5 Hz, and since v � 2pf

(see page 443), we get . Using the given damping constants,
we find that the motions of the two springs are given by the functions

(b) The functions g1 and g2 are graphed in Figure 13. From the graphs we see that
in the first case (where the damping constant is larger) the motion dies down
quickly, whereas in the second case, perceptible motion continues much longer.

12

_12

15

g⁄(t)=10 e–0.5t ç πt

_1

12

_12

15

g¤(t)=10 e–0.1t ç πt

_1

Figure 13

g11t 2 � 10e�0.5t cos pt  and  g21t 2 � 10e�0.1t cos pt

v � 2p10.5 2 � p

g10 2 � ke�c # 0 cos1v # 0 2 � k

g1t 2 � ke�ct cos vt

a1t 2 � ke�ct

(b) Damped harmonic motion:
y=e–t ß 8πt

Harmonic motion:(a)  y=ß 8πt

y

t0

1

21

y

t0

1

21

_a(t)=_e–t

a(t)=e–t

Figure 12

Hz is the abbreviation for hertz. One
hertz is one cycle per second.

*In the case of damped harmonic motion, the term quasi-period is often used instead of period because the motion is
not actually periodic—it diminishes with time. However, we will continue to use the term period to avoid confusion.

■



As the preceding example indicates, the larger the damping constant c, the quicker
the oscillation dies down. When a guitar string is plucked and then allowed to vibrate
freely, a point on that string undergoes damped harmonic motion. We hear the damp-
ing of the motion as the sound produced by the vibration of the string fades. How fast
the damping of the string occurs (as measured by the size of the constant c) is a prop-
erty of the size of the string and the material it is made of. Another example of damped
harmonic motion is the motion that a shock absorber on a car undergoes when the car
hits a bump in the road. In this case, the shock absorber is engineered to damp the mo-
tion as quickly as possible (large c) and to have the frequency as small as possible
(smallv). On the other hand, the sound produced by a tuba player playing a note is un-
damped as long as the player can maintain the loudness of the note. The electromag-
netic waves that produce light move in simple harmonic motion that is not damped.

Example 8 A Vibrating Violin String

The G-string on a violin is pulled a distance of 0.5 cm above its rest position, then
released and allowed to vibrate. The damping constant c for this string is deter-
mined to be 1.4. Suppose that the note produced is a pure G (frequency � 200 Hz).
Find an equation that describes the motion of the point at which the string was
plucked.

Solution Let P be the point at which the string was plucked. We will find a func-
tion that gives the distance at time t of the point P from its original rest position.
Since the maximum displacement occurs at t � 0, we find an equation in the form

From this equation, we see that . But we know that the original displace-
ment of the string is 0.5 cm. Thus, k � 0.5. Since the frequency of the vibration is
200, we have . Finally, since we know that the damp-
ing constant is 1.4, we get

■

Example 9 Ripples on a Pond

A stone is dropped in a calm lake, causing waves to form. The up-and-down motion
of a point on the surface of the water is modeled by damped harmonic motion. At
some time the amplitude of the wave is measured, and 20 s later it is found that the
amplitude has dropped to of this value. Find the damping constant c.

Solution The amplitude is governed by the coefficient ke�ct in the equations for
damped harmonic motion. Thus, the amplitude at time t is ke�ct, and 20 s later, it is

. So, because the later value is the earlier value, we have

We now solve this equation for c. Canceling k and using the Laws of Exponents,
we get

Cancel e�ct

Take reciprocalse20c � 10

e�20c � 1
10

e�ct # e�20c � 1
10e�ct

ke�c1t�202 � 1
10ke�ct

1
10ke�c1t�202

1
10

f 1t 2 � 0.5e�1.4t cos 400pt

v � 2pf � 2p1200 2 � 400p

f 10 2 � k

y � ke�ct cos vt

f 1t 2
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Taking the natural logarithm of each side gives

Thus, the damping constant is c � 0.12. ■

5.5 Exercises

c � 1
20 ln110 2 � 1

20 12.30 2 � 0.12

 20c � ln110 2
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1–8 ■ The given function models the displacement of an object
moving in simple harmonic motion.

(a) Find the amplitude, period, and frequency of the motion.

(b) Sketch a graph of the displacement of the object over one
complete period.

1. y � 2 sin 3t 2.

3. y � �cos 0.3t 4. y � 2.4 sin 3.6t

5. 6.

7. 8.

9–12 ■ Find a function that models the simple harmonic 
motion having the given properties. Assume that the displace-
ment is zero at time t � 0.

9. amplitude 10 cm, period 3 s

10. amplitude 24 ft, period 2 min

11. amplitude 6 in., frequency 5/p Hz

12. amplitude 1.2 m, frequency 0.5 Hz

13–16 ■ Find a function that models the simple harmonic 
motion having the given properties. Assume that the displace-
ment is at its maximum at time t � 0.

13. amplitude 60 ft, period 0.5 min

14. amplitude 35 cm, period 8 s

15. amplitude 2.4 m, frequency 750 Hz

16. amplitude 6.25 in., frequency 60 Hz

17–24 ■ An initial amplitude k, damping constant c, and 
frequency f or period p are given. (Recall that frequency and 
period are related by the equation f � 1/p.)

(a) Find a function that models the damped harmonic motion. 
Use a function of the form y � ke�ct cos vt in Exercises
17–20, and of the form y � ke�ct sin vt in Exercises 21–24.

(b) Graph the function.

17. k � 2, c � 1.5, f � 3

18. k � 15, c � 0.25, f � 0.6

y � 1.6 sin1t � 1.8 2y � 5 cosA23 t � 3
4B

y � �3
2 sin10.2t � 1.4 2y � �0.25 cos a1.5t �

p

3
b

y � 3 cos 12 t

19. k � 100, c � 0.05, p � 4

20. k � 0.75, c � 3, p � 3p

21. k � 7, c � 10, p � p/6

22. k � 1, c � 1, p � 1

23. k � 0.3, c � 0.2, f � 20

24. k � 12, c � 0.01, f � 8

Applications

25. A Bobbing Cork A cork floating in a lake is bobbing in
simple harmonic motion. Its displacement above the bottom
of the lake is modeled by

where y is measured in meters and t is measured in 
minutes.

(a) Find the frequency of the motion of the cork.

(b) Sketch a graph of y.

(c) Find the maximum displacement of the cork above the
lake bottom.

26. FM Radio Signals The carrier wave for an FM radio 
signal is modeled by the function

where t is measured in seconds. Find the period and 
frequency of the carrier wave.

27. Predator Population Model In a predator/prey model
(see page 432), the predator population is modeled by the
function

where t is measured in years.

(a) What is the maximum population?

(b) Find the length of time between successive periods of
maximum population.

28. Blood Pressure Each time your heart beats, your blood
pressure increases, then decreases as the heart rests between
beats. A certain person’s blood pressure is modeled by the
function

p1t 2 � 115 � 25 sin1160pt 2

y � 900 cos 2t � 8000

y � a sin12p19.15 � 107 2 t 2

y � 0.2 cos 20pt � 8
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where is the pressure in mmHg at time t, measured in
minutes.

(a) Find the amplitude, period, and frequency of p.

(b) Sketch a graph of p.

(c) If a person is exercising, his heart beats faster. How
does this affect the period and frequency of p?

29. Spring–Mass System A mass attached to a spring is
moving up and down in simple harmonic motion. The 
graph gives its displacement from equilibrium at time t.
Express the function d in the form .

30. Tides The graph shows the variation of the water level
relative to mean sea level in Commencement Bay at
Tacoma, Washington, for a particular 24-hour period. As-
suming that this variation is modeled by simple harmonic
motion, find an equation of the form y � a sin vt that
describes the variation in water level as a function of the
number of hours after midnight.

31. Tides The Bay of Fundy in Nova Scotia has the highest
tides in the world. In one 12-hour period the water starts at
mean sea level, rises to 21 ft above, drops to 21 ft below,
then returns to mean sea level. Assuming that the motion 
of the tides is simple harmonic, find an equation that 
describes the height of the tide in the Bay of Fundy above

y
(feet)

t
(time)

MIDNIGHT

0

_6

6

6

12 6 123 9

MIDNIGHT A.M. P.M.

3 9

Mean
sea level

MIDNIGHT

d(t )

t0

_5

5

1

5

2

5

3

5

4

5

d1t 2 � a sin vt
d1t 2

p1t 2 mean sea level. Sketch a graph that shows the level of the
tides over a 12-hour period.

32. Spring–Mass System A mass suspended from a 
spring is pulled down a distance of 2 ft from its rest posi-
tion, as shown in the figure. The mass is released at 
time t � 0 and allowed to oscillate. If the mass returns 
to this position after 1 s, find an equation that describes 
its motion.

33. Spring–Mass System A mass is suspended on a spring.
The spring is compressed so that the mass is located 5 cm
above its rest position. The mass is released at time t � 0
and allowed to oscillate. It is observed that the mass reaches
its lowest point s after it is released. Find an equation that
describes the motion of the mass.

34. Spring–Mass System The frequency of oscillation 
of an object suspended on a spring depends on the 
stiffness k of the spring (called the spring constant) and 
the mass m of the object. If the spring is compressed a 
distance a and then allowed to oscillate, its displacement is
given by

(a) A 10-g mass is suspended from a spring with stiffness 
k � 3. If the spring is compressed a distance 5 cm and
then released, find the equation that describes the 
oscillation of the spring.

(b) Find a general formula for the frequency (in terms of 
k and m).

(c) How is the frequency affected if the mass is increased?
Is the oscillation faster or slower?

(d) How is the frequency affected if a stiffer spring is used
(larger k)? Is the oscillation faster or slower?

35. Ferris Wheel A ferris wheel has a radius of 10 m, and the
bottom of the wheel passes 1 m above the ground. If the fer-
ris wheel makes one complete revolution every 20 s, find an

f1t 2 � a cos 2k/m t

1
2

Rest
position

2 ft
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equation that gives the height above the ground of a person
on the ferris wheel as a function of time.

36. Clock Pendulum The pendulum in a grandfather clock
makes one complete swing every 2 s. The maximum angle
that the pendulum makes with respect to its rest position is
10�. We know from physical principles that the angle u be-
tween the pendulum and its rest position changes in simple
harmonic fashion. Find an equation that describes the size
of the angle u as a function of time. (Take t � 0 to be a time
when the pendulum is vertical.)

37. Variable Stars The variable star Zeta Gemini has a 
period of 10 days. The average brightness of the star is 3.8
magnitudes, and the maximum variation from the average is
0.2 magnitude. Assuming that the variation in brightness is
simple harmonic, find an equation that gives the brightness
of the star as a function of time.

38. Variable Stars Astronomers believe that the radius of a
variable star increases and decreases with the brightness of
the star. The variable star Delta Cephei (Example 4) has an
average radius of 20 million miles and changes by a maxi-
mum of 1.5 million miles from this average during a single
pulsation. Find an equation that describes the radius of this
star as a function of time.

39. Electric Generator The armature in an electric 
generator is rotating at the rate of 100 revolutions per 

¨

10 m

1 m

second (rps). If the maximum voltage produced is 310 V,
find an equation that describes this variation in voltage.
What is the rms voltage? (See Example 6 and the margin
note adjacent to it.)

40. Biological Clocks Circadian rhythms are biological 
processes that oscillate with a period of approximately 
24 hours. That is, a circadian rhythm is an internal daily 
biological clock. Blood pressure appears to follow such a
rhythm. For a certain individual the average resting blood
pressure varies from a maximum of 100 mmHg at 2:00 P.M.
to a minimum of 80 mmHg at 2:00 A.M. Find a sine function
of the form

that models the blood pressure at time t, measured in hours
from midnight.

41. Electric Generator The graph shows an oscilloscope
reading of the variation in voltage of an AC current produced
by a simple generator.

(a) Find the maximum voltage produced.

(b) Find the frequency (cycles per second) of the generator.

(c) How many revolutions per second does the armature in
the generator make?

(d) Find a formula that describes the variation in voltage as
a function of time.
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42. Doppler Effect When a car with its horn blowing drives
by an observer, the pitch of the horn seems higher as it ap-
proaches and lower as it recedes (see the figure). This phe-
nomenon is called the Doppler effect. If the sound source is
moving at speed √ relative to the observer and if the speed of
sound is √0, then the perceived frequency f is related to the
actual frequency f0 as follows:

We choose the minus sign if the source is moving toward
the observer and the plus sign if it is moving away.

Suppose that a car drives at 110 ft/s past a woman 
standing on the shoulder of a highway, blowing its horn,
which has a frequency of 500 Hz. Assume that the speed 
of sound is 1130 ft/s. (This is the speed in dry air at 70� F.)

(a) What are the frequencies of the sounds that the woman
hears as the car approaches her and as it moves away
from her?

(b) Let A be the amplitude of the sound. Find functions of
the form

that model the perceived sound as the car approaches
the woman and as it recedes.

43. Motion of a Building A strong gust of wind strikes a tall
building, causing it to sway back and forth in damped har-
monic motion. The frequency of the oscillation is 0.5 cycle
per second and the damping constant is c � 0.9. Find an
equation that describes the motion of the building. (Assume

y � A sin vt

f � f0 a √0

√0 � √
b

k � 1 and take t � 0 to be the instant when the gust of wind
strikes the building.)

44. Shock Absorber When a car hits a certain bump on the
road, a shock absorber on the car is compressed a distance
of 6 in., then released (see the figure). The shock absorber
vibrates in damped harmonic motion with a frequency of 2
cycles per second. The damping constant for this particular
shock absorber is 2.8.

(a) Find an equation that describes the displacement of 
the shock absorber from its rest position as a function 
of time. Take t � 0 to be the instant that the shock 
absorber is released.

(b) How long does it take for the amplitude of the vibration
to decrease to 0.5 in?

45. Tuning Fork A tuning fork is struck and oscillates in
damped harmonic motion. The amplitude of the motion is
measured, and 3 s later it is found that the amplitude has
dropped to of this value. Find the damping constant c for
this tuning fork.

46. Guitar String A guitar string is pulled at point P a dis-
tance of 3 cm above its rest position. It is then released and
vibrates in damped harmonic motion with a frequency of
165 cycles per second. After 2 s, it is observed that the 
amplitude of the vibration at point P is 0.6 cm.

(a) Find the damping constant c.

(b) Find an equation that describes the position of point P
above its rest position as a function of time. Take t � 0
to be the instant that the string is released.

1
4

5 Review

Concept Check

1. (a) What is the unit circle?

(b) Use a diagram to explain what is meant by the terminal
point determined by a real number t.

(c) What is the reference number associated with t?t

(d) If t is a real number and is the terminal point 
determined by t, write equations that define sin t, cos t,
tan t, cot t, sec t, and csc t.

P1x, y 2
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(e) What are the domains of the six functions that you
defined in part (d)?

(f ) Which trigonometric functions are positive in quadrants
I, II, III, and IV?

2. (a) What is an even function?

(b) Which trigonometric functions are even?

(c) What is an odd function?

(d) Which trigonometric functions are odd?

3. (a) State the reciprocal identities.

(b) State the Pythagorean identities.

4. (a) What is a periodic function?

(b) What are the periods of the six trigonometric functions?

5. Graph the sine and cosine functions. How is the graph of 
cosine related to the graph of sine?

6. Write expressions for the amplitude, period, and phase shift
of the sine curve and the cosine curve

.

7. (a) Graph the tangent and cotangent functions.

(b) State the periods of the tangent curve y � a tan kx and
the cotangent curve y � a cot kx.

8. (a) Graph the secant and cosecant functions.

(b) State the periods of the secant curve y � a sec kx and
the cosecant curve y � a csc kx.

9. (a) What is simple harmonic motion?

(b) What is damped harmonic motion?

(c) Give three real-life examples of simple harmonic 
motion and of damped harmonic motion.

y � a cos k1x � b 2y � a sin k1x � b 2

Exercises

1–2 ■ A point is given.

(a) Show that P is on the unit circle.

(b) Suppose that P is the terminal point determined by t. Find
sin t, cos t, and tan t.

1. 2.

3–6 ■ A real number t is given.

(a) Find the reference number for t.

(b) Find the terminal point on the unit circle determined
by t.

(c) Find the six trigonometric functions of t.

3. 4.

5. 6.

7–16 ■ Find the value of the trigonometric function. If possible,
give the exact value; otherwise, use a calculator to find an ap-
proximate value correct to five decimal places.

7. (a) (b)

8. (a) (b)

9. (a) sin 1.1 (b) cos 1.1

10. (a) (b) cos a�p
5
bcos

p

5

tan a�p
3
btan

p

3

cos
3p

4
sin

3p

4

t � �
7p

6
t � �

11p

4

t �
5p

3
t �

2p

3

P1x, y 2
P a 3

5
, �

4

5
bP a�13

2
,

1

2
b

P1x, y 2
11. (a) (b)

12. (a) (b)

13. (a) (b)

14. (a) sin 2p (b) csc 2p

15. (a) (b)

16. (a) (b)

17–20 ■ Use the fundamental identities to write the first 
expression in terms of the second.

17. , sin t 18. tan2 t sec t, cos t

19. tan t, sin t ; t in quadrant IV

20. sec t, sin t ; t in quadrant II

21–24 ■ Find the values of the remaining trigonometric 
functions at t from the given information.

21. ,

22. , cos t 	 0

23. ,

24. , tan t � 0cos t � �3
5

csc t � 15/2cot t � � 1
2

sin t � � 1
2

cos t � � 12
13sin t � 5

13

tan t

cos t

sin
p

6
cos
p

3

cot
5p

6
tan

5p

6

cot
5p

2
tan

5p

2

csc
p

7
sin
p

7

sec
9p

2
cos

9p

2
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25. If and the terminal point for t is in quadrant III,
find sec t � cot t.

26. If and the terminal point for t is in quadrant IV,
find csc t � sec t.

27. If and the terminal point for t is in quadrant I, find
tan t � sec t.

28. If sec t � �5 and the terminal point for t is in quadrant II,
find sin2t � cos2t.

29–36 ■ A trigonometric function is given.

(a) Find the amplitude, period, and phase shift of the 
function.

(b) Sketch the graph.

29. 30. y � 4 sin 2px

31. 32.

33. y � 3 sin(2x � 2) 34.

35. 36.

37–40 ■ The graph of one period of a function of the form
or is shown. Determine

the function.

37. 38.

39. 40.

41–48 ■ Find the period, and sketch the graph.

41. y � 3 tan x 42. y � tan px

43. 44. y � sec a 1

2
x �
p

2
by � 2 cot a x �

p

2
b

y � a cos k1x � b 2y � a sin k1x � b 2
y � 10 sin a2x �

p

2
by � �cos ap

2
x �
p

6
b

y � cos 2 a x �
p

2
b

y � 2 sin a x �
p

4
by � �sin 1

2x

y � 10 cos 12x

cos t � 3
5

sin t � � 8
17

tan t � 1
4 45. 46.

47. 48. y � �4 sec 4px

49–54 ■ A function is given.

(a) Use a graphing device to graph the function.

(b) Determine from the graph whether the function is periodic
and, if so, determine the period.

(c) Determine from the graph whether the function is odd, even,
or neither.

49. 50.

51. 52. y � 1 � 2cos x

53. 54.

55–58 ■ Graph the three functions on a common screen. How
are the graphs related?

55. y � x, y � �x, y � x sin x

56. y � 2�x, y � �2�x, y � 2�x cos 4px

57. y � x, y � sin 4x, y � x � sin 4x

58. y � sin2x, y � cos2x, y � sin2x � cos2x

59–60 ■ Find the maximum and minimum values of the 
function.

59. y � cos x � sin 2x 60. y � cos x � sin2x

61. Find the solutions of sin x � 0.3 in the interval 30, 2p4.
62. Find the solutions of cos 3x � x in the interval 30, p4.
63. Let .

(a) Is the function f even, odd, or neither?

(b) Find the x-intercepts of the graph of f.

(c) Graph f in an appropriate viewing rectangle.

(d) Describe the behavior of the function as x becomes large.

(e) Notice that is not defined when x � 0. What hap-
pens as x approaches 0?

64. Let and .

(a) Graph y1 and y2 in the same viewing rectangle.

(b) Determine the period of each of these functions from its
graph.

(c) Find an inequality between and 
that is valid for all x.

65. A point P moving in simple harmonic motion completes 
8 cycles every second. If the amplitude of the motion is 
50 cm, find an equation that describes the motion of P as a
function of time. Assume the point P is at its maximum 
displacement when t � 0.

66. A mass suspended from a spring oscillates in simple har-
monic motion at a frequency of 4 cycles per second. The

cos1sin x 2sin1cos x 2
y2 � sin1cos x 2y1 � cos1sin x 2

f 1x 2

f1x 2 �
sin2x

x

y � 1x sin 3x 1x 	 0 2y � 0 x 0  cos 3x

y � cos120.1x 2 y � sin1cos x 2y � 0 cos x 0

y � tan a 1

2
x �
p

8
b

y � tan a x �
p

6
by � 4 csc12x � p 2

y

x0
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π
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π
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distance from the highest to the lowest point of the oscilla-
tion is 100 cm. Find an equation that describes the distance
of the mass from its rest position as a function of time. 
Assume the mass is at its lowest point when t � 0.

67. The graph shows the variation of the water level relative to
mean sea level in the Long Beach harbor for a particular 
24-hour period. Assuming that this variation is simple 
harmonic, find an equation of the form y � a cos vt that
describes the variation in water level as a function of the
number of hours after midnight.

t
(time)

0

_4

3 6 9 12 3 6 9 12

4

MIDNIGHT MIDNIGHTA.M. P.M.

y
(feet)

Mean
sea level

68. The top floor of a building undergoes damped harmonic 
motion after a sudden brief earthquake. At time t � 0 the
displacement is at a maximum, 16 cm from the normal 
position. The damping constant is c � 0.72 and the building
vibrates at 1.4 cycles per second.

(a) Find a function of the form y � ke�ct cos vt to model
the motion.

(b) Graph the function you found in part (a).

(c) What is the displacement at time t � 10 s?
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5 Test

1. The point is on the unit circle in quadrant IV. If , find y.

2. The point P in the figure at the left has y-coordinate . Find:

(a) sin t (b) cos t

(c) tan t (d) sec t

3. Find the exact value.

(a) (b)

(c) (d)

4. Express tan t in terms of sin t, if the terminal point determined by t is in quadrant II.

5. If and if the terminal point determined by t is in quadrant III, find 
tan t cot t � csc t.

6 –7 ■ A trigonometric function is given.

(a) Find the amplitude, period, and phase shift of the function.

(b) Sketch the graph.

6. y � �5 cos 4x 7.

8–9 ■ Find the period, and graph the function.

8. y � �csc 2x 9.

10. The graph shown at left is one period of a function of the form .
Determine the function.

11. Let

(a) Use a graphing device to graph f in an appropriate viewing rectangle.

(b) Determine from the graph if f is even, odd, or neither.

(c) Find the minimum and maximum values of f.

12. A mass suspended from a spring oscillates in simple harmonic motion. The mass com-
pletes 2 cycles every second and the distance between the highest point and the lowest
point of the oscillation is 10 cm. Find an equation of the form y � a sin vt that gives the
distance of the mass from its rest position as a function of time.

13. An object is moving up and down in damped harmonic motion. Its displacement at time
t � 0 is 16 in; this is its maximum displacement. The damping constant is c � 0.1 and
the frequency is 12 Hz.

(a) Find a function that models this motion.

(b) Graph the function.

f 1x 2 �
cos x

1 � x2 .

y � a sin k1x � b 2y � tan a2x �
p

2
b

y � 2 sin a 1

2
x �
p

6
b

cos t � � 8
17

csc
3p

2
tan a� 5p

3
b

cos
13p

4
sin

7p

6

4
5

x � 111/6P1x, y 2
y
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In the Focus on Modeling that follows Chapter 2 (page 239), we learned how to con-
struct linear models from data. Figure 1 shows some scatter plots of data; the first plot
appears to be linear but the others are not. What do we do when the data we are study-
ing are not linear? In this case, our model would be some other type of function that
best fits the data. If the scatter plot indicates simple harmonic motion, then we might
try to model the data with a sine or cosine function. The next example illustrates this
process.

Figure 1

Example 1 Modeling the Height of a Tide

The water depth in a narrow channel varies with the tides. Table 1 shows the water
depth over a 12-hour period.

(a) Make a scatter plot of the water depth data.

(b) Find a function that models the water depth with respect to time.

(c) If a boat needs at least 11 ft of water to cross the channel, during which times
can it safely do so?

Solution

(a) A scatter plot of the data is shown in Figure 2.

12

y
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6
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2 4 6 8 10 120 t
(h)

(ft)

459

Focus on Modeling

Fitting Sinusoidal Curves to Data

Time Depth (ft)

12:00 A.M. 9.8
1:00 A.M. 11.4
2:00 A.M. 11.6
3:00 A.M. 11.2
4:00 A.M. 9.6
5:00 A.M. 8.5
6:00 A.M. 6.5
7:00 A.M. 5.7
8:00 A.M. 5.4
9:00 A.M. 6.0

10:00 A.M. 7.0
11:00 A.M. 8.6
12:00 P.M. 10.0

Table 1

Figure 2



(b) The data appear to lie on a cosine (or sine) curve. But if we graph y � cos t
on the same graph as the scatter plot, the result in Figure 3 is not even close to 
the data—to fit the data we need to adjust the vertical shift, amplitude, period,
and phase shift of the cosine curve. In other words, we need to find a function
of the form

We use the following steps, which are illustrated by the graphs in the margin.

■ Adjust the Vertical Shift

The vertical shift b is the average of the maximum and minimum values:

■ Adjust the Amplitude

The amplitude a is half of the difference between the maximum and minimum
values:

■ Adjust the Period

The time between consecutive maximum and minimum values is half of one
period. Thus

Thus, v � 2p/12 � 0.52.

� 218 � 2 2 � 12

� 2 # 1time of maximum value � time of minimum value 2
2p
v

� period

�
1

2
111.6 � 5.4 2 � 3.1

�
1

2
# 1maximum value � minimum value 2

a � amplitude

�
1

2
111.6 � 5.4 2 � 8.5

�
1

2
# 1maximum value � minimum value 2

b � vertical shift

y � a cos1v1t � c 22 � b
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■ Adjust the Horizontal Shift

Since the maximum value of the data occurs at approximately t � 2.0, it 
represents a cosine curve shifted 2 h to the right. So

■ The Model

We have shown that a function that models the tides over the given time period
is given by

A graph of the function and the scatter plot are shown in Figure 4. It appears
that the model we found is a good approximation to the data.

(c) We need to solve the inequality y � 11. We solve this inequality graphically 
by graphing and y � 11 on the same graph.
From the graph in Figure 5 we see the water depth is higher than 11 ft between
t � 0.8 and t � 3.2. This corresponds to the times 12:48 A.M. to 3:12 A.M. ■

In Example 1 we used the scatter plot to guide us in finding a cosine curve that
gives an approximate model of the data. Some graphing calculators are capable of
finding a sine or cosine curve that best fits a given set of data points. The method these
calculators use is similar to the method of finding a line of best fit, as explained on
pages 239–240.

Example 2 Fitting a Sine Curve to Data

(a) Use a graphing device to find the sine curve that best fits the depth of water
data in Table 1 on page 459.

(b) Compare your result to the model found in Example 1.

y � 3.1 cos 0.521t � 2.0 2 � 8.5

y � 3.1 cos10.521t � 2.0 22 � 8.5

� 2.0

� time of maximum value

c � phase shift
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Figure 4

For the TI-83 and TI-86 the command
SinReg (for sine regression) finds the
sine curve that best fits the given data.
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Figure 5



Solution

(a) Using the data in Table 1 and the SinReg command on the TI-83 calculator, we
get a function of the form

where

So, the sine function that best fits the data is

(b) To compare this with the function in Example 1, we change the sine function to
a cosine function by using the reduction formula .

Reduction formula

Factor 0.53

Comparing this with the function we obtained in Example 1, we see that there
are small differences in the coefficients. In Figure 6 we graph a scatter plot of
the data together with the sine function of best fit.

Figure 6 ■

In Example 1 we estimated the values of the amplitude, period, and shifts 
from the data. In Example 2 the calculator computed the sine curve that best fits 
the data (that is, the curve that deviates least from the data as explained on page 240).
The different ways of obtaining the model account for the differences in the 
functions.
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2 4 6 8 100 t

(h)
12

(ft)

� 3.1 cos10.531t � 1.92 22 � 8.42

� 3.1 cos10.53t � 1.02 2 � 8.42

� 3.1 cos a0.53t � 0.55 �
p

2
b � 8.42

y � 3.1 sin10.53t � 0.55 2 � 8.42

sin u � cos1u � p/2 2
y � 3.1 sin10.53t � 0.55 2 � 8.42

c � 0.55   d � 8.42

a � 3.1    b � 0.53

y � a sin1bt � c 2 � d
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y=a*sin(bx+c)+d
a=3.097877596
b=.5268322697
c=.5493035195
d=8.424021899

SinReg

Output of the SinReg function on the
TI-83.



Problems

1– 4 ■ Modeling Periodic Data A set of data is given.

(a) Make a scatter plot of the data.

(b) Find a cosine function of the form that models the data,
as in Example 1.

(c) Graph the function you found in part (b) together with the scatter plot. How well does
the curve fit the data?

(d) Use a graphing calculator to find the sine function that best fits the data, as in 
Example 2.

(e) Compare the functions you found in parts (b) and (d). [Use the reduction formula
.]sin u � cos1u � p/2 2

y � a cos1v1t � c 22 � b

5. Annual Temperature Change The table gives the average monthly temperature in 
Montgomery County, Maryland.

(a) Make a scatter plot of the data.

(b) Find a cosine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in 
Example 2).
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Average Average
Month temperature (�F) Month temperature (�F)

January 40.0 July 85.8
February 43.1 August 83.9
March 54.6 September 76.9
April 64.2 October 66.8
May 73.8 November 55.5
June 81.8 December 44.5

t y

0 2.1
2 1.1
4 �0.8
6 �2.1
8 �1.3

10 0.6
12 1.9
14 1.5

t y

0 190
25 175
50 155
75 125

100 110
125 95
150 105
175 120
200 140
225 165
250 185
275 200
300 195
325 185
350 165

t y

0.1 21.1
0.2 23.6
0.3 24.5
0.4 21.7
0.5 17.5
0.6 12.0
0.7 5.6
0.8 2.2
0.9 1.0
1.0 3.5
1.1 7.6
1.2 13.2
1.3 18.4
1.4 23.0
1.5 25.1

t y

0.0 0.56
0.5 0.45
1.0 0.29
1.5 0.13
2.0 0.05
2.5 �0.10
3.0 0.02
3.5 0.12
4.0 0.26
4.5 0.43
5.0 0.54
5.5 0.63
6.0 0.59

1. 2. 3. 4.



7. Predator Population When two species interact in a predator/prey relationship (see
page 432), the populations of both species tend to vary in a sinusoidal fashion. In a cer-
tain midwestern county, the main food source for barn owls consists of field mice and
other small mammals. The table gives the population of barn owls in this county every
July 1 over a 12-year period.

(a) Make a scatter plot of the data.

(b) Find a sine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in 
Example 2). Compare to your answer from part (b).

6. Circadian Rhythms Circadian rhythm (from the Latin circa—about, and 
diem—day) is the daily biological pattern by which body temperature, blood pressure,
and other physiological variables change. The data in the table below show typical
changes in human body temperature over a 24-hour period (t � 0 corresponds to 
midnight).

(a) Make a scatter plot of the data.

(b) Find a cosine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in 
Example 2).

464 Focus on Modeling

Year Owl population

0 50
1 62
2 73
3 80
4 71
5 60
6 51
7 43
8 29
9 20

10 28
11 41
12 49

Body Body
Time temperature (�C) Time temperature (�C)

0 36.8 14 37.3
2 36.7 16 37.4
4 36.6 18 37.3
6 36.7 20 37.2
8 36.8 22 37.0

10 37.0 24 36.8
12 37.2



8. Salmon Survival For reasons not yet fully understood, the number of fingerling
salmon that survive the trip from their riverbed spawning grounds to the open ocean
varies approximately sinusoidally from year to year. The table shows the number of
salmon that hatch in a certain British Columbia creek and then make their way to 
the Strait of Georgia. The data is given in thousands of fingerlings, over a period of 
16 years.

(a) Make a scatter plot of the data.

(b) Find a sine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in 
Example 2). Compare to your answer from part (b).

9. Sunspot Activity Sunspots are relatively “cool” regions on the sun that appear as
dark spots when observed through special solar filters. The number of sunspots varies
in an 11-year cycle. The table gives the average daily sunspot count for the years
1975–2004.

(a) Make a scatter plot of the data.

(b) Find a cosine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in
Example 2). Compare to your answer in part (b).
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Year Sunspots Year Sunspots Year Sunspots

1975 16 1985 18 1995 18
1976 13 1986 13 1996 9
1977 28 1987 29 1997 21
1978 93 1988 100 1998 64
1979 155 1989 158 1999 93
1980 155 1990 143 2000 119
1981 140 1991 146 2001 111
1982 116 1992 94 2002 104
1983 67 1993 55 2003 64
1984 46 1994 30 2004 40

Year Salmon (� 1000) Year Salmon (� 1000)

1985 43 1993 56
1986 36 1994 63
1987 27 1995 57
1988 23 1996 50
1989 26 1997 44
1990 33 1998 38
1991 43 1999 30
1992 50 2000 22
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6 Trigonometric
Functions
of Angles



Chapter Overview

The trigonometric functions can be defined in two different but equivalent ways—as
functions of real numbers (Chapter 5) or as functions of angles (Chapter 6). The two
approaches to trigonometry are independent of each other, so either Chapter 5 or
Chapter 6 may be studied first. We study both approaches because different applica-
tions require that we view these functions differently. The approach in this chapter
lends itself to geometric problems involving finding angles and distances.

Suppose we want to find the distance to the sun. Using a tape measure is of course
impractical, so we need something besides simple measurement to tackle this prob-
lem. Angles are easy to measure—for example, we can find the angle formed by the
sun, earth, and moon by simply pointing to the sun with one arm and the moon with
the other and estimating the angle between them. The key idea then is to find a rela-
tionship between angles and distances. So if we had a way to determine distances
from angles, we’d be able to find the distance to the sun without going there. The
trigonometric functions provide us with just the tools we need.

If ABC is a right triangle with acute angle u as in the figure, then we define sin u
to be the ratio y/r. Triangle A�B�C� is similar to triangle ABC, so

Although the distances y� and r� are different from y and r, the given ratio is the same.
Thus, in any right triangle with acute angle u, the ratio of the side opposite angle u to
the hypotenuse is the same and is called sin u. The other trigonometric ratios are
defined in a similar fashion.

In this chapter we learn how trigonometric functions can be used to measure dis-
tances on the earth and in space. In Exercises 61 and 62 on page 487, we actually de-
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termine the distance to the sun using trigonometry. Right triangle trigonometry has
many other applications, from determining the optimal cell structure in a beehive
(Exercise 67, page 497) to explaining the shape of a rainbow (Exercise 69, page 498).
In the Focus on Modeling, pages 522–523, we see how a surveyor uses trigonometry
to map a town.

6.1 Angle Measure

An angle AOB consists of two rays R1 and R2 with a common vertex O (see Fig-
ure 1). We often interpret an angle as a rotation of the ray R1 onto R2. In this case,
R1 is called the initial side, and R2 is called the terminal side of the angle. If the rota-
tion is counterclockwise, the angle is considered positive, and if the rotation is clock-
wise, the angle is considered negative.

Figure 1

Angle Measure

The measure of an angle is the amount of rotation about the vertex required to move
R1 onto R2. Intuitively, this is how much the angle “opens.” One unit of measurement
for angles is the degree. An angle of measure 1 degree is formed by rotating the ini-
tial side of a complete revolution. In calculus and other branches of mathematics,
a more natural method of measuring angles is used—radian measure. The amount an
angle opens is measured along the arc of a circle of radius 1 with its center at the ver-
tex of the angle.

1
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Definition of Radian Measure

If a circle of radius 1 is drawn with the vertex of an angle at its center, then
the measure of this angle in radians (abbreviated rad) is the length of the arc
that subtends the angle (see Figure 2).

Figure 2

The circumference of the circle of radius 1 is 2p and so a complete revolution has
measure 2p rad, a straight angle has measure p rad, and a right angle has measure



p/2 rad. An angle that is subtended by an arc of length 2 along the unit circle has ra-
dian measure 2 (see Figure 3).

Since a complete revolution measured in degrees is 360� and measured in radians
is 2p rad, we get the following simple relationship between these two methods of
angle measurement.

O 1

π rad

O 1

2 rad1
1

O 1

rad
π

2

O 1

1 rad

Figure 3

Radian measure
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Relationship between Degrees and Radians

1. To convert degrees to radians, multiply by .

2. To convert radians to degrees, multiply by .
180
p

p

180

180° � p rad   1 rad � a 180
p
b °

   1° �
p

180
rad

To get some idea of the size of a radian, notice that

An angle u of measure 1 rad is shown in Figure 4.

Example 1 Converting between Radians 

and Degrees

(a) Express 60� in radians. (b) Express rad in degrees.

Solution The relationship between degrees and radians gives

(a) (b) ■

A note on terminology: We often use a phrase such as “a 30� angle” to mean an
angle whose measure is 30�. Also, for an angle u, we write u � 30� or u � p/6 to
mean the measure of u is 30� or p/6 rad. When no unit is given, the angle is assumed
to be measured in radians.

p

6
 rad � ap

6
b a 180
p
b � 30°60° � 60 a p

180
b  rad �

p

3
 rad

p

6

1 rad � 57.296°  and  1° � 0.01745 rad

¨

1

1

Measure of ¨=1 rad
Measure of ¨Å57.296*

Figure 4



Angles in Standard Position

An angle is in standard position if it is drawn in the xy-plane with its vertex at the
origin and its initial side on the positive x-axis. Figure 5 gives examples of angles in
standard position.

Two angles in standard position are coterminal if their sides coincide. In Figure 5
the angles in (a) and (c) are coterminal.

Example 2 Coterminal Angles

(a) Find angles that are coterminal with the angle u � 30� in standard position.

(b) Find angles that are coterminal with the angle in standard position.

Solution

(a) To find positive angles that are coterminal with u, we add any multiple of 
360�. Thus

are coterminal with u � 30�. To find negative angles that are coterminal with u,
we subtract any multiple of 360�. Thus

are coterminal with u. (See Figure 6.)

Figure 6

(b) To find positive angles that are coterminal with u, we add any multiple of 2p.
Thus

p

3
� 2p �

7p

3
  and  

p

3
� 4p �

13p

3

y

x0

_330*

y

x0

390*

y

x0

30*

30° � 360° � �330°  and  30° � 720° � �690°

30° � 360° � 390°  and  30° � 720° � 750°

u �
p

3

y

x0

(a)

y

x0

(b)

y

x0

(d)

y

x0

(c)
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Figure 5

Angles in standard position



are coterminal with u � p/3. To find negative angles that are coterminal with u,
we subtract any multiple of 2p. Thus

are coterminal with u. (See Figure 7.)

Figure 7

Example 3 Coterminal Angles

Find an angle with measure between 0� and 360� that is coterminal with the angle
of measure 1290� in standard position.

Solution We can subtract 360� as many times as we wish from 1290�, and the
resulting angle will be coterminal with 1290�. Thus, 1290� � 360� � 930� is coter-
minal with 1290�, and so is the angle 1290� � 2(360)� � 570�.

To find the angle we want between 0� and 360�, we subtract 360� from 1290� as
many times as necessary. An efficient way to do this is to determine how many
times 360� goes into 1290�, that is, divide 1290 by 360, and the remainder will be
the angle we are looking for. We see that 360 goes into 1290 three times with a 
remainder of 210. Thus, 210� is the desired angle (see Figure 8).

Figure 8 ■

Length of a Circular Arc

An angle whose radian measure is u is subtended by an arc that is the fraction 
of the circumference of a circle. Thus, in a circle of radius r, the length s of an arc that
subtends the angle u (see Figure 9) is

�
u

2p
12pr 2 � ur

s �
u

2p
� circumference of circle

u/ 12p 2
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Solving for u, we get the important formula

This formula allows us to define radian measure using a circle of any radius r: The
radian measure of an angle u is s/r, where s is the length of the circular arc that sub-
tends u in a circle of radius r (see Figure 10).

Example 4 Arc Length and Angle Measure

(a) Find the length of an arc of a circle with radius 10 m that subtends a central
angle of 30�.

(b) A central angle u in a circle of radius 4 m is subtended by an arc of length 6 m.
Find the measure of u in radians.

Solution

(a) From Example 1(b) we see that 30� � p/6 rad. So the length of the arc is

(b) By the formula u � s/r, we have

■

Area of a Circular Sector

The area of a circle of radius r is A � pr 2. A sector of this circle with central angle u
has an area that is the fraction of the area of the entire circle (see Figure 11).
So the area of this sector is

�
u

2p
1pr 2 2 �

1

2
r 2u

A �
u

2p
� area of circle

u/ 12p 2
u �

s
r

�
6

4
�

3

2
rad

s � ru � 110 2p
6

�
5p

3
m

2 rad

r

r

r

1 rad
r

r
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Length of a Circular Arc

In a circle of radius r, the length s of an arc that subtends a central angle of u
radians is

s � ru

The formula s � ru is true only
when u is measured in radians.

¨

r

A

Figure 11

A � 1
2r 2u

Figure 10

The radian measure of u is the number
of “radiuses” that can fit in the arc that
subtends u; hence the term radian.

u �
s
r



Example 6 Finding Linear and Angular Speed

A boy rotates a stone in a 3-ft-long sling at the rate of 15 revolutions every 
10 seconds. Find the angular and linear velocities of the stone.

Solution In 10 s, the angle u changes by 15 �2p � 30p radians. So the angular
speed of the stone is

v �
u

t
�

30p rad

10 s
� 3p rad/s

Example 5 Area of a Sector

Find the area of a sector of a circle with central angle 60� if the radius of the circle
is 3 m.

Solution To use the formula for the area of a circular sector, we must find the
central angle of the sector in radians: . Thus, the
area of the sector is

■

Circular Motion

Suppose a point moves along a circle as shown in Figure 12. There are two ways to
describe the motion of the point—linear speed and angular speed. Linear speed is
the rate at which the distance traveled is changing, so linear speed is the distance trav-
eled divided by the time elapsed. Angular speed is the rate at which the central angle
u is changing, so angular speed is the number of radians this angle changes divided
by the time elapsed.

A �
1

2
r 2u �

1

2
13 2 2 ap

3
b �

3p

2
m2

60° � 601p/180 2  rad � p/3 rad
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The formula is true only
when u is measured in radians.

A � 1
2r 2u

Area of a Circular Sector

In a circle of radius r, the area A of a sector with a central angle of u radians is

A �
1

2
r 2u

¨

s

r

Figure 12 Linear Speed and Angular Speed

Suppose a point moves along a circle of radius r and the ray from the center
of the circle to the point traverses u radians in time t. Let s � ru be the 
distance the point travels in time t. Then the speed of the object is given by

Angular speed

Linear speed √ �
s

t

v �
u

t
The symbol v is the Greek letter
“omega.”
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1–12 ■ Find the radian measure of the angle with the given 
degree measure.

1. 72� 2. 54� 3. �45�

4. �60� 5. �75� 6. �300�

7. 1080� 8. 3960� 9. 96�

10. 15� 11. 7.5� 12. 202.5�

13–24 ■ Find the degree measure of the angle with the given
radian measure.

13. 14. 15. �
5p

4

11p

3

7p

6

16. 17. 3 18. �2

19. �1.2 20. 3.4 21.

22. 23. 24.

25–30 ■ The measure of an angle in standard position is 
given. Find two positive angles and two negative angles that 
are coterminal with the given angle.

25. 50� 26. 135� 27.
3p

4

�
13p

12
�

2p

15

5p

18

p

10

�
3p

2

The distance traveled by the stone in 10 s is s � 15�2pr � 15�2p�3 � 90p ft. So
the linear speed of the stone is

■

Notice that angular speed does not depend on the radius of the circle, but only on
the angle u. However, if we know the angular speed v and the radius r, we can find
linear speed as follows: .√ � s/t � ru/t � r 1u/t 2 � rv

√ �
s

t
�

90p ft

10 s
� 9p ft/s

Relationship between Linear and Angular Speed

If a point moves along a circle of radius r with angular speed v, then its linear
speed √ is given by

√ � rv

Example 7 Finding Linear Speed from Angular Speed

A woman is riding a bicycle whose wheels are 26 inches in diameter. If the wheels
rotate at 125 revolutions per minute (rpm), find the speed at which she is traveling,
in mi/h.

Solution The angular speed of the wheels is 2p�125 � 250p rad/min. Since the
wheels have radius 13 in. (half the diameter), the linear speed is

Since there are 12 inches per foot, 5280 feet per mile, and 60 minutes per hour, her
speed in miles per hour is

■

6.1 Exercises

� 9.7 mi/h

10,210.2 in./min � 60 min/h
12 in./ft � 5280 ft/mi

�
612,612 in./h
63,360 in./mi

√ � rv � 13 # 250p � 10,210.2 in./min
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28. 29. 30. �45�

31–36 ■ The measures of two angles in standard position are
given. Determine whether the angles are coterminal.

31. 70�, 430� 32. �30�, 330�

33. 34.

35. 155�, 875� 36. 50�, 340�

37–42 ■ Find an angle between 0� and 360� that is coterminal
with the given angle.

37. 733� 38. 361�

39. 1110� 40. �100�

41. �800� 42. 1270�

43–48 ■ Find an angle between 0 and 2p that is coterminal
with the given angle.

43. 44. 45. 87p

46. 10 47. 48.

49. Find the length of the arc s
in the figure.

50. Find the angle u in the figure.

51. Find the radius r of the circle 
in the figure.

2 rad

r

8

¨

5

10

140*

5

s

51p

2

17p

4

�
7p

3

17p

6

32p

3
, 

11p

3

5p

6
, 

17p

6

�
p

4

11p

6
52. Find the length of an arc that subtends a central angle of 45�

in a circle of radius 10 m.

53. Find the length of an arc that subtends a central angle of 
2 rad in a circle of radius 2 mi.

54. A central angle u in a circle of radius 5 m is subtended by an
arc of length 6 m. Find the measure of u in degrees and in
radians.

55. An arc of length 100 m subtends a central angle u in a 
circle of radius 50 m. Find the measure of u in degrees and
in radians.

56. A circular arc of length 3 ft subtends a central angle of 25�.
Find the radius of the circle.

57. Find the radius of the circle if an arc of length 6 m on the
circle subtends a central angle of p/6 rad.

58. Find the radius of the circle if an arc of length 4 ft on the
circle subtends a central angle of 135�.

59. Find the area of the sector shown in each figure.

(a)

60. Find the radius of each circle if the area of the sector is 12.

(a)

61. Find the area of a sector with central angle 1 rad in a circle
of radius 10 m.

62. A sector of a circle has a central angle of 60�. Find the area
of the sector if the radius of the circle is 3 mi.

63. The area of a sector of a circle with a central angle of 2 rad
is 16 m2. Find the radius of the circle.

64. A sector of a circle of radius 24 mi has an area of 288 mi2.
Find the central angle of the sector.

65. The area of a circle is 72 cm2. Find the area of a sector of
this circle that subtends a central angle of p/6 rad.

66. Three circles with radii 1, 2, and 3 ft are externally tangent
to one another, as shown in the figure on the next page. Find
the area of the sector of the circle of radius 1 that is cut off

0.7 rad
150*

80*

8

0.5 rad

10

(b)

(b)
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by the line segments joining the center of that circle to the
centers of the other two circles.

Applications

67. Travel Distance A car’s wheels are 28 in. in diameter.
How far (in miles) will the car travel if its wheels revolve
10,000 times without slipping?

68. Wheel Revolutions How many revolutions will a car
wheel of diameter 30 in. make as the car travels a distance
of one mile?

69. Latitudes Pittsburgh,
Pennsylvania, and Miami,
Florida, lie approximately on 
the same meridian. Pittsburgh 
has a latitude of 40.5� N and 
Miami, 25.5� N. Find the 
distance between these two
cities. (The radius of the earth
is 3960 mi.)

70. Latitudes Memphis, Tennessee, and New Orleans,
Louisiana, lie approximately on the same meridian. 
Memphis has latitude 35� N and New Orleans, 30� N. Find
the distance between these two cities. (The radius of the
earth is 3960 mi.)

71. Orbit of the Earth Find the distance that the earth travels
in one day in its path around the sun. Assume that a year has
365 days and that the path of the earth around the sun is a
circle of radius 93 million miles. [The path of the earth
around the sun is actually an ellipse with the sun at one 
focus (see Section 10.2). This ellipse, however, has very
small eccentricity, so it is nearly circular.]

72. Circumference of the Earth The Greek mathematician
Eratosthenes (ca. 276–195 B.C.) measured the circumference

sun

Pittsburgh
Miami

of the earth from the following observations. He noticed that
on a certain day the sun shone directly down a deep well in
Syene (modern Aswan). At the same time in Alexandria,
500 miles north (on the same meridian), the rays of the sun
shone at an angle of 7.2� to the zenith. Use this information
and the figure to find the radius and circumference of the
earth.

73. Nautical Miles Find the distance along an arc on the sur-
face of the earth that subtends a central angle of 1 minute

. This distance is called a nautical
mile. (The radius of the earth is 3960 mi.)

74. Irrigation An irrigation system uses a straight sprinkler
pipe 300 ft long that pivots around a central point as shown.
Due to an obstacle the pipe is allowed to pivot through 280�
only. Find the area irrigated by this system.

75. Windshield Wipers The top and bottom ends of a wind-
shield wiper blade are 34 in. and 14 in. from the pivot point,
respectively. While in operation the wiper sweeps through
135�. Find the area swept by the blade.

135*
34 in.

14 in.

280*

3
0
0
 ft

11 minute � 1
60  degree 2

Syene

Alexandria
Rays of sun

7.2*
500 mi
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76. The Tethered Cow A cow is tethered by a 100-ft rope to
the inside corner of an L-shaped building, as shown in the
figure. Find the area that the cow can graze.

77. Winch A winch of radius 2 ft is used to lift heavy loads. 
If the winch makes 8 revolutions every 15 s, find the speed
at which the load is rising.

78. Fan A ceiling fan with 16-in. blades rotates at 45 rpm.

(a) Find the angular speed of the fan in rad/min.

(b) Find the linear speed of the tips of the blades in 
in./min.

79. Radial Saw A radial saw has a blade with a 6-in. radius.
Suppose that the blade spins at 1000 rpm.

(a) Find the angular speed of the blade in rad/min.

(b) Find the linear speed of the sawteeth in ft/s.

80. Speed at Equator The earth rotates about its axis once
every 23 h 56 min 4 s, and the radius of the earth is 3960
mi. Find the linear speed of a point on the equator in mi/h.

81. Speed of a Car The wheels of a car have radius 11 in. and
are rotating at 600 rpm. Find the speed of the car in mi/h.

82. Truck Wheels A truck with 48-in.-diameter wheels is 
traveling at 50 mi/h.

(a) Find the angular speed of the wheels in rad/min.

(b) How many revolutions per minute do the wheels make?

50 ft

60 ft

10
0 f

t
50 ft

20 ft

83. Speed of a Current To measure the speed of a current,
scientists place a paddle wheel in the stream and observe the
rate at which it rotates. If the paddle wheel has radius 0.20 m
and rotates at 100 rpm, find the speed of the current in m/s.

84. Bicycle Wheel The sprockets and chain of a bicycle are
shown in the figure. The pedal sprocket has a radius of 4 in.,
the wheel sprocket a radius of 2 in., and the wheel a radius
of 13 in. The cyclist pedals at 40 rpm.

(a) Find the angular speed of the wheel sprocket.

(b) Find the speed of the bicycle. (Assume that the wheel
turns at the same rate as the wheel sprocket.)

85. Conical Cup A conical cup is made from a circular piece
of paper with radius 6 cm by cutting out a sector and joining
the edges as shown. Suppose u � 5p/3.

(a) Find the circumference C of the opening of the cup.

(b) Find the radius r of the opening of the cup. [Hint: Use
C � 2pr.]

(c) Find the height h of the cup. [Hint: Use the Pythagorean
Theorem.]

(d) Find the volume of the cup.

6 cm

6 cm
6 cm

¨

h

r

4 in.

2 in.

13 in.



6.2 Trigonometry of Right Triangles

In this section we study certain ratios of the sides of right triangles, called trigono-
metric ratios, and give several applications.

Trigonometric Ratios

Consider a right triangle with u as one of its acute angles. The trigonometric ratios
are defined as follows (see Figure 1).

478 CHAPTER 6 Trigonometric Functions of Angles

86. Conical Cup In this exercise we find the volume of the
conical cup in Exercise 85 for any angle u.

(a) Follow the steps in Exercise 85 to show that the volume
of the cup as a function of u is

(b) Graph the function V.

(c) For what angle u is the volume of the cup a 
maximum?

Discovery • Discussion

87. Different Ways of Measuring Angles The custom of
measuring angles using degrees, with 360� in a circle, dates
back to the ancient Babylonians, who used a number system
based on groups of 60. Another system of measuring angles
divides the circle into 400 units, called grads. In this system

V1u 2 �
9

p2 u
224p2 � u2,  0 � u � 2p

a right angle is 100 grad, so this fits in with our base 10
number system.

Write a short essay comparing the advantages and disad-
vantages of these two systems and the radian system of
measuring angles. Which system do you prefer?

88. Clocks and Angles In one hour, the minute hand on a
clock moves through a complete circle, and the hour hand
moves through of a circle. Through how many radians do
the minute and the hour hand move between 1:00 P.M. and
6:45 P.M. (on the same day)?

12 1

2

3

6

9

10

4
57

8

11 12 1

2

3

6

10

4
57

8

11

9

1
12

The Trigonometric Ratios

csc u �
hypotenuse

opposite
   sec u �

hypotenuse

adjacent
   cot u �

adjacent

opposite

sin u �
opposite

hypotenuse
   cos u �

adjacent

hypotenuse
   tan u �

opposite

adjacent

adjacent

opposite
hypotenuse

¨

Figure 1

The symbols we use for these ratios are abbreviations for their full names: sine,
cosine, tangent, cosecant, secant, cotangent. Since any two right triangles with



angle u are similar, these ratios are the same, regardless of the size of the triangle; the
trigonometric ratios depend only on the angle u (see Figure 2).

Figure 2

Example 1 Finding Trigonometric Ratios

Find the six trigonometric ratios of the angle u in Figure 3.

Solution

■

Example 2 Finding Trigonometric Ratios

If , sketch a right triangle with acute angle a, and find the other five
trigonometric ratios of a.

Solution Since cos a is defined as the ratio of the adjacent side to the hypotenuse,
we sketch a triangle with hypotenuse of length 4 and a side of length 3 adjacent to
a. If the opposite side is x, then by the Pythagorean Theorem, 32 � x 2 � 42 or
x 2 � 7, so . We then use the triangle in Figure 4 to find the ratios.

■

Special Triangles

Certain right triangles have ratios that can be calculated easily from the Pythagorean
Theorem. Since they are used frequently, we mention them here.

The first triangle is obtained by drawing a diagonal in a square of side 1 (see Fig-
ure 5 on page 480). By the Pythagorean Theorem this diagonal has length . The12

csc a �
4

17
   sec a �

4

3
   cot a �

3

17

sin a �
17

4
   cos a �

3

4
   tan a �

17

3

x � 17

cos a � 3
4

csc u �
3

2
   sec u �

3

15
   cot u �

15

2

sin u �
2

3
   cos u �

15

3
   tan u �

2

15

¨

4

3
5

ß ¨=

ç ¨=

3
5

4
5

¨

40

30

50

ß ¨=

ç ¨=

30
50

3
5

4
5

=

=
40
50
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Hipparchus (circa 140 B.C.) is con-
sidered the founder of trigonome-
try. He constructed tables for a
function closely related to the mod-
ern sine function and evaluated for
angles at half-degree intervals.
These are considered the first
trigonometric tables. He used his
tables mainly to calculate the paths
of the planets through the heavens.

œ∑

3 2

¨

5

Figure 3

3

4
œ∑

å

7

Figure 4



resulting triangle has angles 45�, 45�, and 90� (or p/4, p/4, and p/2). To get the sec-
ond triangle, we start with an equilateral triangle ABC of side 2 and draw the per-
pendicular bisector DB of the base, as in Figure 6. By the Pythagorean Theorem the
length of DB is . Since DB bisects angle ABC, we obtain a triangle with angles
30�, 60�, and 90� (or p/6, p/3, and p/2).

13

480 CHAPTER 6 Trigonometric Functions of Angles

1

1

œ∑2

45*

45*

Figure 5

1

2

A C

B

D

60*

œ∑3
30*

Figure 6

It’s useful to remember these special trigonometric ratios because they occur of-
ten. Of course, they can be recalled easily if we remember the triangles from which
they are obtained.

To find the values of the trigonometric ratios for other angles, we use a calculator.
Mathematical methods (called numerical methods) used in finding the trigonometric
ratios are programmed directly into scientific calculators. For instance, when the 
key is pressed, the calculator computes an approximation to the value of the sine of
the given angle. Calculators give the values of sine, cosine, and tangent; the other ra-
tios can be easily calculated from these using the following reciprocal relations:

You should check that these relations follow immediately from the definitions of the
trigonometric ratios.

We follow the convention that when we write sin t, we mean the sine of the angle
whose radian measure is t. For instance, sin 1 means the sine of the angle whose ra-

SIN

For an explanation of numerical meth-
ods, see the margin note on page 436.

csc t �
1

sin t
   sec t �

1

cos t
   cot t �

1

tan t

u in degrees u in radians sin u cos u tan u csc u sec u cot u

30� 2

45� 1 1

60� 2
13

3

213

3
13

1

2

13

2

p

3

1212
12

2

12

2

p

4

13
213

3

13

3

13

2

1

2

p

6

Table 1 Values of the trigonometric ratios for special angles

We can now use the special triangles in Figures 5 and 6 to calculate the trigono-
metric ratios for angles with measures 30�, 45�, and 60� (orp/6,p/4, and p/3). These
are listed in Table 1.

Aristarchus of Samos (310–230
B.C.) was a famous Greek scientist,
musician, astronomer, and geome-
ter. In his book On the Sizes and
Distances of the Sun and the Moon,
he estimated the distance to the sun
by observing that when the moon
is exactly half full, the triangle
formed by the sun, moon, and the
earth has a right angle at the moon.
His method was similar to the one
described in Exercise 61 in this
section. Aristarchus was the first to
advance the theory that the earth
and planets move around the sun,
an idea that did not gain full ac-
ceptance until after the time of
Copernicus, 1800 years later. For
this reason he is often called the
“Copernicus of antiquity.”



dian measure is 1. When using a calculator to find an approximate value for this num-
ber, set your calculator to radian mode; you will find that

If you want to find the sine of the angle whose measure is 1�, set your calculator to
degree mode; you will find that

Example 3 Using a Calculator to Find Trigonometric Ratios

With our calculator in degree mode, and writing the results correct to five decimal
places, we find

With our calculator in radian mode, and writing the results correct to five decimal
places, we find

■

Applications of Trigonometry of Right Triangles

A triangle has six parts: three angles and three sides. To solve a triangle means to 
determine all of its parts from the information known about the triangle, that is, to 
determine the lengths of the three sides and the measures of the three angles.

Example 4 Solving a Right Triangle

Solve triangle ABC, shown in Figure 7.

Solution It’s clear that �B � 60�. To find a, we look for an equation that relates
a to the lengths and angles we already know. In this case, we have sin 30� � a/12, so

Similarly, cos 30� � b/12, so

■

It’s very useful to know that, using the information given in Figure 8, the lengths
of the legs of a right triangle are

The ability to solve right triangles using the trigonometric ratios is fundamental to
many problems in navigation, surveying, astronomy, and the measurement of dis-
tances. The applications we consider in this section always involve right triangles but,
as we will see in the next three sections, trigonometry is also useful in solving trian-
gles that are not right triangles.

To discuss the next examples, we need some terminology. If an observer is look-
ing at an object, then the line from the eye of the observer to the object is called 

a � r sin u  and  b � r cos u

b � 12 cos 30° � 12 a 13

2
b � 613

a � 12 sin 30° � 12A12B � 6

cos 1.2 � 0.36236   cot 1.54 �
1

tan 1.54
� 0.03081

sin 17° � 0.29237   sec 88° �
1

cos 88°
� 28.65371

sin 1° � 0.0174524

sin 1 � 0.841471
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30*

b

a
12

A C

B

Figure 7

¨

a
r

b

Figure 8

a � r sin u

b � r cos u



the line of sight (Figure 9). If the object being observed is above the horizontal, then
the angle between the line of sight and the horizontal is called the angle of elevation.
If the object is below the horizontal, then the angle between the line of sight and the
horizontal is called the angle of depression. In many of the examples and exercises
in this chapter, angles of elevation and depression will be given for a hypothetical ob-
server at ground level. If the line of sight follows a physical object, such as an inclined
plane or a hillside, we use the term angle of inclination.

Figure 9

The next example gives an important application of trigonometry to the problem
of measurement: We measure the height of a tall tree without having to climb it! Al-
though the example is simple, the result is fundamental to understanding how the
trigonometric ratios are applied to such problems.

Example 5 Finding the Height of a Tree

A giant redwood tree casts a shadow 532 ft long. Find the height of the tree if the
angle of elevation of the sun is 25.7�.

Solution Let the height of the tree be h. From Figure 10 we see that

Definition of tangent

Multiply by 532

Use a calculator

Therefore, the height of the tree is about 256 ft.

Figure 10 ■
532 ft

h

25.7*

� 53210.48127 2 � 256

h � 532 tan 25.7°

h

532
� tan 25.7°

Angle of
elevation

Horizontal

Line of
sight Angle of

depression

Horizontal

Line of
sight
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Thales of Miletus (circa 625–547
B.C.) is the legendary founder of
Greek geometry. It is said that he
calculated the height of a Greek
column by comparing the length of
the shadow of his staff with that 
of the column. Using properties of
similar triangles, he argued that the
ratio of the height h of the column
to the height h� of his staff was
equal to the ratio of the length s of
the column’s shadow to the length
s� of the staff’s shadow:

Since three of these quantities are
known, Thales was able to calcu-
late the height of the column.

According to legend, Thales
used a similar method to find the
height of the Great Pyramid in
Egypt, a feat that impressed Egypt’s
king. Plutarch wrote that “although
he [the king of Egypt] admired you
[Thales] for other things, yet he par-
ticularly liked the manner by which
you measured the height of the
pyramid without any trouble or in-
strument.” The principle Thales
used, the fact that ratios of corre-
sponding sides of similar triangles
are equal, is the foundation of the
subject of trigonometry.

h

h¿
�

s

s¿



Example 6 A Problem Involving Right Triangles

From a point on the ground 500 ft from the base of a building, an observer finds
that the angle of elevation to the top of the building is 24� and that the angle of ele-
vation to the top of a flagpole atop the building is 27�. Find the height of the build-
ing and the length of the flagpole.

Solution Figure 11 illustrates the situation. The height of the building is found
in the same way that we found the height of the tree in Example 5.

Definition of tangent

Multiply by 500

Use a calculator

The height of the building is approximately 223 ft.
To find the length of the flagpole, let’s first find the height from the ground to the

top of the pole:

To find the length of the flagpole, we subtract h from k. So the length of the pole is
approximately 255 � 223 � 32 ft. ■

In some problems we need to find an angle in a right triangle whose sides are given.
To do this, we use Table 1 (page 480) “backward”; that is, we find the angle with the
specified trigonometric ratio. For example, if , what is the angle u? From
Table 1 we can tell that u� 30�. To find an angle whose sine is not given in the table,
we use the or or keys on a calculator. For example, if
sin u� 0.8, we apply the key to 0.8 to get u� 53.13� or 0.927 rad. The calcula-
tor also gives angles whose cosine or tangent are known, using the or key.

Example 7 Solving for an Angle in a Right Triangle

A 40-ft ladder leans against a building. If the base of the ladder is 6 ft from the base
of the building, what is the angle formed by the ladder and the building?

Solution First we sketch a diagram as in Figure 12. If u is the angle between the
ladder and the building, then

So u is the angle whose sine is 0.15. To find the angle u, we use the key on a
calculator. With our calculator in degree mode, we get

■u � 8.6°

SIN�1

sin u �
6

40
� 0.15

TAN�1COS�1

SIN�1

ARCSINSININVSIN�1

sin u � 1
2

� 255

� 50010.5095 2k � 500 tan 27°

k

500
� tan 27°

� 50010.4452 2 � 223

h � 500 tan 24°

h

500
� tan 24°
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The key labels or 
stand for “inverse sine.” We study the
inverse trigonometric functions in 
Section 7.4.

SININVSIN�1

¨

40 ft

6 ft

Figure 12

500 ft

h
k

24*
27*

Figure 11
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1–6 ■ Find the exact values of the six trigonometric ratios of
the angle u in the triangle.

1. 2.

3. 4.

5. 6.

7–8 ■ Find (a) sin a and cos b, (b) tan a and cot b, and 
(c) sec a and csc b.

7. 8.

9–14 ■ Find the side labeled x. In Exercises 13 and 14 state
your answer correct to five decimal places.

9. 10.

11. 12.

30*

4

x

13

x

60*

12

x
45*

30*

25
x

7

4

∫

å
∫

5

3

å

8

7

¨

3 2

¨

¨

15

8

41
¨

40

24
¨

25
7

4

¨5
3

13. 14.

15–16 ■ Express x and y in terms of trigonometric ratios of u.

15. 16.

17–22 ■ Sketch a triangle that has acute angle u, and find the
other five trigonometric ratios of u.

17. 18.

19. cot u � 1 20.

21. 22.

23–28 ■ Evaluate the expression without using a calculator.

23.

24. sin 30� csc 30�

25.

26.

27.

28.

29–36 ■ Solve the right triangle.

29. 30.

100
75*

16
45*

a sin
p

3
 cos 
p

4
� sin

p

4
 cos 
p

3
b 2

1cos 30° 2 2 � 1sin 30° 2 21sin 60° 2 2 � 1cos 60° 2 2sin 30° cos 60° � sin 60° cos 30°

sin
p

6
� cos

p

6

csc u � 13
12sec u � 7

2

tan u � 13

cos u � 9
40sin u � 3

5

¨

4

x
y

¨

28

x

y

53*
25

x

36*

12

x

6.2 Exercises
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31. 32.

33. 34.

35. 36.

37. Use a ruler to carefully measure the sides of the triangle,
and then use your measurements to estimate the six trigono-
metric ratios of u.

38. Using a protractor, sketch a right triangle that has the acute
angle 40�. Measure the sides carefully, and use your results
to estimate the six trigonometric ratios of 40�.

39–42 ■ Find x correct to one decimal place.

39.

40.

60* 30*

85

x

60* 30*

100

x

¨

425 3π

8

106

π

5

72.3

π

6

33.5
π

8

1000

68°35

52*

41. 42.

43. Express the length x in terms of the trigonometric ratios
of u.

44. Express the length a, b, c, and d in the figure in terms of the
trigonometric ratios of u.

Applications

45. Height of a Building The angle of elevation to the top 
of the Empire State Building in New York is found to be 11�
from the ground at a distance of 1 mi from the base of the
building. Using this information, find the height of the 
Empire State Building.

1

¨

a
b

d

c

10

¨

x

30*

5

x

60*

65*

50

x
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46. Gateway Arch A plane is flying within sight of the 
Gateway Arch in St. Louis, Missouri, at an elevation of
35,000 ft. The pilot would like to estimate her distance from
the Gateway Arch. She finds that the angle of depression to
a point on the ground below the arch is 22�.

(a) What is the distance between the plane and the arch?

(b) What is the distance between a point on the ground 
directly below the plane and the arch?

47. Deviation of a Laser Beam A laser beam is to be directed
toward the center of the moon, but the beam strays 0.5� from
its intended path.

(a) How far has the beam diverged from its assigned target
when it reaches the moon? (The distance from the earth
to the moon is 240,000 mi.)

(b) The radius of the moon is about 1000 mi. Will the beam
strike the moon?

48. Distance at Sea From the top of a 200-ft lighthouse, the
angle of depression to a ship in the ocean is 23�. How far is
the ship from the base of the lighthouse?

49. Leaning Ladder A 20-ft ladder leans against a building
so that the angle between the ground and the ladder is 72�.
How high does the ladder reach on the building?

50. Leaning Ladder A 20-ft ladder is leaning against a build-
ing. If the base of the ladder is 6 ft from the base of the
building, what is the angle of elevation of the ladder? How
high does the ladder reach on the building?

51. Angle of the Sun A 96-ft tree casts a shadow that is 120 ft
long. What is the angle of elevation of the sun?

52. Height of a Tower A 600-ft guy wire is attached to the
top of a communications tower. If the wire makes an angle of
65� with the ground, how tall is the communications tower?

53. Elevation of a Kite A man is lying on the beach, flying a
kite. He holds the end of the kite string at ground level, and
estimates the angle of elevation of the kite to be 50�. If the
string is 450 ft long, how high is the kite above the ground?

54. Determining a Distance A woman standing on a hill sees
a flagpole that she knows is 60 ft tall. The angle of depression
to the bottom of the pole is 14�, and the angle of elevation to
the top of the pole is 18�. Find her distance x from the pole.

18°
14° x

55. Height of a Tower A water tower is located 325 ft from a
building (see the figure). From a window in the building, an
observer notes that the angle of elevation to the top of the
tower is 39� and that the angle of depression to the bottom
of the tower is 25�. How tall is the tower? How high is the
window?

56. Determining a Distance An airplane is flying at an ele-
vation of 5150 ft, directly above a straight highway. Two
motorists are driving cars on the highway on opposite sides
of the plane, and the angle of depression to one car is 35�
and to the other is 52�. How far apart are the cars?

57. Determining a Distance If both cars in Exercise 56 are on
one side of the plane and if the angle of depression to one car
is 38� and to the other car is 52�, how far apart are the cars?

58. Height of a Balloon A hot-air balloon is floating above a
straight road. To estimate their height above the ground, the
balloonists simultaneously measure the angle of depression
to two consecutive mileposts on the road on the same side of
the balloon. The angles of depression are found to be 20�
and 22�. How high is the balloon?

59. Height of a Mountain To estimate the height of a moun-
tain above a level plain, the angle of elevation to the top of
the mountain is measured to be 32�. One thousand feet closer
to the mountain along the plain, it is found that the angle of
elevation is 35�. Estimate the height of the mountain.

60. Height of Cloud Cover To measure the height of the
cloud cover at an airport, a worker shines a spotlight upward
at an angle 75� from the horizontal. An observer 600 m
away measures the angle of elevation to the spot of light to
be 45�. Find the height h of the cloud cover.

45* 75*

600 m

h

39*

25*

325 ft
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61. Distance to the Sun When the moon is exactly half full,
the earth, moon, and sun form a right angle (see the figure).
At that time the angle formed by the sun, earth, and moon is
measured to be 89.85�. If the distance from the earth to the
moon is 240,000 mi, estimate the distance from the earth to
the sun.

62. Distance to the Moon To find the distance to the sun 
as in Exercise 61, we needed to know the distance to the
moon. Here is a way to estimate that distance: When the
moon is seen at its zenith at a point A on the earth, it is 
observed to be at the horizon from point B (see the figure).
Points A and B are 6155 mi apart, and the radius of the 
earth is 3960 mi.

(a) Find the angle u in degrees.

(b) Estimate the distance from point A to the moon.

63. Radius of the Earth In Exercise 72 of Section 6.1 a
method was given for finding the radius of the earth. Here is
a more modern method: From a satellite 600 mi above the
earth, it is observed that the angle formed by the vertical and
the line of sight to the horizon is 60.276�. Use this informa-
tion to find the radius of the earth.

60.276°

A

B 6155 mi

¨

earth moon

sun
earth

moon

64. Parallax To find the distance to nearby stars, the method
of parallax is used. The idea is to find a triangle with the star
at one vertex and with a base as large as possible. To do this,
the star is observed at two different times exactly 6 months
apart, and its apparent change in position is recorded. From
these two observations, �E1SE2 can be calculated. (The
times are chosen so that �E1SE2 is as large as possible,
which guarantees that �E1OS is 90�.) The angle E1SO is
called the parallax of the star. Alpha Centauri, the star 
nearest the earth, has a parallax of 0.000211�. Estimate 
the distance to this star. (Take the distance from the earth 
to the sun to be 9.3 � 107 mi.)

65. Distance from Venus to the Sun The elongation a of a
planet is the angle formed by the planet, earth, and sun (see
the figure). When Venus achieves its maximum elongation
of 46.3�, the earth, Venus, and the sun form a triangle with a
right angle at Venus. Find the distance between Venus and
the sun in Astronomical Units (AU). (By definition, the dis-
tance between the earth and the sun is 1 AU.)

Discovery • Discussion

66. Similar Triangles If two triangles are similar, what prop-
erties do they share? Explain how these properties make it
possible to define the trigonometric ratios without regard to
the size of the triangle.

Venus
å

earth

1 AU

sun

0.000211°
O S

E2

E1



6.3 Trigonometric Functions of Angles

In the preceding section we defined the trigonometric ratios for acute angles. Here we
extend the trigonometric ratios to all angles by defining the trigonometric functions
of angles. With these functions we can solve practical problems that involve angles
which are not necessarily acute.

Trigonometric Functions of Angles

Let POQ be a right triangle with acute angle u as shown in Figure 1(a). Place u in
standard position as shown in Figure 1(b).

Figure 1

Then is a point on the terminal side of u. In triangle POQ, the opposite
side has length y and the adjacent side has length x. Using the Pythagorean Theorem,
we see that the hypotenuse has length . So

The other trigonometric ratios can be found in the same way.
These observations allow us to extend the trigonometric ratios to any angle. We

define the trigonometric functions of angles as follows (see Figure 2).

sin u �
y

r
   cos u �

x
r
   tan u �

y

x

r � 2x2 � y2

P � P1x, y 2

y

xO Q

P(x, y)

¨

y

x

r

O

Q

P

¨

opposite

adjacent

hypotenuse

(a) (b)
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Definition of the Trigonometric Functions

Let u be an angle in standard position and let be a point on the termi-

nal side. If is the distance from the origin to the point ,

then

cot u �
x
y
 1y � 0 2sec u �

r
x
 1x � 0 2csc u �

r
y
 1y � 0 2

tan u �
y

x
 1x � 0 2cos u �

x
r

sin u �
y

r

P1x, y 2r � 2x2 � y2

P1x, y 2P(x, y)

y

x0

¨
r

Figure 2
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Relationship to the Trigonometric
Functions of Real Numbers

You may have already studied the trigonometric
functions defined using the unit circle (Chap-
ter 5). To see how they relate to the trigonomet-
ric functions of an angle, let’s start with the unit
circle in the coordinate plan.

Let be the terminal point determined
by an arc of length t on the unit circle. Then t sub-
tends an angle u at the center of the circle. If we
drop a perpendicular from P onto the point Q on
the x-axis, then triangle OPQ is a right triangle
with legs of length x and y, as shown in the
figure.

x0 1

P(x, y)

¨

x

y
r

y

Triangle OPQ is
a right triangle.

P 1x, y 2

y

x0 1

P(x, y)

t

P(x, y) is the terminal
point determined by t.

Now, by the definition of the trigonometric
functions of the real number t, we have

By the definition of the trigonometric functions of
the angle u, we have

If u is measured in radians, then u� t. (See the
figure below.) Comparing the two ways of
defining the trigonometric functions, we see that
they are identical. In other words, as functions,
they assign identical values to a given real num-
ber (the real number is the radian measure of u in
one case or the length t of an arc in the other).

Why then do we study trigonometry in two dif-
ferent ways? Because different applications re-
quire that we view the trigonometric functions
differently. (See Focus on Modeling, pages 459,
522, and 575, and Sections 6.2, 6.4, and 6.5.)

y

x0 1

P(x, y)

t

¨

The radian measure
of angle ¨ is t.

cos u �
adj
hyp

�
x
1

� x

sin u �
opp
hyp

�
y
1

� y

cos t � x

sin t � y



We now turn our attention to finding the values of the trigonometric functions for
angles that are not acute.

Example 1 Finding Trigonometric Functions of Angles

Find (a) cos 135� and (b) tan 390�.

Solution

(a) From Figure 4 we see that cos 135� � �x/r. But cos 45� � x/r, and since
, we have

(b) The angles 390� and 30� are coterminal. From Figure 5 it’s clear that
tan 390 � � tan 30� and, since , we have

■tan 390° �
13

3

tan 30° � 13/3

cos 135° � �
12

2

cos 45° � 12/2
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Since division by 0 is an undefined operation, certain trigonometric functions are
not defined for certain angles. For example, tan 90� � y/x is undefined because 
x � 0. The angles for which the trigonometric functions may be undefined are the
angles for which either the x- or y-coordinate of a point on the terminal side of the
angle is 0. These are quadrantal angles—angles that are coterminal with the coor-
dinate axes.

It is a crucial fact that the values of the trigonometric functions do not depend on
the choice of the point . This is because if is any other point on the
terminal side, as in Figure 3, then triangles POQ and P�OQ� are similar.

Evaluating Trigonometric Functions at Any Angle

From the definition we see that the values of the trigonometric functions are all pos-
itive if the angle u has its terminal side in quadrant I. This is because x and y are pos-
itive in this quadrant. [Of course, r is always positive, since it is simply the distance
from the origin to the point .] If the terminal side of u is in quadrant II, how-
ever, then x is negative and y is positive. Thus, in quadrant II the functions sin u and
csc u are positive, and all the other trigonometric functions have negative values. You
can check the other entries in the following table.

P1x, y 2

P¿ 1x¿, y¿ 2P1x, y 2

Signs of the Trigonometric Functions

Quadrant Positive functions Negative functions

I all none

II sin, csc cos, sec, tan, cot

III tan, cot sin, csc, cos, sec

IV cos, sec sin, csc, tan, cot

The following mnemonic device can be
used to remember which trigonometric
functions are positive in each quadrant:
All of them, Sine, Tangent, or Cosine.

P(x, y)

P'(x', y')

y

xO

¨

Q Q'

Figure 3

y

x

AllSine

CosineTangent

You can remember this as “All
Students Take Calculus.”

(x, y)
(_x, y)

y

x0 x

y

r

45*

135*

r

_x

Figure 4

(x, y)

y

x

y

x

30*
390*

0

Figure 5



From Example 1 we see that the trigonometric functions for angles that aren’t
acute have the same value, except possibly for sign, as the corresponding trigono-
metric functions of an acute angle. That acute angle will be called the reference angle.
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Reference Angle

Let u be an angle in standard position. The reference angle associated with
u is the acute angle formed by the terminal side of u and the x-axis.

u

Figure 6 shows that to find a reference angle it’s useful to know the quadrant in
which the terminal side of the angle lies.

Example 2 Finding Reference Angles

Find the reference angle for (a) and (b) .

Solution

(a) The reference angle is the acute angle formed by the terminal side of the angle
5p/3 and the x-axis (see Figure 7). Since the terminal side of this angle is in
quadrant IV, the reference angle is

(b) The angles 870� and 150� are coterminal [because ]. Thus,
the terminal side of this angle is in quadrant II (see Figure 8). So the reference
angle is

■u � 180° � 150° � 30°

870 � 21360 2 � 150

u � 2p �
5p

3
�
p

3

u � 870°u �
5p

3

x

y

0

¨

¨x

y

0

¨

¨

y

x0

¨=¨

y

x0

¨

¨

Evaluating Trigonometric Functions for Any Angle

To find the values of the trigonometric functions for any angle u, we carry out
the following steps.

1. Find the reference angle associated with the angle u.

2. Determine the sign of the trigonometric function of u by noting the quadrant
in which u lies.

3. The value of the trigonometric function of u is the same, except possibly for
sign, as the value of the trigonometric function of .u

u

Figure 6

The reference angle 
for an angle u

u

y

x0

5π

3

¨

y

x0

870*

¨

Figure 7

Figure 8



y

x0

240*

¨

y

x0

495*
¨

0

4π

3

¨

y

x

0 π

4
_

y

x

¨

Example 3 Using the Reference Angle to Evaluate 

Trigonometric Functions

Find (a) sin 240� and (b) cot 495�.

Solution

(a) This angle has its terminal side in quadrant III, as shown in Figure 9. The 
reference angle is therefore 240� � 180� � 60�, and the value of sin 240� is
negative. Thus

(b) The angle 495� is coterminal with the angle 135�, and the terminal side of 
this angle is in quadrant II, as shown in Figure 10. So the reference angle is
180� � 135� � 45�, and the value of cot 495� is negative. We have

■

Example 4 Using the Reference Angle to Evaluate

Trigonometric Functions

Find (a) and (b) .

Solution

(a) The angle 16p/3 is coterminal with 4p/3, and these angles are in quadrant III
(see Figure 11). Thus, the reference angle is . Since the
value of sine is negative in quadrant III, we have

(b) The angle �p/4 is in quadrant IV, and its reference angle is p/4 (see Figure 12).
Since secant is positive in this quadrant, we get

■

Trigonometric Identities

The trigonometric functions of angles are related to each other through several im-
portant equations called trigonometric identities. We’ve already encountered the 

sec a�p
4
b � �sec

p

4
�
12

2

sin
16p

3
� sin

4p

3
� �sin

p

3
� �

13

2

14p/3 2 � p � p/3

sec a�p
4
bsin

16p

3

cot 495° � cot 135° � �cot 45° � �1

sin 240° � �sin 60° � �
13

2

492 CHAPTER 6 Trigonometric Functions of Angles

Figure 9

sin 240 � is negative.
S A

T C

Figure 10

tan 495 � is negative,
so cot 495 � is negative.

S A

T C

Figure 12

is positive,

so is positive.sec1�p
4 2cos1�p

4 2S A

T C

Sign Reference angle

Sign Reference angleCoterminal angles

Sign Reference angleCoterminal angles

Sign Reference angle

Figure 11

is negative.sin 16p
3

S A

T C



reciprocal identities. These identities continue to hold for any angle u, provided both
sides of the equation are defined. The Pythagorean identities are a consequence of the
Pythagorean Theorem.*
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Fundamental Identities

Reciprocal Identities

Pythagorean Identities

sin2u � cos2u � 1   tan2u � 1 � sec2u   1 � cot2u � csc2u

tan u �
sin u

cos u
   cot u �

cos u

sin u

csc u �
1

sin u
   sec u �

1

cos u
   cot u �

1

tan u

■ Proof Let’s prove the first Pythagorean identity. Using x 2 � y 2 � r 2 (the
Pythagorean Theorem) in Figure 13, we have

Thus, sin2u � cos2u � 1. (Although the figure indicates an acute angle, you should
check that the proof holds for all angles u.) ■

See Exercises 59 and 60 for the proofs of the other two Pythagorean identities.

Example 5 Expressing One Trigonometric Function 

in Terms of Another

(a) Express sin u in terms of cos u.

(b) Express tan u in terms of sin u, where u is in quadrant II.

Solution

(a) From the first Pythagorean identity we get

where the sign depends on the quadrant. If u is in quadrant I or II, then sin u is
positive, and hence

whereas if u is in quadrant III or IV, sin u is negative and so

sin u � �21 � cos2u

sin u � 21 � cos2u

sin u � �21 � cos2u

sin2u � cos2u � a y

r
b 2

� a x
r
b 2

�
x2 � y2

r 2 �
r 2

r 2 � 1

* We follow the usual convention of writing sin2u for . In general, we write sinn u for for all integers n
except n � �1. The exponent n � �1 will be assigned another meaning in Section 7.4. Of course, the same convention
applies to the other five trigonometric functions.

1sin u 2 n1sin u 2 2

(x, y)

y

x0 x

y
r

¨

Figure 13



(b) Since tan u � sin u/cos u, we need to write cos u in terms of sin u. By part (a)

and since cos u is negative in quadrant II, the negative sign applies here. Thus

■

Example 6 Evaluating a Trigonometric Function

If and u is in quadrant III, find cos u.

Solution 1 We need to write cos u in terms of tan u. From the identity 
tan2u � 1 � sec2u, we get . In quadrant III, sec u is
negative, so

Thus

Solution 2 This problem can be solved more easily using the method of 
Example 2 of Section 6.2. Recall that, except for sign, the values of the trigonometric
functions of any angle are the same as those of an acute angle (the reference angle).
So, ignoring the sign for the moment, let’s sketch a right triangle with an acute angle

satisfying (see Figure 14). By the Pythagorean Theorem the hypotenuse
of this triangle has length . From the triangle in Figure 14 we immediately see
that . Since u is in quadrant III, cos u is negative and so

■

Example 7 Evaluating Trigonometric Functions

If sec u� 2 and u is in quadrant IV, find the other five trigonometric functions of u.

Solution We sketch a triangle as in Figure 15 so that . Taking into 
account the fact that u is in quadrant IV, we get

■

Areas of Triangles

We conclude this section with an application of the trigonometric functions that 
involves angles that are not necessarily acute. More extensive applications appear in
the next two sections.

 csc u � �
2

13
   sec u � 2   cot u � �

1

13

 sin u � �
13

2
   cos u �

1

2
   tan u � �13

sec u � 2

cos u � �
3

113

cos u � 3/113
113

tan u � 2
3u

�
1

�2A23B2 � 1
�

1

�113
9

� �
3

113

 cos u �
1

sec u
�

1

�2tan2u � 1

sec u � �2tan2u � 1

sec u � �2tan2u � 1

tan u � 2
3

tan u �
sin u

cos u
�

sin u

�21 � sin2u

cos u � �21 � sin2u
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If you wish to rationalize the denomi-
nator, you can express cos u as

�
3

113
# 113

113
� �

313

13

3

2

œ∑∑13

¨

Figure 14

1

2 œ∑3

¨

Figure 15
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1–8 ■ Find the reference angle for the given angle.

1. (a) 150� (b) 330� (c) �30�

2. (a) 120� (b) �210� (c) 780�

3. (a) 225� (b) 810� (c) �105�

4. (a) 99� (b) �199� (c) 359�

5. (a) (b) (c)
11p

3
�

11p

6

11p

4

6. (a) (b) (c)

7. (a) (b) �1.4p (c) 1.4

8. (a) 2.3p (b) 2.3 (c) �10p

5p

7

�
23p

6

33p

4

4p

3

¨

b

a

h

(a)

b

a

h

(b)

¨

¨=180* _ ¨

Figure 16

A

C

B

120*

10 cm

3 cm

Figure 17

Area of a Triangle

The area � of a triangle with sides of lengths a and b and with included 
angle u is

� � 1
2ab sin u

Example 8 Finding the Area of a Triangle

Find the area of triangle ABC shown in Figure 17.

Solution The triangle has sides of length 10 cm and 3 cm, with included angle
120�. Therefore

Reference angle

■

6.3 Exercises

� 15
13

2
� 13 cm2

� 15 sin 60°

� 1
2 110 2 13 2  sin 120°

� � 1
2 ab sin u

The area of a triangle is . If we know two sides and the in-
cluded angle of a triangle, then we can find the height using the trigonometric func-
tions, and from this we can find the area.

If u is an acute angle, then the height of the triangle in Figure 16(a) is given by 
h � b sin u. Thus, the area is

If the angle u is not acute, then from Figure 16(b) we see that the height of the trian-
gle is

This is so because the reference angle of u is the angle 180� � u. Thus, in this case
also, the area of the triangle is

� � 1
2 � base � height � 1

2 ab sin u

h � b sin1180° � u 2 � b sin u

� � 1
2 � base � height � 1

2 ab sin u

� � 1
2 � base � height
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9–32 ■ Find the exact value of the trigonometric function.

9. sin 150� 10. sin 225� 11. cos 135�

12. 13. 14. sec 300�

15. 16. cot 210� 17. cos 570�

18. sec 120� 19. tan 750� 20. cos 660�

21. 22. 23.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33–36 ■ Find the quadrant in which u lies from the information
given.

33. sin u � 0 and cos u � 0

34. tan u � 0 and sin u � 0

35. sec u 	 0 and tan u� 0

36. csc u 	 0 and cos u � 0

37–42 ■ Write the first trigonometric function in terms of the
second for u in the given quadrant.

37. tan u, cos u; u in quadrant III

38. cot u, sin u; u in quadrant II

39. cos u, sin u; u in quadrant IV

40. sec u, sin u; u in quadrant I

41. sec u, tan u; u in quadrant II

42. csc u, cot u; u in quadrant III

43–50 ■ Find the values of the trigonometric functions of u
from the information given.

43. , u in quadrant II

44. , u in quadrant III

45. ,

46. sec u � 5, sin u � 0

47. csc u � 2, u in quadrant I

48. , sin u � 0

49. , tan u � 0

50. tan u � �4, sin u 	 0

cos u � �2
7

cot u � 1
4

cos u 	 0tan u � � 3
4

cos u � � 7
12

sin u � 3
5

sin
11p

6
tan

5p

2
cos

7p

4

cot a�p
4
bcsc

5p

4
sec

17p

3

tan
5p

6
cos a� 7p

3
bcos

7p

3

sin
3p

2
sin

5p

3
sin

2p

3

csc1�630° 2 tan1�60° 2cos1�60° 2
51. If u� p/3, find the value of each expression.

(a) sin 2u, 2 sin u (b)

(c) sin2u,

52. Find the area of a triangle with sides of length 7 and 9 and
included angle 72�.

53. Find the area of a triangle with sides of length 10 and 22
and included angle 10�.

54. Find the area of an equilateral triangle with side of length 10.

55. A triangle has an area of 16 in2, and two of the sides of the
triangle have lengths 5 in. and 7 in. Find the angle included
by these two sides.

56. An isosceles triangle has an area of 24 cm2, and the angle
between the two equal sides is 5p/6. What is the length of
the two equal sides?

57–58 ■ Find the area of the shaded region in the figure.

57. 58.

59. Use the first Pythagorean identity to prove the second.
[Hint: Divide by cos2u.]

60. Use the first Pythagorean identity to prove the third.

Applications

61. Height of a Rocket A rocket fired straight up is tracked
by an observer on the ground a mile away.

(a) Show that when the angle of elevation is u, the height of
the rocket in feet is h � 5280 tan u.

(b) Complete the table to find the height of the rocket at the
given angles of elevation.

1 mi

h

¨

12

π

3120*

2

sin1u 2 2 sin 1
2 u, 

1
2 sin u

u 20� 60� 80� 85�

h
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62. Rain Gutter A rain gutter is to be constructed from a
metal sheet of width 30 cm by bending up one-third of the
sheet on each side through an angle u.

(a) Show that the cross-sectional area of the gutter is 
modeled by the function

(b) Graph the function A for 0 
 u 
 p/2.

(c) For what angle u is the largest cross-sectional area
achieved?

63. Wooden Beam A rectangular beam is to be cut from a
cylindrical log of diameter 20 cm. The figures show differ-
ent ways this can be done.

(a) Express the cross-sectional area of the beam as a 
function of the angle u in the figures.

(b) Graph the function you found in part (a).

(c) Find the dimensions of the beam with largest cross-
sectional area.

64. Strength of a Beam The strength of a beam is propor-
tional to the width and the square of the depth. A beam is
cut from a log as in Exercise 63. Express the strength of the
beam as a function of the angle u in the figures.

65. Throwing a Shot Put The range R and height H of a
shot put thrown with an initial velocity of √0 ft/s at an angle
u are given by

On the earth g � 32 ft /s2 and on the moon g � 5.2 ft /s2.

H �
√ 2

0 sin2u

2g

R �
√ 2

0 sin12u 2
g

20 cm

¨

20 cm

¨

width

depth

¨

10 cm

¨

10 cm

10 cm

A1u 2 � 100 sin u � 100 sin u cos u

Find the range and height of a shot put thrown under the
given conditions.

(a) On the earth with √0 � 12 ft /s and u � p/6
(b) On the moon with √0 � 12 ft /s and u � p/6

66. Sledding The time in seconds that it takes for a sled to
slide down a hillside inclined at an angle u is

where d is the length of the slope in feet. Find the time it
takes to slide down a 2000-ft slope inclined at 30�.

67. Beehives In a beehive each cell is a regular hexagonal
prism, as shown in the figure. The amount of wax W in the
cell depends on the apex angle u and is given by

Bees instinctively choose u so as to use the least amount of
wax possible.

(a) Use a graphing device to graph W as a function of u for
0 � u � p.

(b) For what value of u does W have its minimum value?
[Note: Biologists have discovered that bees rarely devi-
ate from this value by more than a degree or two.]

¨

W � 3.02 � 0.38 cot u � 0.65 csc u

d

¨

t � B
d

16 sin u

R

H
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68. Turning a Corner A steel pipe is being carried down a
hallway 9 ft wide. At the end of the hall there is a right-
angled turn into a narrower hallway 6 ft wide.

(a) Show that the length of the pipe in the figure is 
modeled by the function

(b) Graph the function L for 0 � u � p/2.

(c) Find the minimum value of the function L.

(d) Explain why the value of L you found in part (c) is the
length of the longest pipe that can be carried around the
corner.

69. Rainbows Rainbows are created when sunlight of differ-
ent wavelengths (colors) is refracted and reflected in rain-
drops. The angle of elevation u of a rainbow is always the
same. It can be shown that u � 4b � 2a where

sin a � k sin b

and a � 59.4� and k � 1.33 is the index of refraction of
water. Use the given information to find the angle of ele-
vation u of a rainbow. (For a mathematical explanation of 
rainbows see Calculus, 5th Edition, by James Stewart,
pages 288–289.)

¨

6 ft

9 ft

¨

L1u 2 � 9 csc u � 6 sec u

Discovery • Discussion

70. Using a Calculator To solve a certain problem, you need
to find the sine of 4 rad. Your study partner uses his calcu-
lator and tells you that 

sin 4 � 0.0697564737

On your calculator you get 

sin 4 � �0.7568024953

What is wrong? What mistake did your partner make?

71. Viète’s Trigonometric Diagram In the 16th century, the
French mathematician François Viète (see page 49) pub-
lished the following remarkable diagram. Each of the six
trigonometric functions of u is equal to the length of a line
segment in the figure. For instance, , since
from �OPR we see that

For each of the five other trigonometric functions, find a line
segment in the figure whose length equals the value of the
function at u. (Note: The radius of the circle is 1, the center
is O, segment QS is tangent to the circle at R, and �SOQ is
a right angle.)

¨

O P Q

R

S

1

� 0 PR 0
�
0 PR 0

1

�
0 PR 00 OR 0

 sin u �
opp

hyp

sin u � 0 PR 0
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Similarity

In geometry you learned that two triangles are similar if they have the same
angles. In this case, the ratios of corresponding sides are equal. Triangles ABC
and A�B�C� in the margin are similar, so

Similarity is the crucial idea underlying trigonometry. We can define sinu as
the ratio of the opposite side to the hypotenuse in any right triangle with an angle
u, because all such right triangles are similar. So the ratio represented by sinu
does not depend on the size of the right triangle but only on the angle u. This is a
powerful idea because angles are often easier to measure than distances. For ex-
ample, the angle formed by the sun, earth, and moon can be measured from the
earth. The secret to finding the distance to the sun is that the trigonometric ratios
are the same for the huge triangle formed by the sun, earth, and moon as for any
other similar triangle (see Exercise 61 in Section 6.2).

In general, two objects are similar if they have the same shape even though
they may not be the same size.* For example, we recognize the following as rep-
resentations of the letter A because they are all similar.

If two figures are similar, then the distances between corresponding points in the
figures are proportional. The blue and red A’s above are similar—the ratio of 
distances between corresponding points is . We say that the similarity ratio is

. To obtain the distance d� between any two points in the blue A, we multi-
ply the corresponding distance d in the red A by . So

Likewise, the similarity ratio between the first and last letters is s � 5, so 
x� � 5x.

1. Write a short paragraph explaining how the concept of similarity is used to
define the trigonometric ratios.

2. How is similarity used in map making? How are distances on a city road map
related to actual distances?

3. How is your yearbook photograph similar to you? Compare distances 
between different points on your face (such as distance between ears, length of

d¿ � sd  or  d¿ � 3
2d

3
2

s � 3
2

3
2

x x�d d�

a¿
a

�
b¿
b

�
c¿
c

D I S C O V E R Y
P R O J E C T

B� C�

A�

a�

b�c�

B C

A

a

bc

Thales used similar triangles to find
the height of a tall column. (See
page 482.)

* If they have the same shape and size, they are congruent, which is a special case of similarity.



nose, distance between eyes, and so on) to the corresponding distances in a
photograph. What is the similarity ratio?

4. The figure illustrates a method for drawing an apple twice the size of a given
apple. Use the method to draw a tie 3 times the size (similarity ratio 3) of 
the blue tie.

5. Give conditions under which two rectangles are similar to each other. Do the
same for two isosceles triangles.

6. Suppose that two similar triangles have similarity ratio s.

(a) How are the perimeters of the triangles related?

(b) How are the areas of the triangles related?

7. (a) If two squares have similarity ratio s, show that their areas A1 and A2

have the property that A2 � s 2A1.

(b) If the side of a square is tripled, its area is multiplied by what factor?

(c) A plane figure can be approximated by squares (as shown). Explain how
we can conclude that for any two plane figures with similarity ratio s,
their areas satisfy A2 � s 2A1. (Use part (a).)

sc

sb
sh

sa

c

b
h

a

a

2a
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21

If the side of a square is doubled,
its area is multiplied by 22.



6.4 The Law of Sines

In Section 6.2 we used the trigonometric ratios to solve right triangles. The trigono-
metric functions can also be used to solve oblique triangles, that is, triangles with no
right angles. To do this, we first study the Law of Sines here and then the Law of
Cosines in the next section. To state these laws (or formulas) more easily, we follow
the convention of labeling the angles of a triangle as A, B, C, and the lengths of the
corresponding opposite sides as a, b, c, as in Figure 1.

To solve a triangle, we need to know certain information about its sides and angles.
To decide whether we have enough information, it’s often helpful to make a sketch.
For instance, if we are given two angles and the included side, then it’s clear that one
and only one triangle can be formed (see Figure 2(a)). Similarly, if two sides and the
included angle are known, then a unique triangle is determined (Figure 2(c)). But if
we know all three angles and no sides, we cannot uniquely determine the triangle be-
cause many triangles can have the same three angles. (All these triangles would be
similar, of course.) So we won’t consider this last case.

Figure 2

In general, a triangle is determined by three of its six parts (angles and sides) as
long as at least one of these three parts is a side. So, the possibilities, illustrated in
Figure 2, are as follows.

(a)  ASA or SAA (c)(b) SSA (d)SAS SSS

SECTION 6.4 The Law of Sines 501

8. (a) If two cubes have similarity ratio s, show that their volumes V1 and V2

have the property that V2 � s 3V1.

(b) If the side of a cube is multiplied by 10, by what factor is the volume
multiplied?

(c) How can we use the fact that a solid object can be “filled” by little cubes
to show that for any two solids with similarity ratio s, the volumes 
satisfy V2 � s3V1?

9. King Kong is 10 times as tall as Joe, a normal-sized 300-lb gorilla. Assuming
that King Kong and Joe are similar, use the results from Problems 7 and 8 to
answer the following questions.

(a) How much does King Kong weigh?

(b) If Joe’s hand is 13 in. long, how long is King Kong’s hand?

(c) If it takes 2 square yards of material to make a shirt for Joe, how much
material would a shirt for King Kong require?

1 2

If the side of a cube is doubled, its
volume is multiplied by 23.

A

C

B
c

a
b

Figure 1



Case 1 One side and two angles (ASA or SAA)

Case 2 Two sides and the angle opposite one of those sides (SSA)

Case 3 Two sides and the included angle (SAS)

Case 4 Three sides (SSS)

Cases 1 and 2 are solved using the Law of Sines; Cases 3 and 4 require the Law of
Cosines.

The Law of Sines

The Law of Sines says that in any triangle the lengths of the sides are proportional to
the sines of the corresponding opposite angles.

502 CHAPTER 6 Trigonometric Functions of Angles

The Law of Sines

In triangle ABC we have

sin A
a

�
sin B

b
�

sin C
c

■ Proof To see why the Law of Sines is true, refer to Figure 3. By the formula
in Section 6.3 the area of triangle ABC is . By the same formula the area
of this triangle is also and . Thus

Multiplying by gives the Law of Sines. ■

Example 1 Tracking a Satellite (ASA)

A satellite orbiting the earth passes directly overhead at observation stations in
Phoenix and Los Angeles, 340 mi apart. At an instant when the satellite is between
these two stations, its angle of elevation is simultaneously observed to be 60� at
Phoenix and 75� at Los Angeles. How far is the satellite from Los Angeles? In other
words, find the distance AC in Figure 4.

Solution Whenever two angles in a triangle are known, the third angle can be
determined immediately because the sum of the angles of a triangle is 180�. In this
case, (see Figure 4), so we have

Law of Sines

Substitute

Solve for b

The distance of the satellite from Los Angeles is approximately 416 mi. ■

b �
340 sin 60°

sin 45°
� 416

sin 60°

b
�

sin 45°

340

sin B

b
�

sin C
c

�C � 180° � 175° � 60° 2 � 45°

2/ 1abc 2 1
2 bc sin A � 1

2 ac sin B � 1
2 ab sin C

1
2 bc sin A1

2 ac sin B

1
2 ab sin C

B

A

C
a

b

h=b ß C

c

Figure 3

Los
Angeles

Phoenix

C

75* 60*

b a

c=340 mi

A B

Figure 4



Example 2 Solving a Triangle (SAA)

Solve the triangle in Figure 5.

Solution First, . Since side c is known, to
find side a we use the relation

Law of Sines

Solve for a

Similarly, to find b we use

Law of Sines

Solve for b ■

The Ambiguous Case

In Examples 1 and 2 a unique triangle was determined by the information given. This
is always true of Case 1 (ASA or SAA). But in Case 2 (SSA) there may be two tri-
angles, one triangle, or no triangle with the given properties. For this reason, Case 2
is sometimes called the ambiguous case. To see why this is so, we show in Figure 6
the possibilities when angle A and sides a and b are given. In part (a) no solution is
possible, since side a is too short to complete the triangle. In part (b) the solution is
a right triangle. In part (c) two solutions are possible, and in part (d) there is a unique
triangle with the given properties. We illustrate the possibilities of Case 2 in the fol-
lowing examples.

Example 3 SSA, the One-Solution Case

Solve triangle ABC, where �A � 45�, , and b � 7.

Solution We first sketch the triangle with the information we have (see Figure 7).
Our sketch is necessarily tentative, since we don’t yet know the other angles. Nev-
ertheless, we can now see the possibilities.

We first find �B.

Law of Sines

Solve for sin B sin B �
b sin A

a
�

7

712
sin 45° � a 1

12
b a 12

2
b �

1

2

sin A
a

�
sin B

b

a � 712

(a) (b) (c) (d)

A

C

a
b

B
A

C

a
b

BB

a

A

C

a
b

B
A

C

a
b

b �
c sin B

sin C
�

80.4 sin 135°

sin 25°
� 134.5

sin B

b
�

sin C
c

a �
c sin A

sin C
�

80.4 sin 20°

sin 25°
� 65.1

sin A
a

�
sin C

c

�B � 180° � 120° � 25° 2 � 135°
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A

B

C

c=80.4
b

a

25*

20*

Figure 5

Figure 6

The ambiguous case

A B

C

7 7 œ∑2

45*

Figure 7



Which angles B have From the preceding section we know that there are
two such angles smaller than 180� (they are 30� and 150�). Which of these angles is
compatible with what we know about triangle ABC? Since �A � 45�, we cannot
have �B � 150�, because 45� � 150� 	 180�. So �B � 30�, and the remaining
angle is .

Now we can find side c.

Law of Sines

Solve for c ■

In Example 3 there were two possibilities for angle B, and one of these was not
compatible with the rest of the information. In general, if sin A � 1, we must check
the angle and its supplement as possibilities, because any angle smaller than 180� can
be in the triangle. To decide whether either possibility works, we check to see
whether the resulting sum of the angles exceeds 180�. It can happen, as in Figure 6(c),
that both possibilities are compatible with the given information. In that case, two dif-
ferent triangles are solutions to the problem.

Example 4 SSA, the Two-Solution Case

Solve triangle ABC if �A � 43.1�, a � 186.2, and b � 248.6.

Solution From the given information we sketch the triangle shown in Figure 8.
Note that side a may be drawn in two possible positions to complete the triangle.
From the Law of Sines

Figure 8

There are two possible angles B between 0� and 180� such that sin B � 0.91225.
Using the key on a calculator (or or ), we find 
that one of these angles is approximately 65.8�. The other is approximately 
180� � 65.8� � 114.2�. We denote these two angles by B1 and B2 so that

�B1 � 65.8°  and  �B2 � 114.2°

ARCSINSININVSIN�1

A B⁄

a=186.2

a=186.2

C

B¤

b=248.6

43.1*

sin B �
b sin A

a
�

248.6 sin 43.1°

186.2
� 0.91225

c �
b sin C

sin B
�

7 sin 105°

sin 30°
�

7 sin 105°
1
2

� 13.5

sin B

b
�

sin C
c

�C � 180° � 130° � 45° 2 � 105°

sin B � 1
2?
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We consider only angles smaller than
180�, since no triangle can contain 
an angle of 180� or larger.

The supplement of an angle u (where
0 
 u 
 180�) is the angle 180� � u.

Surveying is a method of land
measurement used for mapmaking.
Surveyors use a process called tri-
angulation in which a network of
thousands of interlocking triangles
is created on the area to be mapped.
The process is started by measuring
the length of a baseline between
two surveying stations. Then, using
an instrument called a theodolite,
the angles between these two sta-
tions and a third station are mea-
sured. The Law of Sines is then
used to calculate the two other
sides of the triangle formed by the
three stations. The calculated sides
are used as baselines, and the pro-
cess is repeated over and over to
create a network of triangles. In
this method, the only distance mea-
sured is the initial baseline; all

(continued)
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Thus, two triangles satisfy the given conditions: triangle A1B1C1 and triangle
A2B2C2.

Solve triangle A1B1C1:

Find �C 1

Thus Law of Sines

Solve triangle A2B2C2:

Find �C2

Thus Law of Sines

Triangles A1B1C1 and A2B2C2 are shown in Figure 9.

Figure 9 ■

The next example presents a situation for which no triangle is compatible with the
given data.

Example 5 SSA, the No-Solution Case

Solve triangle ABC, where �A � 42�, a � 70, and b � 122.

Solution To organize the given information, we sketch the diagram in Figure 10.
Let’s try to find �B. We have

Law of Sines

Solve for sin B

Since the sine of an angle is never greater than 1, we conclude that no triangle
satisfies the conditions given in this problem. ■

sin B �
b sin A

a
�

122 sin 42°

70
� 1.17

sin A
a

�
sin B

b

A⁄ B⁄

a=186.2

C⁄

b=248.6

43.1*

71.1*

65.8*

c⁄Å257.8
A¤

a=186.2

C¤

B¤

b=248.6

43.1*
114.2*

22.7*

c¤Å105.2

c2 �
a2 sin C2

sin A2
�

186.2 sin 22.7°

sin 43.1°
� 105.2

�C2 � 180° � 143.1° � 114.2° 2 � 22.7°

c1 �
a1 sin C1

sin A1
�

186.2 sin 71.1°

sin 43.1°
� 257.8

�C1 � 180° � 143.1° � 65.8° 2 � 71.1°
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other distances are calculated from
the Law of Sines. This method is
practical because it is much easier
to measure angles than distances.

One of the most ambitious map-
making efforts of all time was the
Great Trigonometric Survey of In-
dia (seeProblem 8, page 525) which
required several expeditions and
took over a century to complete.
The famous expedition of 1823,
led by Sir George Everest, lasted
20 years. Ranging over treacher-
ous terrain and encountering the
dreaded malaria-carrying mosqui-
toes, this expedition reached the
foothills of the Himalayas. A later
expedition, using triangulation,
calculated the height of the highest
peak of the Himalayas to be
29,002 ft. The peak was named in
honor of Sir George Everest.

Today, using satellites, the
height of Mt. Everest is estimated
to be 29,028 ft. The very close
agreement of these two estimates
shows the great accuracy of the
trigonometric method.

Check base

Baseline

A B

C

42*

70

122

Figure 10
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1–6 ■ Use the Law of Sines to find the indicated side x or
angle u.

1. 2.

3. 4.

5. 6.

7–10 ■ Solve the triangle using the Law of Sines.

7. 8.

9. 10.

11–16 ■ Sketch each triangle and then solve the triangle 
using the Law of Sines.

11. �A � 50�, �B � 68�, c � 230

12. �A � 23�, �B � 110�, c � 50

13. �A � 30�, �C � 65�, b � 10

14. �A � 22�, �B � 95�, a � 420

15. �B � 29�, �C � 51�, b � 44

16. �B � 10�, �C � 100�, c � 115

A

C

B

80*

6.5
3.4

A

C

B

68*

12

12

2

30*

C

B

A

100*
65

46*

C

BA
20*

185

102*

C

B
A

28*

x

45

36

120*

C

B
A

¨

56.3
67*

80.2

C

B

A

¨

26.7

52* 70*

C

BA

x

17

28.1*

37.5*

C

B

A

x

98.4*

376C

B

A

x

24.6*

17–26 ■ Use the Law of Sines to solve for all possible 
triangles that satisfy the given conditions.

17. a � 28, b � 15, �A � 110�

18. a � 30, c � 40, �A � 37�

19. a � 20, c � 45, �A � 125�

20. b � 45, c � 42, �C � 38�

21. b � 25, c � 30, �B � 25�

22. a � 75, b � 100, �A � 30�

23. a � 50, b � 100, �A � 50�

24. a � 100, b � 80, �A � 135�

25. a � 26, c � 15, �C � 29�

26. b � 73, c � 82, �B � 58�

27. For the triangle shown, find

(a) �BCD and

(b) �DCA.

28. For the triangle 
shown, find the 
length AD.

29. In triangle ABC, �A � 40�, a � 15, and b � 20.

(a) Show that there are two triangles, ABC and A�B�C�, that
satisfy these conditions.

(b) Show that the areas of the triangles in part (a) are 
proportional to the sines of the angles C and C�, that is,

30. Show that, given the three angles A, B, C of a triangle 
and one side, say a, the area of the triangle is

Applications

31. Tracking a Satellite The path of a satellite orbiting the
earth causes it to pass directly over two tracking stations A
and B, which are 50 mi apart. When the satellite is on one

area �
a2 sin B sin C

2 sin A

area of ^ABC

area of ^A¿B¿C¿
�

sin C

sin C¿

AD

C

B

25*

25*

12

12

B A

C

20

30*

20
28

D

6.4 Exercises
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side of the two stations, the angles of elevation at A and B
are measured to be 87.0� and 84.2�, respectively.

(a) How far is the satellite from station A?

(b) How high is the satellite above the ground?

32. Flight of a Plane A pilot is flying over a straight high-
way. He determines the angles of depression to two mile-
posts, 5 mi apart, to be 32� and 48�, as shown in the figure.

(a) Find the distance of the plane from point A.

(b) Find the elevation of the plane.

33. Distance Across a River To find the distance across a
river, a surveyor chooses points A and B, which are 200 ft
apart on one side of the river (see the figure). She then
chooses a reference point C on the opposite side of the river
and finds that �BAC � 82� and �ABC � 52�. Approximate
the distance from A to C.

34. Distance Across a Lake Points A and B are separated 
by a lake. To find the distance between them, a surveyor 
locates a point C on land such that �CAB � 48.6�. He also
measures CA as 312 ft and CB as 527 ft. Find the distance
between A and B.

35. The Leaning Tower of Pisa The bell tower of the cathe-
dral in Pisa, Italy, leans 5.6� from the vertical. A tourist
stands 105 m from its base, with the tower leaning directly
toward her. She measures the angle of elevation to the top of
the tower to be 29.2�. Find the length of the tower to the
nearest meter.

A B

C

200 ft

82* 52*

5 miA B

32*
48*

84.2*87.0*

A             B

36. Radio Antenna A short-wave radio antenna is supported
by two guy wires, 165 ft and 180 ft long. Each wire is at-
tached to the top of the antenna and anchored to the ground,
at two anchor points on opposite sides of the antenna. The
shorter wire makes an angle of 67� with the ground. How far
apart are the anchor points?

37. Height of a Tree A tree on a hillside casts a shadow 
215 ft down the hill. If the angle of inclination of the 
hillside is 22� to the horizontal and the angle of elevation 
of the sun is 52�, find the height of the tree.

38. Length of a Guy Wire

A communications tower is located 
at the top of a steep hill, as shown. 
The angle of inclination of the hill 
is 58�. A guy wire is to be attached 
to the top of the tower and to the 
ground, 100 m downhill from the 
base of the tower. The angle a in
the figure is determined to be 12�.
Find the length of cable required 
for the guy wire.

39. Calculating a Distance Observers at P and Q are located
on the side of a hill that is inclined 32� to the horizontal, as
shown. The observer at P determines the angle of elevation
to a hot-air balloon to be 62�. At the same instant, the 
observer at Q measures the angle of elevation to the balloon
to be 71�. If P is 60 m down the hill from Q, find the dis-
tance from Q to the balloon.

32*

P

Q

60 m

58°

å

215 ft

22°
52°
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40. Calculating an Angle A water tower 30 m tall is located
at the top of a hill. From a distance of 120 m down the hill, it
is observed that the angle formed between the top and base
of the tower is 8�. Find the angle of inclination of the hill.

41. Distances to Venus The elongation a of a planet is the
angle formed by the planet, earth, and sun (see the figure). 
It is known that the distance from the sun to Venus is 
0.723 AU (see Exercise 65 in Section 6.2). At a certain time
the elongation of Venus is found to be 39.4�. Find the pos-
sible distances from the earth to Venus at that time in Astro-
nomical Units (AU).

42. Soap Bubbles When two bubbles cling together in
midair, their common surface is part of a sphere whose 
center D lies on the line passing throught the centers of the
bubbles (see the figure). Also, angles ACB and ACD each

Venus

Venus

å

earth

1 AU

sun

8*

30 m

12
0 m

have measure 60�.

(a) Show that the radius r of the common face is given by

[Hint: Use the Law of Sines together with the fact that an
angle u and its supplement 180� � u have the same sine.]

(b) Find the radius of the common face if the radii of the
bubbles are 4 cm and 3 cm.

(c) What shape does the common face take if the two 
bubbles have equal radii?

Discovery • Discussion

43. Number of Solutions in the Ambiguous Case We
have seen that when using the Law of Sines to solve a 
triangle in the SSA case, there may be two, one, or no solu-
tion(s). Sketch triangles like those in Figure 6 to verify the
criteria in the table for the number of solutions if you are
given �A and sides a and b.

D
A

B

C

a
b

r

r �
ab

a � b

6.5 The Law of Cosines

The Law of Sines cannot be used directly to solve triangles if we know two sides and
the angle between them or if we know all three sides (these are Cases 3 and 4 of the
preceding section). In these two cases, the Law of Cosines applies.

Criterion Number of Solutions

a � b 1

b 	 a 	 b sin A 2

a � b sin A 1

a � b sin A 0

If �A � 30� and b � 100, use these criteria to find the
range of values of a for which the triangle ABC has two 
solutions, one solution, or no solution.
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The Law of Cosines

In any triangle ABC (see Figure 1), we have

c2 � a2 � b2 � 2ab cos C

b2 � a2 � c2 � 2ac cos B

a2 � b2 � c2 � 2bc cos A

■ Proof To prove the Law of Cosines, place triangle ABC so that �A is at the
origin, as shown in Figure 2. The coordinates of the vertices B and C are and
(b cos A, b sin A), respectively. (You should check that the coordinates of these
points will be the same if we draw angle A as an acute angle.) Using the Distance
Formula, we get

Because sin2A � cos2A � 1

This proves the first formula. The other two formulas are obtained in the same way
by placing each of the other vertices of the triangle at the origin and repeating the
preceding argument. ■

In words, the Law of Cosines says that the square of any side of a triangle is equal
to the sum of the squares of the other two sides, minus twice the product of those two
sides times the cosine of the included angle.

If one of the angles of a triangle, say �C, is a right angle, then cos C � 0 and 
the Law of Cosines reduces to the Pythagorean Theorem, c2 � a2 � b2. Thus, the 
Pythagorean Theorem is a special case of the Law of Cosines.

Example 1 Length of a Tunnel

A tunnel is to be built through a mountain. To estimate the length of the tunnel, a
surveyor makes the measurements shown in Figure 3. Use the surveyor’s data to 
approximate the length of the tunnel.

Solution To approximate the length c of the tunnel, we use the Law of Cosines:

Law of Cosines

Substitute

Use a calculator

Take square roots

Thus, the tunnel will be approximately 417 ft long. ■

c � 1173730.2367 � 416.8

� 173730.2367

� 3882 � 2122 � 21388 2 1212 2  cos 82.4°

c2 � a2 � b2 � 2ab cos C

� b2 � c2 � 2bc cos A

� b21cos2A � sin2A 2 � 2bc cos A � c2

� b2 cos2A � 2bc cos A � c2 � b2 sin2A

a2 � 1b cos A � c 2 2 � 1b sin A � 0 2 2
1c, 0 2

A

C

B
c

a
b

Figure 1

y

xA(0, 0) B(c, 0)

C (b ç A, b ß A)

b
a

c

Figure 2

B
A

82.4*
212 ft

388 ft

C

Figure 3



Example 2 SSS, the Law of Cosines

The sides of a triangle are a � 5, b � 8, and c � 12 (see Figure 4). Find the 
angles of the triangle.

Solution We first find �A. From the Law of Cosines, we have 
a2 � b 2 � c 2 � 2bc cos A. Solving for cos A, we get

Using a calculator, we find that �A � 18�. In the same way the equations

give �B � 29� and �C � 133�. Of course, once two angles are calculated, the
third can more easily be found from the fact that the sum of the angles of a triangle
is 180�. However, it’s a good idea to calculate all three angles using the Law of
Cosines and add the three angles as a check on your computations. ■

Example 3 SAS, the Law of Cosines

Solve triangle ABC, where �A � 46.5�, b � 10.5, and c � 18.0.

Solution We can find a using the Law of Cosines.

Thus, . We also use the Law of Cosines to find �B and �C,
as in Example 2.

Using a calculator, we find that �B � 35.3� and �C � 98.2�.
To summarize: �B � 35.3�, �C � 98.2�, and a � 13.2. (See Figure 5.) ■

We could have used the Law of Sines to find �B and �C in Example 3, since we
knew all three sides and an angle in the triangle. But knowing the sine of an angle
does not uniquely specify the angle, since an angle u and its supplement 180� � u
both have the same sine. Thus we would need to decide which of the two angles is
the correct choice. This ambiguity does not arise when we use the Law of Cosines,
because every angle between 0� and 180� has a unique cosine. So using only the Law
of Cosines is preferable in problems like Example 3.

 cos C �
a2 � b2 � c2

2ab
�

13.22 � 10.52 � 18.02

2113.2 2 110.5 2 � �0.142532

 cos B �
a2 � c2 � b2

2ac
�

13.22 � 18.02 � 10.52

2113.2 2 118.0 2 � 0.816477

a � 1174.05 � 13.2

� 110.5 2 2 � 118.0 2 2 � 2110.5 2 118.0 2 1cos 46.5° 2 � 174.05

a2 � b2 � c2 � 2bc cos A

 cos C �
a2 � b2 � c2

2ab
�

52 � 82 � 122

215 2 18 2 � �0.6875

 cos B �
a2 � c2 � b2

2ac
�

52 � 122 � 82

215 2 112 2 � 0.875

cos A �
b2 � c2 � a2

2bc
�

82 � 122 � 52

218 2 112 2 �
183

192
� 0.953125
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A
c=12

B

C

a=5b=8

Figure 4

OR

OR

COSARC

COSINV

COS�1

A B

C

b=10.5 aÅ13.2

c=18.0

98.2*

46.5* 35.3*

Figure 5



Navigation: Heading and Bearing

In navigation a direction is often given as a bearing, that is, as an acute angle mea-
sured from due north or due south. The bearing N 30� E, for example, indicates a 
direction that points 30� to the east of due north (see Figure 6).

Example 4 Navigation

A pilot sets out from an airport and heads in the direction N 20� E, flying at 
200 mi/h. After one hour, he makes a course correction and heads in the direction 
N 40� E. Half an hour after that, engine trouble forces him to make an emergency
landing.

(a) Find the distance between the airport and his final landing point.

(b) Find the bearing from the airport to his final landing point.

Solution

(a) In one hour the plane travels 200 mi, and in half an hour it travels 100 mi, so
we can plot the pilot’s course as in Figure 7. When he makes his course correc-
tion, he turns 20� to the right, so the angle between the two legs of his trip is
180� � 20� � 160�. So by the Law of Cosines we have

Thus, b � 295.95. The pilot lands about 296 mi from his starting point.

(b) We first use the Law of Sines to find �A.

Using the key on a calculator, we find that �A � 6.636�. From Figure 7
we see that the line from the airport to the final landing site points in the 
direction 20� � 6.636� � 26.636� east of due north. Thus, the bearing is about 
N 26.6� E. ■

SIN�1

� 0.11557

 sin A � 100 # sin 160°

295.95

sin A

100
�

sin 160°

295.95

� 87,587.70

b2 � 2002 � 1002 � 2 # 200 # 100 cos 160°

Figure 6

S

W E

N 60° W

N

60°

S

W E

S 70° W

N

70°

S

W E

N 30° E

N

30°

S

W E

S 50° E

N

50°
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A

B

C

200 mi

40*

20*

100 mi

Figure 7

Another angle with sine 0.11557 is
180� � 6.636� � 173.364�. But this is
clearly too large to be �A in �ABC.



The Area of a Triangle

An interesting application of the Law of Cosines involves a formula for finding the
area of a triangle from the lengths of its three sides (see Figure 8).
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Heron’s Formula

The area � of triangle ABC is given by

where is the semiperimeter of the triangle; that is, s is
half the perimeter.

s � 1
2 1a � b � c 2� � 1s1s � a 2 1s � b 2 1s � c 2

A C

B

b

c a

�

Figure 8

■ Proof We start with the formula from Section 6.3. Thus

Pythagorean identity

Factor

Next, we write the expressions 1 � cos C and 1 � cos C in terms of a, b and c. By the
Law of Cosines we have

Law of Cosines

Add 1

Common denominator

Factor

Difference of squares

Similarly

Substituting these expressions in the formula we obtained for �2 gives

Heron’s Formula now follows by taking the square root of each side. ■

� s1s � c 2 1s � b 2 1s � a 2�
1a � b � c 2

2
 
1a � b � c 2

2
 
1c � a � b 2

2
 
1c � a � b 2

2

�2 � 1
4 a2b2

1a � b � c 2 1a � b � c 2
2ab

 
1c � a � b 2 1c � a � b 2

2ab

1 � cos C �
1c � a � b 2 1c � a � b 2

2ab

�
1a � b � c 2 1a � b � c 2

2ab

�
1a � b 2 2 � c2

2ab

�
2ab � a2 � b2 � c2

2ab

 1 � cos C � 1 �
a2 � b2 � c2

2ab

 cos C �
a2 � b2 � c2

2ab

� 1
4a2b211 � cos C 2 11 � cos C 2� 1
4a2b211 � cos2C 2�2 � 1
4a2b2 sin2C

� � 1
2 ab sin C

To see that the factors in the last two
products are equal, note for example
that

� s � c

a � b � c

2
�

a � b � c

2
� c
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9–18 ■ Solve triangle ABC.

9. 10.

11. a � 3.0, b � 4.0, �C � 53�

12. b � 60, c � 30, �A � 70�

13. a � 20, b � 25, c � 22

14. a � 10, b � 12, c � 16

15. b � 125, c � 162, �B � 40�

16. a � 65, c � 50, �C � 52�

17. a � 50, b � 65, �A � 55�

18. a � 73.5, �B � 61�, �C � 83�

19–26 ■ Find the indicated side x or angle u. (Use either the
Law of Sines or the Law of Cosines, as appropriate.)

19. 20.

21. 22.

40*

C

BA

x10

18

35*

C

BA

x3
85*

40

C

B

A

12

44

18

120*

C

BA

10

Example 5 Area of a Lot

A businessman wishes to buy a triangular lot in a busy downtown location (see 
Figure 9). The lot frontages on the three adjacent streets are 125, 280, and 315 ft.
Find the area of the lot.

Solution The semiperimeter of the lot is

By Heron’s Formula the area is

Thus, the area is approximately 17,452 ft2. ■

6.5 Exercises

� � 13601360 � 125 2 1360 � 280 2 1360 � 315 2 � 17,451.6

s �
125 � 280 � 315

2
� 360

31
5 

ft

125 ft

28
0 

ft

Figure 9

30*

C

BA

x50

100*

C

BA

4

11

10

¨

39*

42

C

BA

x21

15
108*

18

C

BA

x

140*

25

x

25

A

C

B

¨ 122.5
60.1

154.6

C

BA

1–8 ■ Use the Law of Cosines to determine the indicated side x
or angle u.

1. 2.

3. 4.

5. 6.

7. 8.

20

10

C

B

A

12

¨

30

24

30*

C B

A

x

42.15

68.01

C

B

A

¨

37.83

8

88*

2

x

A

C

B
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23. 24.

25. 26.

27–30 ■ Find the area of the triangle whose sides have the
given lengths.

27. a � 9, b � 12, c � 15 28. a � 1, b � 2, c � 2

29. a � 7, b � 8, c � 9

30. a � 11, b � 100, c � 101

31–34 ■ Find the area of the shaded figure, correct to two 
decimals.

31. 32.

33. 34.

35. Three circles of radii 4, 5, and 6 cm are mutually tangent.
Find the shaded area enclosed between the circles.

44

3 3

60*

5
6

7

8

100*

5 5 5

2
2

6
4

3

98*

C

BA
x

1000

25*

30*

C

B

A

38

48x

40*

C

B

A

8

10
¨

38*

C

B

A

138

110

¨

36. Prove that in triangle ABC

These are called the Projection Laws. [Hint: To get the first
equation, add the second and third equations in the Law of
Cosines and solve for a.]

Applications

37. Surveying To find the distance across a small lake, a sur-
veyor has taken the measurements shown. Find the distance
across the lake using this information.

38. Geometry A parallelogram has sides of lengths 3 and 5,
and one angle is 50�. Find the lengths of the diagonals.

39. Calculating Distance Two straight roads diverge at an
angle of 65�. Two cars leave the intersection at 2:00 P.M.,
one traveling at 50 mi/h and the other at 30 mi/h. How far
apart are the cars at 2:30 P.M.?

40. Calculating Distance A car travels along a straight road,
heading east for 1 h, then traveling for 30 min on another
road that leads northeast. If the car has maintained a constant
speed of 40 mi/h, how far is it from its starting position?

41. Dead Reckoning A pilot flies in a straight path for 
1 h 30 min. She then makes a course correction, heading 
10� to the right of her original course, and flies 2 h in 
the new direction. If she maintains a constant speed of 
625 mi/h, how far is she from her starting position?

42. Navigation Two boats leave the same port at the same
time. One travels at a speed of 30 mi/h in the direction 
N 50� E and the other travels at a speed of 26 mi/h in a 
direction S 70� E (see the figure). How far apart are the 
two boats after one hour?

N

S

EW

50°

70°

N 50° E

S 70° E

C

B

A

2.82 mi

3.56 mi

40.3*

c � a cos B � b cos A

b � c cos A � a cos C

a � b cos C � c cos B
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43. Navigation A fisherman leaves his home port and heads
in the direction N 70� W. He travels 30 mi and reaches Egg
Island. The next day he sails N 10� E for 50 mi, reaching
Forrest Island.

(a) Find the distance between the fisherman’s home port
and Forrest Island.

(b) Find the bearing from Forrest Island back to his 
home port.

44. Navigation Airport B is 300 mi from airport A at a bear-
ing N 50� E (see the figure). A pilot wishing to fly from A to B
mistakenly flies due east at 200 mi/h for 30 minutes, when
he notices his error.

(a) How far is the pilot from his destination at the time he
notices the error?

(b) What bearing should he head his plane in order to arrive
at airport B?

45. Triangular Field A triangular field has sides of lengths
22, 36, and 44 yd. Find the largest angle.

46. Towing a Barge Two tugboats that are 120 ft apart pull a
barge, as shown. If the length of one cable is 212 ft and the
length of the other is 230 ft, find the angle formed by the
two cables.

212 ft

230 ft

120 ft

50°

300 mi

Airport B

Airport A

50 mi
10°

30 mi
Egg
Island

Forrest
Island

70°

Home
port

47. Flying Kites A boy is flying two kites at the same time.
He has 380 ft of line out to one kite and 420 ft to the other.
He estimates the angle between the two lines to be 30�.
Approximate the distance between the kites.

48. Securing a Tower A 125-ft tower is located on the side
of a mountain that is inclined 32� to the horizontal. A guy
wire is to be attached to the top of the tower and anchored at
a point 55 ft downhill from the base of the tower. Find the
shortest length of wire needed.

49. Cable Car A steep mountain is inclined 74� to the hori-
zontal and rises 3400 ft above the surrounding plain. A ca-
ble car is to be installed from a point 800 ft from the base to
the top of the mountain, as shown. Find the shortest length
of cable needed.

50. CN Tower The CN Tower in Toronto, Canada, is the
tallest free-standing structure in the world. A woman on the
observation deck, 1150 ft above the ground, wants to deter-
mine the distance between two landmarks on the ground be-
low. She observes that the angle formed by the lines of sight
to these two landmarks is 43�. She also observes that the
angle between the vertical and the line of sight to one of the

800 ft

74*

3400 ft

32°

125 ft

55 ft

380 ft

420 ft30°
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1–2 ■ Find the radian measure that corresponds to the given 
degree measure.

1. (a) 60� (b) 330� (c) �135� (d) �90�

2. (a) 24� (b) �330� (c) 750� (d) 5�

3–4 ■ Find the degree measure that corresponds to the given 
radian measure.

3. (a) (b) (c) (d) 3.1
9p

4
�
p

6

5p

2

1. (a) Explain the difference between a positive angle and a
negative angle.

(b) How is an angle of measure 1 degree formed?

(c) How is an angle of measure 1 radian formed?

(d) How is the radian measure of an angle u defined?

(e) How do you convert from degrees to radians?

(f ) How do you convert from radians to degrees?

2. (a) When is an angle in standard position?

(b) When are two angles coterminal?

3. (a) What is the length s of an arc of a circle with radius r
that subtends a central angle of u radians?

(b) What is the area A of a sector of a circle with radius r
and central angle u radians?

4. If u is an acute angle in a right triangle, define the six
trigonometric ratios in terms of the adjacent and opposite
sides and the hypotenuse.

5. What does it mean to solve a triangle?

6. If u is an angle in standard position, is a point on the
terminal side, and r is the distance from the origin to P,
write expressions for the six trigonometric functions of u.

7. Which trigonometric functions are positive in quadrants I,
II, III, and IV?

8. If u is an angle in standard position, what is its reference
angle ?

9. (a) State the reciprocal identities.

(b) State the Pythagorean identities.

10. (a) What is the area of a triangle with sides of length a and
b and with included angle u?

(b) What is the area of a triangle with sides of length a, b,
and c?

11. (a) State the Law of Sines.

(b) State the Law of Cosines.

12. Explain the ambiguous case in the Law of Sines.

u

P1x, y 2

6 Review

Concept Check

landmarks is 62� and to the other landmark is 54�. Find the
distance between the two landmarks.

54°
62°43°

51. Land Value Land in downtown Columbia is valued at $20
a square foot. What is the value of a triangular lot with sides
of lengths 112, 148, and 190 ft?

Discovery • Discussion

52. Solving for the Angles in a Triangle The paragraph
that follows the solution of Example 3 on page 510 explains
an alternative method for finding �B and �C, using the
Law of Sines. Use this method to solve the triangle in the
example, finding �B first and then �C. Explain how you
chose the appropriate value for the measure of �B. Which
method do you prefer for solving an SAS triangle problem,
the one explained in Example 3 or the one you used in this
exercise?

Exercises



CHAPTER 6 Review 517

4. (a) 8 (b) (c) (d)

5. Find the length of an arc of a circle of radius 8 m if the arc
subtends a central angle of 1 rad.

6. Find the measure of a central angle u in a circle of radius 
5 ft if the angle is subtended by an arc of length 7 ft.

7. A circular arc of length 100 ft subtends a central angle of
70�. Find the radius of the circle.

8. How many revolutions will a car wheel of diameter 28 in.
make over a period of half an hour if the car is traveling at
60 mi/h?

9. New York and Los Angeles are 2450 mi apart. Find the
angle that the arc between these two cities subtends at the
center of the earth. (The radius of the earth is 3960 mi.)

10. Find the area of a sector with central angle 2 rad in a circle
of radius 5 m.

11. Find the area of a sector with central angle 52� in a circle of
radius 200 ft.

12. A sector in a circle of radius 25 ft has an area of 125 ft2.
Find the central angle of the sector.

13. A potter’s wheel with radius 8 in. spins at 150 rpm. Find 
the angular and linear speeds of a point on the rim of 
the wheel.

14. In an automobile transmission a gear ratio g is the ratio

The angular speed of the engine is shown on the tachometer
(in rpm).

A certain sports car has wheels with radius 11 in. Its gear
ratios are shown in the following table. Suppose the car is in
fourth gear and the tachometer reads 3500 rpm.

(a) Find the angular speed of the engine.

g �
angular speed of engine

angular speed of wheels

8 in.

3p

5

11p

6
�

5

2

15–16 ■ Find the values of the six trigonometric ratios of u.

15. 16.

17–20 ■ Find the sides labeled x and y, correct to two decimal
places.

17. 18.

19. 20.

21–22 ■ Solve the triangle.

21. 22.

60*

20

20*3

20*

x

1

y20*

35*

x

2

y

40*

x

5 y

3

10

¨

¨

7

5

Gear Ratio

1st 4.1
2nd 3.0
3rd 1.6
4th 0.9
5th 0.7

(b) Find the angular speed of the wheels.

(c) How fast (in mi/h) is the car traveling?

x

y

30*

4
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23. Express the lengths a and b in the figure in terms of the
trigonometric ratios of u.

24. The highest free-standing tower in the world is the CN
Tower in Toronto, Canada. From a distance of 1 km from its
base, the angle of elevation to the top of the tower is 28.81�.
Find the height of the tower.

25. Find the perimeter of a regular hexagon that is inscribed in a
circle of radius 8 m.

26. The pistons in a car engine move up and down repeatedly to
turn the crankshaft, as shown. Find the height of the point P
above the center O of the crankshaft in terms of the angle u.

27. As viewed from the earth, the angle subtended by the full
moon is 0.518�. Use this information and the fact that the
distance AB from the earth to the moon is 236,900 mi to find
the radius of the moon.

B

0.518°

A

y

O

¨

Q

2

P

x

8 in.

y

x0 1

¨

a

b

28. A pilot measures the angles of depression to two ships to be
40� and 52� (see the figure). If the pilot is flying at an eleva-
tion of 35,000 ft, find the distance between the two ships.

29–40 ■ Find the exact value.

29. sin 315� 30.

31. 32.

33. 34. sin 405�

35. cos 585� 36.

37. 38.

39. 40.

41. Find the values of the six trigonometric ratios of the 
angle u in standard position if the point is on 
the terminal side of u.

42. Find sin u if u is in standard position and its terminal side 
intersects the circle of radius 1 centered at the origin at the
point .

43. Find the acute angle that is formed by the line
and the x-axis.

44. Find the six trigonometric ratios of the angle u in standard
position if its terminal side is in quadrant III and is parallel
to the line 4y � 2x � 1 � 0.

45–48 ■ Write the first expression in terms of the second,
for u in the given quadrant.

45. tan u, cos u; u in quadrant II

46. sec u, sin u; u in quadrant III

47. tan2u, sin u; u in any quadrant

48. csc2u cos2u, sin u; u in any quadrant

y � 13x � 1 � 0

1�13/2, 1
2 2

1�5, 12 2
tan

23p

4
cot1�390° 2

sec
13p

6
csc

8p

3

sec
22p

3

cot a� 22p

3
b

cos
5p

6
tan1�135° 2

csc
9p

4

40*

52*



49–52 ■ Find the values of the six trigonometric functions of u
from the information given.

49. , 50. ,

51. , cos u � 0 52. , tan u 	 0

53. If for u in quadrant II, find sin u � cos u.

54. If for u in quadrant I, find tan u � sec u.

55. If tan u� �1, find sin2u � cos2u.

56. If and p/2 � u � p, find sin 2u.

57–62 ■ Find the side labeled x.

57. 58.

59.

61. 62.

63. Two ships leave a port at the same time. One travels at
20 mi/h in a direction N 32� E, and the other travels at
28 mi/h in a direction S 42� E (see the figure). How far 
apart are the two ships after 2 h?

N

E

32*

S

W

42*

S 42° E

N 32° E

A

B

6
110*

x

4

C

A

B

C

100

40*
x

210

45* 105*A

B

C

2

x
A B

C

10

30*

80* x

cos u � �13/2

sin u � 1
2

tan u � � 1
2

sec u � � 13
5sin u � 3

5

csc u � � 41
9sec u � 41

40sec u � 4
3tan u � 17/3

A

B

C

7060*

x

20
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64. From a point A on the ground, the angle of elevation to 
the top of a tall building is 24.1�. From a point B, which is
600 ft closer to the building, the angle of elevation is mea-
sured to be 30.2�. Find the height of the building.

65. Find the distance between points A and B on opposite sides
of a lake from the information shown.

66. A boat is cruising the ocean off a straight shoreline. Points A
and B are 120 mi apart on the shore, as shown. It is found
that �A � 42.3� and �B � 68.9�. Find the shortest distance
from the boat to the shore.

67. Find the area of a triangle with sides of length 8 and 14 and
included angle 35�.

68. Find the area of a triangle with sides of length 5, 6, and 8.

120 mi

A

B

Shoreline

68.9*

42.3*

C

C B

A

3.2 mi

5.6 mi

42*

24.1*
30.2*

600 ft BA

60.
A

B

C

8

120*x

2



6 Test

1. Find the radian measures that correspond to the degree measures 330� and �135�.

2. Find the degree measures that correspond to the radian measures and �1.3.

3. The rotor blades of a helicopter are 16 ft long and are rotating at 120 rpm.

(a) Find the angular speed of the rotor.

(b) Find the linear speed of a point on the tip of a blade.

4. Find the exact value of each of the following.

(a) sin 405� (b)

(c) (d)

5. Find tan u � sin u for the angle u shown.

6. Express the lengths a and b shown in the figure in terms of u.

7. If and u is in quadrant III, find tan u cot u � csc u.

8. If and , find sec u.

9. Express tan u in terms of sec u for u in quadrant II.

10. The base of the ladder in the figure is 6 ft from the building, and the angle formed by the
ladder and the ground is 73�. How high up the building does the ladder touch?

6 ft

73*

tan u � � 5
12sin u � 5

13

cos u � �1
3

¨

b

a
24

¨

3

2

csc
5p

2
sec

5p

3

tan1�150° 2

4p

3

520 CHAPTER 6 Trigonometric Functions of Angles



11–14 ■ Find the side labeled x.

11. 12.

13. 14.

15. Refer to the figure below.

(a) Find the area of the shaded region.

(b) Find the perimeter of the shaded region.

16. Refer to the figure below.

(a) Find the angle opposite the longest side.

(b) Find the area of the triangle.

17. Two wires tether a balloon to the ground, as shown. How high is the balloon above the
ground?

75* 85*

100 ft

h

20

139

72°

10 m

108°

28

x
15

50

x

28°20°

230

52° 69°

x

12

10 x

48°
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How can we measure the height of a mountain, or the distance across a lake? Obvi-
ously it may be difficult, inconvenient, or impossible to measure these distances di-
rectly (that is, using a tape measure or a yard stick). On the other hand, it is easy to
measure angles to distant objects. That’s where trigonometry comes in—the trigono-
metric ratios relate angles to distances, so they can be used to calculate distances
from the measured angles. In this Focus we examine how trigonometry is used to map
a town. Modern map making methods use satellites and the Global Positioning Sys-
tem, but mathematics remains at the core of the process.

Mapping a Town

A student wants to draw a map of his hometown. To construct an accurate map (or
scale model), he needs to find distances between various landmarks in the town. The
student makes the measurements shown in Figure 1. Note that only one distance is
measured, between City Hall and the first bridge. All other measurements are angles.

Figure 1

The distances between other landmarks can now be found using the Law of Sines.
For example, the distance x from the bank to the first bridge is calculated by applying
the Law of Sines to the triangle with vertices at City Hall, the bank, and the first bridge:

Law of Sines

Solve for x

Calculator�  1.32 mi

x �
0.86 sin 50°

sin 30°

x

sin 50°
�

0.86

sin 30°

522

Focus on Modeling

Surveying



So the distance between the bank and the first bridge is 1.32 mi.
The distance we just found can now be used to find other distances. For instance,

we find the distance y between the bank and the cliff as follows:

Law of Sines

Solve for y

Calculator

Continuing in this fashion, we can calculate all the distances between the landmarks
shown in the rough sketch in Figure 1. We can use this information to draw the map
shown in Figure 2.

Figure 2

To make a topographic map, we need to measure elevation. This concept is ex-
plored in Problems 4–6.

Problems

1. Completing the Map Find the distance between the church and City Hall.

2. Completing the Map Find the distance between the fire hall and the school. (You
will need to find other distances first.)

N

City Hall

Church

Fire Hall

School

Bank

0 1/4 1/2 3/4 1 mile

�  1.55 mi

y �
1.32 sin 64°

sin 50°

y

sin 64°
�

1.32

sin 50°
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3. Determining a Distance A surveyor on one side of a river wishes to find the 
distance between points A and B on the opposite side of the river. On her side, she
chooses points C and D, which are 20 m apart, and measures the angles shown in the
figure below. Find the distance between A and B.

4. Height of a Cliff To measure the height of an inaccessible cliff on the opposite side
of a river, a surveyor makes the measurements shown in the figure at the left. Find the
height of the cliff.

5. Height of a Mountain To calculate the height h of a mountain, angle a, b, and 
distance d are measured, as shown in the figure below.

(a) Show that

(b) Show that

(c) Use the formulas from parts (a) and (b) to find the height of a mountain if a � 25�,
b � 29�, and d � 800 ft. Do you get the same answer from each formula?

6. Determining a Distance A surveyor has determined that a mountain is 2430 ft
high. From the top of the mountain he measures the angles of depression to two land-
marks at the base of the mountain, and finds them to be 42� and 39�. (Observe that these
are the same as the angles of elevation from the landmarks as shown in the figure at the
left.) The angle between the lines of sight to the landmarks is 68�. Calculate the distance
between the two landmarks.

å ∫

d

h

BA

C

h � d
sin a sin b

sin1b � a 2
h �

d

cot a � cot b

A

B

C

20 m

50*

D

45*40*

20*
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2430 ft

42*
39*

68*

200 m

33.1*

51.6*

69.4*



7. Surveying Building Lots A surveyor surveys two adjacent lots and makes the fol-
lowing rough sketch showing his measurements. Calculate all the distances shown in the
figure and use your result to draw an accurate map of the two lots.

8. Great Survey of India The Great Trigonometric Survey of India was one of the
most massive mapping projects ever undertaken (see the margin note on page 504). Do
some research at your library or on the Internet to learn more about the Survey, and write
a report on your findings.
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7 Analytic Trigonometry



Chapter Overview

In Chapters 5 and 6 we studied the graphical and geometric properties of trigono-
metric functions. In this chapter we study the algebraic aspects of trigonometry, that
is, simplifying and factoring expressions and solving equations that involve trigono-
metric functions. The basic tools in the algebra of trigonometry are trigonometric
identities.

A trigonometric identity is an equation involving the trigonometric functions that
holds for all values of the variable. For example, from the definitions of sine and 
cosine it follows that for any u we have

Here are some other identities that we will study in this chapter:

Using identities we can simplify a complicated expression involving the trigonomet-
ric functions into a much simpler expression, thereby allowing us to better understand
what the expression means. For example, the area of the rectangle in the figure at the
left is A � 2 sin u cos u; then using one of the above identities we see that A � sin 2u.

A trigonometric equation is an equation involving the trigonometric functions.
For example, the equation

is a trigonometric equation. To solve this equation we need to find all the values of u
that satisfy the equation. A graph of y � sin u shows that infinitely many
times, so the equation has infinitely many solutions. Two of these solutions are

; we can get the others by adding multiples of 2p to these solutions.

We also study the inverse trigonometric functions. In order to define the inverse of
a trigonometric function, we first restrict its domain to an interval on which the func-

¨2π

_1

1

1

2

y
y=sin ¨

y=

0

u � p
6  and 5p6

sin u � 1
2

sin u �
1

2
� 0

sin 2u � 2 sin u cos u   sin A cos B � 1
2 3sin1A � B 2 � sin1A � B 2 4

sin2u � cos2u � 1
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tion is one-to-one. For example, we restrict the domain of the sine function to 3�p/2, p/24. On this interval , so . We will see that these inverse
functions are useful in solving trigonometric equations.

In Focus on Modeling (page 575) we study some applications of the concepts of
this chapter to the motion of waves.

7.1 Trigonometric Identities

We begin by listing some of the basic trigonometric identities. We studied most 
of these in Chapters 5 and 6; you are asked to prove the cofunction identities in 
Exercise 100.

1
2 � p

6sin�1sin p6 � 1
2
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Fundamental Trigonometric Identities

Reciprocal Identities

Pythagorean Identities

Even-Odd Identities

Cofunction Identities

cos ap
2

� u b � sin u  cot ap
2

� u b � tan u  csc ap
2

� u b � sec u

sin ap
2

� u b � cos u  tan ap
2

� u b � cot u  sec ap
2

� u b � csc u

sin1�x 2 � �sin x   cos1�x 2 � cos x   tan1�x 2 � �tan x

sin2x � cos2x � 1   tan2x � 1 � sec2x   1 � cot2x � csc2x

tan x �
sin x
cos x

   cot x �
cos x

sin x

csc x �
1

sin x
   sec x �

1
cos x

   cot x �
1

tan x

Simplifying Trigonometric Expressions

Identities enable us to write the same expression in different ways. It is often possible
to rewrite a complicated looking expression as a much simpler one. To simplify al-
gebraic expressions, we used factoring, common denominators, and the Special Prod-
uct Formulas. To simplify trigonometric expressions, we use these same techniques
together with the fundamental trigonometric identities.



Example 1 Simplifying a Trigonometric Expression

Simplify the expression cos t � tan t sin t.

Solution We start by rewriting the expression in terms of sine and cosine.

Reciprocal identity

Common denominator

Pythagorean identity

Reciprocal identity ■

Example 2 Simplifying by Combining Fractions

Simplify the expression .

Solution We combine the fractions by using a common denominator.

Common denominator

Distribute sin u

Pythagorean identity

■

Proving Trigonometric Identities

Many identities follow from the fundamental identities. In the examples that follow,
we learn how to prove that a given trigonometric equation is an identity, and in the
process we will see how to discover new identities.

First, it’s easy to decide when a given equation is not an identity. All we need to do
is show that the equation does not hold for some value of the variable (or variables).
Thus, the equation

is not an identity, because when x � p/4, we have

To verify that a trigonometric equation is an identity, we transform one side of the
equation into the other side by a series of steps, each of which is itself an identity.

sin
p

4
� cos

p

4
�
12

2
�
12

2
� 12 � 1

sin x � cos x � 1

Cancel and use reciprocal
identity�

1

cos u
� sec u

�
sin u � 1

cos u 11 � sin u 2
�

sin u � sin2u � cos2u

cos u 11 � sin u 2
sin u

cos u
�

cos u

1 � sin u
�

sin u 11 � sin u 2 � cos2u

cos u 11 � sin u 2
sin u

cos u
�

cos u

1 � sin u

� sec t

�
1

cos t

�
cos2t � sin2t

cos t

 cos t � tan t sin t � cos t � a sin t

cos t
b  sin t
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Warning: To prove an identity, we do not just perform the same operations on both
sides of the equation. For example, if we start with an equation that is not an identity,
such as

(1)

and square both sides, we get the equation

(2)

which is clearly an identity. Does this mean that the original equation is an identity?
Of course not. The problem here is that the operation of squaring is not reversible in
the sense that we cannot arrive back at (1) from (2) by taking square roots (reversing
the procedure). Only operations that are reversible will necessarily transform an iden-
tity into an identity.

Example 3 Proving an Identity by Rewriting in Terms 

of Sine and Cosine

Verify the identity 

Solution The left-hand side looks more complicated, so we start with it and try
to transform it into the right-hand side.

Reciprocal identity

Expand

Pythagorean identity ■

In Example 3 it isn’t easy to see how to change the right-hand side into the 
left-hand side, but it’s definitely possible. Simply notice that each step is reversible.
In other words, if we start with the last expression in the proof and work backward
through the steps, the right side is transformed into the left side. You will probably
agree, however, that it’s more difficult to prove the identity this way. That’s why 

� sin2u � RHS

� 1 � cos2u

� cos u a 1

cos u
� cos u b LHS � cos u 1sec u � cos u 2

cos u 1sec u � cos u 2 � sin2u.

sin2x � sin2x

sin x � �sin x
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Guidelines for Proving Trigonometric Identities

1. Start with one side. Pick one side of the equation and write it down. 
Your goal is to transform it into the other side. It’s usually easier to start with
the more complicated side.

2. Use known identities. Use algebra and the identities you know to change
the side you started with. Bring fractional expressions to a common denomi-
nator, factor, and use the fundamental identities to simplify expressions.

3. Convert to sines and cosines. If you are stuck, you may find it helpful to
rewrite all functions in terms of sines and cosines.



it’s often better to change the more complicated side of the identity into the sim-
pler side.

Example 4 Proving an Identity by Combining Fractions

Verify the identity

Solution Finding a common denominator and combining the fractions on the
right-hand side of this equation, we get

Common denominator

Simplify

Pythagorean identity

Factor

Reciprocal identities ■

In Example 5 we introduce “something extra” to the problem by multiplying the
numerator and the denominator by a trigonometric expression, chosen so that we can
simplify the result.

Example 5 Proving an Identity by Introducing 

Something Extra

Verify the identity .

Solution We start with the left-hand side and multiply numerator and 
denominator by 1 � sin u.

Multiply numerator and
denominator by 1 � sin u

Expand denominator�
cos u 11 � sin u 2

1 � sin2u

�
cos u

1 � sin u
# 1 � sin u

1 � sin u

 LHS �
cos u

1 � sin u

cos u

1 � sin u
� sec u � tan u

� 2 tan x sec x � LHS

� 2 
sin x
cos x

a 1
cos x

b
�

2 sin x

cos2x

�
2 sin x

1 � sin2x

�
11 � sin x 2 � 11 � sin x 211 � sin x 2 11 � sin x 2

 RHS �
1

1 � sin x
�

1

1 � sin x

2 tan x sec x �
1

1 � sin x
�

1

1 � sin x
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See Focus on Problem Solving,
pages 138–145.

We multiply by 1 � sin u because we
know by the difference of squares for-
mula that 

, and this is just cos2u, a 
simpler expression.
1 � sin2u

11 � sin u 2 11 � sin u 2 �



Pythagorean identity

Cancel common factor

Separate into two fractions

Reciprocal identities ■

Here is another method for proving that an equation is an identity. If we can trans-
form each side of the equation separately, by way of identities, to arrive at the same
result, then the equation is an identity. Example 6 illustrates this procedure.

Example 6 Proving an Identity by Working 

with Both Sides Separately

Verify the identity .

Solution We prove the identity by changing each side separately into the same
expression. Supply the reasons for each step.

It follows that LHS � RHS, so the equation is an identity. ■

We conclude this section by describing the technique of trigonometric sub-
stitution, which we use to convert algebraic expressions to trigonometric ones. 
This is often useful in calculus, for instance, in finding the area of a circle or an 
ellipse.

Example 7 Trigonometric Substitution

Substitute sin u for x in the expression and simplify. Assume that 
0 
 u 
 p/2.

Solution Setting x � sin u, we have

Substitute x � sin u

Pythagorean identity

Take square root

The last equality is true because cos u � 0 for the values of u in question. ■

� cos u

� 2cos2u

21 � x 2 � 21 � sin2u

21 � x 2

RHS �
tan2u

sec u � 1
�

sec2u � 1

sec u � 1
�
1sec u � 1 2 1sec u � 1 2

sec u � 1
� sec u � 1

LHS �
1 � cos u

cos u
�

1

cos u
�

cos u

cos u
� sec u � 1

1 � cos u

cos u
�

tan2u

sec u � 1

� sec u � tan u

�
1

cos u
�

sin u
cos u

�
1 � sin u

cos u

�
cos u 11 � sin u 2

cos2u
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Euclid (circa 300 B.C.) taught in
Alexandria. His Elements is the
most widely influential scientific
book in history. For 2000 years it
was the standard introduction to
geometry in the schools, and for
many generations it was considered
the best way to develop logical rea-
soning. Abraham Lincoln, for in-
stance, studied the Elements as a
way to sharpen his mind. The story
is told that King Ptolemy once asked
Euclid if there was a faster way to
learn geometry than through the
Elements. Euclid replied that there 
is “no royal road to geometry”—
meaning by this that mathematics
does not respect wealth or social sta-
tus. Euclid was revered in his own
time and was referred to by the title
“The Geometer” or “The Writer of
the Elements.” The greatness of the
Elements stems from its precise,
logical, and systematic treatment of
geometry. For dealing with equality,
Euclid lists the following rules,
which he calls “common notions.”

1. Things that are equal to the
same thing are equal to each other.

2. If equals are added to equals,
the sums are equal.

3. If equals are subtracted from
equals, the remainders are equal.

4. Things that coincide with one
another are equal.

5. The whole is greater than the
part.
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1–10 ■ Write the trigonometric expression in terms of sine and
cosine, and then simplify.

1. cos t tan t 2. cos t csc t

3. sin u sec u 4. tan u csc u

5. tan2x � sec2x 6.

7. sin u � cot u cos u 8.

9. 10.

11–24 ■ Simplify the trigonometric expression.

11. 12. cos3x � sin2x cos x

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25–88 ■ Verify the identity.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

35. tan u � cot u � sec u csc u

csc x 3csc x � sin1�x 2 4 � cot2x

cot1�a 2  cos1�a 2 � sin1�a 2 � �csc a

cos1�x 2 � sin1�x 2 � cos x � sin x

sin B � cos B cot B � csc B

cos √

sec √ sin √
� csc √ � sin √

tan y

csc y
� sec y � cos y

cot x sec x

csc x
� 1

cos u sec u

tan u
� cot u

tan x

sec x
� sin x

sin u

tan u
� cos u

cos x

sec x � tan x

tan u � cos1�u 2 � tan1�u 2
1 � cot A

csc A

2 � tan2x

sec2x
� 1

tan x cos x csc x
1 � sin u

cos u
�

cos u

1 � sin u

sin x

csc x
�

cos x

sec x

1 � csc x

cos x � cot x

sec x � cos x

tan x

sec2x � 1

sec2x

tan x

sec1�x 21 � cos y

1 � sec y

sin x sec x

tan x

cot u

csc u � sin u

sec u � cos u

sin u

cos2u 11 � tan2u 2
sec x

csc x

36.

37.

38.

39.

40.

41.

42.

43. 44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55. 56.

57.

58.

59.

60.

61.

62.
sec x � csc x

tan x � cot x
� sin x � cos x

sec x

sec x � tan x
� sec x 1sec x � tan x 2

1 � sec2x

1 � tan2x
� 1 � cos2x

1 � tan2u

1 � tan2u
�

1

cos2u � sin2u

sec t csc t 1tan t � cot t 2 � sec2t � csc2t

1sin t � cos t 2 2
sin t cos t

� 2 � sec t csc t

sin „

sin „ � cos „
�

tan „

1 � tan „

sin x � 1

sin x � 1
�

�cos2x1sin x � 1 2 2
cot2u cos2u � cot2u � cos2u

tan2u � sin2u � tan2u sin2u

sin2a � cos2a � tan2a � sec2a

1 � cos a

sin a
�

sin a

1 � cos a

1tan y � cot y 2  sin y cos y � 1

2 cos2x � 1 � 1 � 2 sin2x

cos2x � sin2x � 2 cos2x � 1

11 � cos2x 2 11 � cot2x 2 � 1

sin4u � cos4u � sin2u � cos2u

1cot x � csc x 2 1cos x � 1 2 � �sin x

csc x � sin x � cos x cot x
1

1 � sin2y
� 1 � tan2y

1 � sin x

1 � sin x
� 1sec x � tan x 2 2

sec t � cos t

sec t
� sin2t

1sin x � cos x 2 4 � 11 � 2 sin x cos x 2 2
1sin x � cos x 2 2
sin2x � cos2x

�
sin2x � cos2x1sin x � cos x 2 2

cos x

sec x
�

sin x

csc x
� 1

11 � cos b 2 11 � cos b 2 �
1

csc2b

1sin x � cos x 2 2 � 1 � 2 sin x cos x

7.1 Exercises
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63.

64.

65.

66.

67. 68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81. 82.

83.

84.

85.

86.

87.

88. 1sin a � tan a 2 1cos a � cot a 2 � 1cos a � 1 2 1sin a � 1 21tan x � cot x 24 � csc4x sec4x

tan x � tan y

cot x � cot y
� tan x tan y

1 � sin x

1 � sin x
� 1tan x � sec x 2 2

tan √ � cot √

tan2√ � cot2√
� sin √ cos √

sin3x � cos3x

sin x � cos x
� 1 � sin x cos x

cot x � 1

cot x � 1
�

1 � tan x

1 � tan x

sec u � 1

sec u � 1
�

1 � cos u

1 � cos u

tan2x � cot2x � sec2x � csc2x

1tan x � cot x 2 2 � sec2x � csc2x

1 � sin x

1 � sin x
�

1 � sin x

1 � sin x
� 4 tan x sec x

1

sec x � tan x
�

1

sec x � tan x
� 2 sec x

1

1 � sin x
�

1

1 � sin x
� 2 sec x tan x

cos2t � tan2t � 1

sin2t
� tan2t

1 � tan x

1 � tan x
�

cos x � sin x

cos x � sin x

cos u

1 � sin u
�

sin u � csc u

cos u � cot u

cos u

1 � sin u
� sec u � tan u

sec4x � tan4x � sec2x � tan2x

tan √ sin √

tan √ � sin √
�

tan √ � sin √

tan √ sin √

tan2u � sin2u � tan2u sin2u

csc2x � cot2x

sec2x
� cos2x

csc x � cot x

sec x � 1
� cot x

1 � cos x

sin x
�

sin x

1 � cos x
� 2 csc x

sin x � cos x

sec x � csc x
� sin x cos x

sin A

1 � cos A
� cot A � csc A

sec √ � tan √ �
1

sec √ � tan √

89–94 ■ Make the indicated trigonometric substitution in 
the given algebraic expression and simplify (see Example 7). 
Assume 0 
 u � p/2.

89. 90.

91. 92.

93. 94.

95–98 ■ Graph f and g in the same viewing rectangle. Do the
graphs suggest that the equation is an identity?
Prove your answer.

95.

96.

97.

98.

99. Show that the equation is not an identity.

(a) sin 2x � 2 sin x (b)

(c) sec2x � csc2x � 1

(d)

Discovery • Discussion

100. Cofunction Identities In the right triangle shown,
explain why . Explain how you can 
obtain all six cofunction identities from this triangle, for 
0 � u � p/2.

101. Graphs and Identities Suppose you graph two func-
tions, f and g, on a graphing device, and their graphs 
appear identical in the viewing rectangle. Does this prove
that the equation is an identity? Explain.

102. Making Up Your Own Identity If you start with a
trigonometric expression and rewrite it or simplify it,
then setting the original expression equal to the rewritten
expression yields a trigonometric identity. For instance,
from Example 1 we get the identity

Use this technique to make up your own identity, then give
it to a classmate to verify.

cos t � tan t sin t � sec t

f 1x 2 � g1x 2

u

√

y � 1p/2 2 � u

1

sin x � cos x
� csc x � sec x

sin1x � y 2 � sin x � sin y

f 1x 2 � cos4x � sin4x, g1x 2 � 2 cos2x � 1

f 1x 2 � 1sin x � cos x 2 2, g1x 2 � 1

f 1x 2 � tan x 11 � sin x 2 , g1x 2 �
sin x cos x

1 � sin x

f 1x 2 � cos2x � sin2x, g1x 2 � 1 � 2 sin2x

f 1x 2 � g1x 2
2x 2 � 25

x
, x � 5 sec u29 � x 2, x � 3 sin u

1

x 224 � x 2
, x � 2 tan u2x 2 � 1, x � sec u

21 � x 2, x � tan u
x

21 � x 2
, x � sin u



7.2 Addition and Subtraction Formulas

We now derive identities for trigonometric functions of sums and differences.
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Addition and Subtraction Formulas

Formulas for sine:

Formulas for cosine:

Formulas for tangent:

 tan1s � t 2 �
tan s � tan t

1 � tan s tan t

 tan1s � t 2 �
tan s � tan t

1 � tan s tan t

 cos1s � t 2 � cos s cos t � sin s sin t

 cos1s � t 2 � cos s cos t � sin s sin t

 sin1s � t 2 � sin s cos t � cos s sin t

 sin1s � t 2 � sin s cos t � cos s sin t

■ Proof of Addition Formula for Cosine To prove the formula
, we use Figure 1. In the figure, the distances 

t, s � t, and �s have been marked on the unit circle, starting at and 
terminating at Q1, P1, and Q0, respectively. The coordinates of these points are

Since and , it follows that the point Q0 has the
coordinates . Notice that the distances between P0 and P1 and be-
tween Q0 and Q1 measured along the arc of the circle are equal. Since equal arcs are
subtended by equal chords, it follows that . Using the Distance
Formula, we get

Squaring both sides and expanding, we have

____________these add to 1___________
� �

�___________these add to 1__________�
__________these add to 1___________

Using the Pythagorean identity sin2u � cos2u � 1 three times gives

Finally, subtracting 2 from each side and dividing both sides by �2, we get

which proves the addition formula for cosine. ■

cos1s � t 2 � cos s cos t � sin s sin t

2 � 2 cos1s � t 2 � 2 � 2 cos s cos t � 2 sin s sin t

� cos2t � 2 cos s cos t � cos2s � sin2t � 2 sin s sin t � sin2s

cos21s � t 2 � 2 cos1s � t 2 � 1 � sin21s � t 2
2 3cos1s � t 2 � 1 4 2 � 3sin1s � t 2 � 0 4 2 � 21cos t � cos s 2 2 � 1sin t � sin s 2 2

d1P0, P1 2 � d1Q0, Q1 2Q01cos s, �sin s 2sin1�s 2 � �sin scos1�s 2 � cos s

P11cos1s � t 2 , sin1s � t 22       Q11cos t, sin t 2P011, 0 2       Q01cos1�s 2 , sin1�s 22
P011, 0 2cos1s � t 2 � cos s cos t � sin s sin ty

xO

Q⁄

Q‚

P⁄

P‚

s
s+t

t

_s

Figure 1

__
�

__
�



■ Proof of Subtraction Formula for Cosine Replacing t with �t in the 
addition formula for cosine, we get

Addition formula for cosine

Even-odd identities

This proves the subtraction formula for cosine. ■

See Exercises 56 and 57 for proofs of the other addition formulas.

Example 1 Using the Addition and Subtraction Formulas

Find the exact value of each expression.

(a) cos 75� (b)

Solution

(a) Notice that 75� � 45� � 30�. Since we know the exact values of sine and 
cosine at 45� and 30�, we use the addition formula for cosine to get

(b) Since , the subtraction formula for cosine gives

■

Example 2 Using the Addition Formula for Sine

Find the exact value of the expression sin 20� cos 40� � cos 20� sin 40�.

Solution We recognize the expression as the right-hand side of the addition 
formula for sine with s � 20� and t � 40�. So we have

■sin 20° cos 40° � cos 20° sin 40° � sin120° � 40° 2 � sin 60° �
13

2

�
12

2

13

2
�
12

2

1

2
�
16 � 12

4

� cos 
p

4
 cos
p

6
� sin

p

4
 sin 
p

6

 cos 
p

12
� cos ap

4
�
p

6
b

p

12
�
p

4
�
p

6

�
12

2

13

2
�
12

2

1

2
�
1213 � 12

4
�
16 � 12

4

� cos 45° cos 30° � sin 45° sin 30°

 cos 75° � cos145° � 30° 2

cos
p

12

� cos s cos t � sin s sin t

� cos s cos1�t 2 � sin s sin1�t 2 cos1s � t 2 � cos1s � 1�t 22
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Jean Baptiste Joseph Fourier
(1768–1830) is responsible for 
the most powerful application of
the trigonometric functions (see the
margin note on page 427). He used
sums of these functions to describe
such physical phenomena as the
transmission of sound and the flow
of heat.

Orphaned as a young boy,
Fourier was educated in a military
school, where he became a mathe-
matics teacher at the age of 20. 
He was later appointed professor at
the École Polytechnique but re-
signed this position to accompany
Napoleon on his expedition to
Egypt, where Fourier served as
governor. After returning to France
he began conducting experiments
on heat. The French Academy re-
fused to publish his early papers on
this subject due to his lack of rigor.
Fourier eventually became Secre-
tary of the Academy and in this 
capacity had his papers published
in their original form. Probably
because of his study of heat and 
his years in the deserts of Egypt,
Fourier became obsessed with
keeping himself warm—he wore
several layers of clothes, even in
the summer, and kept his rooms at
unbearably high temperatures. Ev-
idently, these habits overburdened
his heart and contributed to his
death at the age of 62.



Example 3 Proving a Cofunction Identity

Prove the cofunction identity .

Solution By the subtraction formula for cosine,

■

Example 4 Proving an Identity

Verify the identity .

Solution Starting with the right-hand side and using the addition formula for
tangent, we get

■

The next example is a typical use of the addition and subtraction formulas in 
calculus.

Example 5 An Identity from Calculus

If , show that

Solution

Definition of f

Addition formula for sine

Factor

Separate the fraction ■� sin x a cos h � 1

h
b � cos x a sin h

h
b

�
sin x 1cos h � 1 2 � cos x sin h

h

�
sin x cos h � cos x sin h � sin x

h

f 1x � h 2 � f1x 2
h

�
sin1x � h 2 � sin x

h

f 1x � h 2 � f 1x 2
h

� sin x a cos h � 1

h
b � cos x a sin h

h
bf 1x 2 � sin x

�
1 � tan x

1 � tan x
� LHS

 RHS � tan ap
4

� x b �

tan
p

4
� tan x

1 � tan
p

4
 tan x

1 � tan x

1 � tan x
� tan ap

4
� x b

� 0 # cos u � 1 # sin u � sin u

 cos ap
2

� u b � cos
p

2
 cos u � sin

p

2
 sin u

cos ap
2

� u b � sin u
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Expressions of the Form A sin x � B cos x
We can write expressions of the form A sin x � B cos x in terms of a single trigono-
metric function using the addition formula for sine. For example, consider the 
expression

If we set f � p/3, then and , and we can write

We are able to do this because the coefficients and are precisely the cosine
and sine of a particular number, in this case, p/3. We can use this same idea in gen-
eral to write A sin x � B cos x in the form k sin1x � f2. We start by multiplying the 
numerator and denominator by to get

We need a number f with the property that

Figure 2 shows that the point in the plane determines a number f with pre-
cisely this property. With this f, we have

We have proved the following theorem.

� 2A 2 � B 2 sin1x � f 2A sin x � B cos x � 2A 2 � B 2 1cos f sin x � sin f cos x 2
1A, B 2

cos f �
A

2A 2 � B 2
  and  sin f �

B

2A 2 � B 2

A sin x � B cos x � 2A 2 � B 2 a A

2A 2 � B 2
sin x �

B

2A 2 � B 2
cos x b

2A 2 � B 2

13/21
2

� sin1x � f 2 � sin a x �
p

3
b

1

2
 sin x �

13

2
 cos x � cos f sin x � sin f cos x

sin f � 13/2cos f � 1
2

1

2
 sin x �

13

2
 cos x
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y

x0

B

A

(A, B)

œ
∑∑∑∑∑∑

A™+
B™

ƒ

Figure 2

Sums of Sines and Cosines

If A and B are real numbers, then

where and f satisfies

cos f �
A

2A 2 � B 2
  and  sin f �

B

2A 2 � B 2

k � 2A 2 � B 2

A sin x � B cos x � k sin1x � f 2



Example 6 A Sum of Sine and Cosine Terms

Express 3 sin x � 4 cos x in the form .

Solution By the preceding theorem, . The
angle f has the property that and . Using a calculator, we find 
f � 53.1�. Thus

■

Example 7 Graphing a Trigonometric Function

Write the function in the form and
use the new form to graph the function.

Solution Since A � �1 and , we have .
The angle f satisfies and . From the signs of these
quantities we conclude that f is in quadrant II. Thus, f� 2p/3. By the preceding
theorem we can write

Using the form

we see that the graph is a sine curve with amplitude 2, period 2p/2 � p, and phase
shift �p/3. The graph is shown in Figure 3. ■

7.2 Exercises

f 1x 2 � 2 sin 2 a x �
p

3
b

f 1x 2 � �sin 2x � 13 cos 2x � 2 sin a2x �
2p

3
b

sin f � 13/2cos f � �1
2

k � 2A 2 � B 2 � 11 � 3 � 2B � 13

k sin12x � f 2f 1x 2 � �sin 2x � 13 cos 2x

3 sin x � 4 cos x � 5 sin1x � 53.1° 2
cos f � 3

5sin f � 4
5

k � 2A 2 � B 2 � 232 � 42 � 5

k sin1x � f 2
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_2

2

π

2
_

π

2

π

3
_

y=2 ß 2 !x+   @
π

3

y

x0

Figure 3

1–12 ■ Use an addition or subtraction formula to find the exact
value of the expression, as demonstrated in Example 1.

1. sin 75� 2. sin 15�

3. cos 105� 4. cos 195�

5. tan 15� 6. tan 165�

7. 8.

9. 10.

11. 12.

13–18 ■ Use an addition or subtraction formula to write the 
expression as a trigonometric function of one number, and then
find its exact value.

13. sin 18� cos 27� � cos 18� sin 27�

14. cos 10� cos 80� � sin 10� sin 80�

tan
7p

12
cos

11p

12

sin a� 5p

12
btan a� p

12
b

cos
17p

12
sin

19p

12

15.

16.

17.

18.

19–22 ■ Prove the cofunction identity using the addition and
subtraction formulas.

19. 20.

21. 22. csc ap
2

� u b � sec usec ap
2

� u b � csc u

cot ap
2

� u b � tan utan ap
2

� u b � cot u

cos
13p

15
 cos a�p

5
b � sin

13p

15
 sin a�p

5
b

tan 73° � tan 13°

1 � tan 73°tan 13°

tan
p

18
� tan

p

9

1 � tan
p

18
 tan 
p

9

cos
3p

7
 cos 

2p

21
� sin

3p

7
 sin 

2p

21
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23–40 ■ Prove the identity.

23.

24.

25. 26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41–44 ■ Write the expression in terms of sine only.

41. 42.

43. 44.

45–46 ■ (a) Express the function in terms of sine only.

(b) Graph the function.

45. 46.

47. Show that if b� a � p/2, then

sin1x � a 2 � cos1x � b 2 � 0

g1x 2 � cos 2x � 13 sin 2xf 1x 2 � sin x � cos x

3 sin px � 313 cos px51sin 2x � cos 2x 2 sin x � cos x�13 sin x � cos x

� tan1x � y 2  tan1y � z 2  tan1z � x 2tan1x � y 2 � tan1y � z 2 � tan1z � x 2� cos x cos y sin z � sin x sin y sin z

sin1x � y � z 2 � sin x cos y cos z � cos x sin y cos z

cos1x � y 2  cos1x � y 2 � cos2x � sin2y

sin1x � y 2 � sin1x � y 2
cos1x � y 2 � cos1x � y 2 � tan y

1 � tan x tan y �
cos1x � y 2
cos x cos y

tan x � tan y �
sin1x � y 2
cos x cos y

cot1x � y 2 �
cot x cot y � 1

cot x � cot y

cot1x � y 2 �
cot x cot y � 1

cot y � cot x

cos1x � y 2 � cos1x � y 2 � 2 cos x cos y

sin1x � y 2 � sin1x � y 2 � 2 cos x sin y

tan a x �
p

4
b �

tan x � 1

tan x � 1

cos a x �
p

6
b � sin a x �

p

3
b � 0

sin ap
2

� x b � sin ap
2

� x btan1x � p 2 � tan x

cos1x � p 2 � �cos xsin1x � p 2 � �sin x

cos a x �
p

2
b � sin x

sin a x �
p

2
b � �cos x

48. Let . Show that

49. Refer to the figure. Show that a � b � g, and find tang.

50. (a) If L is a line in the plane and u is the angle formed by
the line and the x-axis as shown in the figure, show that
the slope m of the line is given by

(b) Let L1 and L2 be two nonparallel lines in the plane with
slopes m1 and m2, respectively. Let c be the acute angle
formed by the two lines (see the figure). Show that

(c) Find the acute angle formed by the two lines

(d) Show that if two lines are perpendicular, then the slope
of one is the negative reciprocal of the slope of the
other. [Hint: First find an expression for cot c.]

y � 1
3 x � 1  and  y � � 1

2 x � 3

y

x0

L⁄

L¤

¨¤
¨⁄

ψ=¨¤-¨⁄

tan c �
m2 � m1

1 � m1m2

y

x0

L

¨

m � tan u

©

46

å ∫
43

g1x � h 2 � g1x 2
h

� �cos x a 1 � cos h

h
b � sin x a sin h

h
bg1x 2 � cos x
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51–52 ■ (a) Graph the function and make a conjecture, then
(b) prove that your conjecture is true.

51.

52.

53. Find �A � �B � �C in the figure. [Hint: First use an ad-
dition formula to find .]

Applications

54. Adding an Echo A digital delay-device echoes an input
signal by repeating it a fixed length of time after it is re-
ceived. If such a device receives the pure note 
and echoes the pure note , then the combined
sound is .

(a) Graph and observe that the graph has the form
of a sine curve .

(b) Find k and f.

55. Interference Two identical tuning forks are struck, one a
fraction of a second after the other. The sounds produced are
modeled by and .
The two sound waves interfere to produce a single sound
modeled by the sum of these functions

(a) Use the addition formula for sine to show that f can be
written in the form , where
A and B are constants that depend on a.

f 1t 2 � A sin vt � B cos vt

f 1t 2 � C sin vt � C sin1vt � a 2
f21t 2 � C sin1vt � a 2f11t 2 � C sin vt

y � k sin1t � f 2y � f 1t 2f 1t 2 � f11t 2 � f21t 2f21t 2 � 5 cos t
f11t 2 � 5 sin t

1

111
A B C

tan1A � B 2
y � � 1

2 3cos1x � p 2 � cos1x � p 2 4y � sin2 a x �
p

4
b � sin2 a x �

p

4
b

(b) Suppose that C � 10 and a � p/3. Find constants k and
f so that .

Discovery • Discussion

56. Addition Formula for Sine In the text we proved only
the addition and subtraction formulas for cosine. Use these
formulas and the cofunction identities

to prove the addition formula for sine. [Hint: To get started,
use the first cofunction identity to write

and use the subtraction formula for cosine.]

57. Addition Formula for Tangent Use the addition formu-
las for cosine and sine to prove the addition formula for tan-
gent. [Hint: Use

and divide the numerator and denominator by cos s cos t.]

tan1s � t 2 �
sin1s � t 2
cos1s � t 2

� cos aap
2

� s b � t b
 sin1s � t 2 � cos ap

2
� 1s � t 2b

 cos x � sin ap
2

� x b
 sin x � cos ap

2
� x b

f 1t 2 � k sin1vt � f 2

7.3 Double-Angle, Half-Angle, 
and Product-Sum Formulas

The identities we consider in this section are consequences of the addition formulas.
The double-angle formulas allow us to find the values of the trigonometric functions
at 2x from their values at x. The half-angle formulas relate the values of the trigono-
metric functions at to their values at x. The product-sum formulas relate products
of sines and cosines to sums of sines and cosines.

Double-Angle Formulas

The formulas in the following box are immediate consequences of the addition for-
mulas, which we proved in the preceding section.

1
2 x



The proofs for the formulas for cosine are given here. You are asked to prove the re-
maining formulas in Exercises 33 and 34.

■ Proof of Double-Angle Formulas for Cosine

The second and third formulas for cos 2x are obtained from the formula we just
proved and the Pythagorean identity. Substituting cos2x � 1 � sin2x gives

The third formula is obtained in the same way, by substituting sin2x � 1 � cos2x. ■

Example 1 Using the Double-Angle Formulas

If and x is in quadrant II, find cos 2x and sin 2x.

Solution Using one of the double-angle formulas for cosine, we get

To use the formula sin 2x � 2 sin x cos x, we need to find sin x first. We have

where we have used the positive square root because sin x is positive in quadrant II.
Thus

■� 2 a 15

3
b a� 2

3
b � �

415

9

 sin 2x � 2 sin x cos x

sin x � 21 � cos2x � 21 � A�2
3B2 �

15

3

� 2 a� 2

3
b 2

� 1 �
8

9
� 1 � �

1

9

 cos 2x � 2 cos2x � 1

cos x � � 2
3

� 1 � 2 sin2x

� 11 � sin2x 2 � sin2x

 cos 2x � cos2x � sin2x

� cos2x � sin2x

� cos x cos x � sin x sin x

 cos 2x � cos1x � x 2
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Double-Angle Formulas

Formula for sine:

Formulas for cosine:

Formula for tangent: tan 2x �
2 tan x

1 � tan2x

� 2 cos2x � 1

� 1 � 2 sin2x

cos 2x � cos2x � sin2x

 sin 2x � 2 sin x cos x



Example 2 A Triple-Angle Formula

Write cos 3x in terms of cos x.

Solution

Addition formula

Double-angle formulas

Expand

Pythagorean identity

Expand

Simplify ■

Example 2 shows that cos 3x can be written as a polynomial of degree 3 in cos x.
The identity cos 2x � 2 cos2x � 1 shows that cos 2x is a polynomial of degree 2 in
cos x. In fact, for any natural number n, we can write cos nx as a polynomial in cos x
of degree n (see Exercise 87). The analogous result for sin nx is not true in general.

Example 3 Proving an Identity

Prove the identity .

Solution We start with the left-hand side.

Addition formula

Double-angle formulas

Separate fraction

Cancel

Separate fraction

Reciprocal identity ■

Half-Angle Formulas

The following formulas allow us to write any trigonometric expression involving
even powers of sine and cosine in terms of the first power of cosine only. This tech-
nique is important in calculus. The half-angle formulas are immediate consequences
of these formulas.

� 4 cos x � sec x

� 2 cos x �
1

cos x
� 2 cos x

�
2 cos2x � 1

cos x
� 2 cos x

�
sin x 12 cos2x � 1 2

sin x cos x
�

cos x 12 sin x cos x 2
sin x cos x

�
sin x 12 cos2x � 1 2 � cos x 12 sin x cos x 2

sin x cos x

�
sin x cos 2x � cos x sin 2x

sin x cos x

sin 3x

sin x cos x
�

sin1x � 2x 2
sin x cos x

sin 3x

sin x cos x
� 4 cos x � sec x

� 4 cos3x � 3 cos x

� 2 cos3x � cos x � 2 cos x � 2 cos3x

� 2 cos3x � cos x � 2 cos x 11 � cos2x 2� 2 cos3x � cos x � 2 sin2x cos x

� 12 cos2x � 1 2  cos x � 12 sin x cos x 2  sin x

� cos 2x cos x � sin 2x sin x

 cos 3x � cos12x � x 2
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Formulas for Lowering Powers

tan2x �
1 � cos 2x

1 � cos 2x

sin2x �
1 � cos 2x

2
   cos2x �

1 � cos 2x

2

■ Proof The first formula is obtained by solving for sin2x in the double-angle
formula cos 2x � 1 � 2 sin2x. Similarly, the second formula is obtained by solving
for cos2x in the double-angle formula cos 2x � 2 cos2x � 1.

The last formula follows from the first two and the reciprocal identities:

■

Example 4 Lowering Powers in a 

Trigonometric Expression

Express sin2x cos2x in terms of the first power of cosine.

Solution We use the formulas for lowering powers repeatedly.

Another way to obtain this identity is to use the double-angle formula for sine in
the form . Thus

■sin2x cos2x �
1

4
 sin2 2x �

1

4
a 1 � cos 4x

2
b �

1

8
11 � cos 4x 2sin x cos x � 1

2 sin 2x

�
1

8
�

1

8
cos 4x �

1

8
11 � cos 4x 2

�
1

4
�

1

4
a 1 � cos 4x

2
b �

1

4
�

1

8
�

cos 4x

8

�
1 � cos2 2x

4
�

1

4
�

1

4
 cos2 2x

 sin2x cos2x � a 1 � cos 2x

2
b a 1 � cos 2x

2
b

tan2x �
sin2x

cos2x
�

1 � cos 2x

2

1 � cos 2x

2

�
1 � cos 2x

1 � cos 2x

Half-Angle Formulas

The choice of the � or � sign depends on the quadrant in which u/2 lies.

tan
u

2
�

1 � cos u

sin u
�

sin u

1 � cos u

sin
u

2
� �B

1 � cos u

2
   cos

u

2
� �B

1 � cos u

2



■ Proof We substitute x � u/2 in the formulas for lowering powers and take the
square root of each side. This yields the first two half-angle formulas. In the case of
the half-angle formula for tangent, we get

Simplify

Now, 1 � cos u is nonnegative for all values of u. It is also true that sin u and
always have the same sign. (Verify this.) It follows that

The other half-angle formula for tangent is derived from this by multiplying the 
numerator and denominator by 1 � cos u. ■

Example 5 Using a Half-Angle Formula

Find the exact value of sin 22.5�.

Solution Since 22.5� is half of 45�, we use the half-angle formula for sine with 
u � 45�. We choose the � sign because 22.5� is in the first quadrant.

Half-angle formula

Common denominator

Simplify ■

Example 6 Using a Half-Angle Formula

Find if and u is in quadrant II.

Solution To use the half-angle formulas for tangent, we first need to find cos u.
Since cosine is negative in quadrant II, we have

� �21 � A25B2 � �
121

5

 cos u � �21 � sin2u

sin u � 2
5tan1u/2 2
� 1

232 � 22

�B
2 � 12

4

cos 45° � 12/2�B
1 � 12/2

2

 sin
45°

2
� B

1 � cos 45°

2

tan
u

2
�

1 � cos u

sin u

tan1u/2 2
� �

0 1 � cos u 00 sin u 0
� �B

11 � cos u 2 2
1 � cos2u

Multiply numerator and 
denominator by 1 � cos u� �B a 1 � cos u

1 � cos u
b a 1 � cos u

1 � cos u
b

 tan
u

2
� �B

1 � cos u

1 � cos u
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and 1 � cos2u � sin2u
2A2 � 0 A 0



Thus

■

Product-Sum Formulas

It is possible to write the product sin u cos √ as a sum of trigonometric functions. To
see this, consider the addition and subtraction formulas for the sine function:

Adding the left- and right-hand sides of these formulas gives

Dividing by 2 yields the formula

The other three product-to-sum formulas follow from the addition formulas in a
similar way.

sin u cos √ � 1
2 3sin1u � √ 2 � sin1u � √ 2 4

sin1u � √ 2 � sin1u � √ 2 � 2 sin u cos √

 sin1u � √ 2 � sin u cos √ � cos u sin √

 sin1u � √ 2 � sin u cos √ � cos u sin √

�
1 � 121/5

2
5

�
5 � 121

2

 tan 
u

2
�

1 � cos u

sin u
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Product-to-Sum Formulas

 sin u sin √ � 1
2 3cos1u � √ 2 � cos1u � √ 2 4 cos u cos √ � 1
2 3cos1u � √ 2 � cos1u � √ 2 4 cos u sin √ � 1
2 3sin1u � √ 2 � sin1u � √ 2 4 sin u cos √ � 1
2 3sin1u � √ 2 � sin1u � √ 2 4

Example 7 Expressing a Trigonometric Product as a Sum

Express sin 3x sin 5x as a sum of trigonometric functions.

Solution Using the fourth product-to-sum formula with u � 3x and √ � 5x and
the fact that cosine is an even function, we get

■

The product-to-sum formulas can also be used as sum-to-product formulas. This
is possible because the right-hand side of each product-to-sum formula is a sum and
the left side is a product. For example, if we let

u �
x � y

2
  and  √ �

x � y

2

� 1
2 cos 2x � 1

2 cos 8x

� 1
2 cos1�2x 2 � 1

2 cos 8x

 sin 3x sin 5x � 1
2 3cos13x � 5x 2 � cos13x � 5x 2 4



in the first product-to-sum formula, we get

so

The remaining three of the following sum-to-product formulas are obtained in a
similar manner.

sin x � sin y � 2 sin 
x � y

2
 cos 

x � y

2

sin
x � y

2
 cos 

x � y

2
� 1

2 1sin x � sin y 2
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Sum-to-Product Formulas

cos x � cos y � �2 sin 
x � y

2
 sin 

x � y

2

cos x � cos y � 2 cos 
x � y

2
 cos 

x � y

2

sin x � sin y � 2 cos 
x � y

2
 sin 

x � y

2

sin x � sin y � 2 sin 
x � y

2
 cos 

x � y

2

Example 8 Expressing a Trigonometric Sum as a Product

Write sin 7x � sin 3x as a product.

Solution The first sum-to-product formula gives

■

Example 9 Proving an Identity

Verify the identity .

Solution We apply the second sum-to-product formula to the numerator and the
third formula to the denominator.

Sum-to-product formulas

Simplify

Cancel ■�
sin x
cos x

� tan x � RHS

�
2 cos 2x sin x

2 cos 2x cos x

 LHS �
sin 3x � sin x

cos 3x � cos x
�

2 cos 
3x � x

2
 sin 

3x � x

2

2 cos 
3x � x

2
 cos 

3x � x

2

sin 3x � sin x

cos 3x � cos x
� tan x

� 2 sin 5x cos 2x

 sin 7x � sin 3x � 2 sin 
7x � 3x

2
 cos 

7x � 3x

2
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1–8 ■ Find sin 2x, cos 2x, and tan 2x from the given 
information.

1. , x in quadrant I

2. , x in quadrant II

3. , csc x � 0 4. csc x � 4, tan x � 0

5. , x in quadrant III

6. sec x � 2, x in quadrant IV

7. , cos x 	 0

8. , sin x 	 0

9–14 ■ Use the formulas for lowering powers to rewrite 
the expression in terms of the first power of cosine, as in 
Example 4.

9. sin4x 10. cos4x

11. cos2x sin4x 12. cos4x sin2x

13. cos4x sin4x 14. cos6x

15–26 ■ Use an appropriate half-angle formula to find the 
exact value of the expression.

15. sin 15� 16. tan 15�

17. tan 22.5� 18. sin 75�

19. cos 165� 20. cos 112.5�

21. 22.

23. 24.

25. 26.

27–32 ■ Simplify the expression by using a double-angle 
formula or a half-angle formula.

27. (a) 2 sin 18� cos 18� (b) 2 sin 3u cos 3u

28. (a) (b)

29. (a) cos2 34� � sin2 34� (b) cos2 5u � sin2 5u

30. (a) (b)

31. (a) (b)

32. (a) (b) B
1 � cos 8u

2B
1 � cos 30°

2

1 � cos 4u

sin 4u

sin 8°

1 � cos 8°

2 sin 
u

2
 cos 
u

2
cos2 u

2
� sin2 u

2

2 tan 7u

1 � tan2 7u

2 tan 7°

1 � tan2 7°

sin
11p

12
sin

9p

8

tan
5p

12
cos
p

12

cos
3p

8
tan
p

8

cot x � 2
3

tan x � � 1
3

sin x � � 3
5

cos x � 4
5

tan x � � 4
3

sin x � 5
13

33. Use the addition formula for sine to prove the double-angle
formula for sine.

34. Use the addition formula for tangent to prove the double-
angle formula for tangent.

35–40 ■ Find , , and from the given information.

35. , 0� � x � 90�

36. , 180� � x � 270�

37. , 90� � x � 180�

38. tan x � 1, 0� � x � 90�

39. , 270� � x � 360�

40. cot x � 5, 180� � x � 270�

41–46 ■ Write the product as a sum.

41. sin 2x cos 3x 42. sin x sin 5x

43. cos x sin 4x 44. cos 5x cos 3x

45. 3 cos 4x cos 7x 46.

47–52 ■ Write the sum as a product.

47. sin 5x � sin 3x 48. sin x � sin 4x

49. cos 4x � cos 6x 50. cos 9x � cos 2x

51. sin 2x � sin 7x 52. sin 3x � sin 4x

53–58 ■ Find the value of the product or sum.

53. 2 sin 52.5� sin 97.5� 54. 3 cos 37.5� cos 7.5�

55. cos 37.5� sin 7.5� 56. sin 75� � sin 15�

57. cos 255� � cos 195� 58.

59–76 ■ Prove the identity.

59. cos2 5x � sin2 5x � cos 10x

60. sin 8x � 2 sin 4x cos 4x

61.

62. 63.

64.

65. 66. cot 2x �
1 � tan2x

2 tan x

21tan x � cot x 2
tan2x � cot2x

� sin 2x

1 � sin 2x

sin 2x
� 1 � 1

2 sec x csc x

sin 4x

sin x
� 4 cos x cos 2x

2 tan x

1 � tan2x
� sin 2x

1sin x � cos x 2 2 � 1 � sin 2x

cos
p

12
� cos

5p

12

11 sin 
x

2
 cos 

x

4

sec x � 3
2

csc x � 3

cos x � � 4
5

sin x � 3
5

tan
x

2
cos

x

2
sin

x

2

7.3 Exercises
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67.

68.

69. cos4x � sin4x � cos 2x

70.

71. 72.

73.

74.

75.

76.

77. Show that sin 130� � sin 110� � �sin 10�.

78. Show that cos 100� � cos 200� � sin 50�.

79. Show that sin 45� � sin 15� � sin 75�.

80. Show that cos 87� � cos 33� � sin 63�.

81. Prove the identity

82. Use the identity

n times to show that

83. (a) Graph and make a conjecture.

(b) Prove the conjecture you made in part (a).

84. (a) Graph and make a conjecture.

(b) Prove the conjecture you made in part (a).

85. Let .

(a) Graph .

(b) Verify that .

(c) Graph and , together with
the graph in part (a), in the same viewing rectangle.
How are these graphs related to the graph of f?

86. Let 3x � p/3 and let y � cos x. Use the result of Example 2
to show that y satisfies the equation

8y 3 � 6y � 1 � 0

y � �2 cos 1
2 xy � 2 cos 12 x

f 1x 2 � 2 cos 12 x sin 13
2 x

y � f 1x 2f 1x 2 � sin 6x � sin 7x

f 1x 2 � cos 2x � 2 sin2x

f 1x 2 �
sin 3x

sin x
�

cos 3x

cos x

sin12nx 2 � 2n sin x cos x  cos 2x  cos 4x . . . cos 2n�1x

sin 2x � 2 sin x cos x

sin x � sin 2x � sin 3x � sin 4x � sin 5x

cos x � cos 2x � cos 3x � cos 4x � cos 5x
� tan 3x

tan y �
sin1x � y 2 � sin1x � y 2
cos1x � y 2 � cos1x � y 2

sin x � sin y

cos x � cos y
� tan a x � y

2
b

sin x � sin 3x � sin 5x

cos x � cos 3x � cos 5x
� tan 3x

sin 10x

sin 9x � sin x
�

cos 5x

cos 4x

sin 3x � sin 7x

cos 3x � cos 7x
� cot 2x

sin x � sin 5x

cos x � cos 5x
� tan 3x

tan2 a x

2
�
p

4
b �

1 � sin x

1 � sin x

41sin6x � cos6x 2 � 4 � 3 sin2 2x

tan 3x �
3 tan x � tan3x

1 � 3 tan2x

NOTE This equation has roots of a certain kind that are
used to show that the angle p/3 cannot be trisected using a
ruler and compass only.

87. (a) Show that there is a polynomial of degree 4 such
that (see Example 2).

(b) Show that there is a polynomial of degree 5 such
that .

NOTE In general, there is a polynomial of degree n
such that . These polynomials are called
Tchebycheff polynomials, after the Russian mathematician 
P. L. Tchebycheff (1821–1894).

88. In triangle ABC (see the figure) the line segment s bisects
angle C. Show that the length of s is given by

[Hint: Use the Law of Sines.]

89. If A, B, and C are the angles in a triangle, show that

90. A rectangle is to be inscribed in a semicircle of radius 5 cm
as shown in the figure.

(a) Show that the area of the rectangle is modeled by the
function

(b) Find the largest possible area for such an inscribed 
rectangle.

(c) Find the dimensions of the inscribed rectangle with the
largest possible area.

Applications

91. Sawing a Wooden Beam A rectangular beam is to be
cut from a cylindrical log of diameter 20 in.

(a) Show that the cross-sectional area of the beam is 
modeled by the function

where u is as shown in the figure on the next page.

A1u 2 � 200 sin 2u

¨

5 cm

A1u 2 � 25 sin 2u

sin 2A � sin 2B � sin 2C � 4 sin A sin B sin C

C

B A

a b
s

x
x

s �
2ab cos x

a � b

cos nx � Pn1cos x 2 Pn1t 2cos 5x � Q1cos x 2 Q1t 2cos 4x � P1cos x 2 P1t 2
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(b) Show that the maximum cross-sectional area of such a
beam is 200 in2. [Hint: Use the fact that sin u achieves
its maximum value at u � p/2.]

92. Length of a Fold The lower right-hand corner of a long
piece of paper 6 in. wide is folded over to the left-hand edge
as shown. The length L of the fold depends on the angle u.
Show that

93. Sound Beats When two pure notes that are close in fre-
quency are played together, their sounds interfere to produce
beats; that is, the loudness (or amplitude) of the sound alter-
nately increases and decreases. If the two notes are given by

the resulting sound is .

(a) Graph the function .

(b) Verify that .

(c) Graph y � 2 cos t and y � �2 cos t, together with the
graph in part (a), in the same viewing rectangle. How
do these graphs describe the variation in the loudness 
of the sound?

f 1t 2 � 2 cos t cos 12t

y � f 1t 2f 1t 2 � f11t 2 � f21t 2f11t 2 � cos 11t  and  f21t 2 � cos 13t

L

¨

6 in.

L �
3

sin u cos2u

20 in.

¨

20 in.
¨

94. Touch-Tone Telephones When a key is pressed on a
touch-tone telephone, the keypad generates two pure tones,
which combine to produce a sound that uniquely identifies
the key. The figure shows the low frequency f1 and the high
frequency f2 associated with each key. Pressing a key pro-
duces the sound wave .

(a) Find the function that models the sound produced when
the 4 key is pressed.

(b) Use a sum-to-product formula to express the sound gen-
erated by the 4 key as a product of a sine and a cosine
function.

(c) Graph the sound wave generated by the 4 key, from 
t � 0 to t � 0.006 s.

Discovery • Discussion

95. Geometric Proof of a Double-Angle Formula Use the
figure to prove that sin 2u� 2 sin u cos u.

Hint: Find the area of triangle ABC in two different ways.
You will need the following facts from geometry:

An angle inscribed in a semicircle is a right angle, so
�ACB is a right angle.

The central angle subtended by the chord of a circle is
twice the angle subtended by the chord on the circle, so
�BOC is 2u.

C

BA
O

¨

1 1

Low
frequency

f1

1209
High frequency f2

1336 1477 Hz

697 Hz 1

770 Hz 4

852 Hz 7

941 Hz *

2

5

8

0

3

6

9

#

y � sin12pf1t 2 � sin12pf2t 2

7.4 Inverse Trigonometric Functions

If f is a one-to-one function with domain A and range B, then its inverse f�1 is the
function with domain B and range A defined by

f�11x 2 � y  3   f 1y 2 � x
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(See Section 2.8.) In other words, f�1 is the rule that reverses the action of f. Figure 1
represents the actions of f and f�1 graphically.

For a function to have an inverse, it must be one-to-one. Since the trigonometric
functions are not one-to-one, they do not have inverses. It is possible, however, to re-
strict the domains of the trigonometric functions in such a way that the resulting func-
tions are one-to-one.

The Inverse Sine Function

Let’s first consider the sine function. There are many ways to restrict the domain of sine
so that the new function is one-to-one.A natural way to do this is to restrict the domain
to the interval 3�p/2, p/24. The reason for this choice is that sine attains each of its
values exactly once on this interval. As we see in Figure 2, on this restricted domain
the sine function is one-to-one (by the Horizontal Line Test), and so has an inverse.

The inverse of the function sin is the function sin�1 defined by

for �1 
 x 
 1 and �p/2 
 y 
 p/2. The graph of y � sin�1 x is shown in Figure 3;
it is obtained by reflecting the graph of y � sin x, �p/2 
 x 
 p/2, in the line y � x.

sin�1x � y 3  sin y � x

y

x0

1

y=sin x, ≤x≤

π

2

π

2
_

π

2

π

2
_

y

xπ0
_1

2π

1

_π

y=ß x

_2π

x
y

f

f _1

BA

Figure 1

f�11x 2 � y 3  f 1y 2 � x

Figure 2

Definition of the Inverse Sine Function

The inverse sine function is the function sin�1 with domain 3�1, 14 and
range 3�p/2, p/24 defined by

The inverse sine function is also called arcsine, denoted by arcsin.

sin�1x � y 3  sin y � x

y

x0 1

y=sin–¡xπ

2

π

2
_

_1

Figure 3

Thus, sin�1 x is the number in the interval 3�p/2, p/24 whose sine is x. In other
words, . In fact, from the general properties of inverse functions stud-
ied in Section 2.8, we have the following relations.

 sin�11sin x 2 � x   for �
p

2

 x 


p

2

 sin1sin�1x 2 � x   for �1 
 x 
 1

sin1sin�1x 2 � x



Example 1 Evaluating the Inverse Sine Function

Find: (a) , (b) , and (c) .

Solution

(a) The number in the interval 3�p/2, p/24 whose sine is is p/6. Thus,
.

(b) The number in the interval 3�p/2, p/24 whose sine is is �p/6. Thus,
.

(c) Since , it is not in the domain of sin�1 x, so is not defined. ■

Example 2 Using a Calculator to Evaluate Inverse Sine

Find approximate values for (a) and (b) .

Solution Since no rational multiple of p has a sine of 0.82 or , we use a calcu-
lator to approximate these values. Using the , or , or 
key(s) on the calculator (with the calculator in radian mode), we get

(a) (b) ■

Example 3 Composing Trigonometric Functions 

and Their Inverses

Find .

Solution 1 It’s easy to find . In fact, by the properties of inverse 
functions, this value is exactly . To find , we reduce this to the easier
problem by writing the cosine function in terms of the sine function. Let 

. Since �p/2 
 u 
 p/2, cos u is positive and we can write

Thus

Solution 2 Let . Then u is the number in the interval 3�p/2, p/24
whose sine is . Let’s interpret u as an angle and draw a right triangle with u as one
of its acute angles, with opposite side 3 and hypotenuse 5 (see Figure 4). The 
remaining leg of the triangle is found by the Pythagorean Theorem to be 4. From
the figure we get

■

From Solution 2 of Example 3 we can immediately find the values of the other
trigonometric functions of from the triangle. Thus

tanAsin�1 3
5B � 3

4   secAsin�1 3
5B � 5

4   cscAsin�1 3
5B � 5

3

u � sin�1 3
5

cosAsin�1 3
5B � cos u � 4

5

3
5

u � sin�1 3
5

� 31 � A35B2 � 31 � 9
25 � 316

25 � 4
5

 cosAsin�1 3
5B � 31 � sin2Asin�1 3

5B cos u � �21 � sin2u

u � sin�1 3
5

cosAsin�1 3
5B3

5

sin1sin�1 3
5 2cos1sin�1 3

5 2

sin�1 1
3 � 0.33984sin�110.82 2 � 0.96141

ARC SINSIN�1SININV

1
3

sin�1 1
3sin�110.82 2

sin�1 3
2

3
2 	 1

sin�1A� 1
2B � �p/6

� 1
2

sin�1 1
2 � p/6

1
2

sin�1 3
2sin�1A� 1

2Bsin�1 1
2
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¨

5
3

4

Figure 4



The Inverse Cosine Function

If the domain of the cosine function is restricted to the interval 30, p4, the resulting
function is one-to-one and so has an inverse. We choose this interval because on it,
cosine attains each of its values exactly once (see Figure 5).

y

x0

1

y=ç x,  0≤x≤π

π
_1

y

xπ0
_1

2π

1

_π

y=ç x

_2π
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Definition of the Inverse Cosine Function

The inverse cosine function is the function cos�1 with domain 3�1, 14 and
range 30, p4 defined by

The inverse cosine function is also called arccosine, denoted by arccos.

cos�1x � y 3  cos y � x

y

x0 1

y=cos–¡x

π

_1

π

2

Figure 6

Figure 5

Thus, y � cos�1 x is the number in the interval 30, p4 whose cosine is x. The fol-
lowing relations follow from the inverse function properties.

The graph of y � cos�1 x is shown in Figure 6; it is obtained by reflecting the graph
of y � cos x, 0 
 x 
 p, in the line y � x.

Example 4 Evaluating the Inverse Cosine Function

Find: (a) .

Solution

(a) The number in the interval 30, p4 whose cosine is is p/6. Thus,
.

(b) The number in the interval 30, p4 whose cosine is 0 is p/2. Thus,
cos�1 0 � p/2.

(c) Since no rational multiple of p has cosine , we use a calculator (in radian
mode) to find this value approximately: ■cos�1 5

7 � 0.77519.

5
7

cos�1A13/2B � p/6
13/2

cos�1A13/2B,  1b 2  cos�10,  and  1c 2  cos�1 5
7

cos�11cos x 2 � x  for 0 
 x 
 p

cos1cos�1x 2 � x  for �1 
 x 
 1



Example 5 Composing Trigonometric Functions 

and Their Inverses

Write and as algebraic expressions in x for �1 
 x 
 1.

Solution 1 Let u � cos�1 x. We need to find sin u and tan u in terms of x.
As in Example 3 the idea here is to write sine and tangent in terms of cosine. 
We have

To choose the proper signs, note that u lies in the interval 30, p4 because
u � cos�1 x. Since sin u is positive on this interval, the � sign is the correct 
choice. Substituting u � cos�1 x in the displayed equations and using the relation

gives

Solution 2 Let u � cos�1 x, so cos u � x. In Figure 7 we draw a right triangle
with an acute angle u, adjacent side x, and hypotenuse 1. By the Pythagorean Theo-
rem, the remaining leg is . From the figure,

■

NOTE In Solution 2 of Example 5 it may seem that because we are sketching a
triangle, the angle u� cos�1 x must be acute. But it turns out that the triangle method
works for any u and for any x. The domains and ranges of all six inverse trigonometric
functions have been chosen in such a way that we can always use a triangle to find

, where S and T are any trigonometric functions.

Example 6 Composing a Trigonometric Function 

and an Inverse

Write as an algebraic expression in x for �1 
 x 
 1.

Solution Let u � cos�1 x and sketch a triangle as shown in Figure 8. We need to
find sin 2u, but from the triangle we can find trigonometric functions only of u, not
of 2u. The double-angle identity for sine is useful here. We have

Double-angle formula

From triangle

■

The Inverse Tangent Function

We restrict the domain of the tangent function to the interval in order to
obtain a one-to-one function.

1�p/2, p/2 2
� 2x21 � x 2

� 2 A21 � x 2 B x� 2 sin u cos u

 sin12 cos�1x 2 � sin 2u

sin12 cos�1x 2
S1T�11x 22

sin1cos�1x 2 � sin u � 21 � x 2    and    tan1cos�1x 2 � tan u �
21 � x 2

x

21 � x 2

sin1cos�1x 2 � 21 � x 2  and  tan1cos�1x 2 �
21 � x 2

x

cos1cos�1x 2 � x

sin u � �21 � cos2u  and  tan u �
sin u
cos u

�
�21 � cos2u

cos u

tan1cos�1x 2sin1cos�1x 2
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¨

1

x

œ∑∑∑∑∑1-≈

Figure 7

cos u �
x

1
� x

¨

1

x

œ∑∑∑∑∑1-≈

Figure 8

cos u �
x

1
� x
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Definition of the Inverse Tangent Function

The inverse tangent function is the function tan�1 with domain and range
defined by

The inverse tangent function is also called arctangent, denoted by 
arctan.

tan�1x � y 3  tan y � x

1�p/2,p/2 2 �

Figure 9

Thus, tan�1 x is the number in the interval whose tangent is x. The
following relations follow from the inverse function properties.

Figure 9 shows the graph of y � tan x on the interval and the graph
of its inverse function, y � tan�1 x.

Example 7 Evaluating the Inverse Tangent Function

Find: (a) tan�1 1, (b) , and (c)

Solution

(a) The number in the interval with tangent 1 is p/4. Thus,
tan�1 1 � p/4.

(b) The number in the interval with tangent is p/3. Thus,
.

(c) We use a calculator to find that . ■tan�11�20 2 � �1.52084

tan�113 � p/3
131�p/2, p/2 2

1�p/2, p/2 2
tan�11�20 2 .tan�113

y=† x,  _   <x<
π

2

π

2

y

xπ

2

0 3π

2
ππ

2
_

_π

3π

2
_

1

y=†–¡x

y

x

π

2

0
π

2
_

1

_1

1�p/2, p/2 2
 tan�11tan x 2 � x   for �

p

2
� x �

p

2

 tan1tan�1x 2 � x   for x � �

1�p/2, p/2 2



Example 8 The Angle of a Beam of Light

A lighthouse is located on an island that is 2 mi off a straight shoreline (see 
Figure 10). Express the angle formed by the beam of light and the shoreline in
terms of the distance d in the figure.

Solution From the figure we see that tan u � 2/d. Taking the inverse tangent of
both sides, we get

Cancellation property ■

The Inverse Secant, Cosecant, 

and Cotangent Functions

To define the inverse functions of the secant, cosecant, and cotangent functions, we
restrict the domain of each function to a set on which it is one-to-one and on which
it attains all its values. Although any interval satisfying these criteria is appropriate,
we choose to restrict the domains in a way that simplifies the choice of sign in com-
putations involving inverse trigonometric functions. The choices we make are also
appropriate for calculus. This explains the seemingly strange restriction for the do-
mains of the secant and cosecant functions. We end this section by displaying the
graphs of the secant, cosecant, and cotangent functions with their restricted domains
and the graphs of their inverse functions (Figures 11–13).

u � tan�1 a 2

d
b

 tan�11tan u 2 � tan�1 a 2

d
b
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Shoreline

¨

Lighthouse

d

2 mi

Figure 10

y

x_1 0

π

y=˚–¡x

1

3π

2

π

2

y

x
_1

0 π 2π

y=˚ x,  0≤x<   , π≤x<
3π

2

π

2

y

x_1 0

π

y=–¡x

1

3π

2

π

2

y= x,  0<x≤   , π<x≤
3π

2

π

2

y

1

0 xπ 2π_π

Figure 11

The inverse secant function

Figure 12

The inverse cosecant function

See Exercise 59 for a way of finding
the values of these inverse trigono-
metric functions on a calculator.
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1–8 ■ Find the exact value of each expression, if it is 
defined.

1. (a) (b) (c)

2. (a) (b) (c)

3. (a) (b) (c)

4. (a) (b) (c)

5. (a) sin�1 1 (b) cos�1 1 (c)

6. (a) tan�1 1 (b) (c) tan�1 0

7. (a) (b) (c)

8. (a) sin�1 0 (b) cos�1 0 (c)

9–12 ■ Use a calculator to find an approximate value of each
expression correct to five decimal places, if it is defined.

9. (a)

(b)

10. (a)

(b)

11. (a)

(b)

12. (a)

(b) tan�11�0.25713 2cos�11�0.25713 2sin�111.23456 2tan�111.23456 2tan�1126.23110 2cos�110.31187 2cos�11�0.92761 2sin�110.13844 2
cos�1A� 1

2B
sin�11�2 2tan�1 a�13

3
btan�1 13

3

tan�11�1 2 cos�11�1 2sin�113tan�11�13 2tan�113

sin�1 a�12

2
bcos�1 12

2
sin�1 12

2

cos�1 a�13

2
bcos�1 13

2
sin�1 13

2

cos�12cos�1 1
2sin�1 1

2

13–28 ■ Find the exact value of the expression, if it is 
defined.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. tan a sin�1 12

2
b

cos a sin�1 13

2
b

sin1sin�10 2tanAsin�1 1
2B

cos�1 a cos a�p
4
bb

tan�1 a tan
2p

3
b

sin�1 a sin
5p

6
b

sin�1 a sin a�p
6
bb

tan�1 a tan
p

6
b

cos�1 a cos
p

3
b

sin1sin�15 2tan1tan�15 2cosAcos�1 2
3BsinAsin�1 1

4B
7.4 Exercises

y=ˇ x,  0<x<π y=ˇ–¡x

y

x

π

2

0 1_1

π

y

x0 π_π

1

2π

Figure 13

The inverse cotangent function
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27.

28.

29–40 ■ Evaluate the expression by sketching a triangle, as in
Solution 2 of Example 3.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41–48 ■ Rewrite the expression as an algebraic expression in x.

41.

42.

43.

44.

45.

46.

47.

48.

49–50 ■ (a) Graph the function and make a conjecture, and
(b) prove that your conjecture is true.

49. y � sin�1 x � cos�1 x

50. y � tan�1x � tan�1 1
x

sin1tan�1x � sin�1x 2cos1cos�1x � sin�1x 2sin12 sin�1x 2cos12 tan�1x 2cos1tan�1x 2tan1sin�1x 2sin1tan�1x 2cos1sin�1x 2
cosAsin�1 3

5 � cos�1 3
5BsinAsin�1 1

2 � cos�1 1
2BtanA2 tan�1 5

13BsinA2 cos�1 3
5BcotAsin�1 2

3Bcos1tan�12 2cscAcos�1 7
25BsecAsin�1 12

13Bcos1tan�15 2sinAtan�1 12
5 BtanAsin�1 4
5BsinAcos�1 3
5B

cos�1 a13 sin 
p

6
b

tan�1 a2 sin
p

3
b 51–52 ■ (a) Use a graphing device to find all solutions of the

equation, correct to two decimal places, and (b) find the exact
solution.

51.

52.

Applications

53. Height of the Space Shuttle An observer views 
the space shuttle from a distance of 2 miles from the 
launch pad.

(a) Express the height of the space shuttle as a function of
the angle of elevation u.

(b) Express the angle of elevation u as a function of the
height h of the space shuttle.

54. Height of a Pole A 50-ft pole casts a shadow as shown in
the figure.

(a) Express the angle of elevation u of the sun as a function
of the length s of the shadow.

(b) Find the angle u of elevation of the sun when the
shadow is 20 ft long.

s

50 ft

¨

2 mi

h

¨

sin�1x � cos�1x � 0

tan�1x � tan�12x �
p

4
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55. Height of a Balloon A 680-ft rope anchors a hot-air 
balloon as shown in the figure.

(a) Express the angle u as a function of the height h of the
balloon.

(b) Find the angle u if the balloon is 500 ft high.

56. View from a Satellite The figures indicate that the
higher the orbit of a satellite, the more of the earth the 
satellite can “see.” Let u, s, and h be as in the figure, and 
assume the earth is a sphere of radius 3960 mi.

(a) Express the angle u as a function of h.

(b) Express the distance s as a function of u.

(c) Express the distance s as a function of h.
[Hint: Find the composition of the functions in 
parts (a) and (b).]

(d) If the satellite is 100 mi above the earth, what is the 
distance s that it can see?

(e) How high does the satellite have to be in order 
to see both Los Angeles and New York, 2450 mi 
apart?

¨

s

h

¨

h
680 ft

57. Surfing the Perfect Wave For a wave to be surfable it
can’t break all at once. Robert Guza and Tony Bowen have
shown that a wave has a surfable shoulder if it hits the
shoreline at an angle u given by

where b is the angle at which the beach slopes down and
where n � 0, 1, 2, . . . .

(a) For b � 10�, find u when n � 3.

(b) For b � 15�, find u when n � 2, 3, and 4. Explain why
the formula does not give a value for u when n � 0 or 1.

Discovery • Discussion

58. Two Different Compositions The functions

both simplify to just x for suitable values of x. But these
functions are not the same for all x. Graph both f and g to
show how the functions differ. (Think carefully about the
domain and range of sin�1.)

59. Inverse Trigonometric Functions on a Calculator

Most calculators do not have keys for sec�1, csc�1, or cot�1.
Prove the following identities, then use these identities and a
calculator to find sec�1 2, csc�1 3, and cot�1 4.

cot�1x � tan�1 a 1
x
b , x 	 0

csc�1x � sin�1 a 1
x
b , x � 1

sec�1x � cos�1 a 1
x
b , x � 1

f 1x 2 � sin1sin�1x 2     and    g1x 2 � sin�11sin x 2

∫ ¨

u � sin�1 a 112n � 1 2  tan b
b



Where to Sit at the Movies

Everyone knows that the apparent size of an object depends on its distance from
the viewer. The farther away an object, the smaller its apparent size. The appar-
ent size is determined by the angle the object subtends at the eye of the viewer.

If you are looking at a painting hanging on a wall, how far away should you
stand to get the maximum view? If the painting is hung above eye level, then the
following figures show that the angle subtended at the eye is small if you are too
close or too far away. The same situation occurs when choosing where to sit in a
movie theatre.

1. The screen in a theatre is 22 ft high and is positioned 10 ft above the floor,
which is flat. The first row of seats is 7 ft from the screen and the rows are 
3 ft apart. You decide to sit in the row where you get the maximum view, that
is, where the angle u subtended by the screen at your eyes is a maximum.
Suppose your eyes are 4 ft above the floor, as in the figure, and you sit at a
distance x from the screen.

¨

Small ¨

¨

Large ¨ Small ¨

¨

560 CHAPTER 7 Analytic Trigonometry

D I S C O V E R Y
P R O J E C T

¨

x

4 ft

3 ft 7 ft

10 ft

22 ft

(a) Show that .

(b) Use the subtraction formula for tangent to show that

(c) Use a graphing device to graph u as a function of x. What value of 
x maximizes u? In which row should you sit? What is the viewing angle
in this row?

u � tan�1 a 22x

x 2 � 168
b

u � tan�1 a 28
x
b � tan�1 a 6

x
b
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2. Now suppose that, starting with the first row of seats, the floor of the seating
area is inclined at an angle of a � 25� above the horizontal, and the distance
that you sit up the incline is x, as shown in the figure.

(a) Use the Law of Cosines to show that

where

and

(b) Use a graphing device to graph u as a function of x, and estimate the
value of x that maximizes u. In which row should you sit? What is the
viewing angle u in this row?

b 2 � 17 � x cos a 2 2 � 1x sin a � 6 2 2
a 2 � 17 � x cos a 2 2 � 128 � x sin a 2 2
u � cos�1 a a 2 � b 2 � 484

2ab
b

¨

x

å=25*

4 ft

3 ft

7 ft

22 ft

10 ft

7.5 Trigonometric Equations

An equation that contains trigonometric functions is called a trigonometric equa-
tion. For example, the following are trigonometric equations:

The first equation is an identity—that is, it is true for every value of the variable x.
The other two equations are true only for certain values of x. To solve a trigonomet-
ric equation, we find all the values of the variable that make the equation true. (Ex-
cept in some applied problems, we will always use radian measure for the variable.)

Solving Trigonometric Equations

To solve a trigonometric equation, we use the rules of algebra to isolate the trigono-
metric function on one side of the equal sign. Then we use our knowledge of the val-
ues of the trigonometric functions to solve for the variable.

Example 1 Solving a Trigonometric Equation

Solve the equation 2 sin x � 1 � 0.

Solution We start by isolating sin x.

Given equation

Add 1

Divide by 2 sin x �
1

2

 2 sin x � 1

 2 sin x � 1 � 0

sin2x � cos2x � 1      2 sin x � 1 � 0      tan2 2x � 1 � 0



Because sine has period 2p, we first find the solutions in the interval 30, 2p2. These
are x � p/6 and x � 5p/6. To get all other solutions, we add any integer multiple
of 2p to these solutions. Thus, the solutions are

where k is any integer. Figure 1 gives a graphical representation of the solutions.

Figure 1 ■

Example 2 Solving a Trigonometric Equation

Solve the equation tan2x � 3 � 0.

Solution We start by isolating tan x.

Given equation

Add 3

Take square roots

Because tangent has period p, we first find the solutions in the interval 
. These are x � �p/3 and x � p/3. To get all other solutions, we 

add any integer multiple of p to these solutions. Thus, the solutions are

where k is any integer. ■

Example 3 Finding Intersection Points

Find the values of x for which the graphs of and 
intersect.

Solution 1: Graphical

The graphs intersect where . In Figure 2 we graph y1 � sin x and
y2 � cos x on the same screen, for x between 0 and 2p. Using or the 
Intersect command on the graphing calculator, we see that the two points of 
intersection in this interval occur where x � 0.785 and x � 3.927. Since sine 
and cosine are periodic with period 2p, the intersection points occur where

x � 0.785 � 2kp  and  x � 3.927 � 2kp

TRACE

f 1x 2 � g1x 2
g1x 2 � cos xf 1x 2 � sin x

x � �
p

3
� kp,  x �

p

3
� kp

1�p/2, p/2 2
 tan x � �13

 tan2x � 3

 tan2x � 3 � 0

y

x

1

_1

π

y=ß x

π

6

5π

6

13π

6

17π

6

25π

6

7π

6
_

y=
1

2

x �
p

6
� 2kp,  x �

5p

6
� 2kp
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Mathematics in the

Modern World

Weather Prediction

Modern meteorologists do much
more than predict tomorrow’s
weather. They research long-term
weather patterns, depletion of the 
ozone layer, global warming, and
other effects of human activity on
the weather. But daily weather pre-
diction is still a major part of mete-
orology; its value is measured by
the innumerable human lives saved
each year through accurate predic-
tion of hurricanes, blizzards, and
other catastrophic weather phe-
nomena. At the beginning of the
20th century mathematicians pro-
posed to model weather with equa-
tions that used the current values of
hundreds of atmospheric variables.
Although this model worked in
principle, it was impossible to pre-
dict future weather patterns with it
because of the difficulty of measur-
ing all the variables accurately and
solving all the equations. Today,
new mathematical models com-
bined with high-speed computer
simulations have vastly improved
weather prediction. As a result,
many human as well as economic
disasters have been averted. 
Mathematicians at the National
Oceanographic and Atmospheric
Administration (NOAA) are con-
tinually researching better meth-
ods of weather prediction.

Ge
tty

 Im
ag

es



where k is any integer.

Solution 2: Algebraic

To find the exact solution, we set and solve the resulting equation 
algebraically.

Equate functions

Since the numbers x for which cos x � 0 are not solutions of the equation, we can
divide both sides by cos x.

Divide by cos x

Reciprocal identity

Because tangent has period p, we first find the solutions in the interval 
. The only solution in this interval is x � p/4. To get all solutions,

we add any integer multiple of p to this solution. Thus, the solutions are

where k is any integer. The graphs intersect for these values of x. You should use
your calculator to check that, correct to three decimals, these are the same values 
as we obtained in Solution 1. ■

Solving Trigonometric Equations by Factoring

Factoring is one of the most useful techniques for solving equations, including trigo-
nometric equations. The idea is to move all terms to one side of the equation, factor,
then use the Zero-Product Property (see Section 1.5).

Example 4 An Equation of Quadratic Type

Solve the equation 2 cos2x � 7 cos x � 3 � 0.

Solution We factor the left-hand side of the equation.

Given equation

Factor

Set each factor equal to 0

Solve for cos x cos x � 1
2   or   cos x � 3

 2 cos x � 1 � 0   or   cos x � 3 � 0

12 cos x � 1 2 1cos x � 3 2 � 0

 2 cos2x � 7 cos x � 3 � 0

x �
p

4
� kp

1�p/2, p/2 2
 tan x � 1

sin x
cos x

� 1

sin x � cos x

f 1x 2 � g1x 2

1.5

_1.5

0

(b)

Intersection
X=3.9269908  Y= -.7071068

1.5

_1.5

0 6.28 6.28

(a)

Intersection
X=.78539816  Y=.70710678
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Zero-Product Property

If AB � 0, then A � 0 or B � 0.

Equation of Quadratic Type

12C � 1 2 1C � 3 2 � 0

 2C 2 � 7C � 3 � 0

Figure 2



Because cosine has period 2p, we first find the solutions in the interval 30, 2p2. For
the first equation these are x � p/3 and x � 5p/3. The second equation has no so-
lutions because cos x is never greater than 1. Thus, the solutions are

where k is any integer. ■

Example 5 Using a Trigonometric Identity

Solve the equation 1 � sin x � 2 cos2x.

Solution We use a trigonometric identity to rewrite the equation in terms of a
single trigonometric function.

Given equation

Pythagorean identity

Put all terms on one side
of the equation

Factor

Set each factor equal 
to 0

Solve for sin x

Solve for x in the 
interval [0, 2p)

Because sine has period 2p, we get all the solutions of the equation by adding any
integer multiple of 2p to these solutions. Thus, the solutions are

where k is any integer. ■

Example 6 Using a Trigonometric Identity

Solve the equation sin 2x � cos x � 0.

Solution The first term is a function of 2x and the second is a function of x, so
we begin by using a trigonometric identity to rewrite the first term as a function of 
x only.

Given equation

Double-angle formula

Factor cos x 12 sin x � 1 2 � 0

 2 sin x cos x � cos x � 0

 sin 2x � cos x � 0

x �
p

6
� 2kp,  x �

5p

6
� 2kp,  x �

3p

2
� 2kp

x �
p

6
,

5p

6
  or  x �

3p

2

 sin x �
1

2
  or  sin x � �1

 2 sin x � 1 � 0  or  sin x � 1 � 0

12 sin x � 1 2 1sin x � 1 2 � 0

 2 sin2x � sin x � 1 � 0

 1 � sin x � 211 � sin2x 2 1 � sin x � 2 cos2x

x �
p

3
� 2kp,  x �

5p

3
� 2kp
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Equation of Quadratic Type

12S � 1 2 1S � 1 2 � 0

2S 2 � S � 1 � 0



Set each factor equal to 0

Solve for sin x

Solve for x in the interval [0, 2p)

Both sine and cosine have period 2p, so we get all the solutions of the equation by
adding any integer multiple of 2p to these solutions. Thus, the solutions are

where k is any integer. ■

Example 7 Squaring and Using an Identify

Solve the equation cos x � 1 � sin x in the interval [0, 2p).

Solution To get an equation that involves either sine only or cosine only, we
square both sides and use a Pythagorean identity.

Given equation

Square both sides

Pythagorean identity

Simplify

Factor

Set each factor equal to 0

Solve for cos x

Solve for x in the 
interval [0, 2p)

Because we squared both sides, we need to check for extraneous solutions. From 
Check Your Answers, we see that the solutions of the given equation are p/2 and p.

■

Check Your Answers

: : :

If we perform an operation on an equation that may introduce new roots, such as
squaring both sides, then we must check that the solutions obtained are not extrane-
ous; that is, we must verify that they satisfy the original equation, as in Example 7.

�1 � 1 � 00 � 1 � �10 � 1 � 1

cos p � 1 �
? sin pcos

3p

2
� 1 �

? sin
3p

2
cos
p

2
� 1 �

? sin
p

2

x � px �
3p

2
x �
p

2

x � px �
p

2
,

3p

2
  or

cos x � �1cos x � 0  or

2 cos x � 0  or  cos x � 1 � 0

 2 cos x 1cos x � 1 2 � 0

 2 cos2x � 2 cos x � 0

 cos2x � 2 cos x � 1 � 1 � cos2x

 cos2x � 2 cos x � 1 � sin2x

 cos x � 1 � sin x

x �
p

2
� 2kp,  x �

3p

2
� 2kp,  x �

p

6
� 2kp,  x �

5p

6
� 2kp

x �
p

2
,

3p

2
  or  x �

p

6
,

5p

6

sin x �
1

2

cos x � 0  or  2 sin x � 1 � 0
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Equations with Trigonometric Functions 

of Multiple Angles

When solving trigonometric equations that involve functions of multiples of angles,
we first solve for the multiple of the angle, then divide to solve for the angle.

Example 8 Trigonometric Functions 

of Multiple Angles

Consider the equation 2 sin 3x � 1 � 0.

(a) Find all solutions of the equation.

(b) Find the solutions in the interval 30, 2p2.
Solution

(a) We start by isolating sin 3x, and then solve for the multiple angle 3x.

Given equation

Add 1

Divide by 2

Solve for 3x in the interval 

To get all solutions, we add any integer multiple of 2p to these solutions. Thus,
the solutions are of the form

To solve for x, we divide by 3 to get the solutions

where k is any integer.

(b) The solutions from part (a) that are in the interval correspond to k � 0,
1, and 2. For all other values of k, the corresponding values of x lie outside this
interval. Thus, the solutions in the interval are

■

Example 9 Trigonometric Functions of Multiple Angles

Consider the equation .

(a) Find all solutions of the equation.

(b) Find the solutions in the interval .30, 4p 2
13 tan 

x

2
� 1 � 0

x �
p

18
, 

5p

18
, 

13p

18
, 

17p

18
, 

25p

18
, 

29p

18

30, 2p 230, 2p 2
x �

p

18
�

2kp

3
,    x �

5p

18
�

2kp

3

3x �
p

6
� 2kp,    3x �

5p

6
� 2kp

30, 2p 2 3x �
p

6
,

5p

6

 sin 3x �
1

2

 2 sin 3x � 1

 2 sin 3x � 1 � 0
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Solution

(a) We start by isolating .

Given equation

Add 1

Divide by 

Solve for in the interval

Since tangent has period p, to get all solutions we add any integer multiple 
of p to this solution. Thus, the solutions are of the form

Multiplying by 2, we get the solutions

where k is any integer.

(b) The solutions from part (a) that are in the interval correspond to k � 0
and k � 1. For all other values of k, the corresponding values of x lie outside
this interval. Thus, the solutions in the interval are

■

Using Inverse Trigonometric Functions 

to Solve Trigonometric Equations

So far, all the equations we’ve solved have had solutions like p/4, p/3, 5p/6, and so
on. We were able to find these solutions from the special values of the trigonometric
functions that we’ve memorized. We now consider equations whose solution requires
us to use the inverse trigonometric functions.

Example 10 Using Inverse Trigonometric Functions

Solve the equation .

Solution We start by factoring the left-hand side.

Given equation

Factor

Set each factor equal to 0

Solve for tan x

Solve for x in the interval a�p
2

,
p

2
bx � tan�12   or  x � �

p

4

 tan x � 2   or   tan x � �1

 tan x � 2 � 0   or   tan x � 1 � 0

1tan x � 2 2 1tan x � 1 2 � 0

 tan2x � tan x � 2 � 0

tan2x � tan x � 2 � 0

x �
p

3
,

7p

3

30, 4p 230, 4p 2
x �
p

3
� 2kp

x

2
�
p

6
� kp

a�p
2

,
p

2
bx

2
x

2
�
p

6

13 tan 
x

2
�

1

13

13 tan 
x

2
� 1

13 tan 
x

2
� 1 � 0

tan 1x/2 2
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Equation of Quadratic Type

1T � 2 2 1T � 1 2 � 0

T 2 � T � 2 � 0



Because tangent has period p, we get all solutions by adding integer multiples of p
to these solutions. Thus, all the solutions are

where k is any integer. ■

If we are using inverse trigonometric functions to solve an equation, we must keep
in mind that sin�1 and tan�1 give values in quadrants I and IV, and cos�1 gives values
in quadrants I and II. To find other solutions, we must look at the quadrant where the
trigonometric function in the equation can take on the value we need.

Example 11 Using Inverse Trigonometric Functions

(a) Solve the equation 3 sin u � 2 � 0.

(b) Use a calculator to approximate the solutions in the interval , correct to
five decimals.

Solution

(a) We start by isolating sin u.

Given equation

Add 2

Divide by 3

From Figure 3 we see that sin u equals in quadrants I and II. The solution in quad-
rant I is . The solution in quadrant II is . Since these are
the solutions in the interval , we get all other solutions by adding integer
multiples of 2p to these. Thus, all the solutions of the equation are

where k is any integer.

(b) Using a calculator set in radian mode, we see that and
, so the solutions in the interval are

■

7.5 Exercises

u � 0.72973,  u � 2.41186

30, 2p 2p � sin�1 2
3 � 2.41186

sin�1 2
3 � 0.72973

u � Asin�1 2
3B � 2kp,  u � Ap � sin�1 2

3B � 2kp

30, 2p 2 u � p � sin�1 2
3u � sin�1 2

3

2
3

 sin u �
2

3

 3 sin u � 2

 3 sin u � 2 � 0

30, 2p 2

x � tan�12 � kp,  x � �
p

4
� kp
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y

x1_1

1

_1

2
3

Figure 3

1–40 ■ Find all solutions of the equation.

1. cos x � 1 � 0 2. sin x � 1 � 0

3. 2 sin x � 1 � 0 4.

5. 6.

7. 4 cos2x � 1 � 0 8. 2 cos2x � 1 � 0

9. sec2x � 2 � 0 10. csc2x � 4 � 0

cot x � 1 � 013 tan x � 1 � 0

12 cos x � 1 � 0

11. 3 csc2x � 4 � 0 12. 1 � tan2x � 0

13. 14.

15.

16.

17. cos x sin x � 2 cos x � 0 18. tan x sin x � sin x � 0

19. 4 cos2 x � 4 cos x � 1 � 0 20. 2 sin2x � sin x � 1 � 0

A2 cos x � 13B 12 sin x � 1 2 � 0

Atan x � 13B 1cos x � 2 2 � 0

sec x A2 cos x � 12B � 0cos x 12 sin x � 1 2 � 0
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21. sin2x � 2 sin x � 3 22. 3 tan3x � tan x

23. sin2x � 4 � 2 cos2x 24. 2 cos2x � sin x � 1

25. 2 sin 3x � 1 � 0 26. 2 cos 2x � 1 � 0

27. sec 4x � 2 � 0 28.

29. 30. cos 3x � sin 3x

31. 32.

33. 34.

35. tan5x � 9 tan x � 0

36. 3 tan3x � 3 tan2x � tan x � 1 � 0

37. 4 sin x cos x � 2 sin x � 2 cos x � 1 � 0

38. sin 2x � 2 tan 2x 39. cos2 2x � sin2 2x � 0

40. sec x � tan x � cos x

41–48 ■ Find all solutions of the equation in the 
interval 30, 2p2.
41. 2 cos 3x � 1 42. 3 csc2x � 4

43. 2 sin x tan x � tan x � 1 � 2 sin x

44. sec x tan x � cos x cot x � sin x

45. tan x � 3 cot x � 0 46. 2 sin2x � cos x � 1

47. tan 3x � 1 � sec 3x 48. 3 sec2x � 4 cos2x � 7

49–56 ■ (a) Find all solutions of the equation. (b) Use a 
calculator to solve the equation in the interval 30, 2p2, correct 
to five decimal places.

49. cos x � 0.4 50. 2 tan x � 13

51. sec x � 5 � 0 52. 3 sin x � 7 cos x

53. 5 sin2x � 1 � 0 54. 2 sin 2x � cos x � 0

55. 3 sin2x � 7 sin x � 2 � 0

56. tan4x � 13 tan2x � 36 � 0

57–60 ■ Graph f and g on the same axes, and find their points
of intersection.

57.

58.

59.

60.

61–64 ■ Use an addition or subtraction formula to simplify the
equation. Then find all solutions in the interval .

61. cos x cos 3x � sin x sin 3x � 0

62. cos x cos 2x � sin x sin 2x � 1
2

30, 2p 2
f 1x 2 � sin x � 1, g1x 2 � cos x

f 1x 2 � tan x, g1x 2 � 13

f 1x 2 � sin 2x, g1x 2 � 2 sin 2x � 1

f 1x 2 � 3 cos x � 1, g1x 2 � cos x � 1

sec
x

2
� cos

x

2
tan

x

4
� 13 � 0

2 sin 
x

3
� 13 � 0cos

x

2
� 1 � 0

13 sin 2x � cos 2x

13 tan 3x � 1 � 0

63.

64. sin 3x cos x � cos 3x sin x � 0

65–68 ■ Use a double- or half-angle formula to solve the 
equation in the interval .

65. sin 2x � cos x � 0 66.

67. 68. tan x � cot x � 4 sin 2x

69–72 ■ Solve the equation by first using a sum-to-product 
formula.

69. sin x � sin 3x � 0 70. cos 5x � cos 7x � 0

71. cos 4x � cos 2x � cos x 72. sin 5x � sin 3x � cos 4x

73–78 ■ Use a graphing device to find the solutions of the
equation, correct to two decimal places.

73. sin 2x � x 74.

75. 2sin x � x 76. sin x � x 3

77. 78.

Applications

79. Range of a Projectile If a projectile is fired with velocity
√0 at an angle u, then its range, the horizontal distance it
travels (in feet), is modeled by the function

(See page 818.) If √0 � 2200 ft/s, what angle (in degrees)
should be chosen for the projectile to hit a target on the
ground 5000 ft away?

80. Damped Vibrations The displacement of a spring vibrat-
ing in damped harmonic motion is given by

Find the times when the spring is at its equilibrium 
position .

81. Refraction of Light It has been observed since ancient
times that light refracts or “bends” as it travels from one
medium to another (from air to water, for example). If √1 is

1y � 0 2
y � 4e�3t sin 2pt

R(¨)

¨

R1u 2 �
√ 2

0 sin 2u

32

cos x � 1
2 1ex � e�x 2cos x

1 � x 2 � x 2

cos x �
x

3

cos 2x � cos x � 2

tan
x

2
� sin x � 0

30, 2p 2
sin 2x cos x � cos 2x sin x � 13/2
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the speed of light in one medium and √2 its speed in another
medium, then according to Snell’s Law,

where u1 is the angle of incidence and u2 is the angle of 
refraction (see the figure). The number √1/√2 is called the 
index of refraction. The index of refraction for several 
substances is given in the table. If a ray of light passes
through the surface of a lake at an angle of incidence of 70�,
find the angle of refraction.

sin u1
sin u2

�
√1

√2

and moon is u (0 
 u 
 360�), then

Determine the angles u that correspond to the following
phases.

(a) F � 0 (new moon)

(b) F � 0.25 (a crescent moon)

(c) F � 0.5 (first or last quarter)

(d) F � 1 (full moon)

85. Belts and Pulleys A thin belt of length L surrounds two
pulleys of radii R and r, as shown in the figure.

(a) Show that the angle u (in radians) where the belt
crosses itself satisfies the equation

[Hint: Express L in terms of R, r, and u by adding up
the lengths of the curved and straight parts of the belt.]

(b) Suppose that R � 2.42 ft, r � 1.21 ft, and L � 27.78 ft.
Find u by solving the equation in part (a) graphically.
Express your answer both in radians and in degrees.

Discovery • Discussion

86. Equations and Identities Which of the following 
statements is true?

A. Every identity is an equation.

B. Every equation is an identity.

Give examples to illustrate your answer. Write a short 
paragraph to explain the difference between an equation and
an identity.

87. A Special Trigonometric Equation What makes the
equation different from all the other 
equations we’ve looked at in this section? Find all solutions
of this equation.

sin1cos x 2 � 0

¨

R

R
r

r

u � 2 cot 
u

2
�

L

R � r
� p

¨

F � 1
2 11 � cos u 2

Refraction
from air to 

Substance substance

Water 1.33
Alcohol 1.36
Glass 1.52
Diamond 2.41

Air

Water

¨⁄

¨¤

82. Total Internal Reflection When light passes from a
more-dense to a less-dense medium—from glass to air, for
example—the angle of refraction predicted by Snell’s Law
(see Exercise 81) can be 90� or larger. In this case, the light
beam is actually reflected back into the denser medium.
This phenomenon, called total internal reflection, is the
principle behind fiber optics.

Set u2 � 90� in Snell’s Law and solve for u1 to determine
the critical angle of incidence at which total internal reflec-
tion begins to occur when light passes from glass to air.
(Note that the index of refraction from glass to air is the 
reciprocal of the index from air to glass.)

83. Hours of Daylight In Philadelphia the number of hours
of daylight on day t (where t is the number of days after 
January 1) is modeled by the function

(a) Which days of the year have about 10 hours of day-
light?

(b) How many days of the year have more than 10 hours of
daylight?

84. Phases of the Moon As the moon revolves around the
earth, the side that faces the earth is usually just partially 
illuminated by the sun. The phases of the moon describe
how much of the surface appears to be in sunlight. An astro-
nomical measure of phase is given by the fraction F of the
lunar disc that is lit. When the angle between the sun, earth,

L1t 2 � 12 � 2.83 sin a 2p

365
1t � 80 2b
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1–24 ■ Verify the identity.

1.

2.

3.

4.

5.

6. 7.

8.

9.

10.

11.

12.
cos1x � y 2
cos x sin y

� cot y � tan x

sin 2x

1 � cos 2x
� tan x

1tan x � cot x 2 2 � csc2x sec2x

sin2x cot2x � cos2x tan2x � 1

11 � tan x 2 11 � cot x 2 � 2 � sec x csc x

cos2x

1 � sin x
�

cos x

sec x � tan x

1 � sec x

sec x
�

sin2x

1 � cos x

cos2x � tan2x

sin2x
� cot2x � sec2x

1

1 � sin2x
� 1 � tan2x

cos2x csc x � csc x � �sin x

1sec u � 1 2 1sec u � 1 2 � tan2u

sin u 1cot u � tan u 2 � sec u

13.

14.

15.

16. 17.

18.

19.

20.

21.

22.

23. 24.
sec x � 1

sin x sec x
� tan

x

2
tan a x �

p

4
b �

1 � tan x

1 � tan x

1cos x � cos y 2 2 � 1sin x � sin y 2 2 � 2 � 2 cos1x � y 2
sin 2x

sin x
�

cos 2x

cos x
� sec x

cos 3x � cos 7x

sin 3x � sin 7x
� tan 2x

a cos
x

2
� sin

x

2
b 2

� 1 � sin x

sin 3x � cos 3x

cos x � sin x
� 1 � 2 sin 2x

1 � tan x tan 
x

2
� sec xcsc x � tan

x

2
� cot x

sin1x � y 2  sin1x � y 2 � sin2x � sin2y

sin1x � y 2 � sin1x � y 2
cos1x � y 2 � cos1x � y 2 � tan x

tan
x

2
� csc x � cot x

1. (a) State the reciprocal identities.

(b) State the Pythagorean identities.

(c) State the even-odd identities.

(d) State the cofunction identities.

2. Explain the difference between an equation and an identity.

3. How do you prove a trigonometric identity?

4. (a) State the addition formulas for sine, cosine, and tangent.

(b) State the subtraction formulas for sine, cosine, and 
tangent.

5. (a) State the double-angle formulas for sine, cosine, and
tangent.

(b) State the formulas for lowering powers.

(c) State the half-angle formulas.

6. (a) State the product-to-sum formulas.

(b) State the sum-to-product formulas.

7. (a) Define the inverse sine function sin�1. What are its 
domain and range?

(b) For what values of x is the equation 
true?

(c) For what values of x is the equation 
true?

8. (a) Define the inverse cosine function cos�1. What are its
domain and range?

(b) For what values of x is the equation 
true?

(c) For what values of x is the equation 
true?

9. (a) Define the inverse tangent function tan�1. What are its
domain and range?

(b) For what values of x is the equation 
true?

(c) For what values of x is the equation 
true?

10. Explain how you solve a trigonometric equation by 
factoring.

tan�11tanx 2 � x

tan1tan�1x 2 � x

cos�11cos x 2 � x

cos1cos�1x 2 � x

sin�11sin x 2 � x

sin1sin�1x 2 � x

7 Review

Concept Check

Exercises
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25–28 ■ (a) Graph f and g. (b) Do the graphs suggest that the
equation is an identity? Prove your answer.

25.

26.

27.

28.

29–30 ■ (a) Graph the function(s) and make a conjecture, and
(b) prove your conjecture.

29.

30.

31–46 ■ Solve the equation in the interval .

31. cos x sin x � sin x � 0 32. sin x � 2 sin2x � 0

33. 2 sin2x � 5 sin x � 2 � 0

34. sin x � cos x � tan x � �1

35. 2 cos2x � 7 cos x � 3 � 0 36. 4 sin2x � 2 cos2x � 3

37. 38. sin x � cos 2x

39. tan3x � tan2x � 3 tan x � 3 � 0

40. cos 2x csc2x � 2 cos 2x 41.

42. cos 3x � cos 2x � cos x � 0

43. 44. 2 cos x � 3 tan x � 0

45. cos x � x 2 � 1 46. esin x � x

47. If a projectile is fired with velocity √0 at an angle u, then the
maximum height it reaches (in feet) is modeled by the 
function

Suppose √0 � 400 ft/s.

(a) At what angle u should the projectile be fired so that the
maximum height it reaches is 2000 ft?

(b) Is it possible for the projectile to reach a height of 
3000 ft?

(c) Find the angle u for which the projectile will travel
highest.

M(¨)
¨

M1u 2 �
√ 2

0 sin2u

64

tan x � sec x � 13

tan 1
2 x � 2 sin 2x � csc x

1 � cos x

1 � cos x
� 3

30, 2p 2
f 1x 2 � sin x cot 

x

2
, g1x 2 � cos x

f 1x 2 � 2 sin2 3x � cos 6x

f 1x 2 � 1 � 8 sin2x � 8 sin4x, g1x 2 � cos 4x

f 1x 2 � tan x tan 
x

2
, g1x 2 �

1

cos x

f 1x 2 � sin x � cos x, g1x 2 � 2sin2x � cos2x

f 1x 2 � 1 � a cos
x

2
� sin

x

2
b 2

, g1x 2 � sin x

f 1x 2 � g1x 2 48. The displacement of an automobile shock absorber is 
modeled by the function

Find the times when the shock absorber is at its equilibrium
position (that is, when . [Hint: 2 x 	 0 for all real x.]

49–58 ■ Find the exact value of the expression.

49. cos 15� 50.

51. 52.

53. sin 5� cos 40� � cos 5� sin 40�

54.

55.

56.

57. cos 37.5� cos 7.5�

58. cos 67.5� � cos 22.5�

59–64 ■ Find the exact value of the expression given that
, csc y � 3, and x and y are in quadrant I.

59. 60.

61. 62. sin 2x

63. 64.

65–72 ■ Find the exact value of the expression.

65. 66.

67. 68.

69. 70.

71. 72.

73–74 ■ Rewrite the expression as an algebraic function of x.

73. 74.

75–76 ■ Express u in terms of x.

75. 76.

x

2

¨

x

3
¨

sec1sin�1x 2sin1tan�1x 2
cos1sin�1 5

13 � cos�1 4
5 2cos12 sin�1 1

3 2 sin1cos�1 3
8 2tan1sin�1 2

5 2 sin1cos�1113/2 22cos1tan�113 2 tan�1113/3 2sin�1113/2 2
tan

y

2
cos

y

2

tan1x � y 2 cos1x � y 2sin1x � y 2sec x � 3
2

1

2
 cos 

p

12
�
13

2
 sin 
p

12

cos2p

8
� sin2p

8

tan 66° � tan 6°

1 � tan 66° tan 6°

2 sin 
p

12
 cos 

p

12
tan
p

8

sin
5p

12

f 1t 2 � 0 2
f 1t 2 � 2�0.2t sin 4pt
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77. A 10-ft-wide highway sign is adjacent to a roadway, as
shown in the figure. As a driver approaches the sign, the
viewing angle u changes.

(a) Express viewing angle u as a function of the distance x
between the driver and the sign.

(b) The sign is legible when the viewing angle is 2� or
greater. At what distance x does the sign first become
legible?

¨

x

10 ft

78. A 380-ft-tall building supports a 40-ft communications
tower (see the figure). As a driver approaches the building,
the viewing angle u of the tower changes.

(a) Express the viewing angle u as a function of the 
distance x between the driver and the building.

(b) At what distance from the building is the viewing angle
u as large as possible?

x

380 ft

40 ft

¨



7 Test

1. Verify each identity.

(a) tan u sin u � cos u � sec u

(b)

(c)

2. Let x � 2 sin u, �p/2 � u � p/2. Simplify the expression

3. Find the exact value of each expression.

(a) sin 8� cos 22� � cos 8� sin 22� (b) sin 75� (c)

4. For the angles a and b in the figures, find .

5. (a) Write sin 3x cos 5x as a sum of trigonometric functions.

(b) Write sin 2x � sin 5x as a product of trigonometric functions.

6. If and u is in quadrant III, find .

7. Graph y � sin x and y � sin�1x, and specify the domain of each function.

8. Express u in each figure in terms of x.

(a) (b)

tan1u/2 2sin u � �4
5

2

1

å

3
2

∫

cos1a � b 2 sin
p

12

x

24 � x 2

2 tan x

1 � tan2x
� sin 2x

tan x

1 � cos x
� csc x 11 � sec x 2
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¨
3

x

4

x

¨

9. Solve each trigonometric equation in the interval .

(a) 2 cos2x � 5 cos x � 2 � 0 (b) sin 2x � cos x � 0

10. Find all solutions in the interval , correct to five decimal places:

11. Find the exact value of .cosAtan�1 9
40B

5 cos 2x � 2

30, 2p 2
30, 2p 2
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We’ve learned that the position of a particle in simple harmonic motion is described
by a function of the form y � A sin vt (see Section 5.5). For example, if a string is
moved up and down as in Figure 1, then the red dot on the string moves up and down
in simple harmonic motion. Of course, the same holds true for each point on the string.

What function describes the shape of the whole string? If we fix an instant in time
and snap a photograph of the string, we get the shape in Figure 2, which is

modeled by

where y is the height of the string above the x-axis at the point x.

Traveling Waves

If we snap photographs of the string at other instants, as in Figure 3, it appears that
the waves in the string “travel” or shift to the right.

The velocity of the wave is the rate at which it moves to the right. If the wave has
velocity √, then it moves to the right a distance √t in time t. So the graph of the shifted
wave at time t is

This function models the position of any point x on the string at any time t. We use
the notation to indicate that the function depends on the two variables x and t.
Here is how this function models the motion of the string.

■ If we fix x, then is a function of t only, which gives the position of the
fixed point x at time t.

■ If we fix t, then is a function of x only, whose graph is the shape of the
string at the fixed time t.

y1x, t 2
y1x, t 2

y1x, t 2
y1x, t 2 � A sin k1x � √t 2

π

k

2π

k

y

A

_A
x

y � A sin kx

1t � 0 2

Focus on Modeling

Traveling and Standing Waves

Figure 1

Figure 2

y � A sin kx

Figure 3



Example 1 A Traveling Wave

A traveling wave is described by the function

(a) Find the function that models the position of the point x � p/6 at any time t.
Observe that the point moves in simple harmonic motion.

(b) Sketch the shape of the wave when t � 0, 0.5, 1.0, 1.5, and 2.0. Does the wave
appear to be traveling to the right?

(c) Find the velocity of the wave.

Solution

(a) Substituting x � p/6 we get

The function describes simple harmonic motion with ampli-
tude 3 and period .

(b) The graphs are shown in Figure 4. As t increases, the wave moves to the right.

(c) We express the given function in the standard form :

Given

Factor 2

Comparing this to the standard form, we see that the wave is moving with 
velocity √ � p/4. ■

Standing Waves

If two waves are traveling along the same string, then the movement of the string is
determined by the sum of the two waves. For example, if the string is attached to a
wall, then the waves bounce back with the same amplitude and speed but in the op-
posite direction. In this case, one wave is described by and the
reflected wave by . The resulting wave is

Add the two waves

Sum-to-product formula

The points where kx is a multiple of 2p are special, because at these points y � 0
for any time t. In other words, these points never move. Such points are called nodes.
Figure 5 shows the graph of the wave for several values of t. We see that the wave does
not travel, but simply vibrates up and down. Such a wave is called a standing wave.

y

2A

_2A

x

� 2A sin kx cos k√t

y1x, t 2 � A sin k1x � √t 2 � A sin k1x � √t 2y � A sin k1x � √t 2 y � A sin k1x � √t 2

� 3 sin 2 a x �
p

4
t b

y1x, t 2 � 3 sin a2x �
p

2
t b y1x, t 2 � A sin k1x � √t 2

2p/ 1p/2 2 � 4
y � 3 sinAp3 � p

2 tBy ap
6

, t b � 3 sin a2 # p
6

�
p

2
t b � 3 sin ap

3
�
p

2
t b

y1x, t 2 � 3 sin a2x �
p

2
t b ,    x � 0
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y

3

_3

x40

Figure 4

Traveling wave

Figure 5

A standing wave



Example 2 A Standing Wave

Traveling waves are generated at each end of a wave tank 30 ft long, with equations

(a) Find the equation of the combined wave, and find the nodes.

(b) Sketch the graph for t � 0, 0.17, 0.34, 0.51, 0.68, 0.85, and 1.02. Is this a
standing wave?

Solution

(a) The combined wave is obtained by adding the two equations:

Add the two waves

Sum-to-product formula

The nodes occur at the values of x for which , that is, where
(k an integer). Solving for x we get x � 5k. So the nodes occur at

(b) The graphs are shown in Figure 6. From the graphs we see that this is a 
standing wave.

y

x

y

x

y

x

y

x

y

x

y

x

y

x

t=0 t=0.17 t=0.34 t=0.51 t=0.68 t=0.85 t=1.02

y

x

3

_3

0 20 3010

x � 0, 5, 10, 15, 20, 25, 30

p
5 x � kp

sin p5 x � 0

� 3 sin 
p

5
x cos 3t

y � 1.5 sin ap
5

x � 3t b � 1.5 sin ap
5

x � 3t b

y � 1.5 sin ap
5

x � 3t b  and  y � 1.5 sin ap
5

x � 3t b
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Figure 6

■
y1x, t 2 � 3 sin 

p

5
x cos 3t



Problems

1. Wave on a Canal A wave on the surface of a long canal is described by the 
function

(a) Find the function that models the position of the point x � 0 at any time t.

(b) Sketch the shape of the wave when t � 0, 0.4, 0.8, 1.2, and 1.6. Is this a traveling
wave?

(c) Find the velocity of the wave.

2. Wave in a Rope Traveling waves are generated at each end of a tightly stretched
rope 24 ft long, with equations

(a) Find the equation of the combined wave, and find the nodes.

(b) Sketch the graph for t � 0, 1, 2, 3, 4, 5, and 6. Is this a standing wave?

3. Traveling Wave A traveling wave is graphed at the instant t � 0. If it is moving to the
right with velocity 6, find an equation of the form for this wave.

4. Traveling Wave A traveling wave has period 2p/3, amplitude 5, and velocity 0.5.

(a) Find the equation of the wave.

(b) Sketch the graph for t � 0, 0.5, 1, 1.5, and 2.

5. Standing Wave A standing wave with amplitude 0.6 is graphed at several times t as
shown in the figure. If the vibration has a frequency of 20 Hz, find an equation of the
form that models this wave.

1 2 3 x

y

0.6

_0.6

0 1 2 3 x

y

0.6

_0.6

0 1 2 3 x

y

0.6

_0.6

0

t=0 s t=0.010 s t=0.025 s

y1x, t 2 � A sin ax cos bt

4.6 9.2 13.8 x

y

2.7

_2.7

0

y1x, t 2 � A sin1kx � k√t 2
y � 0.2 sin11.047x � 0.524t 2  and  y � 0.2 sin11.047x � 0.524t 2

y1x, t 2 � 5 sin a2x �
p

2
t b , x � 0
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6. Standing Wave A standing wave has maximum amplitude 7 and nodes at 0, p/2, p,
3p/2, 2p, as shown in the figure. Each point that is not a node moves up and down with
period 4p. Find a function of the form that models this wave.

7. Vibrating String When a violin string vibrates, the sound produced results from a
combination of standing waves that have evenly placed nodes. The figure illustrates
some of the possible standing waves. Let’s assume that the string has length p.

(a) For fixed t, the string has the shape of a sine curve y � Asinax. Find the appropriate
value of a for each of the illustrated standing waves.

(b) Do you notice a pattern in the values of a that you found in part (a)? What would
the next two values of a be? Sketch rough graphs of the standing waves associated
with these new values of a.

(c) Suppose that for fixed t, each point on the string that is not a node vibrates 
with frequency 440 Hz. Find the value of b for which an equation of the form
y � A cos bt would model this motion.

(d) Combine your answers for parts (a) and (c) to find functions of the form
that model each of the standing waves in the figure. 

(Assume A � 1.)

8. Waves in a Tube Standing waves in a violin string must have nodes at the ends of
the string because the string is fixed at its endpoints. But this need not be the case with
sound waves in a tube (such as a flute or an organ pipe). The figure shows some possible
standing waves in a tube.

Suppose that a standing wave in a tube 37.7 ft long is modeled by the function

Here represents the variation from normal air pressure at the point x feet from the
end of the tube, at time t seconds.

(a) At what points x are the nodes located? Are the endpoints of the tube nodes?

(b) At what frequency does the air vibrate at points that are not nodes?

y1x, t 2 y1x, t 2 � 0.3 cos 12 x cos 50pt

y1x, t 2 � A sin ax cos bt

y

x

7

_7

π

2 2
π 2π3π

y1x, t 2 � A sin ax cos bt
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8 Polar Coordinates 
and Vectors



Chapter Overview

In this chapter we study polar coordinates, a new way of describing the location of
points in a plane.

A coordinate system is a method for specifying the location of a point in the plane.
We are familiar with rectangular (or Cartesian) coordinates. In rectangular coordi-
nates the location of a point is given by an ordered pair , which gives the dis-
tance of the point to two perpendicular axes. Using rectangular coordinates is like
describing a location in a city by saying that it’s at the corner of 2nd Street and 4th
Avenue. But we might also describe this same location by saying that it’s miles
northeast of City Hall. So instead of specifying the location with respect to a grid of
streets and avenues, we specify it by giving its distance and direction from a fixed ref-
erence point. That is what we do in the polar coordinate system. In polar coordinates
the location of a point is given by an ordered pair where r is the distance from
the origin (or pole) and u is the angle from the positive x-axis (see the figure below).

Why do we study different coordinate systems? Because certain curves are more
naturally described in one coordinate system rather than the other. In rectangular co-
ordinates we can give simple equations for lines, parabolas, or cubic curves, but the
equation of a circle is rather complicated (and it is not a function). In polar coordi-
nates we can give simple equations for circles, ellipses, roses, and figure 8’s—curves
that are difficult to describe in rectangular coordinates. So, for example, it is more
natural to describe a planet’s path around the sun in terms of distance from the sun
and angle of travel—in other words, in polar coordinates. We will also give polar rep-
resentations of complex numbers. As you will see, it is easy to multiply complex
numbers if they are written in polar form.

In this chapter we also use coordinates to describe directed quantities, or vectors.
When we talk about temperature, mass, or area, we need only one number. For ex-
ample, we say the temperature is 70�F. But quantities such as velocity or force are 
directed quantities, because they involve direction as well as magnitude. Thus we say

x

y

0

r

¨
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1r, u 2
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2

1x, y 2
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that a boat is sailing at 10 knots to the northeast. We can also express this graphically
by drawing an arrow of length 10 in the direction of travel. The velocity can be com-
pletely described by the displacement of the arrow from tail to head, which we ex-
press as the vector (see the figure).

In the Focus on Modeling (page 630) we will see how polar coordinates are used
to draw a (flat) map of a (spherical) world. In the Discovery Project on page 626 we
explore how an analysis of the vector forces of wind and current can be used to nav-
igate a sailboat.

8.1 Polar Coordinates

In this section we define polar coordinates, and we learn how polar coordinates are
related to rectangular coordinates.

Definition of Polar Coordinates

The polar coordinate system uses distances and directions to specify the location of
a point in the plane. To set up this system, we choose a fixed point O in the plane
called the pole (or origin) and draw from O a ray (half-line) called the polar axis as
in Figure 1. Then each point P can be assigned polar coordinates where

We use the convention that u is positive if measured in a counterclockwise direction
from the polar axis or negative if measured in a clockwise direction. If r is negative,
then is defined to be the point that lies units from the pole in the direction
opposite to that given by u (see Figure 2).

Example 1 Plotting Points in Polar Coordinates

Plot the points whose polar coordinates are given.

(a) (b) (c) (d)

Solution The points are plotted in Figure 3. Note that the point in part (d) lies 
4 units from the origin along the angle 5p/4, because the given value of r is negative.

Figure 3 ■
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Note that the coordinates and represent the same point, as shown
in Figure 4. Moreover, because the angles u � 2np (where n is any integer) all have
the same terminal side as the angle u, each point in the plane has infinitely many rep-
resentations in polar coordinates. In fact, any point can also be represented by

for any integer n.

Figure 4

Example 2 Different Polar Coordinates for the Same Point

(a) Graph the point with polar coordinates .

(b) Find two other polar coordinate representations of P with r 	 0, and two with 
r � 0.

Solution

(a) The graph is shown in Figure 5(a).

(b) Other representations with r 	 0 are

Add 2p to u

Add �2p to u

Other representations with r � 0 are

Replace r by �r and add p to u

Replace r by �r and add �p to u

The graphs in Figure 5 explain why these coordinates represent the same point.

Figure 5 ■
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Relationship between Polar 

and Rectangular Coordinates

Situations often arise in which we need to consider polar and rectangular coordinates
simultaneously. The connection between the two systems is illustrated in Figure 6,
where the polar axis coincides with the positive x-axis. The formulas in the following
box are obtained from the figure using the definitions of the trigonometric functions
and the Pythagorean Theorem. (Although we have pictured the case where r 	 0 and
u is acute, the formulas hold for any angle u and for any value of r.)
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Figure 6
Relationship between Polar and Rectangular Coordinates

1. To change from polar to rectangular coordinates, use the formulas

2. To change from rectangular to polar coordinates, use the formulas

r 2 � x 2 � y 2  and  tan u �
y

x
 1x � 0 2

x � r cos u  and  y � r sin u

Example 3 Converting Polar Coordinates 

to Rectangular Coordinates

Find rectangular coordinates for the point that has polar coordinates .

Solution Since r � 4 and u � 2p/3, we have

Thus, the point has rectangular coordinates . ■

Example 4 Converting Rectangular Coordinates 

to Polar Coordinates

Find polar coordinates for the point that has rectangular coordinates .

Solution Using x � 2, y � �2, we get

so or . Also

so u � 3p/4 or �p/4. Since the point lies in quadrant IV (see Figure 7),
we can represent it in polar coordinates as or . ■1�212, 3p/4 21212, �p/4 212, �2 2tan u �

y

x
�

�2

2
� �1

�212r � 212

r 2 � x 2 � y 2 � 22 � 1�2 2 2 � 8

12, �2 2

1�2, 213 2y � r sin u � 4 sin 
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� 4 # 13

2
� 213
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� 4 # a� 1

2
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Note that the equations relating polar and rectangular coordinates do not uniquely
determine r or u. When we use these equations to find the polar coordinates of a point,
we must be careful that the values we choose for r and u give us a point in the correct
quadrant, as we saw in Example 4.

Polar Equations

In Examples 3 and 4 we converted points from one coordinate system to the other.
Now we consider the same problem for equations.

Example 5 Converting an Equation from Rectangular 

to Polar Coordinates

Express the equation x 2 � 4y in polar coordinates.

Solution We use the formulas x � r cos u and y � r sin u.

Rectangular equation

Substitute x � r cos u, y � r sin u

Expand

Divide by r cos2u

Simplify ■

As Example 5 shows, converting from rectangular to polar coordinates is straight-
forward—just replace x by r cos u and y by r sin u, and then simplify. But converting
polar equations to rectangular form often requires more thought.

Example 6 Converting Equations from Polar 

to Rectangular Coordinates

Express the polar equation in rectangular coordinates. If possible, determine the
graph of the equation from its rectangular form.

(a) r � 5 sec u (b) r � 2 sin u (c) r � 2 � 2 cos u

Solution

(a) Since sec u � 1/cos u, we multiply both sides by cos u.

Multiply by cos u

Substitute x � r cos u

The graph of x � 5 is the vertical line in Figure 8.

x � 5

r cos u � 5

r � 5 sec u

r � 4 sec u tan u

r � 4
sin u

cos2u

r 2 cos2u � 4r sin u

1r cos u 2 2 � 41r sin u 2x 2 � 4y
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1–6 ■ Plot the point that has the given polar coordinates.

1. 2. 3.

4. 5. 6.

7–12 ■ Plot the point that has the given polar coordinates. Then
give two other polar coordinate representations of the point, one
with r � 0 and the other with r 	 0.

7. 8. 9.

10. 11. 12.

13–20 ■ Determine which point in the figure, P, Q, R, or S, has
the given polar coordinates.

O

π

4

1
2

3
4

P

π

4

Q

R S

13, 1 21�5, 0 21�2, �p/3 2 1�1, 7p/6 212, 3p/4 213,p/2 2
1�5, �17p/6 21�2, 4p/3 213, �2p/3 2 16, �7p/6 211, 0 214,p/4 2 13. 14.

15. 16.

17. 18.

19. 20.

21–22 ■ A point is graphed in rectangular form. Find polar 
coordinates for the point, with r 	 0 and 0 � u � 2p.

21. 22.

x

y

0

P

1

1

14, 103p/4 21�4, 101p/4 2 1�4, 23p/4 214, �23p/4 2 1�4, 13p/4 21�4, �p/4 2 14, �3p/4 214, 3p/4 2

(b) We multiply both sides of the equation by r, because then we can use the 
formulas r 2 � x 2 � y 2 and r sin u � y.

Multiply by r

r2 � x2 � y2 and r sin u � y

Subtract 2y

Complete the square in y

This is the equation of a circle of radius 1 centered at the point . It is
graphed in Figure 9.

(c) We first multiply both sides of the equation by r:

Using r 2 � x 2 � y 2 and x � r cos u, we can convert two of the three terms in
the equation into rectangular coordinates, but eliminating the remaining r
requires more work:

r 2 � x 2 � y 2 and r cos u � x

Subtract 2x

Square both sides

r2 � x2 � y2

In this case, the rectangular equation looks more complicated than the polar
equation. Although we cannot easily determine the graph of the equation from
its rectangular form, we will see in the next section how to graph it using the
polar equation. ■

8.1 Exercises

1x 2 � y 2 � 2x 2 2 � 41x 2 � y 2 21x 2 � y 2 � 2x 2 2 � 4r 2

x 2 � y 2 � 2x � 2r

x 2 � y 2 � 2r � 2x

r 2 � 2r � 2r cos u

10, 1 2x 2 � 1y � 1 2 2 � 1

x 2 � y 2 � 2y � 0

x 2 � y 2 � 2y

r 2 � 2r sin u

x

y

0 1

1

Figure 9
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8.2 Graphs of Polar Equations

The graph of a polar equation consists of all points P that have at least one
polar representation whose coordinates satisfy the equation. Many curves that
arise in mathematics and its applications are more easily and naturally represented by
polar equations rather than rectangular equations.

A rectangular grid is helpful for plotting points in rectangular coordinates 
(see Figure 1(a) on the next page). To plot points in polar coordinates, it is conven-

1r, u 2 r � f 1u 2
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23–24 ■ A point is graphed in polar form. Find its rectangular
coordinates.

23.

24.

25–32 ■ Find the rectangular coordinates for the point whose
polar coordinates are given.

25. 26.

27. 28.

29. 30.

31. 32.

33–40 ■ Convert the rectangular coordinates to polar 
coordinates with r 	 0 and 0 
 u � 2p.

33. 34.

35. 36.

37. 38.

39. 40.

41–46 ■ Convert the equation to polar form.

41. x � y 42. x 2 � y 2 � 9

10, �13 21�6, 0 2 11, �2 213, 4 2 1�16, �12 2118, 18 2 1313, �3 21�1, 1 2

113, �5p/3 21612, 11p/6 2 10, 13p 215, 5p 2 1�1, 5p/2 2112, �p/4 2 16, 2p/3 214,p/6 2

O

S 5π

6

1

O

2π

3
_

R

1

43. y � x 2 44. y � 5

45. x � 4 46. x 2 � y 2 � 1

47–60 ■ Convert the polar equation to rectangular 
coordinates.

47. r � 7 48. u � p

49. r cos u � 6 50. r � 6 cos u

51. r2 � tan u 52. r 2 � sin 2u

53. 54.

55. r � 1 � cos u 56.

57. r � 2 sec u 58. r � 2 � cos u

59. sec u � 2 60. cos 2u � 1

Discovery • Discussion

61. The Distance Formula in Polar Coordinates

(a) Use the Law of Cosines to prove that the distance 
between the polar points and is

(b) Find the distance between the points whose polar 
coordinates are and , using the 
formula from part (a).

(c) Now convert the points in part (b) to rectangular 
coordinates. Find the distance between them using 
the usual Distance Formula. Do you get the same 
answer?

11, 7p/6 213, 3p/4 2
d � 2r 2

1 � r 2
2 � 2r1r2 cos1u2 � u1 2

1r2, u2 21r1, u1 2

r �
4

1 � 2 sin u

r �
1

1 � sin u
r �

1

sin u � cos u



ient to use a grid consisting of circles centered at the pole and rays emanating from
the pole, as in Figure 1(b). We will use such grids to help us sketch polar graphs.

Figure 1

In Examples 1 and 2 we see that circles centered at the origin and lines that pass
through the origin have particularly simple equations in polar coordinates.

Example 1 Sketching the Graph of a Polar Equation

Sketch the graph of the equation r � 3 and express the equation in rectangular 
coordinates.

Solution The graph consists of all points whose r-coordinate is 3, that is, all
points that are 3 units away from the origin. So the graph is a circle of radius 
3 centered at the origin, as shown in Figure 2.

Squaring both sides of the equation, we get

Square both sides

Substitute r2 � x2 � y2

So the equivalent equation in rectangular coordinates is x 2 � y 2 � 9. ■

In general, the graph of the equation r � a is a circle of radius centered at the
origin. Squaring both sides of this equation, we see that the equivalent equation in
rectangular coordinates is x 2 � y 2 � a 2.

Example 2 Sketching the Graph of a Polar Equation

Sketch the graph of the equation u � p/3 and express the equation in rectangular
coordinates.

Solution The graph consists of all points whose u-coordinate is p/3. This is the
straight line that passes through the origin and makes an angle of p/3 with the polar

0 a 0
x 2 � y 2 � 9

r 2 � 32

(a) Grid for rectangular coordinates (b) Grid for polar coordinates
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We plot these points in Figure 4 and then join them to sketch the curve. The graph
appears to be a circle. We have used values of u only between 0 and p, since the
same points (this time expressed with negative r-coordinates) would be obtained if
we allowed u to range from p to 2p.

In general, the graphs of equations of the form

are circles with radius centered at the points with polar coordinates and
, respectively.1a, 0 2 1a,p/2 20 a 0r � 2a sin u  and  r � 2a cos u

u 0 p/6 p/4 p/3 p/2 2p/3 3p/4 5p/6 p

r � 2 sin u 0 1 2 1 012131312

axis (see Figure 3). Note that the points on the line with r 	 0 lie in quad-
rant I, whereas those with r � 0 lie in quadrant III. If the point lies on this
line, then

Thus, the rectangular equation of this line is ■

To sketch a polar curve whose graph isn’t as obvious as the ones in the preceding
examples, we plot points calculated for sufficiently many values of u and then join
them in a continuous curve. (This is what we did when we first learned to graph func-
tions in rectangular coordinates.)

Example 3 Sketching the Graph of a Polar Equation

Sketch the graph of the polar equation r � 2 sin u.

Solution We first use the equation to determine the polar coordinates of several
points on the curve. The results are shown in the following table.

y � 13 x.

y

x
� tan u � tan

p

3
� 13

1x, y 21r,p/3 2
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Figure 3
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The polar equation r � 2 sin u in
rectangular coordinates is

(See Section 8.1, Example 6(b)). From
the rectangular form of the equation we
see that the graph is a circle of radius 1
centered at .10, 1 2

x 2 � 1y � 1 2 2 � 1

Figure 4

r � 2 sin u ■



Example 4 Sketching the Graph of a Polar Equation

Sketch the graph of r � 2 � 2 cos u.

Solution Instead of plotting points as in Example 3, we first sketch the graph 
of r � 2 � 2 cos u in rectangular coordinates in Figure 5. We can think of this
graph as a table of values that enables us to read at a glance the values of r that
correspond to increasing values of u. For instance, we see that as u increases from 
0 to p/2, r (the distance from O) decreases from 4 to 2, so we sketch the corre-
sponding part of the polar graph in Figure 6(a). As u increases from p/2 to p,
Figure 5 shows that r decreases from 2 to 0, so we sketch the next part of the graph
as in Figure 6(b). As u increases from p to 3p/2, r increases from 0 to 2, as shown
in part (c). Finally, as u increases from 3p/2 to 2p, r increases from 2 to 4, as shown
in part (d). If we let u increase beyond 2p or decrease beyond 0, we would simply
retrace our path. Combining the portions of the graph from parts (a) through (d) of
Figure 6, we sketch the complete graph in part (e).

Figure 6 Steps in sketching r � 2 � 2 cos u ■

The curve in Figure 6 is called a cardioid because it is heart-shaped. In general,
the graph of any equation of the form

is a cardioid.

Example 5 Sketching the Graph of a Polar Equation

Sketch the curve r � cos 2u.

Solution As in Example 4, we first sketch the graph of r � cos 2u in rectangular
coordinates, as shown in Figure 7. As u increases from 0 to p/4, Figure 7 shows
that r decreases from 1 to 0, and so we draw the corresponding portion of the polar
curve in Figure 8 (indicated by �). As u increases from p/4 to p/2, the value of r
goes from 0 to �1. This means that the distance from the origin increases from 0 to 1,
but instead of being in quadrant I, this portion of the polar curve (indicated by �)
lies on the opposite side of the origin in quadrant III. The remainder of the curve is
drawn in a similar fashion, with the arrows and numbers indicating the order in

r � a11 � cos u 2  or  r � a11 � sin u 2

(a) (b) (c) (d) (e)

OO

π

22
¨̈=

¨̈=0 OO

π
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¨̈==ππ OO

33ππ
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¨̈==ππ OOOO ¨=2π

33ππ

22
¨̈=

OO
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r � 2 � 2 cos u

The polar equation r � 2 � 2 cos u in
rectangular coordinates is

(See Section 8.1, Example 6(c)). The
simpler form of the polar equation
shows that it is more natural to describe
cardioids using polar coordinates.

1x 2 � y 2 � 2x 2 2 � 41x 2 � y 2 2



which the portions are traced out. The resulting curve has four petals and is called a
four-leaved rose.

In general, the graph of an equation of the form

is an n-leaved rose if n is odd or a 2n-leaved rose if n is even (as in Example 5).

Symmetry

When graphing a polar equation, it’s often helpful to take advantage of symmetry. We
list three tests for symmetry; Figure 9 shows why these tests work.

r � a cos nu  or  r � a sin nu

Figure 7 Figure 8

Graph of r � cos 2u sketched Four-leaved rose r � cos 2u sketched 
in rectangular coordinates in polar coordinates ■
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Tests for Symmetry

1. If a polar equation is unchanged when we replace u by �u, then the graph
is symmetric about the polar axis (Figure 9(a)).

2. If the equation is unchanged when we replace r by �r, then the graph is
symmetric about the pole (Figure 9(b)).

3. If the equation is unchanged when we replace u by p � u, the graph is
symmetric about the vertical line u � p/2 (the y-axis) (Figure 9(c)).

Figure 9
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The graphs in Figures 2, 6(e), and 8 are symmetric about the polar axis. The graph
in Figure 8 is also symmetric about the pole. Figures 4 and 8 show graphs that are
symmetric about u � p/2. Note that the four-leaved rose in Figure 8 meets all three
tests for symmetry.

In rectangular coordinates, the zeros of the function correspond to the 
x-intercepts of the graph. In polar coordinates, the zeros of the function are
the angles u at which the curve crosses the pole. The zeros help us sketch the graph,
as illustrated in the next example.

Example 6 Using Symmetry to Sketch a Polar Graph

Sketch the graph of the equation r � 1 � 2 cos u.

Solution We use the following as aids in sketching the graph.

■ Symmetry Since the equation is unchanged when u is replaced by �u, the
graph is symmetric about the polar axis.

■ Zeros To find the zeros, we solve

■ Table of values As in Example 4, we sketch the graph of r � 1 � 2 cos u in
rectangular coordinates to serve as a table of values (Figure 10).

Now we sketch the polar graph of r � 1 � 2 cos u from u � 0 to u � p, and
then use symmetry to complete the graph in Figure 11. ■

The curve in Figure 11 is called a limaçon, after the Middle French word for snail.
In general, the graph of an equation of the form

or

is a limaçon. The shape of the limaçon depends on the relative size of a and b (see the
table on page 594).

Graphing Polar Equations with Graphing Devices

Although it’s useful to be able to sketch simple polar graphs by hand, we need a
graphing calculator or computer when the graph is as complicated as the one in Fig-
ure 12. Fortunately, most graphing calculators are capable of graphing polar equa-
tions directly.

r � a � b sin ur � a � b cos u

u �
2p

3
,

4p

3

 cos u � �
1

2

 0 � 1 � 2 cos u

r � f 1u 2y � f 1x 2
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Figure 10

Figure 11
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Example 7 Drawing the Graph of a Polar Equation

Graph the equation .

Solution We need to determine the domain for u. So we ask ourselves: How
many complete rotations are required before the graph starts to repeat itself? The
graph repeats itself when the same value of r is obtained at u and u � 2np. Thus,
we need to find an integer n, so that

For this equality to hold, 4np/3 must be a multiple of 2p, and this first happens
when n � 3. Therefore, we obtain the entire graph if we choose values of u between
u � 0 and . The graph is shown in Figure 13.

■

Example 8 A Family of Polar Equations

Graph the family of polar equations r � 1 � c sin u for c � 3, 2.5, 2, 1.5, 1. 
How does the shape of the graph change as c changes?

Solution Figure 14 shows computer-drawn graphs for the given values of c. For
c 	 1, the graph has an inner loop; the loop decreases in size as c decreases. When
c � 1, the loop disappears and the graph becomes a cardioid (see Example 4).

Figure 14 A family of limaçons r � 1 � c sin u in the viewing rectangle 3�2.5, 2.54 by 3�0.5, 4.54 ■

The following box gives a summary of some of the basic polar graphs used in 
calculus.

c=3.0 c=2.5 c=2.0 c=1.5 c=1.0

1

_1

_1 1

u � 0 � 213 2p � 6p

cos
21u � 2np 2

3
� cos

2u

3

r � cos12u/3 2
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Figure 13

r � cos12u/3 2
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1–6 ■ Match the polar equation with the graphs labeled I–VI.
Use the table above to help you.

1. r � 3 cos u 2. r � 3

3. r � 2 � 2 sin u 4. r � 1 � 2 cos u

5. r � sin 3u 6. r � sin 4u

I II

1

1

III IV

V VI

3

1

1 3

1 3

8.2 Exercises

Some Common Polar Curves

Circles and Spiral

Limaçons

r � a � b sin u

r � a � b cos u

Orientation depends on 
the trigonometric function 
(sine or cosine) and the sign of b.

Roses

r � a sin nu

r � a cos nu

n-leaved if n is odd 

2n-leaved if n is even

Lemniscates
Figure-eight-shaped
curves

1a 	 0, b 	 0 2

r=a
circle

r=a ß ¨ 
circle

r=a ç ¨ 
circle

r=a¨
spiral

a<b
limaçon with
inner loop

a=b
cardioid

a>b
dimpled limaçon

a≥2b
convex  limaçon

r™=a™ ß 2¨
lemniscate

r™=a™ ç 2¨
lemniscate

r=a ç 2¨
4-leaved rose

r=a ç 3¨
3-leaved rose

r=a ç 4¨
8-leaved rose

r=a ç 5¨
5-leaved rose



7–14 ■ Test the polar equation for symmetry with respect to the
polar axis, the pole, and the line u � p/2.

7. r � 2 � sin u 8. r � 4 � 8 cos u

9. r � 3 sec u 10. r � 5 cos u csc u

11. 12.

13. r 2 � 4 cos 2u 14. r 2 � 9 sin u

15–36 ■ Sketch the graph of the polar equation.

15. r � 2 16. r � �1

17. u � �p/2 18. u � 5p/6

19. r � 6 sin u 20. r � cos u

21. r � �2 cos u 22. r � 2 sin u � 2 cos u

23. r � 2 � 2 cos u 24. r � 1 � sin u

25. 26. r � cos u � 1

27. r � u, u � 0 (spiral)

28. r u � 1, u 	 0 (reciprocal spiral)

29. r � sin 2u (four-leaved rose)

30. r � 2 cos 3u (three-leaved rose)

31. r 2 � cos 2u (lemniscate)

32. r 2 � 4 sin 2u (lemniscate)

33. r � 2 � sin u (limaçon)

34. r � 1 � 2 cos u (limaçon)

35. r � 2 � sec u (conchoid)

36. r � sin u tan u (cissoid)

37–40 ■ Use a graphing device to graph the polar equation.
Choose the domain of u to make sure you produce the entire
graph.

37. 38.

39. (nephroid)

40. (hippopede)

41. Graph the family of polar equations r � 1 � sin nu for
n � 1, 2, 3, 4, and 5. How is the number of loops related to n?

42. Graph the family of polar equations r � 1 � c sin 2u for
c � 0.3, 0.6, 1, 1.5, and 2. How does the graph change as 
c increases?

43–46 ■ Match the polar equation with the graphs labeled I–IV.
Give reasons for your answers.

43. 44. r � 1/1ur � sin1u/2 2

r � 21 � 0.8 sin2u

r � 1 � 2 sin1u/2 2 r � sin18u/5 2r � cos1u/2 2

r � �311 � sin u 2

r �
5

1 � 3 cos u
r �

4

3 � 2 sin u

45. r � u sin u 46.

47–50 ■ Sketch a graph of the rectangular equation. [Hint: First
convert the equation to polar coordinates.]

47.

48.

49.

50.

51. Show that the graph of r � a cos u � b sin u is a circle, and
find its center and radius.

52. (a) Graph the polar equation r � tan u sec u in the viewing
rectangle 3�3, 34 by 3�1, 94.

(b) Note that your graph in part (a) looks like a parabola
(see Section 2.5). Confirm this by converting the 
equation to rectangular coordinates.

Applications

53. Orbit of a Satellite Scientists and engineers often use
polar equations to model the motion of satellites in earth 
orbit. Let’s consider a satellite whose orbit is modeled by the
equation , where r is the distance in
miles between the satellite and the center of the earth and u
is the angle shown in the figure on the next page.

(a) On the same viewing screen, graph the circle r � 3960
(to represent the earth, which we will assume to be a
sphere of radius 3960 mi) and the polar equation of the
satellite’s orbit. Describe the motion of the satellite as u
increases from 0 to 2p.

r � 22500/ 14 � cos u 2

x 2 � y 2 � 1x 2 � y 2 � x 2 21x 2 � y 2 2 2 � x 2 � y 2

1x 2 � y 2 2 3 � 1x 2 � y 2 2 21x 2 � y 2 2 3 � 4x 2y 2

1 1

III

10

III IV

1

r � 1 � 3 cos13u 2
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8.3 Polar Form of Complex Numbers; 
DeMoivre’s Theorem

In this section we represent complex numbers in polar (or trigonometric) form. This
enables us to find the nth roots of complex numbers. To describe the polar form of
complex numbers, we must first learn to work with complex numbers graphically.

Graphing Complex Numbers

To graph real numbers or sets of real numbers, we have been using the number line,
which has just one dimension. Complex numbers, however, have two components: a
real part and an imaginary part. This suggests that we need two axes to graph com-
plex numbers: one for the real part and one for the imaginary part. We call these the
real axis and the imaginary axis, respectively. The plane determined by these two
axes is called the complex plane. To graph the complex number a � bi, we plot the
ordered pair of numbers in this plane, as indicated in Figure 1.

Example 1 Graphing Complex Numbers

Graph the complex numbers z1 � 2 � 3i, z2 � 3 � 2i, and z1 � z2.

Solution We have . The graph is shown
in Figure 2. ■

z1 � z2 � 12 � 3i 2 � 13 � 2i 2 � 5 � i

1a, b 2

Imaginary
axis

Real
axis

bi a+bi

a0
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(b) For what angle u is the satellite closest to the earth?
Find the height of the satellite above the earth’s surface
for this value of u.

54. An Unstable Orbit The orbit described in Exercise 53 is
stable because the satellite traverses the same path over and
over as u increases. Suppose that a meteor strikes the 
satellite and changes its orbit to

r �

22500 a1 �
u

40
b

4 � cos u

¨

r

(a) On the same viewing screen, graph the circle r � 3960
and the new orbit equation, with u increasing from 0 to
3p. Describe the new motion of the satellite.

(b) Use the feature on your graphing calculator to
find the value of u at the moment the satellite crashes
into the earth.

Discovery • Discussion

55. A Transformation of Polar Graphs How are the graphs
of and 
related to the graph of r � 1 � sin u? In general, how is the
graph of related to the graph of ?

56. Choosing a Convenient Coordinate System Compare
the polar equation of the circle r � 2 with its equation in
rectangular coordinates. In which coordinate system is the
equation simpler? Do the same for the equation of the four-
leaved rose r � sin 2u. Which coordinate system would you
choose to study these curves?

57. Choosing a Convenient Coordinate System Compare
the rectangular equation of the line y � 2 with its polar equa-
tion. In which coordinate system is the equation simpler?
Which coordinate system would you choose to study lines?

r � f 1u 2r � f 1u � a 2 r � 1 � sin1u � p/3 2r � 1 � sin1u � p/6 2

TRACE

Figure 1

Im

Re

3i
z⁄=2+3i

z¤=3- 2i

z⁄+z¤=5+i2i

i

_i

_2i

2          4

Figure 2



Example 2 Graphing Sets of Complex Numbers

Graph each set of complex numbers.

(a) (b)

Solution

(a) S is the set of complex numbers whose real part is nonnegative. The graph is
shown in Figure 3(a).

(b) T is the set of complex numbers for which the real part is less than 1 and the
imaginary part is nonnegative. The graph is shown in Figure 3(b).

■

Recall that the absolute value of a real number can be thought of as its distance
from the origin on the real number line (see Section 1.1). We define absolute value
for complex numbers in a similar fashion. Using the Pythagorean Theorem, we can
see from Figure 4 that the distance between a � bi and the origin in the complex
plane is . This leads to the following definition.2a 2 � b 2

Im

Re0

(b)

1

Im

Re0

(a)Figure 3

T � 5a � bi 0 a � 1, b � 06S � 5a � bi 0 a � 06
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The modulus (or absolute value) of the complex number z � a � bi is0 z 0 � 2a 2 � b 2

Im

Re

bi
a+bi

0 a

œ∑∑∑∑∑∑a™+b™

b

Figure 4

Example 3 Calculating the Modulus

Find the moduli of the complex numbers 3 � 4i and 8 � 5i.

Solution

■

Example 4 Absolute Value of Complex Numbers

Graph each set of complex numbers.

(a) @ (b) @
Solution

(a) C is the set of complex numbers whose distance from the origin is 1. Thus, C is
a circle of radius 1 with center at the origin, as shown in Figure 5.

0 z 0 
 16D � 5z0 z 0 � 16C � 5z
0 8 � 5i 0 � 282 � 1�5 2 2 � 189

0 3 � 4i 0 � 232 � 42 � 125 � 5

The plural of modulus is moduli.

Im

Re0_1

_i

i
C

|z |=1

1

Figure 5



The argument of z is not unique, but any two arguments of z differ by a multiple
of 2p.

Example 5 Writing Complex Numbers in Polar Form

Write each complex number in trigonometric form.

(a) 1 � i (b) (c) (d) 3 � 4i

Solution These complex numbers are graphed in Figure 8, which helps us find
their arguments.

Figure 8

Im

Re

i
1+i

10

¨

Im

Re

4i
3+4i

30

¨

Im

Re

œ∑3 i_1+œ∑3 i

_1 0

¨

Im

Re

_4i
_4 œ∑3-4i

_4 œ∑3
0

¨

(a) (b) (c) (d)

�413 � 4i�1 � 13i

(b) D is the set of complex numbers whose distance from the origin is less than or
equal to 1. Thus, D is the disk that consists of all complex numbers on and in-
side the circle C of part (a), as shown in Figure 6. ■

Polar Form of Complex Numbers

Let z � a � bi be a complex number, and in the complex plane let’s draw the line seg-
ment joining the origin to the point a � bi (see Figure 7). The length of this line seg-
ment is . If u is an angle in standard position whose terminal
side coincides with this line segment, then by the definitions of sine and cosine (see
Section 6.2)

so z � r cos u � ir sin u� r (cos u � i sin u). We have shown the following.

a � r cos u  and  b � r sin u

r � 0 z 0 � 2a 2 � b 2
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Im

Re0_1

_i

i
D

|z |≤1

1

Figure 6

Im

Re

bi
a+bi

a0

¨

r

Figure 7

Polar Form of Complex Numbers

A complex number z � a � bi has the polar form (or trigonometric form)

where and tan u � b/a. The number r is the modulus
of z, and u is an argument of z.

r � 0 z 0 � 2a 2 � b 2

z � r 1cos u � i sin u 2



(a) An argument is u � p/4 and . Thus

(b) An argument is u � 2p/3 and . Thus

(c) An argument is u � 7p/6 (or we could use u � �5p/6), and
. Thus

(d) An argument is and . So

■

The addition formulas for sine and cosine that we discussed in Section 7.2 greatly
simplify the multiplication and division of complex numbers in polar form. The fol-
lowing theorem shows how.

3 � 4i � 5 3cosAtan�1 4
3B � i sinAtan�1 4

3B 4r � 232 � 42 � 5u � tan�1 4
3

�413 � 4i � 8 a cos
7p

6
� i sin 

7p

6
br � 148 � 16 � 8

�1 � 13 i � 2 a cos
2p

3
� i sin 

2p

3
br � 11 � 3 � 2

1 � i � 12 a cos
p

4
� i sin 

p

4
br � 11 � 1 � 12
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u � p
4

 tan u � 1
1 � 1

u � 2p
3

 tan u �
13

�1
� �13

u � 7p
6

 tan u �
�4

�413
�

1

13

u � tan�1 4
3

 tan u � 4
3

Multiplication and Division of Complex Numbers

If the two complex numbers z1 and z2 have the polar forms

then

Multiplication

Division
z1

z2
�

r1

r2
3cos1u1 � u2 2 � i sin1u1 � u2 2 4  1z2 � 0 2z1z2 � r1r2 3cos1u1 � u2 2 � i sin1u1 � u2 2 4

z1 � r11cos u1 � i sin u1 2  and  z2 � r21cos u2 � i sin u2 2

This theorem says:

To multiply two complex numbers, multiply the moduli and add the arguments.

To divide two complex numbers, divide the moduli and subtract the arguments.

■ Proof To prove the multiplication formula, we simply multiply the two com-
plex numbers.

In the last step we used the addition formulas for sine and cosine. ■

The proof of the division formula is left as an exercise.

� r1r2 3cos1u1 � u2 2 � i sin1u1 � u2 2 4� r1r2 3cos u1 cos u2 � sin u1 sin u2 � i1sin u1 cos u2 � cos u1 sin u2 2 4z1z2 � r1r21cos u1 � i sin u1 2 1cos u2 � i sin u2 2



Example 6 Multiplying and Dividing Complex Numbers

Let

Find (a) z1z2 and (b) z1/z2.

Solution

(a) By the multiplication formula

To approximate the answer, we use a calculator in radian mode and get

(b) By the division formula

Using a calculator in radian mode, we get the approximate answer:

■

DeMoivre’s Theorem

Repeated use of the multiplication formula gives the following useful formula for
raising a complex number to a power n for any positive integer n.

z1

z2
� 2

5 10.9659 � 0.2588i 2 � 0.3864 � 0.1035i

�
2

5
a cos

p

12
� i sin 

p

12
b

�
2

5
c cos a� p

12
b � i sin a� p

12
b d

z1

z2
�

2

5
c cos ap

4
�
p

3
b � i sin ap

4
�
p

3
b d

z1z2 � 101�0.2588 � 0.9659i 2 � �2.588 � 9.659i

� 10 a cos
7p

12
� i sin 

7p

12
b

z1z2 � 12 2 15 2 c cos ap
4

�
p

3
b � i sin ap

4
�
p

3
b d

z1 � 2 a cos
p

4
� i sin 

p

4
b  and  z2 � 5 a cos

p

3
� i sin 

p

3
b
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DeMoivre’s Theorem

If , then for any integer n

z n � rn1cos nu � i sin nu 2z � r 1cos u � i sin u 2
This theorem says: To take the nth power of a complex number, we take the nth power
of the modulus and multiply the argument by n.

■ Proof By the multiplication formula

� r 21cos 2u � i sin 2u 2z 2 � zz � r 2 3cos1u � u 2 � i sin1u � u 2 4

Mathematics in 

the Modern World

Fractals

Many of the things we model in
this book have regular predictable
shapes. But recent advances in
mathematics have made it possible
to model such seemingly random
or even chaotic shapes as those of a
cloud, a flickering flame, a moun-
tain, or a jagged coastline. The 
basic tools in this type of modeling
are the fractals invented by the
mathematician Benoit Mandelbrot.
A fractal is a geometric shape built
up from a simple basic shape by
scaling and repeating the shape
indefinitely according to a given
rule. Fractals have infinite detail;
this means the closer you look, the
more you see. They are also self-
similar; that is, zooming in on a
portion of the fractal yields the
same detail as the original shape.
Because of their beautiful shapes,
fractals are used by movie makers
to create fictional landscapes and
exotic backgrounds.

Although a fractal is a complex
shape, it is produced according to
very simple rules (see page 605).
This property of fractals is ex-
ploited in a process of storing pic-
tures on a computer called fractal
image compression. In this process
a picture is stored as a simple basic
shape and a rule; repeating the
shape according to the rule pro-
duces the original picture. This is
an extremely efficient method of
storage; that’s how thousands of
color pictures can be put on a
single compact disc.

Bi
ll 

Ro
ss

/C
or

bi
s



Now we multiply z 2 by z to get

Repeating this argument, we see that for any positive integer n

A similar argument using the division formula shows that this also holds for negative
integers. ■

Example 7 Finding a Power Using DeMoivre’s Theorem

Find .

Solution Since , it follows from Example 5(a) that

So by DeMoivre’s Theorem,

■

nth Roots of Complex Numbers

An nth root of a complex number z is any complex number „ such that „ n � z.
DeMoivre’s Theorem gives us a method for calculating the nth roots of any complex
number.

�
25

210 a cos
5p

2
� i sin 

5p

2
b �

1

32
i

a 1

2
�

1

2
i b 10

� a 12

2
b 10 a cos

10p

4
� i sin 

10p

4
b

1

2
�

1

2
i �
12

2
a cos

p

4
� i sin 

p

4
b

1
2 � 1

2 i � 1
2 11 � i 2A12 � 1

2 iB10

z n � rn1cos nu � i sin nu 2
� r 31cos 3u � i sin 3u 2z 3 � z 2z � r 3 3cos12u � u 2 � i sin12u � u 2 4
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nth Roots of Complex Numbers

If and n is a positive integer, then z has the n distinct
nth roots

for k � 0, 1, 2, . . . , n � 1.

„k � r 1/n c cos a u � 2kp
n

b � i sin a u � 2kp
n

b d
z � r 1cos u � i sin u 2

■ Proof To find the nth roots of z, we need to find a complex number „ such that

Let’s write z in polar form:

One nth root of z is

„ � r 1/n a cos
u

n
� i sin 

u

n
b

z � r 1cos u � i sin u 2
„ n � z



since by DeMoivre’s Theorem, „ n � z. But the argument u of z can be replaced by 
u� 2kp for any integer k. Since this expression gives a different value of „ for k � 0,
1, 2, . . . , n � 1, we have proved the formula in the theorem. ■

The following observations help us use the preceding formula.

602 CHAPTER 8 Polar Coordinates and Vectors

1. The modulus of each nth root is r1/n.

2. The argument of the first root is u/n.

3. We repeatedly add 2p/n to get the argument of each successive root.

These observations show that, when graphed, the nth roots of z are spaced equally
on the circle of radius r1/n.

Example 8 Finding Roots of a Complex Number

Find the six sixth roots of z � �64, and graph these roots in the complex plane.

Solution In polar form, . Applying the formula for nth
roots with n � 6, we get

for k � 0, 1, 2, 3, 4, 5. Using 641/6 � 2, we find that the six sixth roots of �64 are

All these points lie on a circle of radius 2, as shown in Figure 9. ■

When finding roots of complex numbers, we sometimes write the argument u of the
complex number in degrees. In this case, the nth roots are obtained from the formula

for k � 0, 1, 2, . . . , n � 1.

„k � r 1/n c cos a u � 360°k
n

b � i sin a u � 360°k
n

b d

„5 � 641/6 a cos
11p

6
� i sin 

11p

6
b � 13 � i

„4 � 641/6 a cos
3p

2
� i sin 

3p

2
b � �2i

„3 � 641/6 a cos
7p

6
� i sin 

7p

6
b � �13 � i

„2 � 641/6 a cos
5p

6
� i sin 

5p

6
b � �13 � i

„1 � 641/6 a cos
p

2
� i sin 

p

2
b � 2i

„0 � 641/6 a cos
p

6
� i sin 

p

6
b � 13 � i

„k � 641/6 c cos ap � 2kp

6
b � i sin ap � 2kp

6
b d

z � 641cos p � i sin p 2

Im

Re0 2

w‚

2i

_2i

_2

wfi

w¤

w‹

w⁄

w›

Figure 9

The six sixth roots of z � �64

We add 2p/6 � p/3 to each argument
to get the argument of the next root.
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1–8 ■ Graph the complex number and find its modulus.

1. 4i 2. �3i

3. �2 4. 6

5. 5 � 2i 6. 7 � 3i

7. 8.

9. 10.

11–12 ■ Sketch the complex number z, and also sketch 2z, �z,
and on the same complex plane.

11. z � 1 � i 12.

13–14 ■ Sketch the complex number z and its complex conju-
gate z on the same complex plane.

13. z � 8 � 2i 14. z � �5 � 6i

z � �1 � i13

1
2z

�12 � i12

2

3 � 4i

5

�1 �
13

3
i13 � i

15–16 ■ Sketch z1, z2, z1 � z2, and z1z2 on the same complex
plane.

15. z1 � 2 � i, z2 � 2 � i

16. z1 � �1 � i, z2 � 2 � 3i

17–24 ■ Sketch the set in the complex plane.

17.

18.

19. @ 20. @
21. @ 22. @
23.

24. 5z � a � bi 0 a � b65z � a � bi 0 a � b � 26 2 
 0 z 0 
 565z0 z 0 � 265z 0 z 0 � 165z0 z 0 � 365z5z � a � bi 0 a 	 1, b 	 165z � a � bi 0 a 
 0, b � 06

Example 9 Finding Cube Roots of a Complex Number

Find the three cube roots of z � 2 � 2i, and graph these roots in the complex plane.

Solution First we write z in polar form using degrees. We have
and u � 45�. Thus

Applying the formula for nth roots (in degrees) with n � 3, we find the cube roots
of z are of the form

where k � 0, 1, 2. Thus, the three cube roots are

The three cube roots of z are graphed in Figure 10. These roots are spaced equally
on a circle of radius . ■

Example 10 Solving an Equation Using the nth Roots

Formula

Solve the equation z 6 � 64 � 0.

Solution This equation can be written as z 6 � �64. Thus, the solutions are the
sixth roots of �64, which we found in Example 8. ■

8.3 Exercises

12

„2 � 12 1cos 255° � i sin 255° 2 � �0.366 � 1.366i

„1 � 12 1cos 135° � i sin 135° 2 � �1 � i

„0 � 12 1cos 15° � i sin 15° 2 � 1.366 � 0.366i

„k � A212B1/3 c cos a 45° � 360°k

3
b � i sin a 45° � 360°k

3
b d

z � 212 1cos 45° � i sin 45° 2r � 222 � 22 � 212

1212 2 1/3 � 123/2 2 1/3 � 21/2 � 12

We add 360�/3 � 120� to each 
argument to get the argument of the
next root.

Im

Re0 œ∑2

w‚

œ∑2 i

_œ∑2 i

_œ∑2

w⁄

w¤

Figure 10

The three cube roots of z � 2 � 2i
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25–48 ■ Write the complex number in polar form with 
argument u between 0 and 2p.

25. 1 � i 26. 27.

28. 1 � i 29. 30. �1 � i

31. �3i 32. 33. 5 � 5i

34. 4 35. 36. 8i

37. �20 38. 39. 3 � 4i

40. 41. 42.

43. 44. �3 � 3i 45. 2 � i

46. 47. 48. �pi

49–56 ■ Find the product z1z2 and the quotient z1/z2. Express
your answer in polar form.

49.

50.

51.

52.

53. ,

54. ,

55. ,

56. ,

57–64 ■ Write z1 and z2 in polar form, and then find the product
z1z2 and the quotients z1/z2 and 1/z1.

57.

58.

59.

60.

61. z1 � 5 � 5i, z2 � 4 62.

63. 64. z1 � 3 � 4i, z2 � 2 � 2i

65–76 ■ Find the indicated power using DeMoivre’s Theorem.

65. 66.

67. 68. 11 � i 2 81213 � 2i 2 5 11 � 13 i 2 511 � i 2 20

z1 � �20, z2 � 13 � i

z1 � 413 � 4i, z2 � 8i

z1 � �12 i, z2 � �3 � 313 i

z1 � 213 � 2i, z2 � �1 � i

z1 � 12 � 12 i, z2 � 1 � i

z1 � 13 � i, z2 � 1 � 13 i

z2 � 1
5 1cos 155° � i sin 155° 2z1 � 4
5 1cos 25° � i sin 25° 2z2 � 251cos 150° � i sin 150° 2z1 � 41cos 200° � i sin 200° 2z2 � 3121cos 60° � i sin 60° 2z1 � 121cos 75° � i sin 75° 2z2 � 21cos 30° � i sin 30° 2z1 � 41cos 120° � i sin 120° 2z1 � 7 a cos

9p

8
� i sin 

9p

8
b , z2 � 2 a cos

p

8
� i sin 

p

8
b

z1 � 3 a cos
p

6
� i sin 

p

6
b , z2 � 5 a cos

4p

3
� i sin 

4p

3
b

z1 � cos
p

4
� i sin 

p

4
, z2 � cos

3p

4
� i sin 

3p

4

z1 � cos p � i sin p, z2 � cos
p

3
� i sin 

p

3

12 � 12 i3 � 13 i

4113 � i 2 211 � i 23i11 � i 2i12 � 2i 2 13 � i

413 � 4i

�3 � 313 i

213 � 2i

12 � 12 i1 � 13 i

69. 70.

71. 72.

73. 74.

75. 76.

77–86 ■ Find the indicated roots, and graph the roots in the
complex plane.

77. The square roots of 

78. The cube roots of 

79. The fourth roots of �81i 80. The fifth roots of 32

81. The eighth roots of 1 82. The cube roots of 1 � i

83. The cube roots of i 84. The fifth roots of i

85. The fourth roots of �1

86. The fifth roots of 

87–92 ■ Solve the equation.

87. z 4 � 1 � 0 88. z 8 � i � 0

89. 90. z 6 � 1 � 0

91. z 3 � 1 � �i 92. z 3 � 1 � 0

93. (a) Let where n is a positive

integer. Show that 1, „, „ 2, „ 3, . . . , „ n�1 are the n
distinct nth roots of 1.

(b) If z � 0 is any complex number and sn � z, show that
the n distinct nth roots of z are

Discovery • Discussion

94. Sums of Roots of Unity Find the exact values of all
three cube roots of 1 (see Exercise 93) and then add them.
Do the same for the fourth, fifth, sixth, and eighth roots of 1.
What do you think is the sum of the nth roots of 1, for any n?

95. Products of Roots of Unity Find the product of the
three cube roots of 1 (see Exercise 93). Do the same for the
fourth, fifth, sixth, and eighth roots of 1. What do you think
is the product of the nth roots of 1, for any n?

96. Complex Coefficients and the Quadratic Formula

The quadratic formula works whether the coefficients of the
equation are real or complex. Solve these equations using the
quadratic formula, and, if necessary, DeMoivre’s Theorem.

(a)

(b) z 2 � iz � 1 � 0

(c) z 2 � 12 � i 2z � 1
4 i � 0

z 2 � 11 � i 2z � i � 0

s, s„, s„ 2, s„ 3, . . . , s„ n�1

„ � cos
2p
n

� i sin 
2p
n

z 3 � 413 � 4i � 0

�16 � 1613i

413 � 4i

413 � 4i

11 � i 2�81213 � 2i 2�5

13 � 13 i 2 41�1 � i 2 7 a�
1

2
�
13

2
i b 1512 � 2i 2 8 113 � i 2�10a 12

2
�
12

2
i b 12
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As we continue calculating the iterates, one of two things will happen, depend-
ing on the value of c. Either the iterates z0, z1, z2, z3, . . . form a bounded set (that
is, the moduli of the iterates are all less than some fixed number K ), or else they
eventually grow larger and larger without bound. The calculations in the table on
page 606 show that for c � 0.1 � 0.2i, the iterates eventually stabilize at about
0.05 � 0.22i, whereas for c � 1 � i, the iterates quickly become so large that a
calculator can’t handle them.

Fractals

Fractals are geometric objects that exhibit more and more detail the more we
magnify them (see Mathematics in the Modern World on page 600). Many frac-
tals can be described by iterating functions of complex numbers. The most 
famous such fractal is illustrated in Figures 1 and 2. It is called the Mandelbrot
set, named after Benoit Mandelbrot, the mathematician who discovered it in the
1950s.

Here is how the Mandelbrot set is defined. Choose a complex number c, and
define the complex quadratic function

Starting with z0 � 0, we form the iterates of f as follows:

z3 � f 1f 1f 10 222 � f 1c 2 � c 2 � 1c 2 � c 2 2 � c

z2 � f 1f 10 22 � f 1c 2 � c 2 � c

z1 � f 10 2 � c

f 1z 2 � z 2 � c

Figure 2

Detail from the Mandelbrot set

Figure 1

The Mandelbrot set

D I S C O V E R Y
P R O J E C T
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See page 597 for the definition of 
modulus (plural moduli).
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The Mandelbrot set consists of those complex numbers c for which the 
iterates of are bounded. (In fact, for this function it turns out 
that if the iterates are bounded, the moduli of all the iterates will be less than
K � 2.) The numbers c that belong to the Mandelbrot set can be graphed in the
complex plane. The result is the black part in Figure 1. The points not in the
Mandelbrot set are assigned colors depending on how quickly the iterates be-
come unbounded.

The TI-83 program below draws a rough graph of the Mandelbrot set. The
program takes a long time to finish, even though it performs only 10 iterations
for each c. For some values of c, you actually have to do many more iterations to
tell whether the iterates are unbounded. (See, for instance, Problem 1(f) below.)
That’s why the program produces only a rough graph. But the calculator output
in Figure 3 is actually a good approximation.

PROGRAM:MANDLBRT

:ClrDraw

:AxesOff

:(Xmax-Xmin)/94�H

:(Ymax-Ymin)/62�V

:For(I,0,93)

:For(J,0,61)

:Xmin+I*H�X

:Ymin+J*V�Y

:X+Yi�C

:0�Z

:For(N,1,10)

:If abs(Z)
2

:Z2+C�Z

:End

:If abs(Z)
2

:Pt-On(real(C),imag(C))

:DispGraph

:End

:End

:StorePic 1 This stores the final image under “1” so
that it can be recalled later

If the iterates have modulus less than or
equal to 2, the point C is plotted

This “For” loop calculates 10 iterates, but
stops iterating if Z has modulus larger 
than 2

These two “For” loops find the complex
number associated with each pixel on the
screen

V is the vertical height of one pixel
H is the horizontal width of one pixel

Use the viewing rectangle 3�2, 14 by3�1, 14 and make sure the calculator is in 
“a+bi” mode

f 1z 2 � z 2 � c

606 CHAPTER 8 Polar Coordinates and Vectors

You can use your calculator to find
the iterates, just like in the Discovery
Project on page 233. With the TI-83,
first put the calculator into a+bi
mode. Then press the key and
enter the function Y1=X2+C. Now 
if c � 1 � i, for instance, enter the
following commands:

1-i�C

0�X

Y1�X

Press the key repeatedly to
get the list of iterates. (With this
value of c, you should end up with
the values in the right-hand column 
of the table.)

ENTER

Y=

Figure 3

fÓzÔ � z2 � 0.1 � 0.2i fÓzÔ � z2 � 1 � i

z1 � fÓz0Ô � .1 � .2i z1 � fÓz0Ô � 1 � i
z2 � fÓz1Ô � .07 � .24i z2 � fÓz1Ô � 1 � 3i
z3 � fÓz2Ô � .047 � .234i z3 � fÓz2Ô � �7 � 7i
z4 � fÓz3Ô � .048 � .222i z4 � fÓz3Ô � 1 � 97i
z5 � fÓz4Ô � .053 � .221i z5 � fÓz4Ô � �9407 � 193i
z6 � fÓz5Ô � .054 � .223i z6 � fÓz5Ô � 88454401 � 3631103i
z7 � fÓz6Ô � .053 � .224i z7 � fÓz6Ô � 7.8 � 1015 � 6.4 � 1014i
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1. Use your calculator as described in the margin on page 606 to decide whether
the complex number c is in the Mandelbrot set. (For part (f ), calculate at least
60 iterates.)

(a) c � 1 (b) c � �1

(c) c � �0.7 � 0.15i (d) c � 0.5 � 0.5i

(e) c � i (f) c � �1.0404 � 0.2509i

2. Use the MANDLBRT program with a smaller viewing rectangle to zoom in on
a portion of the Mandelbrot set near its edge. (Store the final image in a dif-
ferent location if you want to keep the complete Mandelbrot picture in “1.”)
Do you see more detail?

3. (a) Write a calculator program that takes as input a complex number c, iter-
ates the function a hundred times, and then gives the fol-
lowing output:

■ “UNBOUNDED AT N ”, if zN is the first iterate whose modulus is
greater than 2

■ “BOUNDED” if each iterate from z1 to z100 has modulus less than or
equal to 2

In the first case, the number c is not in the Mandelbrot set, and the 
index N tells us how “quickly” the iterates become unbounded. In the
second case, it is likely that c is in the Mandelbrot set.

(b) Use your program to test each of the numbers in Problem 1.

(c) Choose other complex numbers and use your program to test them.

f 1z 2 � z 2 � c

8.4 Vectors

In applications of mathematics, certain quantities are determined completely by their
magnitude—for example, length, mass, area, temperature, and energy. We speak of a
length of 5 m or a mass of 3 kg; only one number is needed to describe each of these
quantities. Such a quantity is called a scalar.

On the other hand, to describe the displacement of an object, two numbers are re-
quired: the magnitude and the direction of the displacement. To describe the velocity
of a moving object, we must specify both the speed and the direction of travel. Quan-
tities such as displacement, velocity, acceleration, and force that involve magnitude
as well as direction are called directed quantities. One way to represent such quanti-
ties mathematically is through the use of vectors.

Geometric Description of Vectors

A vector in the plane is a line segment with an assigned direction. We sketch a vec-
tor as shown in Figure 1 with an arrow to specify the direction. We denote this 
vector by . Point A is the initial point, and B is the terminal point of the vectorAB

!

u=AB

A

B

Figure 1
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. The length of the line segment AB is called the magnitude or length of the vec-
tor and is denoted by . We use boldface letters to denote vectors. Thus, we write

.
Two vectors are considered equal if they have equal magnitude and the same di-

rection. Thus, all the vectors in Figure 2 are equal. This definition of equality makes
sense if we think of a vector as representing a displacement. Two such displacements
are the same if they have equal magnitudes and the same direction. So the vectors in
Figure 2 can be thought of as the same displacement applied to objects in different
locations in the plane.

If the displacement is followed by the displacement , then the re-
sulting displacement is as shown in Figure 3. In other words, the single displace-
ment represented by the vector has the same effect as the other two displacements
together. We call the vector the sum of the vectors and and we write

. (The zero vector, denoted by 0, represents no displacement.)
Thus, to find the sum of any two vectors u and v, we sketch vectors equal to u and v
with the initial point of one at the terminal point of the other (see Figure 4(a)). If we
draw u and v starting at the same point, then u � v is the vector that is the diagonal
of the parallelogram formed by u and v, as shown in Figure 4(b).

If a is a real number and v is a vector, we define a new vector av as follows: The
vector av has magnitude and has the same direction as v if a 	 0, or the op-
posite direction if a � 0. If a � 0, then av � 0, the zero vector. This process is called
multiplication of a vector by a scalar. Multiplying a vector by a scalar has the ef-
fect of stretching or shrinking the vector. Figure 5 shows graphs of the vector av for
different values of a. We write the vector v as �v. Thus, �v is the vector with
the same length as v but with the opposite direction.

The difference of two vectors u and v is defined by u � v � u � . Figure 6
shows that the vector u � v is the other diagonal of the parallelogram formed by u
and v.

1�v 21�1 2
0 a 0 0 v 0

v

u

u+v

v

u

u+v

(a) (b)
Figure 4

Addition of vectors

AC
!
� AB

!
� BC

! BC
!

AB
!

AC
!AC
!AC

! v � BC
!

u � AB
!

u � AB
! 0 AB

! 0AB
!

v1
3_ _2v_v2vv1

2v

u+v

_v

v

u

uu-v

Figure 5

Multiplication of a vector by a scalar

Figure 6

Subtraction of vectors

Figure 2

A B

C

AB

BC
AC=AB+BC

Figure 3
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Vectors in the Coordinate Plane

So far we’ve discussed vectors geometrically. By placing a vector in a coordinate
plane, we can describe it analytically (that is, by using components). In Figure 7(a),
to go from the initial point of the vector v to the terminal point, we move a units to
the right and b units upward. We represent v as an ordered pair of real numbers.

where a is the horizontal component of v and b is the vertical component of v. Re-
member that a vector represents a magnitude and a direction, not a particular arrow
in the plane. Thus, the vector �a, b� has many different representations, depending on
its initial point (see Figure 7(b)).

Figure 7

Using Figure 8, the relationship between a geometric representation of a vector
and the analytic one can be stated as follows.

(a) (b)

a

bv

x

y

a

bv
a

bv

0x

y

a

bv

0

v � 8a, b9

x⁄ x¤ x

y

v

P

Q

x¤-x⁄

y¤-y⁄

y⁄

y¤

0

Figure 8

Component Form of a Vector

If a vector v is represented in the plane with initial point and termi-
nal point , then

v � 8x2 � x1, y2 � y19Q1x2, y2 2 P1x1, y1 2

Example 1 Describing Vectors in Component Form

(a) Find the component form of the vector u with initial point and terminal
point .

(b) If the vector v � �3, 7� is sketched with initial point , what is its terminal
point?

(c) Sketch representations of the vector w � �2, 3� with initial points at ,
, , and .

Solution

(a) The desired vector is

u � 83 � 1�2 2 , 7 � 59 � 85, 29
11, 4 21�2, �1 212, 2 2 10, 0 2

12, 4 213, 7 2 1�2, 5 2

Note the distinction between the vector
�a, b� and the point .1a, b 2
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(b) Let the terminal point of v be . Then

So x � 2 � 3 and y � 4 � 7, or x � 5 and y � 11. The terminal point is
.

(c) Representations of the vector w are sketched in Figure 9. ■

We now give analytic definitions of the various operations on vectors that we have
described geometrically. Let’s start with equality of vectors. We’ve said that two 
vectors are equal if they have equal magnitude and the same direction. For the vec-
tors u � �a1, b1� and v � �a2, b2�, this means that a1 � a2 and b1 � b2. In other words,
two vectors are equal if and only if their corresponding components are equal. 
Thus, all the arrows in Figure 7(b) represent the same vector, as do all the arrows in
Figure 9.

Applying the Pythagorean Theorem to the triangle in Figure 10, we obtain the fol-
lowing formula for the magnitude of a vector.

15, 11 28x � 2, y � 49 � 83, 791x, y 2

x

y

20

4

w
w

w

w

Figure 9

x

y

a

b
v= a, b	�

|v |=œ∑∑∑∑∑∑a™+b™

0

Figure 10

Magnitude of a Vector

The magnitude or length of a vector v � �a, b� is0 v 0 � 2a 2 � b 2

Example 2 Magnitudes of Vectors

Find the magnitude of each vector.

(a) u � �2, �3� (b) v � �5, 0� (c) w � � �
Solution

(a)

(b)

(c) ■

The following definitions of addition, subtraction, and scalar multiplication of
vectors correspond to the geometric descriptions given earlier. Figure 11 shows how
the analytic definition of addition corresponds to the geometric one.

0 w 0 � 3 A35B2 � A45B2 � 3 9
25 � 16

25 � 1

0 v 0 � 252 � 02 � 125 � 5

0 u 0 � 222 � 1�3 2 2 � 113

3
5,

4
5

u

v
u+v

b¤

b⁄

a¤a⁄

Figure 11

Algebraic Operations on Vectors

If u � �a1, b1� and v � �a2, b2�, then

cu � 8ca1, cb1�,  c � �

u � v � 8a1 � a2, b1 � b29u � v � 8a1 � a2, b1 � b29
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Example 3 Operations with Vectors

If u � �2, �3� and v � ��1, 2�, find u � v, u � v, 2u, �3v, and 2u � 3v.

Solution By the definitions of the vector operations, we have

■

The following properties for vector operations can be easily proved from the
definitions. The zero vector is the vector 0 � �0, 0�. It plays the same role for addi-
tion of vectors as the number 0 does for addition of real numbers.

2u � 3v � 282, �39 � 38�1, 29 � 84, �69 � 8�3, 69 � 81, 09�3v � �38�1, 29 � 83, �69 2u � 282, �39 � 84, �69u � v � 82, �39 � 8�1, 29 � 83, �59u � v � 82, �39 � 8�1, 29 � 81, �19

Properties of Vectors

Vector addition Multiplication by a scalar

u � v � v � u

u � 0 � u

1u � u

Length of a vector 0u � 0

c0 � 00 cu 0 � 0 c 0 0 u 0
u � 1�u2 � 0

1cd 2u � c1du 2 � d1cu 21c � d 2u � cu � duu � 1v � w2 � 1u � v 2 � w

c1u � v 2 � cu � cv

Vectors in Terms of i and j

The vector v � �a, b� can be expressed in terms of i and j by

v � 8a, b9 � ai � bj

Example 4 Vectors in Terms of i and j

(a) Write the vector u � �5, �8� in terms of i and j.

(b) If u � 3i � 2 j and v � �i � 6 j, write 2u � 5v in terms of i and j.

Solution

(a) u � 5i � 1�8 2 j � 5i � 8j

A vector of length 1 is called a unit vector. For instance, in Example 2(c), the vec-
tor w � � � is a unit vector. Two useful unit vectors are i and j, defined by

These vectors are special because any vector can be expressed in terms of them.

i � 81, 09   j � 80, 193
5,

4
5



(b) The properties of addition and scalar multiplication of vectors show that we can
manipulate vectors in the same way as algebraic expressions. Thus

■

Let v be a vector in the plane with its initial point at the origin. The direction of v
is u, the smallest positive angle in standard position formed by the positive x-axis and
v (see Figure 12). If we know the magnitude and direction of a vector, then Figure 12
shows that we can find the horizontal and vertical components of the vector.

� i � 34 j

� 16i � 4 j 2 � 1�5i � 30 j 2 2u � 5v � 213i � 2 j 2 � 51�i � 6 j 2
612 CHAPTER 8 Polar Coordinates and Vectors

Horizontal and Vertical Components of a Vector

Let v be a vector with magnitude and direction u.0 v 0

Example 5 Components and Direction of a Vector

(a) A vector v has length 8 and direction p/3. Find the horizontal and vertical 
components, and write v in terms of i and j.

(b) Find the direction of the vector .

Solution

(a) We have v � �a, b�, where the components are given by

Thus, .

(b) From Figure 13 we see that the direction u has the property that

Thus, the reference angle for u is p/6. Since the terminal point of the vector
u is in quadrant II, it follows that u � 5p/6. ■

Using Vectors to Model Velocity and Force

The velocity of a moving object is modeled by a vector whose direction is the direc-
tion of motion and whose magnitude is the speed. Figure 14 shows some vectors u,
representing the velocity of wind flowing in the direction N 30� E, and a vector v, rep-
resenting the velocity of an airplane flying through this wind at the point P. It’s ob-
vious from our experience that wind affects both the speed and the direction of an

tan u �
1

�13
� �

13

3

v � 84, 4139 � 4i � 413 j

a � 8 cos 
p

3
� 4  and  b � 8 sin 

p

3
� 413

u � �13 i � j

x

y

u

0

1

_œ∑3

¨

Figure 13

The use of bearings (such as N 30� E)
to describe directions is explained on
page 511 in Section 6.5.

x

y

|v |
|v | ß ¨

|v | ç ¨
0

¨

Figure 12

Then v � �a, b� � ai � b j, where

Thus, we can express v as

v � 0 v 0  cos u i � 0 v 0  sin u j

a � 0 v 0  cos u  and  b � 0 v 0  sin u



SECTION 8.4 Vectors 613

airplane. Figure 15 indicates that the true velocity of the plane (relative to the ground)
is given by the vector w � u � v.

0

60*

y

x

N

P
u

v

0

y

x
P

u

v

w=u+v

Figure 14 Figure 15

Example 6 The True Speed and Direction of an Airplane

An airplane heads due north at 300 mi/h. It experiences a 40 mi/h crosswind flow-
ing in the direction N 30� E, as shown in Figure 14.

(a) Express the velocity v of the airplane relative to the air, and the velocity u of
the wind, in component form.

(b) Find the true velocity of the airplane as a vector.

(c) Find the true speed and direction of the airplane.

Solution

(a) The velocity of the airplane relative to the air is v � 0i � 300 j � 300 j.
By the formulas for the components of a vector, we find that the velocity of

the wind is

(b) The true velocity of the airplane is given by the vector w � u � v.

(c) The true speed of the airplane is given by the magnitude of w.

The direction of the airplane is the direction u of the vector w. The angle u has
the property that tan u � 334.64/20 � 16.732 and so u � 86.6�. Thus, the 
airplane is heading in the direction N 3.4� E. ■

0 w 0 � 2120 2 2 � 1334.64 2 2 � 335.2 mi/h

� 20i � 334.64 j

� 20i � 12013 � 300 2 jw � u � v � 120i � 2013j 2 � 1300j 2
� 20i � 34.64 j

� 20i � 2013j

u � 140 cos 60° 2 i � 140 sin 60° 2 j
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Example 7 Calculating a Heading

A woman launches a boat from one shore of a straight river and wants to land 
at the point directly on the opposite shore. If the speed of the boat (relative to the
water) is 10 mi/h and the river is flowing east at the rate of 5 mi/h, in what direction
should she head the boat in order to arrive at the desired landing point?

Solution We choose a coordinate system with the origin at the initial position of
the boat as shown in Figure 16. Let u and v represent the velocities of the river and
the boat, respectively. Clearly, u � 5i and, since the speed of the boat is 10 mi/h,
we have , so

where the angle u is as shown in Figure 16. The true course of the boat is given by
the vector w � u � v. We have

Since the woman wants to land at a point directly across the river, her direction
should have horizontal component 0. In other words, she should choose u in such a
way that

Thus, she should head the boat in the direction u � 120� (or N 30� W). ■

Force is also represented by a vector. Intuitively, we can think of force as de-
scribing a push or a pull on an object, for example, a horizontal push of a book across
a table or the downward pull of the earth’s gravity on a ball. Force is measured in
pounds (or in newtons, in the metric system). For instance, a man weighing 200 lb 
exerts a force of 200 lb downward on the ground. If several forces are acting on 
an object, the resultant force experienced by the object is the vector sum of these
forces.

Example 8 Resultant Force

Two forces F1 and F2 with magnitudes 10 and 20 lb, respectively, act on an object
at a point P as shown in Figure 17. Find the resultant force acting at P.

Solution We write F1 and F2 in component form:

� �1013i � 10j

F2 � 120 cos 150° 2 i � 120 sin 150° 2 j � �20
13

2
i � 20 a 1

2
b j

F1 � 110 cos 45° 2 i � 110 sin 45° 2 j � 10
12

2
i � 10

12

2
j � 512i � 512j

u � 120°

 cos u � � 1
2

 5 � 10 cos u � 0

� 15 � 10 cos u 2 i � 110 sin u 2 jw � u � v � 5i � 110 cos u 2 i � 110 sin u 2 j
v � 110 cos u 2 i � 110 sin u 2 j0 v 0 � 10

N

x

y

u

wv

¨

0

Figure 16

y

x0

F¤ F⁄
150*

45*

P

Figure 17
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1–6 ■ Sketch the vector indicated. (The vectors u and v are
shown in the figure.)

1. 2u

2. �v

3. u � v

4. u � v

5. v � 2u

6. 2u � v

7–16 ■ Express the vector with initial point P and terminal
point Q in component form.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16. P1�8, �6 2 , Q1�1, �1 2P1�1, �1 2 , Q1�1, 1 2 P1�1, 3 2 , Q1�6, �1 2P15, 3 2 , Q11, 0 2 P11, 1 2 , Q19, 9 2P13, 2 2 , Q18, 9 2

P

y

x

Q

0 1

1P

Q

y

x0 1

1

y

x

P

Q

0 1

1

Q
y

x

P

0 1

1

y

x

u
v

0 1

17–22 ■ Find 2u, �3v, u � v, and 3u � 4v for the given 
vectors u and v.

17.

18.

19.

20.

21. 22.

23–26 ■ Find , , , , , , and
.

23.

24.

25.

26.

27–32 ■ Find the horizontal and vertical components of the
vector with given length and direction, and write the vector in
terms of the vectors i and j.

27. 28.

29. 30.

31. 32.

33–38 ■ Find the magnitude and direction (in degrees) of the
vector.

33. v � �3, 4� 34.

35. v � ��12, 5� 36. v � �40, 9�

37. 38. v � i � j

Applications

39. Components of a Force A man pushes a lawn mower
with a force of 30 lb exerted at an angle of 30� to the

v � i � 13 j

v � h�12

2
, �
12

2
i

0 v 0 � 13, u � 300°0 v 0 � 4, u � 10°

0 v 0 � 800, u � 125°0 v 0 � 1, u � 225°

0 v 0 � 50, u � 120°0 v 0 � 40, u � 30°

u � 8�6,69, v � 8�2,�19u � 810,�19, v � 8�2,�29u � �2i � 3j, v � i � 2j

u � 2i � j, v � 3i � 2j

0 u 0 � 0 v 0 0 u � v 00 u � v 00 12v 00 2u 00 v 00 u 0 u � i � j,  v � i � ju � 2i, v � 3i � 2j

u � i,  v � �2 j

u � 80, �19, v � 8�2, 09u � 8�2, 59, v � 82, �89u � 82, 79,  v � 83, 19

So the resultant force F is

The resultant force F is shown in Figure 18. ■

8.4 Exercises

� �10i � 17j

� 1512 � 1013 2 i � 1512 � 10 2 j� 1512i � 512j 2 � 1�1013i � 10j 2F � F1 � F2

y

x0

F¤ F⁄

P

F

Figure 18
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ground. Find the horizontal and vertical components of the
force.

40. Components of a Velocity A jet is flying in a direction
N 20 � E with a speed of 500 mi/h. Find the north and east
components of the velocity.

41. Velocity A river flows due south at 3 mi/h. A swimmer 
attempting to cross the river heads due east swimming at 
2 mi/h relative to the water. Find the true velocity of the
swimmer as a vector.

42. Velocity A migrating salmon heads in the direction 
N 45 � E, swimming at 5 mi/h relative to the water. The 
prevailing ocean currents flow due east at 3 mi/h. Find the
true velocity of the fish as a vector.

43. True Velocity of a Jet A pilot heads his jet due east. The
jet has a speed of 425 mi/h relative to the air. The wind is
blowing due north with a speed of 40 mi/h.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a
vector in component form.

(c) Find the true velocity of the jet as a vector.

(d) Find the true speed and direction of the jet.

44. True Velocity of a Jet A jet is flying through a wind 
that is blowing with a speed of 55 mi/h in the direction 
N 30 � E (see the figure). The jet has a speed of 765 mi/h 
relative to the air, and the pilot heads the jet in the direction
N 45 � E.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a
vector in component form.

(c) Find the true velocity of the jet as a vector.

2 mi/h

3 mi/h

(d) Find the true speed and direction of the jet.

45. True Velocity of a Jet Find the true speed and direction
of the jet in Exercise 44 if the pilot heads the plane in the 
direction N 30� W.

46. True Velocity of a Jet In what direction should the pilot
in Exercise 44 head the plane for the true course to be due
north?

47. Velocity of a Boat A straight river flows east at a speed
of 10 mi/h. A boater starts at the south shore of the river and
heads in a direction 60� from the shore (see the figure). The
motorboat has a speed of 20 mi/h relative to the water.

(a) Express the velocity of the river as a vector in compo-
nent form.

(b) Express the velocity of the motorboat relative to the 
water as a vector in component form.

(c) Find the true velocity of the motorboat.

(d) Find the true speed and direction of the motorboat.

48. Velocity of a Boat The boater in Exercise 47 wants to 
arrive at a point on the north shore of the river directly 
opposite the starting point. In what direction should the 
boat be headed?

49. Velocity of a Boat A boat heads in the direction N 72� E.
The speed of the boat relative to the water is 24 mi/h. The
water is flowing directly south. It is observed that the true
direction of the boat is directly east.

(a) Express the velocity of the boat relative to the water as
a vector in component form.

60*

N

N

30°

45°
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8.5 The Dot Product

In this section we define an operation on vectors called the dot product. This concept is
especially useful in calculus and in applications of vectors to physics and engineering.

The Dot Product of Vectors

We begin by defining the dot product of two vectors.

(b) Find the speed of the water and the true speed of the
boat.

50. Velocity A woman walks due west on the deck of an
ocean liner at 2 mi/h. The ocean liner is moving due north at
a speed of 25 mi/h. Find the speed and direction of the
woman relative to the surface of the water.

51–56 ■ Equilibrium of Forces The forces F1, F2, . . . , Fn

acting at the same point P are said to be in equilibrium if the 
resultant force is zero, that is, if F1 � F2 � . . . � Fn � 0. Find
(a) the resultant forces acting at P, and (b) the additional force
required (if any) for the forces to be in equilibrium.

51. F1 � �2, 5�, F2 � �3, �8�

52. F1 � �3, �7�, F2 � �4, �2�, F3 � ��7, 9�

53. F1 � 4i � j, F2 � 3i � 7 j, F3 � �8i � 3 j,
F4 � i � j

54. F1 � i � j, F2 � i � j, F3 � �2i � j

55.

56. y

x

P

0

F¤

F‹
F⁄

F›

1 3 5

2

4

y

x

F⁄

0

10

60*

8

6

F¤

F‹

30*

20*

57. Equilibrium of Tensions A 100-lb weight hangs from a
string as shown in the figure. Find the tensions T1 and T2 in
the string.

58. Equilibrium of Tensions The cranes in the figure are lift-
ing an object that weighs 18,278 lb. Find the tensions T1

and T2.

Discovery • Discussion

59. Vectors That Form a Polygon Suppose that n vectors
can be placed head to tail in the plane so that they form a
polygon. (The figure shows the case of a hexagon.) Explain
why the sum of these vectors is 0.

41.5*22.3*

T⁄ T¤

100

50* 30*

T⁄ T¤
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Thus, to find the dot product of u and v we multiply corresponding components and
add. The dot product is not a vector; it is a real number, or scalar.

Example 1 Calculating Dot Products

(a) If u � �3, �2� and v � �4, 5� then

(b) If u � 2i � j and v � 5i � 6 j, then

■

The proofs of the following properties of the dot product follow easily from the
definition.

u # v � 12 2 15 2 � 11 2 1�6 2 � 4

u # v � 13 2 14 2 � 1�2 2 15 2 � 2

Definition of the Dot Product

If u � �a1, b1� and v � �a2, b2� are vectors, then their dot product, denoted
by u�v, is defined by

u # v � a1a2 � b1b2

Properties of the Dot Product

1.

2.

3.

4. 0 u 0 2 � u # u
1u � v 2 # w � u # w � v # w
1au 2 # v � a1u # v 2 � u # 1av 2u # v � v # u

■ Proof We prove only the last property. The proofs of the others are left as 
exercises. Let u � �a, b�. Then

■

Let u and v be vectors and sketch them with initial points at the origin. We define
the angle u between u and v to be the smaller of the angles formed by these repre-
sentations of u and v (see Figure 1). Thus, 0 
 u 
 p. The next theorem relates the
angle between two vectors to their dot product.

u # u � 8a, b9 # 8a, b9 � a 2 � b 2 � 0 u 0 2

The Dot Product Theorem

If u is the angle between two nonzero vectors u and v, then

u # v � 0 u 0 0 v 0 cos u

y

x0

v

u
¨

Figure 1
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■ Proof The proof is a nice application of the Law of Cosines. Applying the
Law of Cosines to triangle AOB in Figure 2 gives

Using the properties of the dot product, we write the left-hand side as follows:

Equating the right-hand sides of the displayed equations, we get

This proves the theorem. ■

The Dot Product Theorem is useful because it allows us to find the angle between
two vectors if we know the components of the vectors. The angle is obtained simply
by solving the equation in the Dot Product Theorem for cos u. We state this important
result explicitly.

u # v � 0 u 0 0 v 0 cos u

�21u # v 2 � �2 0 u 0 0 v 0 cos u

0 u 0 2 � 21u # v 2 � 0 v 0 2 � 0 u 0 2 � 0 v 0 2 � 2 0 u 0 0 v 0 cos u

� 0 u 0 2 � 21u # v 2 � 0 v 0 2� u # u � u # v � v # u � v # v
0 u � v 0 2 � 1u � v 2 # 1u � v 2
0 u � v 0 2 � 0 u 0 2 � 0 v 0 2 � 2 0 u 0 0 v 0 cos u

y

x0

v

u
¨

u-v

B

A

Figure 2

Angle between Two Vectors

If u is the angle between two nonzero vectors u and v, then

cos u �
u # v0 u 0 0 v 0

Example 2 Finding the Angle between Two Vectors

Find the angle between the vectors u � �2, 5� and v � �4, �3�.

Solution By the formula for the angle between two vectors, we have

Thus, the angle between u and v is

■

Two nonzero vectors u and v are called perpendicular, or orthogonal, if the
angle between them is p/2. The following theorem shows that we can determine if
two vectors are perpendicular by finding their dot product.

u � cos�1 a �7

5129
b � 105.1°

cos u �
u # v0 u 0 0 v 0 �

12 2 14 2 � 15 2 1�3 2
14 � 25116 � 9

�
�7

5129

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if and only if u �v � 0.
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■ Proof If u and v are perpendicular, then the angle between them is p/2 and so

Conversely, if u �v � 0, then

Since u and v are nonzero vectors, we conclude that cos u � 0, and so u � p/2.
Thus, u and v are orthogonal. ■

Example 3 Checking Vectors for Perpendicularity

Determine whether the vectors in each pair are perpendicular.

(a) u � �3, 5� and v � �2, �8� (b) u � �2, 1� and v � ��1, 2�

Solution

(a) , so u and v are not perpendicular.

(b) , so u and v are perpendicular. ■

The Component of u Along v

The component of u along v (or the component of u in the direction of v) is defined
to be

where u is the angle between u and v. Figure 3 gives a geometric interpretation of this
concept. Intuitively, the component of u along v is the magnitude of the portion of u
that points in the direction of v. Notice that the component of u along v is negative if
p/2 � u 
 p.

When analyzing forces in physics and engineering, it’s often helpful to express 
a vector as a sum of two vectors lying in perpendicular directions. For example,
suppose a car is parked on an inclined driveway as in Figure 4. The weight of the car
is a vector w that points directly downward. We can write

where u is parallel to the driveway and v is perpendicular to the driveway. The vector
u is the force that tends to roll the car down the driveway, and v is the force experienced

w � u � v

v

u

¨

|u| cos ¨

v

u
¨

|u| cos ¨Figure 3

0 u 0 cos u

u # v � 12 2 1�1 2 � 11 2 12 2 � 0

u # v � 13 2 12 2 � 15 2 1�8 2 � �34 � 0

0 u 0 0 v 0  cos u � 0

u # v � 0 u 0 0 v 0  cos 
p

2
� 0

Note that the component of u along v is
a scalar, not a vector.
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by the surface of the driveway. The magnitudes of these forces are the components of
w along u and v, respectively.

Example 4 Resolving a Force into Components

A car weighing 3000 lb is parked on a driveway that is inclined 15� to the hori-
zontal, as shown in Figure 5.

(a) Find the magnitude of the force required to prevent the car from rolling down
the driveway.

(b) Find the magnitude of the force experienced by the driveway due to the weight
of the car.

Solution The car exerts a force w of 3000 lb directly downward. We resolve w
into the sum of two vectors u and v, one parallel to the surface of the driveway and
the other perpendicular to it, as shown in Figure 5.

(a) The magnitude of the part of the force w that causes the car to roll down the
driveway is

Thus, the force needed to prevent the car from rolling down the driveway is
about 776 lb.

(b) The magnitude of the force exerted by the car on the driveway is

The force experienced by the driveway is about 2898 lb. ■

The component of u along v can be computed using dot products:

We have shown the following.

0 u 0 cos u �
0 v 0 0 u 0 cos u0 v 0 �

u # v0 v 0

0 v 0 � component of w along v � 3000 cos 15° � 2898

0 u 0 � component of w along u � 3000 cos 75° � 776

u

w

v

u

w v
u

w

v

w

Figure 4

u
15*

15*

75*

w v

Figure 5

Calculating Components

The component of u along v is .
u # v0 v 0
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Example 5 Finding Components

Let u � �1, 4� and v � ��2, 1�. Find the component of u along v.

Solution We have

■

The Projection of u onto v

Figure 6 shows representations of the vectors u and v. The projection of u onto v, de-
noted by projv u, is the vector whose direction is the same as v and whose length is
the component of u along v. To find an expression for projv u, we first find a unit vec-
tor in the direction of v and then multiply it by the component of u along v.

We often need to resolve a vector u into the sum of two vectors, one parallel to v
and one orthogonal to v. That is, we want to write u � u1 � u2 where u1 is parallel
to v and u2 is orthogonal to v. In this case, u1 � projv u and u2 � u � projv u (see
Exercise 37).

� a u # v0 v 0 b v0 v 0 � a u # v0 v 0 2 bv

 projv u � 1component of u along v 2 1unit vector in direction of v 2

component of u along v �
u # v0 v 0 �

11 2 1�2 2 � 14 2 11 2
14 � 1

�
2

15

v

u

projv u

v

u

projv u

Figure 6

Calculating Projections

The projection of u onto v is the vector projv u given by

If the vector u is resolved into u1 and u2, where u1 is parallel to v and u2 is
orthogonal to v, then

u1 � projv u  and  u2 � u � projv u

projv u � a u # v0 v 0 2 bv

Example 6 Resolving a Vector into Orthogonal Vectors

Let u � ��2, 9� and v � ��1, 2�.
(a) Find projv u.

(b) Resolve u into u1 and u2, where u1 is parallel to v and u2 is orthogonal to v.

Solution

(a) By the formula for the projection of one vector onto another we have

Formula for projection

Definition of u and v

� 4 8�1, 29 � 8�4, 89� a 8�2, 99 # 8�1, 291�1 2 2 � 22 b 8�1, 29
 projv u � a u # v0 v 0 2 bv
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(b) By the formula in the preceding box we have u � u1 � u2, where

From part (a)

■

Work

One use of the dot product occurs in calculating work. In everyday use, the term work
means the total amount of effort required to perform a task. In physics, work has a tech-
nical meaning that conforms to this intuitive meaning. If a constant force of magnitude
F moves an object through a distance d along a straight line, then the work done is

If F is measured in pounds and d in feet, then the unit of work is a foot-pound (ft-lb).
For example, how much work is done in lifting a 20-lb weight 6 ft off the ground?
Since a force of 20 lb is required to lift this weight and since the weight moves
through a distance of 6 ft, the amount of work done is

This formula applies only when the force is directed along the direction of motion. In
the general case, if the force F moves an object from P to Q, as in Figure 7, then only
the component of the force in the direction of affects the object. Thus, the
effective magnitude of the force on the object is

So, the work done is

We have derived the following simple formula for calculating work.

W � force � distance � 1 0 F 0  cos u 2 0 D 0 � 0 F 0 0 D 0  cos u � F # D

component of F along D � 0 F 0  cos u

D � PQ
!

W � Fd � 120 2 16 2 � 120 ft-lb

W � Fd  or  work � force � distance

u2 � u � projv u � 8�2, 99 � 8�4, 89 � 82, 19u1 � projv u � 8�4, 89

F

¨

D|F| cos ¨

R

P
Q

Figure 7

Work

The work W done by a force F in moving along a vector D is

W � F # D

Example 7 Calculating Work

A force is given by the vector F � �2, 3� and moves an object from the point 
to the point . Find the work done.

Solution The displacement vector is

So the work done is

If the unit of force is pounds and the distance is measured in feet, then the work
done is 26 ft-lb. ■

W � F # D � 82, 39 # 84, 69 � 26

D � 85 � 1, 9 � 39 � 84, 69
15, 9 2 11, 3 2
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1–8 ■ Find (a) u � v and (b) the angle between u and v to the
nearest degree.

1. u � �2, 0�, v � �1, 1�

2.

3. u � �2, 7�, v � �3, 1�

4. u � ��6, 6�, v � �1, �1�

5. u � �3, �2�, v � �1, 2�

6. u � 2i � j, v � 3i � 2 j

7.

8. u � i � j, v � i � j

9–14 ■ Determine whether the given vectors are orthogonal.

9. u � �6, 4�, v � ��2, 3� 10. u � �0, �5�, v � �4, 0�

11. u � ��2, 6�, v � �4, 2� 12. u � 2i, v � �7j

13. u � 2i � 8 j, v � �12i � 3j

14. u � 4i, v � �i � 3j

15–18 ■ Find the indicated quantity, assuming 
u � 2i � j, v � i � 3 j, and w � 3i � 4 j.

15. u�v � u�w 16.

17. 18. 1u # v 2 1u # w 21u � v 2 # 1u � v 2 u # 1v � w 2

u � �5j, v � �i � 13j

u � i � 13 j, v � �13 i � j

19–22 ■ Find the component of u along v.

19. u � �4, 6�, v � �3, �4�

20.

21. u � 7i � 24 j, v � j

22. u � 7i, v � 8i � 6 j

23–28 ■ (a) Calculate projv u. (b) Resolve u into u1 and u2,
where u1 is parallel to v and u2 is orthogonal to v.

23. u � ��2, 4�, v � �1, 1�

24. u � �7, �4�, v � �2, 1�

25. u � �1, 2�, v � �1, �3�

26. u � �11, 3�, v � ��3, �2�

27. u � �2, 9�, v � ��3, 4�

28. u � �1, 1�, v � �2, �1�

29–32 ■ Find the work done by the force F in moving an object
from P to Q.

29. F � 4i � 5 j;

30. F � 400i � 50 j;

31. F � 10i � 3 j;

32. F � �4i � 20 j; P10,10 2 , Q15,25 2P12, 3 2 , Q16, �2 2P1�1, 1 2 , Q1200, 1 2P10, 0 2 , Q13, 8 2

u � 8�3, 59, v � 81/12, 1/129

Example 8 Calculating Work

A man pulls a wagon horizontally by exerting a force of 20 lb on the handle. If the
handle makes an angle of 60� with the horizontal, find the work done in moving the
wagon 100 ft.

Solution We choose a coordinate system with the origin at the initial position of
the wagon (see Figure 8). That is, the wagon moves from the point to the
point . The vector that represents this displacement is

The force on the handle can be written in terms of components (see Section 8.4) as

Thus, the work done is

■

8.5 Exercises

W � F # D � 110 i � 1013j 2 # 1100 i 2 � 1000 ft-lb

F � 120 cos 60° 2 i � 120 sin 60° 2 j � 10 i � 1013j

D � 100 i

Q1100, 0 2 P10, 0 2Q(100, 0)

y

xP(0, 0)

60*

Figure 8
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33–36 ■ Let u, v, and w be vectors and let a be a scalar. Prove
the given property.

33. u�v � v�u

34.

35.

36.

37. Show that the vectors projv u and u � projv u are
orthogonal.

38. Evaluate v�projv u.

Applications

39. Work The force F � 4i � 7j moves an object 4 ft along
the x-axis in the positive direction. Find the work done if the
unit of force is the pound.

40. Work A constant force F � �2, 8� moves an object along a
straight line from the point to the point . Find
the work done if the distance is measured in feet and the
force is measured in pounds.

41. Work A lawn mower is pushed a distance of 200 ft along
a horizontal path by a constant force of 50 lb. The handle of
the lawn mower is held at an angle of 30� from the horizontal
(see the figure). Find the work done.

42. Work A car drives 500 ft on a road that is inclined 12�
to the horizontal, as shown in the figure. The car weighs
2500 lb. Thus, gravity acts straight down on the car with a
constant force F � �2500j. Find the work done by the car
in overcoming gravity.

43. Force A car is on a driveway that is inclined 25� to the
horizontal. If the car weighs 2755 lb, find the force required
to keep it from rolling down the driveway.

12*

_2500j

30*

111, 13 212, 5 2

1u � v 2 # 1u � v 2 � 0 u 0 2 � 0 v 0 21u � v 2 # w � u # w � v # w
1au 2 # v � a1u # v 2 � u # 1av 2

44. Force A car is on a driveway that is inclined 10� to the
horizontal. A force of 490 lb is required to keep the car from
rolling down the driveway.

(a) Find the weight of the car.

(b) Find the force the car exerts against the driveway.

45. Force A package that weighs 200 lb is placed on an 
inclined plane. If a force of 80 lb is just sufficient to keep
the package from sliding, find the angle of inclination of 
the plane. (Ignore the effects of friction.)

46. Force A cart weighing 40 lb is placed on a ramp inclined
at 15� to the horizontal. The cart is held in place by a rope
inclined at 60� to the horizontal, as shown in the figure. Find
the force that the rope must exert on the cart to keep it from
rolling down the ramp.

Discovery • Discussion

47. Distance from a Point to a Line Let L be the line 
2x � 4y � 8 and let P be the point .

(a) Show that the points and lie on L.

(b) Let and , as shown in the figure. Find
w � projv u.

(c) Sketch a graph that explains why is the 
distance from P to L. Find this distance.

(d) Write a short paragraph describing the steps you 
would take to find the distance from a given point 
to a given line.

y

x

P

0

u

v
Q R

L

0 u � w 0
v � QR

!
u � QP

! R12, 1 2Q10, 2 2 13, 4 2

15*

60*



Sailing Against the Wind

Sailors depend on the wind to propel their boats. But what if the wind is blow-
ing in a direction opposite to that in which they want to travel? Although it is 
obviously impossible to sail directly against the wind, it is possible to sail at an
angle into the wind. Then by tacking, that is, zig-zagging on alternate sides of
the wind direction, a sailor can make headway against the wind (see Figure 1).

How should the sail be aligned to propel the boat in the desired direction into
the wind? This question can be answered by modeling the wind as a vector and
studying its components along the keel and the sail.

For example, suppose a sailboat headed due north has its sail inclined in the
direction N 20� E. The wind is blowing into the sail in the direction S 45� W
with a force of magnitude F (see Figure 2).

1. Show that the effective force of the wind on the sail is F sin 25�. You can do
this by finding the components of the wind parallel to the sail and perpen-
dicular to the sail. The component parallel to the sail slips by and does not
propel the boat. Only the perpendicular component pushes against the sail.

2. If the keel of the boat is aligned due north, what fraction of the force F actu-
ally drives the boat forward? Only the component of the force found in Prob-
lem 1 that is parallel to the keel drives the boat forward.

(In real life, other factors, including the aerodynamic properties of the sail,
influence the speed of the sailboat.)

3. If a boat heading due north has its sail inclined in the direction N a� E,
and the wind is blowing with force F in the direction S b� W where 
0 � a � b � 180, find a formula for the magnitude of the force that 
actually drives the boat forward.

Figure 1

Tacking
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1–6 ■ A point is given in polar coordinates.
(a) Plot the point P. (b) Find rectangular coordinates for P.

1. 2.

3. 4.

5. 6.

7–12 ■ A point is given in rectangular coordinates.

(a) Plot the point P.

(b) Find polar coordinates for P with r � 0.

(c) Find polar coordinates for P with r 
 0.

7. 8.

9. 10.

11. 12. 14, �4 21�3, 13 2 1313, 3 21�612, �612 2 1�12, 16 218, 8 2
P1x, y 2 A�612, �p

4 BA413, � 5p
3 B A�13, 2p

3 BA�3, 7p
4 B A8, � 3p

4 BA12, p6 B
P1r, u 2 13–16 ■ (a) Convert the equation to polar coordinates and 

simplify. (b) Graph the equation. [Hint: Use the form of the
equation that you find easier to graph.]

13. x � y � 4 14. xy � 1

15. x 2 � y 2 � 4x � 4y 16.

17–24 ■ (a) Sketch the graph of the polar equation. 
(b) Express the equation in rectangular coordinates.

17. r � 3 � 3 cos u 18. r � 3 sin u

19. r � 2 sin 2u 20. r � 4 cos 3u

21. r 2 � sec 2u 22. r 2 � 4 sin 2u

23. r � sin u � cos u 24. r �
4

2 � cos u

1x 2 � y 2 2 2 � 2xy

1. Describe how polar coordinates represent the position of a
point in the plane.

2. (a) What equations do you use to change from polar to
rectangular coordinates?

(b) What equations do you use to change from rectangular
to polar coordinates?

3. How do you sketch the graph of a polar equation ?

4. What type of curve has a polar equation of the given form?

(a) r � a cos u or r � a sin u

(b)

(c) r � a � b cos u or r � a � b sin u

(d) r � a cos nu or r � a sin nu

5. How do you graph a complex number z? What is the polar
form of a complex number z? What is the modulus of z?
What is the argument of z?

6. (a) How do you multiply two complex numbers if they are
given in polar form?

(b) How do you divide two such numbers?

7. (a) State DeMoivre’s Theorem.

(b) How do you find the nth roots of a complex 
number?

r � a11 � cos u 2 or r � a11 � sin u 2
r � f1u 2

8. (a) What is the difference between a scalar and a vector?

(b) Draw a diagram to show how to add two vectors.

(c) Draw a diagram to show how to subtract two vectors.

(d) Draw a diagram to show how to multiply a vector by
the scalars 2, , �2, and .

9. If u � �a1, b1�, v � �a2, b2� and c is a scalar, write expres-
sions for u � v, u � v, cu, and .

10. (a) If v � �a, b�, write v in terms of i and j.

(b) Write the components of v in terms of the magnitude
and direction of v.

11. If u � �a1, b1� and v � �a2, b2�, what is the dot product u�v?

12. (a) How do you use the dot product to find the angle 
between two vectors?

(b) How do you use the dot product to determine whether
two vectors are perpendicular?

13. What is the component of u along v, and how do you 
calculate it?

14. What is the projection of u onto v, and how do you 
calculate it?

15. How much work is done by the force F in moving an object
along a displacement D?

0 u 0
� 1

2
1
2

8 Review

Concept Check
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50. An airplane heads N 60� E at a speed of 600 mi/h relative to
the air. A wind begins to blow in the direction N 30� W at 
50 mi/h.

(a) Find the velocity of the airplane as a vector.

(b) Find the true speed and direction of the airplane.

51–54 ■ Find , u � u, and u � v.

51. u � �4, �3�, v � �9, �8�

52. u � �5, 12�, v � �10, �4�

53. u � �2i � 2 j, v � i � j

54. u � 10 j, v � 5i � 3 j

55–58 ■ Are u and v orthogonal? If not, find the angle between
them.

55. u � ��4, 2�, v � �3, 6�

56. u � �5, 3�, v � ��2, 6�

57. u � 2i � j, v � i � 3 j

58. u � i � j, v � i � j

59–60 ■ The vectors u and v are given.

(a) Find the component of u along v.

(b) Find projv u.

(c) Resolve u into the vectors u1 and u2, where u1 is parallel to
v and u2 is perpendicular to v.

59. u � �3, 1�, v � �6, �1�

60. u � ��8, 6�, v � �20, 20�

61. Find the work done by the force F � 2i � 9 j in moving an
object from the point to the point .

62. A force F with magnitude 250 lb moves an object in the 
direction of the vector D a distance of 20 ft. If the work
done is 3800 ft-lb, find the angle between F and D.

17, �1 211, 1 2

0 u 0

30°

60°

50 mi/h

600 mi/h

628 CHAPTER 8 Polar Coordinates and Vectors

25–28 ■ Use a graphing device to graph the polar equation.
Choose the domain of u to make sure you produce the entire
graph.

25. 26.

27.

28. r � u sin u, �6p 
 u 
 6p

29–34 ■ A complex number is given.

(a) Graph the complex number in the complex plane.

(b) Find the modulus and argument.

(c) Write the number in polar form.

29. 4 � 4i 30. �10i

31. 5 � 3i 32.

33. �1 � i 34. �20

35–38 ■ Use DeMoivre’s Theorem to find the indicated power.

35. 36.

37. 38.

39–42 ■ Find the indicated roots.

39. The square roots of �16i

40. The cube roots of 

41. The sixth roots of 1 42. The eighth roots of i

43–44 ■ Find , u � v, u � v, 2u, and 3u � 2v.

43. u � ��2, 3�, v � �8, 1� 44. u � 2i � j, v � i � 2 j

45. Find the vector u with initial point and terminal
point .

46. Find the vector u having length � 20 and direction 
u � 60 �.

47. If the vector 5i � 8 j is placed in the plane with its initial
point at , find its terminal point.

48. Find the direction of the vector 2i � 5 j.

49. Two tugboats are pulling a barge, as shown. One pulls with
a force of 2.0 � 104 lb in the direction N 50� E and the other
with a force of 3.4 � 104 lb in the direction S 75° E.

(a) Find the resultant force on the barge as a vector.

(b) Find the magnitude and direction of the resultant force.

P15, 6 2
0 u 0Q13, �1 2 P10, 3 2

0 u 0
4 � 413 i

a 1

2
�
13

2
i b 20113 � i 2�4

11 � i 2 811 � 13 i 2 4
1 � 13 i

r � 1 � 4 cos1u/3 2 r � sin19u/4 2r � cos1u/3 2



8 Test

1. (a) Convert the point whose polar coordinates are to rectangular coordinates.

(b) Find two polar coordinate representations for the rectangular coordinate point
, one with r 	 0 and one with r � 0, and both with 0 
 u � 2p.

2. (a) Graph the polar equation r � 8 cos u. What type of curve is this?

(b) Convert the equation to rectangular coordinates.

3. Let .

(a) Graph z in the complex plane.

(b) Write z in polar form.

(c) Find the complex number z 9.

4. Let .

Find z1z2 and .

5. Find the cube roots of 27i, and sketch these roots in the complex plane.

6. Let u be the vector with initial point and terminal point .

(a) Express u in terms of i and j.

(b) Find the length of u.

7. Let u � �1, 3� and v � ��6, 2�.
(a) Find u � 3v. (b) Find .

(c) Find u � v. (d) Are u and v perpendicular?

8. Let .

(a) Graph u with initial point .

(b) Find the length and direction of u.

9. A river is flowing due east at 8 mi/h. A man heads his motorboat in a direction N 30� E
in the river. The speed of the motorboat relative to the water is 12 mi/h.

(a) Express the true velocity of the motorboat as a vector.

(b) Find the true speed and direction of the motorboat.

10. Let u � 3i � 2 j and v � 5i � j.

(a) Find the angle between u and v.

(b) Find the component of u along v.

(c) Find projv u.

11. Find the work done by the force F � 3i � 5 j in moving an object from the point 12, 22
to the point .17, �13 2

10, 0 2u � 8�413, 49
0 u � v 0

Q1�3, 9 2P13, �1 2
z1

z2

z1 � 4 a cos
7p

12
� i sin 

7p

12
b and z2 � 2 a cos

5p

12
� i sin 

5p

12
b

z � 1 � 13 i

1�6, 213 2
18, 5p/4 2
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The method used to survey and map a town (page 522) works well for small areas.
But mapping the whole world would introduce a new difficulty: How do we represent
the spherical world by a flat map? Several ingenious methods have been developed.

Cylindrical Projection

One method is the cylindrical projection. In this method we imagine a cylinder
“wrapped” around the earth at the equator as in Figure 1. Each point on the earth 
is projected onto the cylinder by a ray emanating from the center of the earth. The
“unwrapped” cylinder is the desired flat map of the world. The process is illustrated
in Figure 2.

Of course, we cannot actually wrap a large piece of paper around the world, so this
whole process must be done mathematically, and the tool we need is trigonometry.
On the unwrapped cylinder we take the x-axis to correspond to the equator and the 
y-axis to the meridian through Greenwich, England (0� longitude). Let R be the radius
of the earth and let P be the point on the earth at a� E longitude and b� N latitude. The
point P is projected to the point on the cylinder (viewed as part of the coor-
dinate plane) where

Formula for length of a circular arc

Definition of tangent

See Figure 2(a). These formulas can then be used to draw the map. (Note that 
West longitude and South latitude correspond to negative values of a and b, re-
spectively.) Of course, using R as the radius of the earth would produce a huge 

y � R tan b

x � a p
180
baR

P¿ 1x,y 2

(a) Cylindrical projection (b) Cylindrical projection map

y
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y
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C
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y
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Figure 1

Point P on the earth is projected
onto point P� on the cylinder 
by a ray from the center of the
earth C.

Figure 2



map, so we replace R by a smaller value to get a map at an appropriate scale as in 
Figure 2(b).

Stereographic Projection

In the stereographic projection we imagine the earth placed on the coordinate plane
with the south pole at the origin. Points on the earth are projected onto the plane by
rays emanating from the north pole (see Figure 3). The earth is placed so that the
prime meridian (0� longitude) corresponds to the polar axis. As shown in Figure 4(a),
a point P on the earth at a� E longitude and b� N latitude is projected onto the point

whose polar coordinates are

Figure 4(b) shows how the first of these formulas is obtained

Figure 5 shows a stereographic map of the southern hemisphere.

Figure 5

Stereographic projection of the southern hemisphere

(a) (b)Stereographic projection Cross-section of
stereographic projection

P

P

S

N

∫+90*

R

R

r

(∫+90*)
1
2

Cequator

∫

r
P'

P
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N

R
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C

polar axis

prime meridian
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å

u � a

r � 2R tan a b
2

� 45°bP¿ 1r, u 2
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Point P on the earth’s surface is
projected onto point P� on the plane by
a ray from the north pole.



Problems

1. Cylindrical Projection A map maker wishes to map the earth using a cylindrical
projection. The map is to be 36 inches wide. Thus, the equator is mapped onto a hori-
zontal 36-inch line segment. The radius of the earth is 3960 miles.

(a) What value of R should he use in the cylindrical projection formulas?

(b) How many miles does one inch on the map represent at the equator?

2. Cylindrical Projection To map the entire world using the cylindrical projection, the
cylinder must extend infinitely far in the vertical direction. So a practical cylindrical map
cannot extend all the way to the poles. The map maker in Problem 1 decides that his map
should show the earth between 70� N and 70� S latitudes. How tall should his map be?

3. Cylindrical Projection The map maker in Problem 1 places the y-axis (0� longitude)
at the center of the map as shown in Figure 2(b). Find the x- and y-coordinates of the 
following cities on the map.

(a) Seattle, Washington; 47.6� N, 122.3� W

(b) Moscow, Russia; 55.8� N, 37.6� E

(c) Sydney, Australia; 33.9� S, 151.2� E

(d) Rio de Janeiro, Brazil; 22.9� S, 43.1� W

4. Stereographic Projection A map maker makes a stereographic projection of the
southern hemisphere, from the south pole to the equator. The map is to have a radius of
20 in.

(a) What value of R should he use in the stereographic projection formulas?

(b) Find the polar coordinates of Sydney, Australia (33.9� S, 151.2� E) on his map.

5– 6 ■ The cylindrical projection stretches distances between points not on the equator— the
farther from the equator, the more the distances are stretched. In these problems we find the
factors by which distances are distorted on the cylindrical projection at various locations.

5. Projected Distances Find the ratio of the projected distance on the cylinder to the
actual distance on the sphere between the given latitudes along a meridian (see the figure
at the left).

(a) Between 20� and 21� N latitude

(b) Between 40� and 41� N latitude

(c) Between 80� and 81� N latitude

6. Projected Distances Find the ratio of the projected distance on the cylinder to the
distance on the sphere along the given parallel of latitude between two points that are 1�
longitude apart (see the figure below).

(a) 20� N latitude

(b) 40� N latitude

(c) 80� N latitude

632 Focus on Modeling632 Focus on Modeling



7–8 ■ The stereographic projection also stretches distances—the farther from the south pole,
the more distances are stretched. In these problems we find the factors by which distances are
distorted on the stereographic projection at various locations.

7. Projected Distances Find the ratio of the projected distance on the plane to the 
actual distance on the sphere between the given latitudes along a meridian (see the figure
at the left).

(a) Between 20� and 21� S latitude

(b) Between 40� and 41� S latitude

(c) Between 80� and 81� S latitude

8. Projected Distances Find the ratio of the projected distance on the plane to the 
distance on the sphere along the given parallel of latitude between two points that are 
1 � longitude apart (see the figure).

(a) 20� S latitude

(b) 40� S latitude

(c) 80� S latitude

9. Lines of Latitude and Longitude In this project we see how projection transfers
lines of latitude and longitude from a sphere to a flat surface. You will need a round glass
bowl, tracing paper, and a light source (a small transparent light bulb). Use a black
marker to draw equally spaced lines of latitude and longitude on the outside of the bowl.

(a) To model the stereographic projection, place the bowl on a sheet of tracing paper
and use the light source as shown in the figure at the left.

(b) To model the cylindrical projection, wrap the tracing paper around the bowl and use
the light source as shown in the figure below.

10. Other Projections There are many other map projections, such as the Albers Conic
Projection, the Azimuthal Projection, the Behrmann Cylindrical Equal-Area Projec-
tion, the Gall Isographic and Orthographic Projections, the Gnomonic Projection, the 
Lambert Equal-Area Projection, the Mercator Projection, the Mollweide Projection, the
Rectangular Projection, and the Sinusoidal Projection. Research one of these projections
in your library or on the Internet and write a report explaining how the map is constructed,
and describing its advantages and disadvantages.
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9 Systems of Equations
and Inequalities



Chapter Overview

Many real-world situations have too many variables to be modeled by a single equa-
tion. For example, weather depends on many variables, including temperature, wind
speed, air pressure, humidity, and so on. So to model (and forecast) the weather,
scientists use many equations, each having many variables. Such systems of equations
work together to describe the weather. Systems of equations with hundreds or even
thousands of variables are also used extensively in the air travel and telecommunica-
tions industries to establish consistent airline schedules and to find efficient routing
for telephone calls. To understand how such systems arise, let’s consider the follow-
ing simple example.

A gas station sells regular gas for $2.20 per gallon and premium for $3.00 per 
gallon. At the end of a business day 280 gallons of gas were sold and receipts totaled
$680. How many gallons of each type of gas were sold? If we let x and y be the num-
ber of gallons of regular and premium gasoline sold, respectively, we get the follow-
ing system of two equations:

These equations work together to help us find x and y; neither equation alone can tell
us the value of x or y. The values x � 200 and y � 80 satisfy both equations, so they
form a solution of the system. Thus, the station sold 200 gallons of regular and 
80 gallons of premium.

We can also represent a linear system by a rectangular array of numbers called a
matrix. The augmented matrix of the above system is:

The augmented matrix contains the same information as the system, but in a simpler
form. One of the important ideas in this chapter is to think of a matrix as a single 
object, so we denote a matrix by a single letter, such as A, B, C, and so on. We can 
add, subtract, and multiply matrices, just as we do ordinary numbers. We will pay
special attention to matrix multiplication—it’s defined in a way (which may seem

c 1 1 280

2.20 3.00 680
d

Gallons equation
Dollars equation

e x � y � 280

2.20x � 3.00y � 680
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9.5 The Algebra of Matrices
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9.7 Determinants and Cramer’s Rule
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We can solve this system graphically.
The point lies on the graph 
of each equation, so it satisfies both
equations.

1200, 80 2

Gallons equation

Dollars equation

x y

(200, 80)

y

x

50

x+y=280

50

0

2.2x+3.0y=680



complicated at first) that makes it possible to write a linear system as a single matrix
equation

where X is the unknown matrix. As you will see, solving this matrix equation for the
matrix X is analogous to solving the algebraic equation ax � b for the number x.

In this chapter we consider many uses of matrices, including applications to 
population growth (Will the Species Survive? page 688) and to computer graphics 
(Computer Graphics I, page 700).

9.1 Systems of Equations

In this section we study how to solve systems of two equations in two unknowns. We
learn three different methods of solving such systems: by substitution, by elimina-
tion, and graphically.

Systems of Equations and Their Solutions

A system of equations is a set of equations that involve the same variables. A solu-
tion of a system is an assignment of values for the variables that makes each equa-
tion in the system true. To solve a system means to find all solutions of the system.

Here is an example of a system of two equations in two variables:

We can check that x � 3 and y � 1 is a solution of this system.

Equation 1 Equation 2

The solution can also be written as the ordered pair .
Note that the graphs of Equations 1 and 2 are lines (see Figure 1). Since the solu-

tion satisfies each equation, the point lies on each line. So it is the point
of intersection of the two lines.

Figure 1

(3, 1)

1 3

2x-y=5

1

0

x+4y=7

y

x

13, 1 213, 1 2 13, 1 23 � 411 2 � 7213 2 � 1 � 5

x � 4y � 72x � y � 5

Equation 1
Equation 2

e2x � y � 5

x � 4y � 7

AX � B
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Substitution Method

In the substitution method we start with one equation in the system and solve for one
variable in terms of the other variable. The following box describes the procedure.

SECTION 9.1 Systems of Equations 637

Substitution Method

1. Solve for One Variable. Choose one equation and solve for one variable
in terms of the other variable.

2. Substitute. Substitute the expression you found in Step 1 into the other
equation to get an equation in one variable, then solve for that variable.

3. Back-Substitute. Substitute the value you found in Step 2 back into the
expression found in Step 1 to solve for the remaining variable.

Example 1 Substitution Method

Find all solutions of the system.

Solution We solve for y in the first equation.

Solve for y in Equation 1

Now we substitute for y in the second equation and solve for x:

Substitute y � 1 � 2x into Equation 2

Expand

Simplify

Subtract 4

Solve for x

Next we back-substitute x � �2 into the equation y � 1 � 2x:

Back-substitute

Thus, x � �2 and y � 5, so the solution is the ordered pair . Figure 2 shows
that the graphs of the two equations intersect at the point .

Figure 2
■

(_2, 5)

y

x

1

2x+y=1

3x+4y=14

1

0

1�2, 5 21�2, 5 2y � 1 � 21�2 2 � 5

x � �2

�5x � 10

�5x � 4 � 14

 3x � 4 � 8x � 14

 3x � 411 � 2x 2 � 14

y � 1 � 2x

Equation 1
Equation 2

e2x � y � 1

3x � 4y � 14

Check Your Answer

x � �2, y � 5:e21�22 � 5 � 1

31�22 � 4152 � 14

Solve for one variable

Substitute

Back-substitute



Example 2 Substitution Method

Find all solutions of the system.

Solution We start by solving for y in the second equation.

Solve for y in Equation 2

Next we substitute for y in the first equation and solve for x:

Expand

Simplify

Factor

Solve for x

Now we back-substitute these values of x into the equation y � 3x � 10.

Back-substitute

Back-substitute

So we have two solutions: and .
The graph of the first equation is a circle, and the graph of the second equation 

is a line; Figure 3 shows that the graphs intersect at the two points 
and .16, 8 2 10, �10 216, 8 210, �10 2For x � 6:  y � 316 2 � 10 � 8

For x � 0:  y � 310 2 � 10 � �10

x � 0  or  x � 6

 10x1x � 6 2 � 0

 10x 2 � 60x � 0

x 2 � 19x 2 � 60x � 100 2 � 100

Substitute y � 3x � 10
into Equation 1x 2 � 13x � 10 2 2 � 100

y � 3x � 10

Equation 1
Equation 2

e x 2 � y 2 � 100

3x � y � 10
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Check Your Answers

x � 0, y � �10:

x � 6, y � 8:e 16 2 2 � 18 2 2 � 36 � 64 � 100

316 2 � 18 2 � 18 � 8 � 10

e 10 2 2 � 1�10 2 2 � 100

310 2 � 1�10 2 � 10

(6, 8)

(0, _10)

y

x60

6

≈+¥=100

3x-y=10
Figure 3

Solve for one variable

Substitute

Back-substitute

Elimination Method

To solve a system using the elimination method, we try to combine the equations 
using sums or differences so as to eliminate one of the variables.

■



Example 3 Elimination Method

Find all solutions of the system.

Solution Since the coefficients of the y-terms are negatives of each other, we can
add the equations to eliminate y.

System

Add

Solve for x

Now we back-substitute x � 4 into one of the original equations and solve for y.
Let’s choose the second equation because it looks simpler.

Equation 2

Back-substitute x � 4 into Equation 2

Subtract 4

Solve for y

The solution is . Figure 4 shows that the graphs of the equations in the system
intersect at the point . ■

Example 4 Elimination Method

Find all solutions of the system.

Solution We choose to eliminate the x-term, so we multiply the first equation by
5 and the second equation by �3. Then we add the two equations and solve for y.

5 � Equation 1

(�3) � Equation 2

Add

Solve for yy � �11

�11y � 121

e 15x 2 � 10y � 130
�15x 2 � 21y � �9

Equation 1
Equation 2

e3x 2 � 2y � 26

5x 2 � 7y � 3

14, 1 214, 1 2 y � 1

�2y � �2

 4 � 2y � 2

x � 2y � 2

x � 4

 4x    � 16

e3x � 2y � 14
x � 2y � 2

Equation 1
Equation 2

e3x � 2y � 14

x � 2y � 2
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Elimination Method

1. Adjust the Coefficients. Multiply one or more of the equations by 
appropriate numbers so that the coefficient of one variable in one equation is
the negative of its coefficient in the other equation.

2. Add the Equations. Add the two equations to eliminate one variable,
then solve for the remaining variable.

3. Back-Substitute. Substitute the value you found in Step 2 back into one
of the original equations, and solve for the remaining variable.

(4, 1)

y

x

1

7

x-2y=2

3x+2y=14

1

0

Figure 4



Now we back-substitute y � �11 into one of the original equations, say 
3x2 � 2y � 26, and solve for x:

Back-substitute y � �11 into Equation 1

Add 22

Divide by 3

Solve for x

So we have two solutions: and .
The graphs of both equations are parabolas; Figure 5 shows that the graphs inter-

sect at the two points and . ■

Check Your Answers

x � �4, y � �11: x � 4, y � �11:

Graphical Method

In the graphical method we use a graphing device to solve the system of equations.
Note that with many graphing devices, any equation must first be expressed in terms
of one or more functions of the form before we can use the calculator to
graph it. Not all equations can be readily expressed in this way, so not all systems can
be solved by this method.

y � f 1x 2

e31422 � 21�112 � 26

51422 � 71�112 � 3
e31�422 � 21�112 � 26

51�422 � 71�112 � 3

14, �11 21�4, �11 2 14, �11 21�4, �11 2x � �4  or  x � 4

x 2 � 16

 3x 2 � 48

 3x 2 � 21�11 2 � 26
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(4, _11)

y

x

2

3≈+2y=26

5

0

(_4, _11)

5≈+7y=3

Figure 5

The graphs of quadratic functions 
y � ax2 � bx � c are called parabolas;
see Section 2.5.

Graphical Method

1. Graph Each Equation. Express each equation in a form suitable for the
graphing calculator by solving for y as a function of x. Graph the equations
on the same screen.

2. Find the Intersection Points. The solutions are the x- and 
y-coordinates of the points of intersection.

It may be more convenient to solve for x in terms of y in the equations. In that case,
in Step 1 graph x as a function of y instead.

Example 5 Graphical Method

Find all solutions of the system.

Solution Solving for y in terms of x, we get the equivalent systeme y � x 2 � 2

y � 2x � 1

e x 2 � y � 2

2x � y � �1



Figure 6 shows that the graphs of these equations intersect at two points. Zooming
in, we see that the solutions are

■

Check Your Answers

x � �1, y � �1: x � 3, y � 7:

Example 6 Solving a System of Equations Graphically

Find all solutions of the system, correct to one decimal place.

Solution The graph of the first equation is a circle and the second a parabola. 
To graph the circle on a graphing calculator, we must first solve for y in terms 
of x (see Section 2.3).

Isolate y2 on LHS

Take square roots

To graph the circle, we must graph both functions:

In Figure 7 the graph of the circle is shown in red and the parabola in blue. The
graphs intersect in quadrants I and II. Zooming in, or using the Intersect com-
mand, we see that the intersection points are and .
There also appears to be an intersection point in quadrant IV. However, when we
zoom in, we see that the curves come close to each other but don’t intersect (see
Figure 8). Thus, the system has two solutions; correct to the nearest tenth, they are

Figure 7 Figure 8

x2 � y2 � 12, y � 2x2 � 5x Zooming in ■

0.5 2.0

_4

_25

_5

_7 7

(b)

Intersection
X=2.8467004  Y=1.973904

5

_5

_7 7

(a)

Intersection
X=-.5588296  Y=3.4187292

1�0.6, 3.4 2  and  12.8, 2.0 2
12.847, 1.974 21�0.559, 3.419 2

y � 212 � x 2  and  y � �212 � x 2

y � �212 � x 2

y 2 � 12 � x 2

x 2 � y 2 � 12

Equation 1
Equation 2

e x 2 � y 2 � 12

y � 2x 2 � 5x

e 32 � 7 � 2

213 2 � 7 � �1
e 1�1 2 2 � 1�1 2 � 2

21�1 2 � 1�1 2 � �1

1�1, �1 2  and  13, 7 2
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8

_3

_3 4

≈-y=2

(3, 7)

(_1, _1)

2x-y=_1

Figure 6
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1–8 ■ Use the substitution method to find all solutions of the
system of equations.

1. 2.

3. 4.

5. 6.

7. 8.

9–16 ■ Use the elimination method to find all solutions of the
system of equations.

9. 10.

11. 12.

13. 14.

15. 16.

17–22 ■ Two equations and their graphs are given. Find the 
intersection point(s) of the graphs by solving the system.

17. 18.

19. 20.

1

0 2

y

x

1

0 1

y

x

e x � y 2 � �4

x � y � 2
e x 2 � y � 8

x � 2y � �6

1

1

0

y

x

1

1

y

x0

e x � y � 2

2x � y � 5
e 2x � y � �1

x � 2y � �8

e x2 � y 2 � 1

2x 2 � y 2 � x � 3
e x � y 2 � 3 � 0

2x 2 � y 2 � 4 � 0

e2x 2 � 4y � 13

x 2 � y 2 � 7
2

e3x2 � y2 � 11

x2 � 4y2 � 8

e 3x 2 � 4y � 17

2x 2 � 5y � 2
e x 2 � 2y � 1

x 2 � 5y � 29

e4x � 3y � 11

8x � 4y � 12
e x � 2y � 5

2x � 3y � 8

e x2 � y � 1

2x 2 � 3y � 17
e x � y 2 � 0

2x � 5y 2 � 75

e x 2 � y � 9

x � y � 3 � 0
e x 2 � y 2 � 8

x � y � 0

e x 2 � y 2 � 25

y � 2x
e y � x 2

y � x � 12

e2x � y � 7

x � 2y � 2
e x � y � 2

2x � 3y � 9

21. 22.

23–36 ■ Find all solutions of the system of equations.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–46 ■ Use the graphical method to find all solutions of the
system of equations, correct to two decimal places.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46. e y � ex � e�x

y � 5 � x 2e x 4 � 16y 4 �    32

x 2 � 2x � y � 0

e x 2 � y 2 � 3

y � x 2 � 2x � 8• x 2

9
�

y 2

18
� 1

y � �x 2 � 6x � 2

e x 2 � y 2 � 17

x 2 � 2x � y 2 � 13
e x 2 � y 2 � 25

x � 3y � 2

e y � x 2 � 4x

2x � y � 2
e y � x 2 � 8x

y � 2x � 16

e y � �2x � 12

y � x � 3
e y � 2x � 6

y � �x � 5

µ 4

x 2 �
6

y 4 �
7

2

1

x 2 �
2

y 4 � 0

µ 2
x

�
3
y

� 1

�
4
x

�
7
y

� 1

e x 4 � y 3 � 17

3x 4 � 5y 3 � 53
e2x 2 � 8y 3 � 19

4x 2 � 16y 3 � 34

e x 2 � 2y 2 � 2

2x 2 � 3y � 15
e x 2 � y 2 � 9

x 2 � y 2 � 1

e x � 1y � 0

y2 � 4x2 � 12
e x 2y � 16

x 2 � 4y � 16 � 0

e xy � 24

2x 2 � y 2 � 4 � 0
e x � y � 4

xy � 12

e y � 4 � x 2

y � x 2 � 4
e x � 2y � 2

y 2 � x 2 � 2x � 4

e x � y 2 � 0

y � x 2 � 0
e y � x 2 � 4x

y � 4x � 16

0 1

1

y

x

0

1
1

y

x

e x 2 � y 2 � 4x

x � y 2e x 2 � y � 0

x 3 � 2x � y � 0

9.1 Exercises
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Applications

47. Dimensions of a Rectangle A rectangle has an area of
180 cm2 and a perimeter of 54 cm. What are its dimensions?

48. Legs of a Right Triangle A right triangle has an area of
84 ft2 and a hypotenuse 25 ft long. What are the lengths of
its other two sides?

49. Dimensions of a Rectangle The perimeter of a rect-
angle is 70 and its diagonal is 25. Find its length and width.

50. Dimensions of a Rectangle A circular piece of sheet
metal has a diameter of 20 in. The edges are to be cut off to
form a rectangle of area 160 in2 (see the figure). What are
the dimensions of the rectangle?

51. Flight of a Rocket A hill is inclined so that its “slope” is
, as shown in the figure. We introduce a coordinate system

with the origin at the base of the hill and with the scales on
the axes measured in meters. A rocket is fired from the base
of the hill in such a way that its trajectory is the parabola
y � �x2 � 401x. At what point does the rocket strike the
hillside? How far is this point from the base of the hill (to
the nearest cm)?

52. Making a Stovepipe A rectangular piece of sheet metal
with an area of 1200 in2 is to be bent into a cylindrical
length of stovepipe having a volume of 600 in3. What are
the dimensions of the sheet metal?

x

y

run
rise

=
1
2

rise
run

x

y

0

1
2

53. Global Positioning System (GPS) The Global 
Positioning System determines the location of an object
from its distances to satellites in orbit around the earth. 
In the simplified, two-dimensional situation shown in 
the figure, determine the coordinates of P from the fact 
that P is 26 units from satellite A and 20 units from 
satellite B.

Discovery • Discussion

54. Intersection of a Parabola and a Line On a sheet 
of graph paper, or using a graphing calculator, draw the
parabola y � x 2. Then draw the graphs of the linear equa-
tion y � x � k on the same coordinate plane for various 
values of k. Try to choose values of k so that the line and 
the parabola intersect at two points for some of your k’s,
and not for others. For what value of k is there exactly one
intersection point? Use the results of your experiment to
make a conjecture about the values of k for which the 
following system has two solutions, one solution, and no 
solution. Prove your conjecture.

55. Some Trickier Systems Follow the hints and solve the
systems.

(a) [Hint: Add the equations.]

(b)

(c)

(d)
[Hint: Add the equations 
and factor the result.]

e x 2 � xy � 1

xy � y 2 � 3

[Hint: Factor the left side 
of the second equation.]

e x � y � 3

x 3 � y 3 � 387

e2x � 2y � 10

4x � 4y � 68

e log x � log y � 3
2

2 log x � log y � 0

e y � x 2

y � x � k

P(x, y)

20

26
B(28, 20)

A(22, 32)

y

x

Planet

[Hint: Note that 
.]4x � 22x � 12x 2 2



9.2 Systems of Linear Equations 
in Two Variables

Recall that an equation of the form Ax � By � C is called linear because its graph is
a line (see Section 1.10). In this section we study systems of two linear equations in
two variables.

Systems of Linear Equations in Two Variables

A system of two linear equations in two variables has the form

We can use either the substitution method or the elimination method to solve such
systems algebraically. But since the elimination method is usually easier for linear
systems, we use elimination rather than substitution in our examples.

The graph of a linear system in two variables is a pair of lines, so to solve the sys-
tem graphically, we must find the intersection point(s) of the lines. Two lines may in-
tersect in a single point, they may be parallel, or they may coincide, as shown in
Figure 1. So there are three possible outcomes when solving such a system.

e a1x � b1y � c1

a2x � b2y � c2
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Number of Solutions of a Linear System in Two Variables

For a system of linear equations in two variables, exactly one of the following
is true. (See Figure 1.)

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system that has no solution is said to be inconsistent. A system with infinitely
many solutions is called dependent.

Figure 1

0 x

y

0 x

y

0 x

y

Linear system with one solution.
Lines intersect at a single point.

(a) Linear system with no solution.
Lines are parallel—they do
not intersect.

(b) Linear system with infinitely many
solutions. Lines coincide—equations
are for the same line.

(c)



Example 1 A Linear System with One Solution

Solve the system and graph the lines.

Equation 1
Equation 2

Solution We eliminate y from the equations and solve for x.

Now we back-substitute into the first equation and solve for y:

Back-substitute x � 2

Subtract 6 � 2 � 12

Solve for y

The solution of the system is the ordered pair , that is,

The graph in Figure 2 shows that the lines in the system intersect at the 
point . ■

Example 2 A Linear System with No Solution

Solve the system.

Solution This time we try to find a suitable combination of the two equations 
to eliminate the variable y. Multiplying the first equation by 3 and the second by 
2 gives

Adding the two equations eliminates both x and y in this case, and we end up with 
0 � 29, which is obviously false. No matter what values we assign to x and y, we
cannot make this statement true, so the system has no solution. Figure 3 shows 
that the lines in the system are parallel and do not intersect. The system is 
inconsistent. ■

Example 3 A Linear System with Infinitely Many Solutions

Solve the system.

Equation 1
Equation 2

e3x � 6y � 12

4x � 8y � 16

3 � Equation 1
2 � Equation 2

Add

b 24x � 6y � 15

�24x � 6y � 14

0 � 29

Equation 1
Equation 2

e 8x � 2y � 5

�12x � 3y � 7

12, 6 2
x � 2,  y � 6

12, 6 2y � 6

�2y � �12

 612 2 � 2y � 0

2 � Equation 1

Add
Solve for x

e 6x � 2y � 0

5x � 2y � 22

11x � 22

x � 2

e3x � y � 0

5x � 2y � 22
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3x-y=0y

x2

6

5x+2y=22

(2, 6)

Figure 2

Check Your Answer

:e312 2 � 16 2 � 0

512 2 � 216 2 � 22

x � 2, y � 6

8x-2y=5

1

1

_12x+3y=7

x0

y

Figure 3



Solution We multiply the first equation by 4 and the second by 3 to prepare for
subtracting the equations to eliminate x. The new equations are

We see that the two equations in the original system are simply different ways 
of expressing the equation of one single line. The coordinates of any point on this
line give a solution of the system. Writing the equation in slope-intercept form,
we have . So if we let t represent any real number, we can write the 
solution as

We can also write the solution in ordered-pair form as

where t is any real number. The system has infinitely many solutions (see Figure 4).
■

In Example 3, to get specific solutions we have to assign values to t. For instance,
if t � 1, we get the solution . If t � 4, we get the solution . For every
value of t we get a different solution. (See Figure 4.)

Modeling with Linear Systems

Frequently, when we use equations to solve problems in the sciences or in other ar-
eas, we obtain systems like the ones we’ve been considering. When modeling with
systems of equations, we use the following guidelines, similar to those in Section 1.6.

14, 0 2A1, � 3
2B

1t, 1
2 t � 2 2

y � 1
2 t � 2

x � t

y � 1
2 x � 2

4 � Equation 1
3 � Equation 2

e12x � 24y � 48

12x � 24y � 48
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Guidelines for Modeling with Systems of Equations

1. Identify the Variables. Identify the quantities the problem asks you to
find. These are usually determined by a careful reading of the question posed
at the end of the problem. Introduce notation for the variables (call them x
and y or some other letters).

2. Express All Unknown Quantities in Terms of the Variables. Read
the problem again and express all the quantities mentioned in the problem in
terms of the variables you defined in Step 1.

3. Set Up a System of Equations. Find the crucial facts in the problem
that give the relationships between the expressions you found in Step 2. Set
up a system of equations (or a model) that expresses these relationships.

4. Solve the System and Interpret the Results. Solve the system you
found in Step 3, check your solutions, and state your final answer as a 
sentence that answers the question posed in the problem.

(t, t-2)

1

1

1
2

x0

y

t = 4

t = 1

Figure 4

The next two examples illustrate how to model with systems of equations.



Example 4 A Distance-Speed-Time Problem

A woman rows a boat upstream from one point on a river to another point 4 mi
away in hours. The return trip, traveling with the current, takes only 45 min. How
fast does she row relative to the water, and at what speed is the current flowing?

Solution We are asked to find the rowing speed and the speed of the current, so
we let

x � rowing speed (mi/h)

y � current speed (mi/h)

The woman’s speed when she rows upstream is her rowing speed minus the speed
of the current; her speed downstream is her rowing speed plus the speed of the 
current. Now we translate this information into the language of algebra.

In Words In Algebra

Rowing speed x
Current speed y
Speed upstream x � y
Speed downstream x � y

The distance upstream and downstream is 4 mi, so using the fact that
speed � time � distance for both legs of the trip, we get

� �

� �

In algebraic notation this translates into the following equations.

Equation 1

Equation 2

(The times have been converted to hours, since we are expressing the speeds in
miles per hour.) We multiply the equations by 2 and 4, respectively, to clear the 
denominators.

Add

Solve for x

Back-substituting this value of x into the first equation (the second works just as
well) and solving for y gives

Back-substitute x � 4

Subtract 12

Solve for y

The woman rows at 4 mi/h and the current flows at mi/h. ■11
3

y � 4
3

�3y � 8 � 12

 314 2 � 3y � 8

x     � 4

6x     � 24

2 � Equation 1
4 � Equation 2

e3x � 3y � 8

3x � 3y � 16

1x � y 2 34 � 4

1x � y 2 32 � 4

distance traveledtime downstreamspeed downstream

distance traveledtime upstreamspeed upstream

11
2
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current

4 mi

Check Your Answer

Speed upstream is

mi/h

and this should equal

� 4 mi/h � mi/h � 2 mi/h
Speed downstream is

mi/h

and this should equal

rowing speed � current flow
� 4 mi/h � mi/h � 5 mi/h1

3
4
3

distance

time
�

4 mi
3
4 h

� 51
3

2
3

4
3

rowing speed � current flow

distance

time
�

4 mi

11
2 h

� 22
3

Identify the variables

Express unknown quantities in
terms of the variable

Set up a system of equations

Solve the system



Example 5 A Mixture Problem

A vintner fortifies wine that contains 10% alcohol by adding 70% alcohol 
solution to it. The resulting mixture has an alcoholic strength of 16% and fills 
1000 one-liter bottles. How many liters (L) of the wine and of the alcohol 
solution does he use?

Solution Since we are asked for the amounts of wine and alcohol, we let

From the fact that the wine contains 10% alcohol and the solution 70% alcohol, we
get the following.

In Words In Algebra

Amount of wine used (L) x
Amount of alcohol solution used (L) y
Amount of alcohol in wine (L) 0.10x
Amount of alcohol in solution (L) 0.70y

The volume of the mixture must be the total of the two volumes the vintner is adding
together, so

Also, the amount of alcohol in the mixture must be the total of the alcohol contributed
by the wine and by the alcohol solution, that is

Simplify

Multiply by 10 to clear decimals

Thus, we get the system

Subtracting the first equation from the second eliminates the variable x, and 
we get

Subtract Equation 1 from Equation 2

Solve for y

We now back-substitute y � 100 into the first equation and solve for x:

Back-substitute y � 100

Solve for x

The vintner uses 900 L of wine and 100 L of the alcohol solution. ■

x � 900

x � 100 � 1000

y � 100

 6y � 600

Equation 1
Equation 2

e x � y � 1000

x � 7y � 1600

x � 7y � 1600

 0.10x � 0.70y � 160

 0.10x � 0.70y � 10.16 21000

x � y � 1000

y � amount of alcohol solution used 1L 2x � amount of wine used 1L 2
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Identify the variables

Express all unknown quantities in
terms of the variable

Set up a system of equations

Solve the system
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1–6 ■ Graph each linear system, either by hand or using a
graphing device. Use the graph to determine if the system has
one solution, no solution, or infinitely many solutions. If there is
exactly one solution, use the graph to find it.

1. 2.

3. 4.

5. 6.

7–34 ■ Solve the system, or show that it has no solution. 
If the system has infinitely many solutions, express them in the
ordered-pair form given in Example 3.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. e 3
2 x � 1

3 y � 1
2

2x � 1
2 y � � 1

2

e 1
2 x � 3

5 y � 3
5
3 x � 2y � 10

e u � 30√ � �5

�3u � 80√ � 5
e8s � 3t � �3

5s � 2t � �1

e 25x � 75y � 100

�10x � 30y � �40
e6x � 4y � 12

9x � 6y � 18

e 2x � 3y � �8

14x � 21y � 3
e 2x � 6y � 10

�3x � 9y � �15

e�3x � 5y � 2

9x � 15y � 6
e x � 4y � 8

3x � 12y � 2

e4x � 2y � 16

x � 5y � 70
e 3x � 2y � 8

�6x � 4y � 16

e 0.2x � 0.2y � �1.8

�0.3x � 0.5y � 3.3
e 1

2 x � 1
3 y � 2

1
5 x � 2

3 y � 8

e�4x � 12y � 0

12x � 4y � 160
e x � 2y � 7

5x � y � 2

e4x � 3y � 28

9x � y � �6
e�x � y � 2

4x � 3y � �3

e x � y � 7

2x � 3y � �1
e x � 3y � 5

2x � y � 3

e 3x � 2y � 0

�x � 2y � 8
e2x � 3y � 9

4x � 3y � 9

e x � y � 3

x � 3y � 7
e x � y � 4

�x � y � 0

e12x � 15y � �18

2x � 5
2 y � �3

e�x � 1
2 y � �5

2x � y � 10

e 2x � 6y � 0

�3x � 9y � 18
e 2x � 3y � 12

�x � 3
2 y � 4

e2x � y � 11

x � 2y � 4
e x � y � 4

2x � y � 2

31. 32.

33. 34.

35–38 ■ Use a graphing device to graph both lines in the same
viewing rectangle. (Note that you must solve for y in terms of x
before graphing if you are using a graphing calculator.) Solve
the system correct to two decimal places, either by zooming in
and using or by using Intersect.

35.

36.

37.

38.

39–42 ■ Find x and y in terms of a and b.

39.

40.

41.

42.

Applications

43. Number Problem Find two numbers whose sum is 34
and whose difference is 10.

44. Number Problem The sum of two numbers is twice their
difference. The larger number is 6 more than twice the
smaller. Find the numbers.

45. Value of Coins A man has 14 coins in his pocket, all of
which are dimes and quarters. If the total value of his
change is $2.75, how many dimes and how many quarters
does he have?

46. Admission Fees The admission fee at an amusement
park is $1.50 for children and $4.00 for adults. On a certain
day, 2200 people entered the park, and the admission fees

e ax � by � 0

a2x � b2y � 1
  1a � 0, b � 0, a � b 2

eax � by � 1

bx � ay � 1
  1a2 � b2 � 0 2

eax � by � 0

x � y � 1
  1a � b 2

e x � y � 0

x � ay � 1
  1a � 1 2

e�435x � 912y � 0

132x � 455y � 994

e2371x � 6552y � 13,591

9815x � 992y � 618,555

e18.72x � 14.91y � 12.33

6.21x � 12.92y � 17.82

e0.21x � 3.17y � 9.51

2.35x � 1.17y � 5.89

TRACE

e� 1
10 x � 1

2 y � 4

2x � 10y � �80
e 1

3 x � 1
4 y � 2

�8x � 6y � 10

e 26x � 10y � �4

�0.6x � 1.2y � 3
e0.4x � 1.2y � 14

12x � 5y � 10

9.2 Exercises
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collected totaled $5050. How many children and how many
adults were admitted?

47. Airplane Speed A man flies a small airplane from Fargo
to Bismarck, North Dakota—a distance of 180 mi. Because
he is flying into a head wind, the trip takes him 2 hours. On
the way back, the wind is still blowing at the same speed, so
the return trip takes only 1 h 12 min. What is his speed in
still air, and how fast is the wind blowing?

48. Boat Speed A boat on a river travels downstream be-
tween two points, 20 mi apart, in one hour. The return trip
against the current takes hours. What is the boat’s speed,
and how fast does the current in the river flow?

49. Aerobic Exercise A woman keeps fit by bicycling and
running every day. On Monday she spends hour at each
activity, covering a total of mi. On Tuesday, she runs for
12 min and cycles for 45 min, covering a total of 16 mi. 
Assuming her running and cycling speeds don’t change
from day to day, find these speeds.

50. Mixture Problem A biologist has two brine solutions,
one containing 5% salt and another containing 20% salt.
How many milliliters of each solution should he mix to 
obtain 1 L of a solution that contains 14% salt?

51. Nutrition A researcher performs an experiment to test a
hypothesis that involves the nutrients niacin and retinol. She
feeds one group of laboratory rats a daily diet of precisely
32 units of niacin and 22,000 units of retinol. She uses two
types of commercial pellet foods. Food A contains 0.12 unit
of niacin and 100 units of retinol per gram. Food B contains
0.20 unit of niacin and 50 units of retinol per gram. How
many grams of each food does she feed this group of rats
each day?

121
2

1
2

current

20 mi

21
2

Bismarck
180 mi

Fargo

wind

52. Coffee Mixtures A customer in a coffee shop purchases 
a blend of two coffees: Kenyan, costing $3.50 a pound,
and Sri Lankan, costing $5.60 a pound. He buys 3 lb of the
blend, which costs him $11.55. How many pounds of each
kind went into the mixture?

53. Mixture Problem A chemist has two large containers 
of sulfuric acid solution, with different concentrations of
acid in each container. Blending 300 mL of the first solution
and 600 mL of the second gives a mixture that is 15% acid,
whereas 100 mL of the first mixed with 500 mL of the sec-
ond gives a acid mixture. What are the concentra-
tions of sulfuric acid in the original containers?

54. Investments A woman invests a total of $20,000 in two
accounts, one paying 5% and the other paying 8% simple
interest per year. Her annual interest is $1180. How much
did she invest at each rate?

55. Investments A man invests his savings in two accounts,
one paying 6% and the other paying 10% simple interest per
year. He puts twice as much in the lower-yielding account
because it is less risky. His annual interest is $3520. How
much did he invest at each rate?

56. Distance, Speed, and Time John and Mary leave their
house at the same time and drive in opposite directions.
John drives at 60 mi/h and travels 35 mi farther than Mary,
who drives at 40 mi/h. Mary’s trip takes 15 min longer than
John’s. For what length of time does each of them drive?

57. Number Problem The sum of the digits of a two-digit
number is 7. When the digits are reversed, the number is 
increased by 27. Find the number.

58. Area of a Triangle Find the area of the triangle that lies
in the first quadrant (with its base on the x-axis) and that is
bounded by the lines y � 2x � 4 and y � �4x � 20.

Discovery • Discussion

59. The Least Squares Line The least squares line or 
regression line is the line that best fits a set of points in the plane.
We studied this line in Focus on Modeling (see page 240). Using
calculus, it can be shown that the line that best fits the n data

y=2x-4

0 x

y

y=_4x+20

121
2%
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points is the line y � ax � b, where
the coefficients a and b satisfy the following pair of linear equa-
tions. [The notation stands for the sum of all the x’s. See
Section 11.1 for a complete description of sigma notation.]

a an
k�1

x2
k b a � a an

k�1
xk bb � a

n

k�1
xkyk

a an
k�1

xkba � nb � a
n

k�1
yk

1g 2g n
k�1xk

1x1, y1 2 , 1x2, y2 2 , . . . ,1xn, yn 2 Use these equations to find the least squares line for the follow-
ing data points.

Sketch the points and your line to confirm that the line fits these
points well. If your calculator computes regression lines, see
whether it gives you the same line as the formulas.

11, 32 , 12, 52 , 13, 62 , 15, 62 , 17, 92

9.3 Systems of Linear Equations 
in Several Variables

A linear equation in n variables is an equation that can be put in the form

where a1, a2, . . . , an and c are real numbers, and x1, x2, . . . , xn are the variables. If
we have only three or four variables, we generally use x, y, z, and „ instead of x1, x2,
x3, and x4. Such equations are called linear because if we have just two variables the
equation is a1x � a2y � c, which is the equation of a line. Here are some examples
of equations in three variables that illustrate the difference between linear and 
nonlinear equations.

Linear equations Nonlinear equations

In this section we study systems of linear equations in three or more variables.

Solving a Linear System

The following are two examples of systems of linear equations in three variables. The
second system is in triangular form; that is, the variable x doesn’t appear in the sec-
ond equation and the variables x and y do not appear in the third equation.

A system of linear equations A system in triangular form

It’s easy to solve a system that is in triangular form using back-substitution. So,
our goal in this section is to start with a system of linear equations and change it to a

• x � 2y � z � 1

y � 2z � 5

z � 3

• x � 2y � z � 1

�x � 3y � 3z � 4

2x � 3y � z � 10

x1x2 � 6x3 � �6x � y � z � 2„ � 1
2

x2 � 3y � 1z � 56x1 � 3x2 � 15x3 � 10

a1x1 � a2x2 � . . . � anxn � c

Not linear because it contains
the square and the square 
root of a variable.

Not linear because it contains
a product of variables.



system in triangular form that has the same solutions as the original system. We be-
gin by showing how to use back-substitution to solve a system that is already in 
triangular form.

Example 1 Solving a Triangular System Using 

Back-Substitution

Solve the system using back-substitution:

Solution From the last equation we know that z � 3. We back-substitute this
into the second equation and solve for y.

Back-substitute z � 3 into Equation 2

Solve for y

Then we back-substitute y � �1 and z � 3 into the first equation and solve for x.

Back-substitute y � �1 and z � 3 into Equation 1

Solve for x

The solution of the system is x � 2, y � �1, z � 3. We can also write the solution
as the ordered triple . ■

To change a system of linear equations to an equivalent system (that is, a system
with the same solutions as the original system), we use the elimination method. This
means we can use the following operations.

12, �1, 3 2
x � 2

x � 21�1 2 � 13 2 � 1

y � �1

y � 213 2 �   5

Equation 1
Equation 2
Equation 3

• x � 2y � z � 1

y � 2z � 5

z � 3
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Operations That Yield an Equivalent System

1. Add a nonzero multiple of one equation to another.

2. Multiply an equation by a nonzero constant.

3. Interchange the positions of two equations.

To solve a linear system, we use these operations to change the system to an equiv-
alent triangular system. Then we use back-substitution as in Example 1. This process
is called Gaussian elimination.

Example 2 Solving a System of Three Equations

in Three Variables

Solve the system using Gaussian elimination.

Equation 1
Equation 2
Equation 3

• x � 2y � 3z � 1

x � 2y � z � 13

3x � 2y � 5z � 3

Pierre de Fermat (1601–1665)
was a French lawyer who became
interested in mathematics at the
age of 30. Because of his job as a
magistrate, Fermat had little time
to write complete proofs of his 
discoveries and often wrote them
in the margin of whatever book he
was reading at the time. After his
death, his copy of Diophantus’
Arithmetica (see page 20) was
found to contain a particularly 
tantalizing comment. Where Dio-
phantus discusses the solutions of
x2 � y2 � z2 (for example, x � 3,
y � 4, z � 5), Fermat states in the
margin that for n � 3 there are no
natural number solutions to the
equation xn � yn � zn. In other
words, it’s impossible for a cube 
to equal the sum of two cubes, a
fourth power to equal the sum of
two fourth powers, and so on. 
Fermat writes “I have discovered a
truly wonderful proof for this but
the margin is too small to contain
it.” All the other margin comments
in Fermat’s copy of Arithmetica
have been proved. This one, how-
ever, remained unproved, and it
came to be known as “Fermat’s
Last Theorem.”

In 1994, Andrew Wiles of
Princeton University announced a
proof of Fermat’s Last Theorem,
an astounding 350 years after it
was conjectured. His proof is one
of the most widely reported mathe-
matical results in the popular press.



Solution We need to change this to a triangular system, so we begin by eliminat-
ing the x-term from the second equation.

This gives us a new, equivalent system that is one step closer to triangular form:

Now we eliminate the x-term from the third equation.

Equation 3 � (�3) � Equation 1 � new Equation 3

Then we eliminate the y-term from the third equation.

Equation 3 � (�2) � Equation 1 � new Equation 3

The system is now in triangular form, but it will be easier to work with if we divide
the second and third equations by the common factors of each term.

� Equation 2 � new Equation 2
� Equation 3 � new Equation 3

Now we use back-substitution to solve the system. From the third equation we get 
z � 4. We back-substitute this into the second equation and solve for y.

Back-substitute z � 4 into Equation 2

Solve for y

Then we back-substitute y � 7 and z � 4 into the first equation and solve for x.

Back-substitute y � 7 and z � 4 into Equation 1

Solve for x

The solution of the system is x � 3, y � 7, z � 4, which we can write as the 
ordered triple (3, 7, 4). ■

Check Your Answer

We must check that the answer satisfies all three equations, x � 3, y � 7, z � 4:

 313 2 � 217 2 � 514 2 � 3

13 2 � 217 2 � 14 2 � 13

13 2 � 217 2 � 314 2 � 1

x � 3

x � 217 2 � 314 2 � 1

y � 7

y � 14 2 � 3

� 1
6

1
4• x � 2y � 3z � 1

y � z � 3

z � 4

• x � 2y � 3z � 1

4y � 4z � 12

�6z � �24

• x � 2y � 3z � 1

4y � 4z � 12

8y � 14z � 0

Equation 1
Equation 2
Equation 3

• x � 2y � 3z � 1

4y � 4z � 12

3x � 2y � 5z � 3

Equation 2
Equation 1
Equation 2 � (�1) � Equation 1 � new Equation 2

x � 2y � z � 13

x � 2y � 3z � 1

4y � 4z � 12
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8y � 14z � 0

�8y � 8z � �24

�6z � �24

3x � 2y � 5z � 3

�3x � 6y � 9z � �3

8y � 14z � 0



The Number of Solutions of a Linear System

Just as in the case of two variables, a system of equations in several variables may
have one solution, no solution, or infinitely many solutions. The graphical interpreta-
tion of the solutions of a linear system is analogous to that for systems of equations
in two variables (see the margin note).

654 CHAPTER 9 Systems of Equations and Inequalities

Number of Solutions of a Linear System

For a system of linear equations, exactly one of the following is true.

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system with no solutions is said to be inconsistent, and a system with infinitely
many solutions is said to be dependent. As we see in the next example, a linear sys-
tem has no solution if we end up with a false equation after applying Gaussian elim-
ination to the system.

Example 3 A System with No Solution

Solve the following system.

Solution To put this in triangular form, we begin by eliminating the x-terms
from the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�3) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation.

Equation 3 � (�1) � Equation 2 � new Equation 3

The system is now in triangular form, but the third equation says 0 � �2, which is
false. No matter what values we assign x, y, and z, the third equation will never be
true. This means the system has no solution. ■

• x � 2y � 2z � 1

�2y � 3z � 4

0 � �2

• x � 2y � 2z � 1

�2y � 3z � 4

�2y � 3z � 2

• x � 2y � 2z � 1

�2y � 3z � 4

3x � 4y � 3z � 5

Equation 1
Equation 2
Equation 3

• x � 2y � 2z � 1

2x � 2y � z � 6

3x � 4y � 3z � 5

Intersection of Three Planes

When you study calculus or linear 
algebra, you will learn that the graph of
a linear equation in three variables is a
plane in a three-dimensional coordinate
system. For a system of three equations
in three variables, the following situa-
tions arise:

1. The three planes intersect in a single
point.
The system has a unique solution.

2. The three planes intersect in more
than one point.
The system has infinitely many 
solutions.

3. The three planes have no point in
common.
The system has no solution.



Example 4 A System with Infinitely Many Solutions

Solve the following system.

Solution To put this in triangular form, we begin by eliminating the x-terms
from the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�2) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation.

Equation 3 � (�2) � Equation 2 � new Equation 3

The new third equation is true, but it gives us no new information, so we can drop it
from the system. Only two equations are left. We can use them to solve for x and y
in terms of z, but z can take on any value, so there are infinitely many solutions.

To find the complete solution of the system we begin by solving for y in terms 
of z, using the new second equation.

Equation 2

Multiply by 

Solve for y

Then we solve for x in terms of z, using the first equation.

Substitute into Equation 1

Simplify

Solve for x

To describe the complete solution, we let t represent any real number. The 
solution is

We can also write this as the ordered triple . ■1�3t, 2t � 2, t 2z � t

y � 2t � 2

x � �3t

x � �3z

x � 3z � 2 � �2

y � 2z � 2x � 12z � 2 2 � 5z � �2

y � 2z � 2

1
3y � 2z � 2

 3y � 6z � 6

•x �  y � 5z � �2

 3y � 6z � 6

0 � 0

• x � y � 5z � �2

3y � 6z � 6

6y � 12z � 12

• x � y � 5z � �2

3y � 6z � 6

2x � 4y � 2z � 8

Equation 1
Equation 2
Equation 3

• x � y � 5z � �2

2x � y � 4z � 2

2x � 4y � 2z � 8
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In the solution of Example 4 the variable t is called a parameter. To get a specific
solution, we give a specific value to the parameter t. For instance, if we set t � 2,
we get

Thus, is a solution of the system. Here are some other solutions of the sys-
tem obtained by substituting other values for the parameter t.

Parameter t Solution

�1
0
3

10

You should check that these points satisfy the original equations. There are 
infinitely many choices for the parameter t, so the system has infinitely many 
solutions.

Modeling Using Linear Systems

Linear systems are used to model situations that involve several varying quantities. In
the next example we consider an application of linear systems to finance.

Example 5 Modeling a Financial Problem 

Using a Linear System

John receives an inheritance of $50,000. His financial advisor suggests that he invest
this in three mutual funds: a money-market fund, a blue-chip stock fund, and a
high-tech stock fund. The advisor estimates that the money-market fund will return
5% over the next year, the blue-chip fund 9%, and the high-tech fund 16%. John
wants a total first-year return of $4000. To avoid excessive risk, he decides to invest
three times as much in the money-market fund as in the high-tech stock fund. 
How much should he invest in each fund?

Solution Let

x � amount invested in the money-market fund

y � amount invested in the blue-chip stock fund

z � amount invested in the high-tech stock fund

We convert each fact given in the problem into an equation.

Total amount invested is $50,000

Total investment return is $4000

Money-market amount is 3 � high-tech amountx � 3z

 0.05x � 0.09y � 0.16z � 4000

x � y � z � 50,000

1�30, 22, 1021�9, 8, 3210, 2, 0213, 0, �12 1�3t, 2t � 2, t 2
1�6, 6, 2 2 z � 2

y � 212 2 � 2 � 6

x � �312 2 � �6
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Mathematics in 

the Modern World

Global Positioning System

(GPS)

On a cold, foggy day in 1707, a
British naval fleet was sailing home
at a fast clip. The fleet’s navigators
didn’t know it, but the fleet was
only a few yards from the rocky
shores of England. In the ensuing
disaster the fleet was totally de-
stroyed. This tragedy could have
been avoided had the navigators
known their positions. In those
days latitude was determined by
the position of the North Star (and
this could only be done at night in
good weather) and longitude by the
position of the sun relative to where
it would be in England at that same
time. So navigation required an ac-
curate method of telling time on
ships. (The invention of the spring-
loaded clock brought about the
eventual solution.)

Since then, several different
methods have been developed to
determine position, and all rely
heavily on mathematics (see 
LORAN, page 768). The latest
method, called the Global Posi-
tioning System, uses triangulation.
In this system 24 primary satellites
are strategically located above the
surface of the earth. A hand-held
GPS device measures distance
from a satellite using the travel 

(continued)
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Multiplying the second equation by 100 and rewriting the third gives the following
system, which we solve using Gaussian elimination.

100 � Equation 2

Subtract 3z

Equation 2 � (�5) � Equation 1 � new Equation 2

Equation 3 � (�1) � Equation 1 � new Equation 3

Equation 2 � 4 � Equation 3 � new Equation 2

(�1) � Equation 3

Interchange Equations 2 and 3

Now that the system is in triangular form, we use back-substitution to find that 
x � 30,000, y � 10,000, and z � 10,000. This means that John should invest

$30,000 in the money market fund

$10,000 in the blue-chip stock fund

$10,000 in the high-tech stock fund ■

9.3 Exercises

• x � y � z � 50,000

y � 4z � 50,000

z � 10,000

1� 1
5 2 � Equation 2• x � y � z � 50,000

z � 10,000

y � 4z � 50,000

• x � y � z � 50,000

� 5z � �50,000

� y � 4z � �50,000

• x � y � z � 50,000

4y � 11z � 150,000

�y � 4z � �50,000

• x � y � z � 50,000

5x � 9y � 16z � 400,000

x � 3z � 0
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time of radio signals emitted from
the satellite. Knowing the distance
to three different satellites tells us
that we are at the point of intersec-
tion of three different spheres. This
uniquely determines our position
(see Exercise 53, page 643).

1–4 ■ State whether the equation or system of equations is 
linear.

1.

2. x 2 � y 2 � z 2 � 4

3. 4.

5–10 ■ Use back-substitution to solve the triangular system.

5. 6. • x � y � 3z � 8

y � 3z � 5

z � �1

• x � 2y � 4z � 3

y � 2z � 7

z � 2

• x � 2y � 3z � 10

2x � 5y � 2

y � 2z � 4

• xy � 3y � z � 5

x � y2 � 5z � 0

2x � yz � 3

6x � 13y � 1
2 z � 0

7.

8.

9.

10. •4x � 3z � 10

2y � z � �6
1
2 z � 4

•2x � y � 6z � 5

y � 4z � 0

�2z � 1

• x � 2y � 3z � 10

2y � z � 2

3z � 12

• x � 2y � z � 7

�y � 3z � 9

2z � 6
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11–14 ■ Perform an operation on the given system that 
eliminates the indicated variable. Write the new equivalent 
system.

11.

12.

13.

14.

15–32 ■ Find the complete solution of the linear system, or
show that it is inconsistent.

15.

16.

17.

18.

19.

20.

21. • y � 2z � 0

2x � 3y � 2

�x � 2y � z � �1

• 2x � y � z � �8

�x � y � z � 3

�2x � 4z � 18

• 2x � 4y � z � 2

x � 2y � 3z � �4

3x � y � z � 1

• x � y � 2z � 2

3x � y � 5z � 8

2x � y � 2z � �7

• x � 4z � 1

2x � y � 6z � 4

2x � 3y � 2z � 8

• x � y � z � 0

�x � 2y � 5z � 3

3x � y � 6

• x � y � z � 4

x � 3y � 3z � 10

2x � y � z � 3

Eliminate the y-term
from the third equation.• x � 4y � z � 3

y � 3z � 10

3y � 8z � 24

Eliminate the x-term
from the third equation.• 2x � y � 3z � 2

x � 2y � z � 4

�4x � 5y � z � 10

Eliminate the x-term
from the second equation.• x � y � 3z � 3

�2x � 3y � z � 2

x � y � 2z � 0

Eliminate the x-term
from the second equation.• x � 2y � z � 4

x � y � 3z � 0

2x � y � z � 0

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32. d x � y � z � „ � 0

x � y � 2z � 2„ � 0

2x � 2y � 3z � 4„ � 1

2x � 3y � 4z � 5„ � 2

d x � z � 2„ � 6

y � 2z � �3

x � 2y � z � �2

2x � y � 3z � 2„ � 0

•2x � 4y � z � 3

x � 2y � 4z � 6

x � 2y � 2z � 0

• x � 3y � 2z � 0

2x � 4z � 4

4x � 6y � 4

• x � 2y � z � 3

2x � 5y � 6z � 7

2x � 3y � 2z � 5

• x � y � z � 0

x � 2y � 3z � �3

2x � 3y � 4z � �3

• x � 2y � 3z � 5

2x � y � z � 5

4x � 3y � 7z � 5

•2x � 3y � z � 1

x � 2y � 3

x � 3y � z � 4

•�x � 2y � 5z � 4

x � 2z � 0

4x � 2y � 11z � 2

• x � 2y � z � 1

2x � 3y � 4z � �3

3x � 6y � 3z � 4

• 2y � z � 3

5x � 4y � 3z � �1

x � 3y � �2
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Applications

33–34 ■ Finance An investor has $100,000 to invest in three
types of bonds: short-term, intermediate-term, and long-term.
How much should she invest in each type to satisfy the given
conditions?

33. Short-term bonds pay 4% annually, intermediate-term bonds
pay 5%, and long-term bonds pay 6%. The investor wishes
to realize a total annual income of 5.1%, with equal
amounts invested in short- and intermediate-term bonds.

34. Short-term bonds pay 4% annually, intermediate-term bonds
pay 6%, and long-term bonds pay 8%. The investor wishes
to have a total annual return of $6700 on her investment,
with equal amounts invested in intermediate- and long-term
bonds.

35. Nutrition A biologist is performing an experiment on the
effects of various combinations of vitamins. She wishes to
feed each of her laboratory rabbits a diet that contains exactly
9 mg of niacin, 14 mg of thiamin, and 32 mg of riboflavin.
She has available three different types of commercial rabbit
pellets; their vitamin content (per ounce) is given in the table.
How many ounces of each type of food should each rabbit be
given daily to satisfy the experiment requirements?

37. Agriculture A farmer has 1200 acres of land on which 
he grows corn, wheat, and soybeans. It costs $45 per acre to
grow corn, $60 for wheat, and $50 for soybeans. Because of
market demand he will grow twice as many acres of wheat
as of corn. He has allocated $63,750 for the cost of growing
his crops. How many acres of each crop should he plant?

38. Stock Portfolio An investor owns three stocks: A, B,
and C. The closing prices of the stocks on three successive
trading days are given in the table.

36. Electricity Using Kirchhoff’s Laws, it can be shown 
that the currents I1, I2, and I3 that pass through the three
branches of the circuit in the figure satisfy the given linear
system. Solve the system to find I1, I2, and I3.

16 �
4 V

8 �
5 V

4 �

I⁄

I¤

I‹

c I1 � I2 � I3 � 0

16I1 � 8I2 � 4

8I2 � 4I3 � 5

Type A Type B Type C

Niacin (mg) 2 3 1
Thiamin (mg) 3 1 3
Riboflavin (mg) 8 5 7

Stock A Stock B Stock C

Monday $10 $25 $29
Tuesday $12 $20 $32
Wednesday $16 $15 $32

Despite the volatility in the stock prices, the total value of
the investor’s stocks remained unchanged at $74,000 at the
end of each of these three days. How many shares of each
stock does the investor own?

Discovery • Discussion

39. Can a Linear System Have Exactly Two Solutions?

(a) Suppose that and are solutions of
the system

Show that is also a 

solution.

(b) Use the result of part (a) to prove that if the system has
two different solutions, then it has infinitely many 
solutions.

a x0 � x1

2
,

y0 � y1

2
,

z0 � z1

2
b

• a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

1x1, y1, z1 21x0, y0, z0 2



Best Fit versus Exact Fit

Given several points in the plane, we can find the line that best fits them (see the
Focus on Modeling, page 239). Of course, not all the points will necessarily lie
on the line. We can also find the quadratic polynomial that best fits the points.
Again, not every point will necessarily lie on the graph of the polynomial.

However, if we are given just two points, we can find a line of exact fit, that
is, a line that actually passes through both points. Similarly, given three points
(not all on the same line), we can find the quadratic polynomial of exact fit.
For example, suppose we are given the following three points:

From Figure 1 we see that the points do not lie on a line. Let’s find the quadratic
polynomial that fits these points exactly. The polynomial must have the form

We need to find values for a, b, and c so that the graph of the resulting polyno-
mial contains the given points. Substituting the given points into the equation,
we get the following.

Point Substitute Equation

x � �1, y � 6

x � 1, y � 2

x � 2, y � 3

These three equations simplify into the following system.

Using Gaussian elimination we obtain the solution a � 1, b � �2, and c � 3.
So the required quadratic polynomial is

From Figure 2 we see that the graph of the polynomial passes through the given
points.

Figure 2

9

_1

_2 4

(_1, 6)

(1, 2)

(2, 3)

y � x 2 � 2x � 3

• a � b � c � 6

a � b � c � 2

4a � 2b � c � 3

3 � a12 2 2 � b12 2 � c12, 32 2 � a11 2 2 � b11 2 � c11, 22 6 � a1�1 2 2 � b1�1 2 � c1�1, 62

y � ax 2 � bx � c

1�1, 6 2 , 11, 2 2 , 12, 3 2
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D I S C O V E R Y
P R O J E C T

9

_1

_2 4

(_1, 6)

(1, 2)

(2, 3)

Figure 1
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1. Find the quadratic polynomial y � ax 2 � bx � c whose graph passes through
the given points.

(a)
(b)

2. Find the cubic polynomial y � ax 3 � bx 2 � cx � d whose graph passes
through the given points.

(a)
(b)

3. A stone is thrown upward with velocity √ from a height h. Its elevation d
above the ground at time t is given by

The elevation is measured at three different times as shown.

d � at 2 � √t � h

1�2, 10 2 , 1�1, 1 2 , 11, �1 2 , 13, 45 21�1, �4 2 , 11, 2 2 , 12, 11 2 , 13, 32 2
1�1, �3 2 , 12, 0 2 , 13, �3 21�2, 3 2 , 1�1, 1 2 , 11, 9 2

(a) Find the constants a, √, and h.

(b) Find the elevation of the stone when t � 4 s.

4. (a) Find the quadratic function y � ax 2 � bx � c whose graph passes
through the given points. (This is the quadratic curve of exact fit.)
Graph the points and the quadratic curve that you found.

(b) Now use the QuadReg command on your calculator to find the quadratic
curve that best fits the points in part (a). How does this compare to the
function you found in part (a)?

(c) Show that no quadratic function passes through the points

(d) Use the QuadReg command on your calculator to find the quadratic
curve that best fits the points in part (b). Graph the points and the quad-
ratic curve that you found.

(e) Explain how the curve of exact fit differs from the curve of best fit.

1�2, 11 2 , 11, �6 2 , 12, �5 2 , 14, �1 2

1�2, 10 2 , 11, �5 2 , 12, �6 2 , 14, �2 2

Time (s) 1.0 2.0 6.0

Elevation (ft) 144 192 64



9.4 Systems of Linear Equations: Matrices

In this section we express a linear system as a rectangular array of numbers, called a
matrix. Matrices* provide us with an efficient way of solving linear systems.

Matrices

We begin by defining the various elements that make up a matrix.
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Definition of Matrix

An m � n matrix is a rectangular array of numbers with m rows and n
columns.

� � � �

n columns

We say that the matrix has dimension m � n. The numbers aij are the entries
of the matrix. The subscript on the entry aij indicates that it is in the ith row
and the jth column.

Ea11 a12 a13
p a1n

a21 a22 a23
p a2n

a31 a32 a33
p a3n

o o o ∞ o
am1 am2 am3

p amn

U �

�

�

�

v m rowsx

Here are some examples of matrices.

Matrix Dimension

2 rows by 3 columns

1 row by 4 columns

The Augmented Matrix of a Linear System

We can write a system of linear equations as a matrix, called the augmented matrix
of the system, by writing only the coefficients and constants that appear in the equa-
tions. Here is an example.

Linear system Augmented matrix

£ 3 �2 1 5

1 3 �1 0

�1 0 4 11

§• 3x � 2y � z � 5

x � 3y � z � 0

�x � 4z � 11

36 �5 0 1 4    1 � 4

c1 3 0

2 4 �1
d      2 � 3

* The plural of matrix is matrices.



Notice that a missing variable in an equation corresponds to a 0 entry in the aug-
mented matrix.

Example 1 Finding the Augmented Matrix 

of a Linear System

Write the augmented matrix of the system of equations.

Solution First we write the linear system with the variables lined up in columns.

The augmented matrix is the matrix whose entries are the coefficients and the 
constants in this system.

■

Elementary Row Operations

The operations that we used in Section 9.3 to solve linear systems correspond to op-
erations on the rows of the augmented matrix of the system. For example, adding a
multiple of one equation to another corresponds to adding a multiple of one row to
another.

£6 �2 �1 4

1 0 3 1

0 7 1 5

§

•6x � 2y � z � 4

x � 3z � 1

7y � z � 5

•6x � 2y � z � 4

x � 3z � 1

7y � z � 5
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Elementary Row Operations

1. Add a multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.

Note that performing any of these operations on the augmented matrix of a system
does not change its solution. We use the following notation to describe the elemen-
tary row operations:

Symbol Description

Change the ith row by adding k times row j to it,
then put the result back in row i.

Multiply the ith row by k.

Interchange the ith and jth rows.Ri4Rj

kRi

Ri � kRj � Ri



In the next example we compare the two ways of writing systems of linear 
equations.

Example 2 Using Elementary Row Operations 

to Solve a Linear System

Solve the system of linear equations.

Solution Our goal is to eliminate the x-term from the second equation and the 
x- and y-terms from the third equation. For comparison, we write both the system 
of equations and its augmented matrix.

System Augmented matrix

Now we use back-substitution to find that x � 2, y � 7, and z � 3. The solution 
is . ■

Gaussian Elimination

In general, to solve a system of linear equations using its augmented matrix, we use
elementary row operations to arrive at a matrix in a certain form. This form is 
described in the following box.

12, 7, 3 2
£1 �1 3 4

0 1 �2 1

0 0 1 3

§• x � y � 3z � 4

y � 2z � 1

z � 3

£1 �1 3 4

0 0 1 3

0 1 �2 1

§• x � y � 3z � 4

z � 3

y � 2z � 1

£1 �1 3 4

0 3 �5 6

0 1 �2 1

§• x � y � 3z � 4

3y � 5z � 6

y � 2z � 1

£1 �1 3 4

0 3 �5 6

0 2 �4 2

§• x � y � 3z � 4

3y � 5z � 6

2y � 4z � 2

£1 �1 3 4

1 2 �2 10

3 �1 5 14

§• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14

• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14
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R2 � R1 � R2
SSSSSSSO
R3 � 3R1 � R3

R3

SSSO

1
2

R2 � 3R3 � R2
SSSSSSSO

R2 PRRO R3
SSSSO

Add Equation 1 to Equation 2.
Add Equation 1 to Equation 3.1�3 2 �

1�1 2 �

Interchange Equations 2 and 3.

Multiply Equation 3 by .1
2

Add Equation 3 to Equation 2
(to eliminate y from Equation 2).

1�3 2 �



In the following matrices the first matrix is in reduced row-echelon form, but the
second one is just in row-echelon form. The third matrix is not in row-echelon form.
The entries in red are the leading entries.

Reduced row-echelon form Row-echelon form Not in row-echelon form

Here is a systematic way to put a matrix in row-echelon form using elementary
row operations:

■ Start by obtaining 1 in the top left corner. Then obtain zeros below that 1 by
adding appropriate multiples of the first row to the rows below it.

■ Next, obtain a leading 1 in the next row, and then obtain zeros below that 1.
■ At each stage make sure that every leading entry is to the right of the leading 

entry in the row above it—rearrange the rows if necessary.
■ Continue this process until you arrive at a matrix in row-echelon form.

This is how the process might work for a 3 � 4 matrix:

� �

Once an augmented matrix is in row-echelon form, we can solve the corresponding
linear system using back-substitution. This technique is called Gaussian elimina-
tion, in honor of its inventor, the German mathematician C. F. Gauss (see page 294).

£1 � � �

0 1 � �

0 0 1 �

§£1 � � �

0 1 � �

0 0 � �

§£10
0 � � �

§

≥ 0 1 � 1
2 0 7

1 0 3 4 �5

0 0 0 1 0.4

0 1 1 0 0

¥≥ 1 3 �6 10 0

0 0 1 4 �3

0 0 0 1 1
2

0 0 0 0 0

¥≥ 1 3 0 0 0

0 0 1 0 �3

0 0 0 1 1
2

0 0 0 0 0

¥
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Row-Echelon Form and Reduced Row-Echelon 

Form of a Matrix

A matrix is in row-echelon form if it satisfies the following conditions.

1. The first nonzero number in each row (reading from left to right) is 1. This
is called the leading entry.

2. The leading entry in each row is to the right of the leading entry in the row
immediately above it.

3. All rows consisting entirely of zeros are at the bottom of the matrix.

A matrix is in reduced row-echelon form if it is in row-echelon form and also
satisfies the following condition.

4. Every number above and below each leading entry is a 0.

Leading 1’s have
0’s above and 
below them.

Leading 1’s shift to
the right in 
successive rows.

Leading 1’s do not
shift to the right
in successive rows.



Example 3 Solving a System Using Row-Echelon Form

Solve the system of linear equations using Gaussian elimination.

Solution We first write the augmented matrix of the system, and then use ele-
mentary row operations to put it in row-echelon form.

£1 2 �1 1

0 1 4 �7

0 0 1 �2

§
£1 2 �1 1

0 1 4 �7

0 0 �10 20

§R3 � 5R2 SO R3
SSSSSSSSO

£1 2 �1 1

0 1 4 �7

0 5 10 �15

§
£1 2 �1 1

0 2 8 �14

0 5 10 �15

§R2 � 3R1 � R2
SSSSSSSO
R3 � 2R1 � R3

£ 1 2 �1 1

3 8 5 �11

�2 1 12 �17

§
£ 4 8 �4 4

3 8 5 �11

�2 1 12 �17

§

•  4x � 8y � 4z � 4

3x � 8y � 5z � �11

�2x � y � 12z � �17
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Solving a System Using Gaussian Elimination

1. Augmented Matrix. Write the augmented matrix of the system.

2. Row-Echelon Form. Use elementary row operations to change the 
augmented matrix to row-echelon form.

3. Back-Substitution. Write the new system of equations that corresponds 
to the row-echelon form of the augmented matrix and solve by back-
substitution.

Need a 1 here.

Need a 1 here.

Need 0’s here.
R1

SSSO

1
4

Need a 0 here.

Need a 1 here.

R2

SSSO

1
2

R3

SSSO
� 1

10



We now have an equivalent matrix in row-echelon form, and the corresponding
system of equations is

We use back-substitution to solve the system.

Back-substitute z � �2 into Equation 2

Solve for y

Back-substitute y � 1 and z � �2 into Equation 1

Solve for x

So the solution of the system is   . ■

Graphing calculators have a “row-echelon form” command that puts a matrix in
row-echelon form. (On the TI-83 this command is ref.) For the augmented matrix in
Example 3, the refcommand gives the output shown in Figure 1. Notice that the row-
echelon form obtained by the calculator differs from the one we got in Example 3.
This is because the calculator used different row operations than we did. You should
check that your calculator’s row-echelon form leads to the same solution as ours.

Gauss-Jordan Elimination

If we put the augmented matrix of a linear system in reduced row-echelon form, then
we don’t need to back-substitute to solve the system. To put a matrix in reduced row-
echelon form, we use the following steps.

■ Use the elementary row operations to put the matrix in row-echelon form.
■ Obtain zeros above each leading entry by adding multiples of the row containing

that entry to the rows above it. Begin with the last leading entry and work up.

Here is how the process works for a 3 � 4 matrix:

Using the reduced row-echelon form to solve a system is called Gauss-Jordan elim-
ination. We illustrate this process in the next example.

Example 4 Solving a System Using Reduced 

Row-Echelon Form

Solve the system of linear equations, using Gauss-Jordan elimination.

Solution In Example 3 we used Gaussian elimination on the augmented matrix
of this system to arrive at an equivalent matrix in row-echelon form. We continue

• 4x � 8y � 4z � 4

3x � 8y � 5z � �11

�2x � y � 12z � �17

£1 � � �

0 1 � �

0 0 1 �

§ � £1 � 0 �

0 1 0 �

0 0 1 �

§ � £1 0 0 �

0 1 0 �

0 0 1 �

§

1�3, 1, �2 2x � �3

x � 211 2 � 1�2 2 � 1

y � 1

y � 41�2 2 � �7

• x � 2y � z � 1

y � 4z � �7

z � �2
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ref([A])
   [[1 2 -1 1 ]
    [0 1 2  -3]
    [0 0 1  -2]]

Figure 1



using elementary row operations on the last matrix in Example 3 to arrive at an
equivalent matrix in reduced row-echelon form.

We now have an equivalent matrix in reduced row-echelon form, and the 
corresponding system of equations is

Hence we immediately arrive at the solution . ■

Graphing calculators also have a command that puts a matrix in reduced 
row-echelon form. (On the TI-83 this command is rref.) For the augmented 
matrix in Example 4, the rref command gives the output shown in Figure 2. 
The calculator gives the same reduced row-echelon form as the one we got in 
Example 4. This is because every matrix has a unique reduced row-echelon 
form.

Inconsistent and Dependent Systems

The systems of linear equations that we considered in Examples 1–4 had exactly one
solution. But as we know from Section 9.3 a linear system may have one solution,
no solution, or infinitely many solutions. Fortunately, the row-echelon form of a 
system allows us to determine which of these cases applies, as described in the fol-
lowing box.

First we need some terminology. A leading variable in a linear system is one that
corresponds to a leading entry in the row-echelon form of the augmented matrix of
the system.

1�3, 1, �2 2
• x � �3

y � 1

z � �2

£1 0 0 �3

0 1 0 1

0 0 1 �2

§
£1 2 0 �1

0 1 0 1

0 0 1 �2

§

£1 2 �1 1

0 1 4 �7

0 0 1 �2

§
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Need a 0 here.

Need 0’s here.

R2 � 4R3 � R2
SSSSSSSO

R1 � R3 � R1

R1 � 2R2 � R1
SSSSSSSO

Since the system is in reduced 
row-echelon form, back-substitution 
is not required to get the solution.

rref([A])
    [[1 0 0 -3]
     [0 1 0 1 ]
     [0 0 1 -2]]

Figure 2



The matrices below, all in row-echelon form, illustrate the three cases described in
the box.

No solution One solution Infinitely many solutions

Example 5 A System with No Solution

Solve the system.

Solution We transform the system into row-echelon form.

SSO £1 �3 2 12

0 1 1 �10

0 0 0 1

§R3
1
18£1 �3 2 12

0 1 1 �10

0 0 0 18

§R3 � R2 � R3
SSSSSSSO

£1 �3 2 12

0 1 1 �10

0 1 1 8

§R2 � 2R1 � R2
SSSSSSSO

R3 � R1 � R3

£1 �3 2 12

2 �5 5 14

1 �2 3 20

§
• x � 3y � 2z � 12

2x � 5y � 5z � 14

x � 2y � 3z � 20

£1 2 �3 1

0 1 5 �2

0 0 0 0

§£1 6 �1 3

0 1 2 �2

0 0 1 8

§£1 2 5 7

0 1 3 4

0 0 0 1

§
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The Solutions of a Linear System in Row-Echelon Form

Suppose the augmented matrix of a system of linear equations has been 
transformed by Gaussian elimination into row-echelon form. Then exactly 
one of the following is true.

1. No solution. If the row-echelon form contains a row that represents 
the equation 0 � c where c is not zero, then the system has no solution. 
A system with no solution is called inconsistent.

2. One solution. If each variable in the row-echelon form is a leading 
variable, then the system has exactly one solution, which we find using 
back-substitution or Gauss-Jordan elimination.

3. Infinitely many solutions. If the variables in the row-echelon form are 
not all leading variables, and if the system is not inconsistent, then it has 
infinitely many solutions. In this case, the system is called dependent. We
solve the system by putting the matrix in reduced row-echelon form and then
expressing the leading variables in terms of the nonleading variables. The
nonleading variables may take on any real numbers as their values.

Each variable is a
leading variable.

z is not a leading
variable.

Last equation
says 0 � 1.



This last matrix is in row-echelon form, so we can stop the Gaussian elimination
process. Now if we translate the last row back into equation form, we get 
0x � 0y � 0z � 1, or 0 � 1, which is false. No matter what values we pick for 
x, y, and z, the last equation will never be a true statement. This means the system
has no solution. ■

Figure 3 shows the row-echelon form produced by a TI-83 calculator for the 
augmented matrix in Example 5. You should check that this gives the same 
solution.

Example 6 A System with Infinitely Many Solutions

Find the complete solution of the system.

Solution We transform the system into reduced row-echelon form.

The third row corresponds to the equation 0 � 0. This equation is always true,
no matter what values are used for x, y, and z. Since the equation adds no new 
information about the variables, we can drop it from the system. So the last matrix
corresponds to the system

Now we solve for the leading variables x and y in terms of the nonleading 
variable z:

Solve for x in Equation 1

Solve for y in Equation 2y � 3z � 1

x � 7z � 5

Equation 1
Equation 2

bx    � 7z � �5

y � 3z � 1

£1 0 �7 �5

0 1 �3 1

0 0 0 0

§R1 � R2 � R1
SSSSSSSO

£1 1 �10 �4

0 1 �3 1

0 0 0 0

§R3 � 2R2 � R3
SSSSSSSSO£1 1 �10 �4

0 1 �3 1

0 �2 6 �2

§R2 � R1 � R2
SSSSSSSO
R3 � 3R1 � R3

£ 1 1 �10 �4

�1 0 7 5

�3 �5 36 10

§R1 PRRO R3
SSSSSO£�3 �5 36 10

�1 0 7 5

1 1 �10 �4

§

c�3x � 5y � 36z � 10

�x � 7z � 5

x � y � 10z � �4
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ref([A])
[[1 -2.5 2.5 7  ]
 [0 1    1   -10]
 [0 0    0   1  ]]

Figure 3

Reduced row-echelon form on 
the TI-83 calculator:

rref([A])
   [[1 0 -7 -5]
    [0 1 -3 1 ]
    [0 0 0  0 ]]

Leading variables



To obtain the complete solution, we let t represent any real number, and we express
x, y, and z in terms of t:

We can also write the solution as the ordered triple , where t is
any real number. ■

In Example 6, to get specific solutions we give a specific value to t. For example,
if t � 1, then

Here are some other solutions of the system obtained by substituting other val-
ues for the parameter t.

Parameter t Solution

�1
0
2
5

Example 7 A System with Infinitely Many Solutions

Find the complete solution of the system.

Solution We transform the system into reduced row-echelon form.

This is in reduced row-echelon form. Since the last row represents the equation 
0 � 0, we may discard it. So the last matrix corresponds to the systembx �3z � 4„ � 0

y � 5

£1 2 �3 �4 10

0 1 0 0 5

0 0 0 0 0

§              £1 0 �3 �4 0

0 1 0 0 5

0 0 0 0 0

§R3 � 2R2 � R3
SSSSSSSSO

£1 2 �3 �4 10

1 3 �3 �4 15

2 2 �6 �8 10

§             £1 2 �3 �4 10

0 1 0 0 5

0 �2 0 0 �10

§
c x � 2y � 3z � 4„ � 10

x � 3y � 3z � 4„ � 15

2x � 2y � 6z � 8„ � 10

130, 16, 5219, 7, 221�5, 1, 021�12, �2, �1217t � 5, 3t � 1, t 2
z � 1

y � 311 2 � 1 � 4

x � 711 2 � 5 � 2

17t � 5, 3t � 1, t 2z � t

y � 3t � 1

x � 7t � 5
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R2 � R1 � R2
SSSSSSSO
R3 � 2R1 � R3

R1 � 2R2 � R1
SSSSSSSSO

Leading variables



To obtain the complete solution, we solve for the leading variables x and y in terms
of the nonleading variables z and „, and we let z and „ be any real numbers. Thus,
the complete solution is

where s and t are any real numbers.
We can also express the answer as the ordered quadruple (3s � 4t, 5, s, t). ■

Note that s and t do not have to be the same real number in the solution for 
Example 7. We can choose arbitrary values for each if we wish to construct a specific
solution to the system. For example, if we let s � 1 and t � 2, then we get the solu-
tion . You should check that this does indeed satisfy all three of the origi-
nal equations in Example 7.

Examples 6 and 7 illustrate this general fact: If a system in row-echelon form has
n nonzero equations in m variables , then the complete solution will have 
m � n nonleading variables. For instance, in Example 6 we arrived at two nonzero
equations in the three variables x, y, and z, which gave us 3 � 2 � 1 nonleading 
variable.

Modeling with Linear Systems

Linear equations, often containing hundreds or even thousands of variables, occur
frequently in the applications of algebra to the sciences and to other fields. For now,
let’s consider an example that involves only three variables.

Example 8 Nutritional Analysis Using a System 

of Linear Equations

A nutritionist is performing an experiment on student volunteers. He wishes to feed
one of his subjects a daily diet that consists of a combination of three commercial
diet foods: MiniCal, LiquiFast, and SlimQuick. For the experiment it’s important
that the subject consume exactly 500 mg of potassium, 75 g of protein, and 1150
units of vitamin D every day. The amounts of these nutrients in one ounce of each
food are given in the table. How many ounces of each food should the subject eat
every day to satisfy the nutrient requirements exactly?

1m 	 n 2
111, 5, 1, 2 2

„ � t

z � s

y � 5

x � 3s � 4t
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MiniCal LiquiFast SlimQuick

Potassium (mg) 50 75 10
Protein (g) 5 10 3
Vitamin D (units) 90 100 50

Solution Let x, y, and z represent the number of ounces of MiniCal, LiquiFast,
and SlimQuick, respectively, that the subject should eat every day. This means that
he will get 50x mg of potassium from MiniCal, 75y mg from LiquiFast, and 10z mg
from SlimQuick, for a total of 50x � 75y � 10z mg potassium in all. Since the

Olga Taussky-Todd (1906–1995)
was instrumental in developing ap-
plications of Matrix Theory. De-
scribed as “in love with anything
matrices can do,” she successfully
applied matrices to aerodynamics,
a field used in the design of air-
planes and rockets. Taussky-Todd
was also famous for her work in
Number Theory, which deals with
prime numbers and divisibility. Al-
though Number Theory was once
considered the least applicable
branch of mathematics, it is now
used in significant ways through-
out the computer industry.

Taussky-Todd studied mathe-
matics at a time when young
women rarely aspired to be mathe-
maticians. She said, “When I en-
tered university I had no idea what
it meant to study mathematics.”
One of the most respected mathe-
maticians of her day, she was for
many years a professor of mathe-
matics at Caltech in Pasadena.
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potassium requirement is 500 mg, we get the first equation below. Similar 
reasoning for the protein and vitamin D requirements leads to the system

Dividing the first equation by 5 and the third one by 10 gives the system

We can solve this system using Gaussian elimination, or we can use a graphing 
calculator to find the reduced row-echelon form of the augmented matrix of the 
system. Using the rref command on the TI-83, we get the output in Figure 4. From
the reduced row-echelon form we see that x � 5, y � 2, z � 10. The subject should
be fed 5 oz of MiniCal, 2 oz of LiquiFast, and 10 oz of SlimQuick every day. ■

A more practical application might involve dozens of foods and nutrients rather
than just three. Such problems lead to systems with large numbers of variables and
equations. Computers or graphing calculators are essential for solving such large 
systems.

9.4 Exercises

•10x � 15y � 2z � 100

5x � 10y � 3z � 75

9x � 10y � 5z � 115

Potassium
Protein
Vitamin D

•50x � 75y � 10z � 500

5x � 10y � 3z � 75

90x � 100y � 50z � 1150
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rref([A])
   [[1 0 0 5 ]
    [0 1 0 2 ]
    [0 0 1 10]]

Figure 4

Check Your Answer

x � 5, y � 2, z � 10:

• 1015 2 � 1512 2 � 2110 2 � 100

515 2 � 1012 2 � 3110 2 � 75

915 2 � 1012 2 � 5110 2 � 115

1–6 ■ State the dimension of the matrix.

1. 2. 3.

4. 5. 6.

7–14 ■ A matrix is given.

(a) Determine whether the matrix is in row-echelon form.

(b) Determine whether the matrix is in reduced row-echelon
form.

(c) Write the system of equations for which the given matrix is
the augmented matrix.

7. 8.

9. 10.

11. 12. £1 0 0 1

0 1 0 2

0 0 1 3

§£1 0 0 0

0 0 0 0

0 1 5 1

§
£1 0 �7 0

0 1 3 0

0 0 0 1

§£1 2 8 0

0 1 3 2

0 0 0 0

§
c1 3 �3

0 1 5
dc1 0 �3

0 1 5
d

c1 0

0 1
d31 4 7 4£�3

0

1

§
c12

35
dc�1 5 4 0

0 2 11 3
d£2 7

0 �1

5 �3

§ 13. 14.

15–24 ■ The system of linear equations has a unique solution.
Find the solution using Gaussian elimination or Gauss-Jordan
elimination.

15. 16.

17. 18.

19. 20.

21. 22. •2x1 � x2 � 7

2x1 � x2 � x3 � 6

3x1 � 2x2 � 4x3 � 11

• x1 � 2x2 � x3 � 9

2x1 � x3 � �2

3x1 � 5x2 � 2x3 � 22

• 2y � z � 4

x � y � 4

3x � 3y � z � 10

• x � 2y � z � �2

x � z � 0

2x � y � z � �3

• x � y � z � 4

�x � 2y � 3z � 17

2x � y � �7

• x � y � z � 2

2x � 3y � 2z � 4

4x � y � 3z � 1

• x � y � 6z � 3

x � y � 3z � 3

x � 2y � 4z � 7

• x � 2y � z � 1

y � 2z � 5

x � y � 3z � 8

≥ 1 3 0 1 0 0

0 1 0 4 0 0

0 0 0 1 1 2

0 0 0 1 0 0

¥≥ 1 3 0 �1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

¥
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23.

24.

25–34 ■ Determine whether the system of linear equations is
inconsistent or dependent. If it is dependent, find the complete
solution.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34.

35–46 ■ Solve the system of linear equations.

35. 36.

37. 38.

39.

40. d x � y � z � „ � 6

2x � z � 3„ � 8

x � y � 4„ � �10

3x � 5y � z � „ � 20

d�x � 2y � z � 3„ � 3

3x � 4y � z � „ � 9

�x � y � z � „ � 0

2x � y � 4z � 2„ � 3

• 3x � y � 2z � �1

4x � 2y � z � �7

�x � 3y � 2z � �1

• x � 2y � 3z � �5

�2x � 4y � 6z � 10

3x � 7y � 2z � �13

• 2x � 3y � 5z � 14

4x � y � 2z � �17

�x � y � z � 3

• 4x � 3y � z � �8

�2x � y � 3z � �4

x � y � 2z � 3

• y � 5z � 7

3x � 2y � 12

3x � 10z � 80

• 2x � y � 2z � 12

�x � 1
2 y � z � �6

3x � 3
2 y � 3z � 18

•3r � 2s � 3t � 10

r � s � t � �5

r � 4s � t � 20

• x � 4y � 2z � �3

2x � y � 5z � 12

8x � 5y � 11z � 30

•�2x � 6y � 2z � �12

x � 3y � 2z � 10

�x � 3y � 2z � 6

• x � y � 3z � 3

4x � 8y � 32z � 24

2x � 3y � 11z � 4

• x � 2y � 5z � 3

�2x � 6y � 11z � 1

3x � 16y � 20z � �26

• 2x � 3y � 9z � �5

x � 3z � 2

�3x � y � 4z � �3

• x � 3z � 3

2x � y � 2z � 5

�y � 8z � 8

• x � y � z � 2

y � 3z � 1

2x � y � 5z � 0

• 10x � 10y � 20z � 60

15x � 20y � 30z � �25

�5x � 30y � 10z � 45

• 2x � 3y � z � 13

�x � 2y � 5z � 6

5x � y � z � 49
41.

42.

43.

44.

45. 46.

Applications

47. Nutrition A doctor recommends that a patient take 
50 mg each of niacin, riboflavin, and thiamin daily to 
alleviate a vitamin deficiency. In his medicine chest at
home, the patient finds three brands of vitamin pills. The
amounts of the relevant vitamins per pill are given in the
table. How many pills of each type should he take every 
day to get 50 mg of each vitamin?

c 2x � y � 2z � „ � 5

�x � y � 4z � „ � 3

3x � 2y � z � 0

c x � y � „ � 0

3x � z � 2„ � 0

x � 4y � z � 2„ � 0

d y � z � 2„ � 0

3x � 2y � „ � 0

2x � 4„ � 12

�2x � 2z � 5„ � 6

d x � z � „ � 4

y � z � �4

x � 2y � 3z � „ � 12

2x � 2z � 5„ � �1

d x � 3y � 2z � „ � �2

x � 2y � 2„ � �10

z � 5„ � 15

3x � 2z � „ � �3

d x � y � 2z � „ � �2

3y � z � 2„ � 2

x � y � 3„ � 2

�3x � z � 2„ � 5

VitaMax Vitron VitaPlus

Niacin (mg) 5 10 15
Riboflavin (mg) 15 20 0
Thiamin (mg) 10 10 10

48. Mixtures A chemist has three acid solutions at various
concentrations. The first is 10% acid, the second is 20%,
and the third is 40%. How many milliliters of each should
he use to make 100 mL of 18% solution, if he has to use
four times as much of the 10% solution as the 40% 
solution?

49. Distance, Speed, and Time Amanda, Bryce, and Corey
enter a race in which they have to run, swim, and cycle over
a marked course. Their average speeds are given in the
table. Corey finishes first with a total time of 1 h 45 min.
Amanda comes in second with a time of 2 h 30 min. Bryce
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finishes last with a time of 3 h. Find the distance (in miles)
for each part of the race.

travel along the portions of First, Second, Avocado, and
Birch Streets during this period. Find x, y, z, and „, assuming
that none of the cars stop or park on any of the streets
shown.

Discovery • Discussion

53. Polynomials Determined by a Set of Points We all
know that two points uniquely determine a line y � ax � b
in the coordinate plane. Similarly, three points uniquely 
determine a quadratic (second-degree) polynomial

four points uniquely determine a cubic (third-degree)
polynomial

and so on. (Some exceptions to this rule are if the three points
actually lie on a line, or the four points lie on a quadratic or
line, and so on.) For the following set of five points, find the
line that contains the first two points, the quadratic that 
contains the first three points, the cubic that contains 
the first four points, and the fourth-degree polynomial that
contains all five points.

Graph the points and functions in the same viewing 
rectangle using a graphing device.

10, 02 , 11, 122 , 12, 402 , 13, 62 , 1�1, �142

y � ax3 � bx2 � cx � d

y � ax2 � bx � c

180 70

20

200

30200

400

200

FIRST STREET

SECOND STREET

AVOCADO
STREET

BIRCH
STREET

x

y

z „

Average speed (mi /h)
Running Swimming Cycling

Amanda 10 4 20
Bryce 7 6 15
Corey 15 3 40

1
2

50. Classroom Use A small school has 100 students who 
occupy three classrooms: A, B, and C. After the first period
of the school day, half the students in room A move to room
B, one-fifth of the students in room B move to room C,
and one-third of the students in room C move to room A. 
Nevertheless, the total number of students in each room is
the same for both periods. How many students occupy each
room?

51. Manufacturing Furniture A furniture factory makes
wooden tables, chairs, and armoires. Each piece of furniture
requires three operations: cutting the wood, assembling, and
finishing. Each operation requires the number of hours (h)
given in the table. The workers in the factory can provide
300 hours of cutting, 400 hours of assembling, and 590
hours of finishing each work week. How many tables,
chairs, and armoires should be produced so that all available
labor-hours are used? Or is this impossible?

Table Chair Armoire

Cutting (h) 1 1

Assembling (h) 1

Finishing (h) 1 211
2

11
2

1
2

1
2

52. Traffic Flow A section of a city’s street network is shown
in the figure. The arrows indicate one-way streets, and the
numbers show how many cars enter or leave this section of
the city via the indicated street in a certain one-hour period.
The variables x, y, z, and „ represent the number of cars that

9.5 The Algebra of Matrices

Thus far we’ve used matrices simply for notational convenience when solving linear
systems. Matrices have many other uses in mathematics and the sciences, and for
most of these applications a knowledge of matrix algebra is essential. Like numbers,
matrices can be added, subtracted, multiplied, and divided. In this section we learn
how to perform these algebraic operations on matrices.



Equality of Matrices

Two matrices are equal if they have the same entries in the same positions.
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Equality of Matrices

The matrices A � [aij] and B � [bij] are equal if and only if they have the
same dimension m � n, and corresponding entries are equal, that is,

for i � 1, 2, . . . , m and j � 1, 2, . . . , n.

aij � bij

Example 1 Equal Matrices

Find a, b, c, and d, if

Solution Since the two matrices are equal, corresponding entries must be the
same. So we must have a � 1, b � 3, c � 5, and d � 2. ■

Addition, Subtraction, and Scalar Multiplication 

of Matrices

Two matrices can be added or subtracted if they have the same dimension. (Other-
wise, their sum or difference is undefined.) We add or subtract the matrices by adding
or subtracting corresponding entries. To multiply a matrix by a number, we multiply
every element of the matrix by that number. This is called the scalar product.

ca b

c d
d � c1 3

5 2
d

Equal Matrices

Unequal Matrices

£1 2

3 4

5 6

§ � c 1 3 5

2 4 6
d

c14 22 e0

0.5 1 1 � 1
d � c2 4 1

1
2

2
2 0

d

Sum, Difference, and Scalar Product of Matrices

Let A � [aij] and B � [bij] be matrices of the same dimension m � n, and 
let c be any real number.

1. The sum A � B is the m � n matrix obtained by adding corresponding 
entries of A and B.

2. The difference A � B is the m � n matrix obtained by subtracting corre-
sponding entries of A and B.

3. The scalar product cA is the m � n matrix obtained by multiplying each
entry of A by c.

cA � 3caij 4
A � B � 3aij � bij 4
A � B � 3aij � bij 4



Example 2 Performing Algebraic Operations

on Matrices

Let

Carry out each indicated operation, or explain why it cannot be performed.

(a) A � B (b) C � D (c) C � A (d) 5A

Solution

(a)

(b)

(c) C � A is undefined because we can’t add matrices of different dimensions.

(d) ■

The properties in the box follow from the definitions of matrix addition and scalar
multiplication, and the corresponding properties of real numbers.

5A � 5 £2 �3

0 5

7 � 1
2

§ � £10 �15

0 25

35 � 5
2

§
C � D � c7 �3 0

0 1 5
d � c6 0 �6

8 1 9
d � c 1 �3 6

�8 0 �4
d

A � B � £2 �3

0 5

7 �1
2

§ � £ 1 0

�3 1

2 2

§ � £ 3 �3

�3 6

9 3
2

§

C � c7 �3 0

0 1 5
d       D � c6 0 �6

8 1 9
d

A � £2 �3

0 5

7 � 1
2

§   B � £ 1 0

�3 1

2 2

§
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Properties of Addition and Scalar Multiplication of Matrices

Let A, B, and C be m � n matrices and let c and d be scalars.

A � B � B � A Commutative Property of Matrix Addition

Associative Property of Matrix Addition

Associative Property of Scalar 
Multiplication

Distributive Properties of Scalar 

Multiplicationc1A � B 2 � cA � cB

1c � d 2A � cA � dA

c1dA2 � 1cd 2A1A � B 2 � C � A � 1B � C 2

Example 3 Solving a Matrix Equation

Solve the matrix equation

for the unknown matrix X, where

A � c 2 3

�5 1
d       B � c4 �1

1 3
d

2X � A � B



Solution We use the properties of matrices to solve for X.

Given equation

Add the matrix A to each side

Multiply each side by the scalar 

So Substitute the matrices A and B

Add matrices

Multiply by the scalar ■

Multiplication of Matrices

Multiplying two matrices is more difficult to describe than other matrix operations.
In later examples we will see why taking the matrix product involves a rather com-
plex procedure, which we now describe.

First, the product of two matrices A and B is defined only when the
number of columns in A is equal to the number of rows in B. This means that if we
write their dimensions side by side, the two inner numbers must match:

Matrices A B

Dimensions m � n n � k

If the dimensions of A and B match in this fashion, then the product AB is a matrix of
dimension m � k. Before describing the procedure for obtaining the elements of AB,
we define the inner product of a row of A and a column of B.

If is a row of A, and if is a column of B, then

their inner product is the number a1b1 � a2b2 � . . . � anbn. For example, taking

the inner product of and gives

2 # 5 � 1�1 2 # 4 � 0 # 1�3 2 � 4 # 12 � 8

≥   5

  4

�3

  1
2

¥32 �1 0 4 4

≥ b1

b2

o
bn

¥3a1 a2 p an 4

AB 1or A # B 2

1
2� c 3 1

�2 2
d

�
1

2
c 6 2

�4 4
d

X �
1

2
a c 4 �1

1 3
d � c 2 3

�5 1
d b

1
2X � 1

2 1B � A 2 2X � B � A

 2X � A � B
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Columns in A Rows in B

Julia Robinson (1919–1985) was
born in St. Louis, Missouri, and
grew up at Point Loma, California.
Due to an illness, Robinson missed
two years of school but later, with
the aid of a tutor, she completed
fifth, sixth, seventh, and eighth
grades, all in one year. Later at 
San Diego State University, read-
ing biographies of mathematicians
in E. T. Bell’s Men of Mathematics
awakened in her what became a
lifelong passion for mathematics.
She said, “I cannot overemphasize
the importance of such books . . . in
the intellectual life of a student.”
Robinson is famous for her work
on Hilbert’s tenth problem (page
708), which asks for a general pro-
cedure for determining whether an
equation has integer solutions. Her
ideas led to a complete answer to
the problem. Interestingly, the an-
swer involved certain properties of
the Fibonacci numbers (page 826)
discovered by the then 22-year-old
Russian mathematician Yuri Mati-
jasevič. As a result of her brilliant
work on Hilbert’s tenth problem,
Robinson was offered a professor-
ship at the University of California,
Berkeley, and became the first
woman mathematician elected to
the National Academy of Sciences.
She also served as president of the
American Mathematical Society.
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This definition of matrix product says that each entry in the matrix AB is
obtained from a row of A and a column of B as follows: The entry cij in the ith row
and jth column of the matrix AB is obtained by multiplying the entries in the ith
row of A with the corresponding entries in the jth column of B and adding the 
results.

Example 4 Multiplying Matrices

Let

Calculate, if possible, the products AB and BA.

Solution Since A has dimension 2 � 2 and B has dimension 2 � 3, the product
AB is defined and has dimension 2 � 3. We can thus write

where the question marks must be filled in using the rule defining the product of
two matrices. If we define C � AB � [cij], then the entry c11 is the inner product 
of the first row of A and the first column of B:

c 1 3

�1 0
d c�1 5 2

0 4 7
d  1 # 1�1 2 � 3 # 0 � �1

AB � c 1 3

�1 0
d c�1 5 2

0 4 7
d � c         d

A � c 1 3

�1 0
d  and  B � c�1 5 2

0 4 7
d

£ §     £ § � £ cij §

? ? ?
? ? ?
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Matrix Multiplication

If A � [aij] is an m � n matrix and B � [bij] an n � k matrix, then their 
product is the m � k matrix

where cij is the inner product of the ith row of A and the jth column of B. We
write the product as

C � AB

C � 3cij 4

ith row of A
jth column of B Entry in ith row and

jth column of AB

2 � 2 2 � 3

Inner numbers match,
so product is defined.

Outer numbers give dimension
of product: 2 � 3.

We now define the product AB of two matrices.



Similarly, we calculate the remaining entries of the product as follows.

Entry Inner product of: Value Product matrix

c12 1 
 5 � 3 
 4 � 17

c13 1 
 2 � 3 
 7 � 23

c21

c22

c23

Thus, we have

The product BA is not defined, however, because the dimensions of B and A are

The inner two numbers are not the same, so the rows and columns won’t match up
when we try to calculate the product. ■

Graphing calculators and computers are capable of performing matrix algebra. 
For instance, if we enter the matrices in Example 4 into the matrix variables [A]
and [B] on a TI-83 calculator, then the calculator finds their product as shown in 
Figure 1.

Properties of Matrix Multiplication

Although matrix multiplication is not commutative, it does obey the Associative and
Distributive Properties.

2 � 3  and  2 � 2

AB � c�1 17 23

1 �5 �2
d

c�1 17 23

1 �5 �2
d1�1 2 # 2 � 0 # 7 � �2c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23

1 �5
d1�1 2 # 5 � 0 # 4 � �5c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23

1
d1�1 2 # 1�1 2 � 0 # 0 � 1c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23 dc 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 dc 1 3

�1 0
d c�1 5 2

0 4 7
d
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Not equal, so product
not defined.

2 � 3 2 � 2

Properties of Matrix Multiplication

Let A, B, and C be matrices for which the following products are defined.
Then

Associative Property

Distributive Property1B � C 2A � BA � CA

A1B � C 2 � AB � AC

A1BC 2 � 1AB 2C

[A]*[B]
    [[-1 17 23]
     [1  -5 -2]]

Figure 1



The next example shows that even when both AB and BA are defined, they aren’t
necessarily equal. This result proves that matrix multiplication is not commutative.

Example 5 Matrix Multiplication Is Not Commutative

Let and

Calculate the products AB and BA.

Solution Since both matrices A and B have dimension 2 � 2, both products AB
and BA are defined, and each product is also a 2 � 2 matrix.

This shows that, in general, AB � BA. In fact, in this example AB and BA don’t
even have an entry in common. ■

Applications of Matrix Multiplication

We now consider some applied examples that give some indication of why mathe-
maticians chose to define the matrix product in such an apparently bizarre fashion.
Example 6 shows how our definition of matrix product allows us to express a system
of linear equations as a single matrix equation.

Example 6 Writing a Linear System as a Matrix Equation

Show that the following matrix equation is equivalent to the system of equations in
Example 2 of Section 9.4.

Solution If we perform matrix multiplication on the left side of the equation,
we get

£ x � y � 3z

x � 2y � 2z

3x � y � 5z

§ � £ 4

10

14

§

£1 �1 3

1 2 �2

3 �1 5

§ £ xy
z

§ � £ 4

10

14

§

� c�1 7

48 63
d

BA � c1 2

9 �1
d c 5 7

�3 0
d � c 1 # 5 � 2 # 1�3 2 1 # 7 � 2 # 0

9 # 5 � 1�1 2 # 1�3 2 9 # 7 � 1�1 2 # 0 d
� c 68 3

�3 �6
d

AB � c 5 7

�3 0
d c1 2

9 �1
d � c 5 # 1 � 7 # 9 5 # 2 � 7 # 1�1 21�3 2 # 1 � 0 # 9 1�3 2 # 2 � 0 # 1�1 2 d

B � c1 2

9 �1
dA � c 5 7

�3 0
d
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Matrix equations like this one are 
described in more detail on page 694.



Because two matrices are equal only if their corresponding entries are equal, we
equate entries to get

This is exactly the system of equations in Example 2 of Section 9.4. ■

• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14
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Age

18–30 31–50 Over 50

Democrat

Republican

Independent

£ 0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

§ � A

Example 7 Representing Demographic Data by Matrices

In a certain city the proportion of voters in each age group who are registered as
Democrats, Republicans, or Independents is given by the following matrix.

The next matrix gives the distribution, by age and sex, of the voting population of
this city.

For this problem, let’s make the (highly unrealistic) assumption that within each
age group, political preference is not related to gender. That is, the percentage of
Democrat males in the 18–30 group, for example, is the same as the percentage of
Democrat females in this group.

(a) Calculate the product AB.

(b) How many males are registered as Democrats in this city?

(c) How many females are registered as Republicans?

Solution

(a)

(b) When we take the inner product of a row in A with a column in B, we are
adding the number of people in each age group who belong to the category in
question. For example, the entry c21 of AB (the 9000) is obtained by taking the
inner product of the Republican row in A with the Male column in B. This

AB � £0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

§ £ 5,000 6,000

10,000 12,000

12,000 15,000

§ � £13,500 16,500

9,000 10,950

4,500 5,550

§

Male Female

18–30
Age 31–50

Over 50

£ 5,000 6,000

10,000 12,000

12,000 15,000

§ � B

Mathematics in 

the Modern World

Fair Voting Methods

The methods of mathematics have
recently been applied to problems
in the social sciences. For example,
how do we find fair voting meth-
ods? You may ask, what is the
problem with how we vote in elec-
tions? Well, suppose candidates A,
B, and C are running for president.
The final vote tally is as follows: A
gets 40%, B gets 39%, and C gets
21%. So candidate A wins. But
60% of the voters didn’t want A.
Moreover, you voted for C, but you
dislike A so much that you would
have been willing to change your
vote to B to avoid having A win.
Most of the voters who voted for C
feel the same way you do, so we
have a situation where most of the
voters prefer B over A, but A wins.
So is that fair?

In the 1950s Kenneth Arrow
showed mathematically that no
democratic method of voting can
be completely fair, and later won a
Nobel Prize for his work. Mathe-
maticians continue to work on
finding fairer voting systems. The
system most often used in federal,
state, and local elections is called
plurality voting (the candidate with
the most votes wins). Other sys-
tems include majority voting (if no
candidate gets a majority, a runoff
is held between the top two vote-
getters), approval voting (each
voter can vote for as many candi-
dates as he or she approves of),
preference voting (each voter or-
ders the candidates according to 
his or her preference), and cumu-
lative voting (each voter gets as
many votes as there are candidates

(continued)



Thus, 13,500 males are registered as Democrats in this city.

(c) There are 10,950 females registered as Republicans. ■

In Example 7, the entries in each column of A add up to 1. (Can you see why this
has to be true, given what the matrix describes?) A matrix with this property is called
stochastic. Stochastic matrices are used extensively in statistics, where they arise fre-
quently in situations like the one described here.

Computer Graphics

One important use of matrices is in the digital representation of images. A digital
camera or a scanner converts an image into a matrix by dividing the image into a rect-
angular array of elements called pixels. Each pixel is assigned a value that represents
the color, brightness, or some other feature of that location. For example, in a 256-
level gray-scale image each pixel is assigned a value between 0 and 255, where 0 rep-
resents white, 255 black, and the numbers in between increasing gradations of gray.
The gradations of a much simpler 8-level gray scale are shown in Figure 2. We use
this 8-level gray scale to illustrate the process.

Figure 3

To digitize the black and white image in Figure 3(a), we place a grid over the pic-
ture as shown in Figure 3(b). Each cell in the grid is compared to the gray scale, and
then assigned a value between 0 and 7 depending on which gray square in the scale
most closely matches the “darkness” of the cell. (If the cell is not uniformly gray, an
average value is assigned.) The values are stored in the matrix shown in Figure 3(c).
The digital image corresponding to this matrix is shown in Figure 3(d). Obviously the

(a) Original image (b) 10  10 grid (d) Digital image(c) Matrix representation

1 1 1 1 1 1 1 2 2 1
1 1 1 1 1 1 4 6 5 2
1 1 1 1 2 3 3 5 5 3
1 1 1 1 3 5 4 6 3 2
1 1 1 1 1 2 3 2 2 1
1 1 1 1 1 3 3 2 1 1
1 1 1 1 1 1 4 1 1 1
1 1 1 1 2 2  4 2 2 2
2 2 3 5 5 2 2 3 4 4
3 3 3 4 3 2 3 3 3 4

number is therefore the total number of male Republicans in this city. We can
label the rows and columns of AB as follows.
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0 1 2 3 4 5 6 7

Figure 2

E
. O

. H
op

pé
/C

or
bi

s

Male Female

Democrat

Republican

Independent

£ 13,500 16,500

9,000 10,950

4,500 5,550

§ � AB

and can give all of his or her votes
to one candidate or distribute them
among the candidates as he or 
she sees fit). This last system is 
often used to select corporate
boards of directors. Each system of
voting has both advantages and
disadvantages.



grid that we have used is far too coarse to provide good image resolution. In practice,
currently available high-resolution digital cameras use matrices with dimensions
2048 � 2048 or larger.

Once the image is stored as a matrix, it can be manipulated using matrix 
operations. For example, to darken the image, we add a constant to each entry in the
matrix; to lighten the image, we subtract. To increase the contrast, we darken the
darker areas and lighten the lighter areas, so we could add 1 to each entry that is 4, 5,
or 6 and subtract 1 from each entry that is 1, 2, or 3. (Note that we cannot darken an
entry of 7 or lighten a 0.) Applying this process to the matrix in Figure 3(c) produces
the new matrix in Figure 4(a). This generates the high-contrast image shown in 
Figure 4(b).

Figure 4

Other ways of representing and manipulating images using matrices are discussed
in the Discovery Projects on pages 700 and 792.

9.5 Exercises

(b) High-contrast image(a) Matrix modified to
increase contrast

0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 5 7 6 1
0 0 0 0 1 2 2 6 6 2
0 0 0 0 2 6 5 7 2 1
0 0 0 0 0 1 2 1 1 0
0 0 0 0 0 2 2 1 0 0
0 0 0 0 0 0 5 0 0 0
0 0 0 0 1 1  5 1 1 1
1 1 2 6 6 1 1 2 5 5
2 2 2 5 2 1 2 2 2 5
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1–2 ■ Determine whether the matrices A and B are equal.

1. ,

2. ,

3–10 ■ Perform the matrix operation, or if it is impossible,
explain why.

3.

4.

5. 3 £ 1 2

4 �1

1 0

§
c 0 1 1

1 1 0
d � c2 1 �1

1 3 �2
d

c 2 6

�5 3
d � c�1 �3

6 2
d

B � c0.25 0

14 6
2

dA � c 1
4 ln 1

2 3
d

B � c1 �2
1
2 6

dA � c1 �2 0
1
2 6 0

d 6.

7.

8.

9.

10. £2 �3

0 1

1 2

§ c5
1
d

c 1 2

�1 4
d c1 �2 3

2 2 �1
d

c2 1 2

6 3 4
d £ 1 �2

3 6

�2 0

§
£2 6

1 3

2 4

§ £ 1 �2

3 6

�2 0

§
2 £1 1 0

1 0 1

0 1 1

§ � £1 1

2 1

3 1

§
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11–16 ■ Solve the matrix equation for the unknown matrix X,
or explain why no solution exists.

11. 2X � A � B 12. 3X � B � C

13. 14.

15. 16. 2A � B � 3X

17–38 ■ The matrices A, B, C, D, E, F, and G are defined as
follows.

Carry out the indicated algebraic operation, or explain why it
cannot be performed.

17. B � C 18. B � F

19. C � B 20. 5A

21. 3B � 2C 22. C � 5A

23. 2C � 6B 24. DA

25. AD 26. BC

27. BF 28. GF

29. 30.

31. GE 32. A2

33. A3 34. DB � DC

35. B 2 36. F 2

37. BF � FE 38. ABE

D1AB 21DA 2B

G � £ 5 �3 10

6 1 0

�5 2 2

§F � £1 0 0

0 1 0

0 0 1

§
E � £ 12

0

§D � 37 3 4
C � c2 �5

2 0

0 2 �3
dB � c3 1

2 5

1 �1 3
dA � c2 �5

0 7
d

1
5 1X � D 2 � C

51X � C 2 � D21B � X 2 � D

D � £10 20

30 20

10 0

§C � £2 3

1 0

0 2

§
B � c2 5

3 7
dA � c4 6

1 3
d

39–42 ■ Solve for x and y.

39.

40.

41.

42.

43–46 ■ Write the system of equations as a matrix equation
(see Example 6).

43.

44.

45.

46.

47. Let

Determine which of the following products are defined, and
calculate the ones that are:

BCA   CAB   CBA

ABC   ACB   BAC

C � ≥ 1

0

�1

�2

¥
B � 31 7 �9 2 4
A � c1 0 6 �1

2 1
2 4 0

d

µ x � y � z � 2

4x � 2y � z � 2

x � y � 5z � 2

�x � y � z � 2

•3x1 � 2x2 � x3 � x4 � 0

x1 � x3 � 5

3x2 � x3 � x4 � 4

• 6x � y � z � 12

2x � z � 7

y � 2z � 4

e2x � 5y � 7

3x � 2y � 4

c x y

�y x
d � c y x

x �y
d � c 4 �4

�6 6
d

2 c x y

x � y x � y
d � c 2 �4

�2 6
d

3 c x y

y x
d � c 6 �9

�9 6
d

c x 2y

4 6
d � c 2 �2

2x �6y
d



Number of items sold

Santa Monica Long Beach Anaheim

Hamburgers
Hot dogs

Milk shakes
£4000 1000 3500

400 300 200

700 500 9000

§ � A
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48. (a) Prove that if A and B are 2 � 2 matrices, then

(b) If A and B are 2 � 2 matrices, is it necessarily 
true that

Applications

49. Fast-Food Sales A small fast-food chain with 
restaurants in Santa Monica, Long Beach, and Anaheim
sells only hamburgers, hot dogs, and milk shakes. On a 
certain day, sales were distributed according to the follow-
ing matrix.

1A � B 2 2 � A2 � 2AB � B 2

1A � B22 � A2 � AB � BA � B2

Because of a wage increase, February profits are less than
January profits. The profit per car is tabulated by model in
the following matrix.

(a) Calculate the product BA.

(b) Interpret the entries in the product matrix BA.

50. Car-Manufacturing Profits A specialty-car manufac-
turer has plants in Auburn, Biloxi, and Chattanooga. Three
models are produced, with daily production given in the 
following matrix.

The price of each item is given by the following matrix.

(a) Calculate AB.

(b) Assuming all cars produced were sold, what was the
daily profit in January from the Biloxi plant?

(c) What was the total daily profit (from all three plants) 
in February?

51. Canning Tomato Products Jaeger Foods produces
tomato sauce and tomato paste, canned in small, medium,
large, and giant sized tins. The matrix A gives the size 
(in ounces) of each container.

Hamburger Hot dog Milk Shake

[$0.90 $0.80 $1.10] � B

Cars produced each day

Model K Model R Model W

Auburn
Biloxi

Chattanooga
£12 10 0

4 4 20

8 9 12

§ � A

Small Medium Large Giant

Ounces [6 10 14 28] � A

Cans of Cans of
sauce paste

Small
Medium

Large
Giant

≥ 2000 2500

3000 1500

2500 1000

1000 500

¥ � B

The matrix B tabulates one day’s production of tomato
sauce and tomato paste.

January February

Model K
Model R

Model W
£$1000   $500

$2000 $1200

$1500   $1000

§ � B

(a) Calculate the product of AB.

(b) Interpret the entries in the product matrix AB.
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52. Produce Sales A farmer’s three children, Amy, Beth, and
Chad, run three roadside produce stands during the summer
months. One weekend they all sell watermelons, yellow
squash, and tomatoes. The matrices A and B tabulate the
number of pounds of each product sold by each sibling on
Saturday and Sunday.

(b) Find a matrix that represents a darker version of the 
image in the figure.

(c) The negative of an image is obtained by reversing light
and dark, as in the negative of a photograph. Find the
matrix that represents the negative of the image in the
figure. How do you change the elements of the matrix
to create the negative?

(d) Increase the contrast of the image by changing each 1 to
a 0 and each 2 to a 3 in the matrix you found in part (b).
Draw the image represented by the resulting matrix.
Does this clarify the image?

(e) Draw the image represented by the matrix I. Can you
recognize what this is? If you don’t, try increasing the
contrast.

Discovery • Discussion

54. When Are Both Products Defined? What must be 
true about the dimensions of the matrices A and B if both
products AB and BA are defined?

55. Powers of a Matrix Let

Calculate A2, A3, A4, . . . until you detect a pattern. Write a
general formula for An.

56. Powers of a Matrix Let . Calculate A2, A3,

A4, . . . until you detect a pattern. Write a general formula 
for An.

57. Square Roots of Matrices A square root of a matrix B is
a matrix A with the property that A2 � B. (This is the same
definition as for a square root of a number.) Find as many
square roots as you can of each matrix:

[Hint: If , write the equations that a, b, c, and 

d would have to satisfy if A is the square root of the given
matrix.]

A � ca b

c d
d
c4 0

0 9
d       c1 5

0 9
d

A � c1 1

1 1
d

A � c1 1

0 1
d

F1 2 3 3 2 0

0 3 0 1 0 1

1 3 2 3 0 0

0 3 0 1 0 1

1 3 3 2 3 0

0 1 0 1 0 1

V
Price per pound

Melons
Squash � C

Tomatoes
£0.10

0.50

1.00

S
I �

Sunday

Melons Squash Tomatoes

Amy
Beth
Chad

£100 60 30

35 20 20

60 25 30

§ � B

The matrix C gives the price per pound (in dollars) for each
type of produce that they sell.

Saturday

Melons Squash Tomatoes

Amy
Beth
Chad

£ 120 50 60

40 25 30

60 30 20

§ � A

Perform the following matrix operations, and interpret the
entries in each result.

(a) AC (b) BC (c) A � B (d)

53. Digital Images A four-level gray scale is shown below.

(a) Use the gray scale to find a 6 � 6 matrix that digitally
represents the image in the figure.

0 1 2 3

1A � B 2C



Will the Species Survive?

To study how species survive, mathematicians model their populations by 
observing the different stages in their life. They consider, for example, the stage
at which the animal is fertile, the proportion of the population that reproduces,
and the proportion of the young that survive each year. For a certain species,
there are three stages: immature, juvenile, and adult. An animal is considered
immature for the first year of its life, juvenile for the second year, and an adult
from then on. Conservation biologists have collected the following field data 
for this species:
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D I S C O V E R Y
P R O J E C T

Immature Juvenile Adult

Immature

Juvenile

Adult

X0 � £ 600

400

3500

§Immature

Juvenile

Adult

A � £0 0 0.4

0.1 0 0

0 0.3 0.8

§
The entries in the matrix A indicate the proportion of the population that 
survives to the next year. For example, the first column describes what happens
to the immature population: None remain immature, 10% survive to become 
juveniles, and of course none become adults. The second column describes what
happens to the juvenile population: None become immature or remain juvenile,
and 30% survive to adulthood. The third column describes the adult population:
The number of their new offspring is 40% of the adult population, no adults 
become juveniles, and 80% survive to live another year. The entries in the popu-
lation matrix X0 indicate the current population (year 0) of immature, juvenile,
and adult animals.

Let X1 � AX0, X2 � AX1, X3 � AX2, and so on.

1. Explain why X1 gives the population in year 1, X2 the population in year 2,
and so on.

2. Find the population matrix for years 1, 2, 3, and 4. (Round fractional entries
to the nearest whole number.) Do you see any trend?

3. Show that X2 � A 2X0, X3 � A3X0, and so on.

4. Find the population after 50 years—that is, find X50. (Use your results in
Problem 3 and a graphing calculator.) Does it appear that the species will 
survive?

5. Suppose the environment has improved so that the proportion of immatures
that become juveniles each year increases to 0.1 from 0.3, the proportion 
of juveniles that become adults increases to 0.3 from 0.7, and the proportion
of adults that survives to the next year increases from 0.8 to 0.95. Find the
population after 50 years with the new matrix A. Does it appear that the spe-
cies will survive under these new conditions?

6. The survival-rate matrix A given above is called a transition matrix. Such
matrices occur in many applications of matrix algebra. The following transi-
tion matrix T predicts the calculus grades of a class of college students who

A
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must take a four-semester sequence of calculus courses. The first column of the
matrix, for instance, indicates that of those students who get an A in one course,
70% will get an A in the following course, 15% will get a B, and 10% will get 
a C. (Students who receive D or F are not permitted to go on to the next course,
so are not included in the matrix.) The entries in the matrix Y0 give the number
of incoming students who got A, B, and C, respectively, in their final high 
school mathematics course.

Let Y1 � TY0, Y2 � TY1, Y3 � TY2, and Y4 � TY3. Calculate and interpret the
entries of Y1, Y2, Y3, and Y4.

9.6 Inverses of Matrices and Matrix Equations

In the preceding section we saw that, when the dimensions are appropriate, matrices
can be added, subtracted, and multiplied. In this section we investigate division of
matrices. With this operation we can solve equations that involve matrices.

The Inverse of a Matrix

First, we define identity matrices, which play the same role for matrix multiplication
as the number 1 does for ordinary multiplication of numbers; that is,
for all numbers a. In the following definition the term main diagonal refers to the en-
tries of a square matrix whose row and column numbers are the same. These entries
stretch diagonally down the matrix, from top left to bottom right.

Thus, the 2 � 2, 3 � 3, and 4 � 4 identity matrices are

Identity matrices behave like the number 1 in the sense that

whenever these products are defined.

A # In � A  and  In
# B � B

I2 � c1 0

0 1
d   I3 � £1 0 0

0 1 0

0 0 1

§   I4 � ≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

¥

The identity matrix In is the n � n matrix for which each main diagonal 
entry is a 1 and for which all other entries are 0.

1 # a � a # 1 � a

A B C

T � £0.70 0.25 0.05

0.15 0.50 0.25

0.05 0.15 0.45

§        Y0 � £140

320

400

§  A

B

C

A

B

C



Example 1 Identity Matrices

The following matrix products show how multiplying a matrix by an identity matrix
of the appropriate dimension leaves the matrix unchanged.

If A and B are n � n matrices, and if AB � BA � In, then we say that B is the in-
verse of A, and we write B � A�1. The concept of the inverse of a matrix is analogous
to that of the reciprocal of a real number.

£�1 7 1
2

12 1 3

�2 0 7

§ £1 0 0

0 1 0

0 0 1

§ � £�1 7 1
2

12 1 3

�2 0 7

§
c1 0

0 1
d c 3 5 6

�1 2 7
d � c 3 5 6

�1 2 7
d
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Inverse of a Matrix

Let A be a square n � n matrix. If there exists an n � n matrix A�1 with the
property that

then we say that A�1 is the inverse of A.

AA�1 � A�1A � In

Example 2 Verifying That a Matrix Is an Inverse

Verify that B is the inverse of A, where

Solution We perform the matrix multiplications to show that AB � I and
BA � I:

■

Finding the Inverse of a 2 � 2 Matrix

The following rule provides a simple way for finding the inverse of a 2 � 2 matrix,
when it exists. For larger matrices, there’s a more general procedure for finding in-
verses, which we consider later in this section.

c 3 �1

�5 2
d c2 1

5 3
d � c3 # 2 � 1�1 25 3 # 1 � 1�1 231�5 22 � 2 # 5 1�5 21 � 2 # 3 d � c1 0

0 1
d

c2 1

5 3
d c 3 �1

�5 2
d � c2 # 3 � 11�5 2 21�1 2 � 1 # 2

5 # 3 � 31�5 2 51�1 2 � 3 # 2 d � c1 0

0 1
d

A � c2 1

5 3
d  and  B � c 3 �1

�5 2
d

Inverse of a 2 � 2 Matrix

If

If ad � bc � 0, then A has no inverse.

A � ca b

c d
d  then  A�1 �

1

ad � bc
c d �b

�c a
d

■



Example 3 Finding the Inverse of a 2 � 2 Matrix

Let A be the matrix

Find A�1 and verify that AA�1 � A�1A � I2.

Solution Using the rule for the inverse of a 2 � 2 matrix, we get

To verify that this is indeed the inverse of A, we calculate AA�1 and A�1A:

■

The quantity ad � bc that appears in the rule for calculating the inverse of a 
2 � 2 matrix is called the determinant of the matrix. If the determinant is 0, then
the matrix does not have an inverse (since we cannot divide by 0).

Finding the Inverse of an n � n Matrix

For 3 � 3 and larger square matrices, the following technique provides the most
efficient way to calculate their inverses. If A is an n � n matrix, we first construct the
n � 2n matrix that has the entries of A on the left and of the identity matrix In on the
right:

We then use the elementary row operations on this new large matrix to change the left
side into the identity matrix. (This means that we are changing the large matrix to re-
duced row-echelon form.) The right side is transformed automatically into A�1. (We
omit the proof of this fact.)

Example 4 Finding the Inverse of a 3 � 3 Matrix

Let A be the matrix

(a) Find A�1.

(b) Verify that AA�1 � A�1A � I3.

A � £ 1 �2 �4

2 �3 �6

�3 6 15

§

≥ a11 a12 p a1n

a21 a22 p a2n

o o ∞ o
an1 an2 p ann

  

1 0 p 0

0 1 p 0

o o ∞ o
0 0 p 1

¥

A�1A � c 3
2 � 5

2

�1 2
d c4 5

2 3
d � c 3

2
# 4 � A� 5

2B2 3
2
# 5 � A� 5

2B31�1 24 � 2 # 2 1�1 25 � 2 # 3 d � c1 0

0 1
d

AA�1 � c4 5

2 3
d c 3

2 �5
2

�1 2
d � c4 # 32 � 51�1 2 4A�5

2B � 5 # 2
2 # 32 � 31�1 2 2A�5

2B � 3 # 2 d � c1 0

0 1
d

A�1 �
1

4 # 3 � 5 # 2 c 3 �5

�2 4
d �

1

2
c 3 �5

�2 4
d � c 3

2 �5
2

�1 2
d

A � c4 5

2 3
d
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Solution

(a) We begin with the 3 � 6 matrix whose left half is A and whose right half is the
identity matrix.

We then transform the left half of this new matrix into the identity matrix by
performing the following sequence of elementary row operations on the entire
new matrix:

We have now transformed the left half of this matrix into an identity matrix.
(This means we’ve put the entire matrix in reduced row-echelon form.) Note
that to do this in as systematic a fashion as possible, we first changed the ele-
ments below the main diagonal to zeros, just as we would if we were using
Gaussian elimination. We then changed each main diagonal element to a 1 by
multiplying by the appropriate constant(s). Finally, we completed the process
by changing the remaining entries on the left side to zeros.

The right half is now A�1.

(b) We calculate AA�1 and A�1A, and verify that both products give the identity
matrix I3.

■

A�1A � £�3 2 0

�4 1 � 2
3

1 0 1
3

§ £ 1 �2 �4

2 �3 �6

�3 6 15

§ � £1 0 0

0 1 0

0 0 1

§
AA�1 � £ 1 �2 �4

2 �3 �6

�3 6 15

§ £�3 2 0

�4 1 � 2
3

1 0 1
3

§ � £1 0 0

0 1 0

0 0 1

§

A�1 � £�3 2 0

�4 1 � 2
3

1 0 1
3

§

£1 0 0

0 1 0

0 0 1

  
�3 2 0

�4 1 � 2
3

1 0 1
3

§R2 � 2R3 � R2
SSSSSSSO

£1 0 0

0 1 2

0 0 1

  
�3 2 0

�2 1 0

1 0 1
3

§R1 � 2R2 � R1
SSSSSSSO

£1 �2 �4

0 1 2

0 0 1

  
1 0 0

�2 1 0

1 0 1
3

§
£1 �2 �4

0 1 2

0 0 3

  
1 0 0

�2 1 0

3 0 1

§R2 � 2R1 � R2
SSSSSSSO
R3 � 3R1 � R3

£ 1 �2 �4

2 �3 �6

�3 6 15

  
1 0 0

0 1 0

0 0 1

§
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R3

SSSO

1
3

Arthur Cayley (1821–1895) was
an English mathematician who
was instrumental in developing the
theory of matrices. He was the first
to use a single symbol such as A to
represent a matrix, thereby intro-
ducing the idea that a matrix is a
single entity rather than just a col-
lection of numbers. Cayley prac-
ticed law until the age of 42, but his
primary interest from adolescence
was mathematics, and he published
almost 200 articles on the subject
in his spare time. In 1863 he ac-
cepted a professorship in mathe-
matics at Cambridge, where he
taught until his death. Cayley’s
work on matrices was of purely
theoretical interest in his day, but
in the 20th century many of his re-
sults found application in physics,
the social sciences, business, and
other fields. One of the most com-
mon uses of matrices today is in
computers, where matrices are em-
ployed for data storage, error cor-
rection, image manipulation, and
many other purposes. These appli-
cations have made matrix algebra
more useful than ever.
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Graphing calculators are also able to calculate matrix inverses. On the TI-82 and
TI-83 calculators, matrices are stored in memory using names such as [A], [B],
[C], . . . . To find the inverse of [A], we key in

[A] 

For the matrix of Example 4, this results in the output shown in Figure 1 (where we
have also used the �Frac command to display the output in fraction form rather than
in decimal form).

The next example shows that not every square matrix has an inverse.

Example 5 A Matrix That Does Not Have an Inverse

Find the inverse of the matrix.

Solution We proceed as follows.

At this point, we would like to change the 0 in the position of this matrix to a
1, without changing the zeros in the and positions. But there is no way
to accomplish this, because no matter what multiple of rows 1 and/or 2 we add to
row 3, we can’t change the third zero in row 3 without changing the first or second
zero as well. Thus, we cannot change the left half to the identity matrix, so the 
original matrix doesn’t have an inverse. ■

If we encounter a row of zeros on the left when trying to find an inverse, as 
in Example 5, then the original matrix does not have an inverse. If we try to 
calculate the inverse of the matrix from Example 5 on a TI-83 calculator, we get 
the error message shown in Figure 2. (A matrix that has no inverse is called 
singular.)

13, 2 213,1 2 13, 3 2
£1 0 1

0 1 3

0 0 0

  

2
7

3
7 0

� 1
7

2
7 0

� 1
7 � 5

7 1

§
£1 2 7

0 1 3

0 �1 �3

  
0 1 0

� 1
7

2
7 0

0 �1 1

§
£1 2 7

0 �7 �21

0 �1 �3

  
0 1 0

1 �2 0

0 �1 1

§
£2 �3 �7

1 2 7

1 1 4

  
1 0 0

0 1 0

0 0 1

§             £1 2 7

2 �3 �7

1 1 4

  
0 1 0

1 0 0

0 0 1

§

£2 �3 �7

1 2 7

1 1 4

§

ENTERX�1
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[A]-1 Frac
   [[-3 2 0   ]
    [-4 1 -2/3]
    [1  0 1/3 ]]

Figure 1

R1 PRRO R2
SSSSSO

R2 � 2R1 � R2
SSSSSSSO
R3 � R1 � R3

R3 � R2 � R3
SSSSSSSO
R1 � 2R2 � R1

R2

SSSO
�1

7

ERR:SINGULAR MAT
1:Quit
2:Goto

Figure 2
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Matrix Equations

We saw in Example 6 in Section 9.5 that a system of linear equations can be written
as a single matrix equation. For example, the system

is equivalent to the matrix equation

If we let

then this matrix equation can be written as

The matrix A is called the coefficient matrix.
We solve this matrix equation by multiplying each side by the inverse of A (pro-

vided this inverse exists):

Multiply both sides of equation on the left by A�1

Associative Property

Property of inverses

Property of identity matrix

In Example 4 we showed that

So, from X � A�1 B we have

Thus, x � �11, y � �23, z � 7 is the solution of the original system.

£ xy
z

§ � £�3 2 0

�4 1 �2
3

1 0 1
3

§ £75
0

§ � £�11

�23

7

§
A�1 � £�3 2 0

�4 1 � 2
3

1 0 1
3

§
X � A�1B

I3X � A�1B

1A�1A2X � A�1B

A�11AX2 � A�1B

AX � B

AX � B

A � £ 1 �2 �4

2 �3 �6

�3 6 15

§   X � £ xy
z

§   B � £75
0

§

£ 1 �2 �4

2 �3 �6

�3 6 15

§ £ xy
z

§ � £75
0

§
• x � 2y � 4z � 7

2x � 3y � 6z � 5

�3x � 6y � 15z � 0

A X B

Solving the matrix equation AX � B
is very similar to solving the simple
real-number equation

which we do by multiplying each side
by the reciprocal (or inverse) of 3:

x � 4

1
3 13x 2 � 1

3 112 2
3x � 12

X � A�1 B



We have proved that the matrix equation AX � B can be solved by the following
method.
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Solving a Matrix Equation

If A is a square n � n matrix that has an inverse A�1, and if X is a variable
matrix and B a known matrix, both with n rows, then the solution of the 
matrix equation

is given by

X � A�1B

AX � B

Example 6 Solving a System Using a Matrix Inverse

(a) Write the system of equations as a matrix equation.

(b) Solve the system by solving the matrix equation.

Solution

(a) We write the system as a matrix equation of the form AX � B:

(b) Using the rule for finding the inverse of a 2 � 2 matrix, we get

Multiplying each side of the matrix equation by this inverse matrix, we get

So x � 30 and y � 9. ■

c x
y
d � c�2 5

3

�1 2
3

d c15

36
d � c30

9
d

A�1 � c2 �5

3 �6
d�1

�
1

21�6 2 � 1�5 23 c�6 �1�5 2
�3 2

d �
1

3
c�6 5

�3 2
d � c�2 5

3

�1 2
3

d

c2 �5

3 �6
d c x

y
d � c15

36
d

e2x � 5y � 15

3x � 6y � 36

A X � B

X � A�1 B



Applications

Suppose we need to solve several systems of equations with the same coefficient 
matrix. Then converting the systems to matrix equations provides an efficient way to
obtain the solutions, because we only need to find the inverse of the coefficient ma-
trix once. This procedure is particularly convenient if we use a graphing calculator to
perform the matrix operations, as in the next example.

Example 7 Modeling Nutritional Requirements 

Using Matrix Equations

A pet-store owner feeds his hamsters and gerbils different mixtures of three types
of rodent food: KayDee Food, Pet Pellets, and Rodent Chow. He wishes to feed 
his animals the correct amount of each brand to satisfy their daily requirements 
for protein, fat, and carbohydrates exactly. Suppose that hamsters require 340 mg of
protein, 280 mg of fat, and 440 mg of carbohydrates, and gerbils need 480 mg of
protein, 360 mg of fat, and 680 mg of carbohydrates each day. The amount of each
nutrient (in mg) in one gram of each brand is given in the following table. How
many grams of each food should the storekeeper feed his hamsters and gerbils daily
to satisfy their nutrient requirements?
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Mathematics in 

the Modern World

Mathematical Ecology

In the 1970s humpback whales be-
came a center of controversy. Envi-
ronmentalists believed that whaling
threatened the whales with immi-
nent extinction; whalers saw their
livelihood threatened by any at-
tempt to stop whaling. Are whales
really threatened to extinction by
whaling? What level of whaling is
safe to guarantee survival of the
whales? These questions motivated
mathematicians to study popula-
tion patterns of whales and other
species more closely.

As early as the 1920s Alfred J.
Lotka andVitoVolterra had founded
the field of mathematical biology
by creating predator-prey models.
Their models, which draw on a
branch of mathematics called dif-
ferential equations, take into ac-
count the rates at which predator
eats prey and the rates of growth of
each population. Notice that as
predator eats prey, the prey popula-
tion decreases; this means less food
supply for the predators, so their
population begins to decrease;
with fewer predators the prey popu-
lation begins to increase, and so on.
Normally, a state of equilibrium
develops, and the two populations
alternate between a minimum and
a maximum. Notice that if the
predators eat the prey too fast they
will be left without food and en-
sure their own extinction.

(continued)
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KayDee Food Pet Pellets Rodent Chow

Protein (mg) 10 0 20
Fat (mg) 10 20 10
Carbohydrates (mg) 5 10 30

Solution We let x1, x2, and x3 be the respective amounts (in grams) of KayDee
Food, Pet Pellets, and Rodent Chow that the hamsters should eat and y1, y2, and y3

be the corresponding amounts for the gerbils. Then we want to solve the matrix
equations

Hamster equation

Gerbil equation

Let

A � £10 0 20

10 20 10

5 10 30

§ , B � £340

280

440

§ , C � £480

360

680

§ , X � £ x1

x2

x3

§ , Y � £ y1

y2

y3

§

£10 0 20

10 20 10

5 10 30

§ £ y1

y2

y3

§ � £480

360

680

§
£10 0 20

10 20 10

5 10 30

§ £ x1

x2

x3

§ � £340

280

440

§



Then we can write these matrix equations as

Hamster equation

Gerbil equation

We want to solve for X and Y, so we multiply both sides of each equation by A�1,
the inverse of the coefficient matrix. We could find A�1 by hand, but it is more 
convenient to use a graphing calculator as shown in Figure 3.

Figure 3

From the calculator displays, we see that

Thus, each hamster should be fed 10 g of KayDee Food, 3 g of Pet Pellets, and 
12 g of Rodent Chow, and each gerbil should be fed 8 g of KayDee Food, 4 g of 
Pet Pellets, and 20 g of Rodent Chow daily. ■

9.6 Exercises

X � A�1B � £10

3

12

§ ,  Y � A�1C � £ 8

4

20

§

[A]-1*[B]
             [[10]
              [3 ]
              [12]]

(a)

[A]-1*[C]
             [[8 ]
              [4 ]
              [20]]

(b)

AY � C

AX � B
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Since Lotka and Volterra’s time,
more detailed mathematical models
of animal populations have been 
developed. For many species the
population is divided into several
stages—immature, juvenile, adult,
and so on. The proportion of each
stage that survives or reproduces in a
given time period is entered into a
matrix (called a transition matrix);
matrix multiplication is then used to
predict the population in succeeding
time periods. (See the Discovery
Project, page 688.) 

As you can see, the power of
mathematics to model and predict is
an invaluable tool in the ongoing de-
bate over the environment.

1–4 ■ Calculate the products AB and BA to verify that B is the
inverse of A.

1.

2.

3.

4. A � £3 2 4

1 1 �6

2 1 12

§ , B � £ 9 �10 �8

�12 14 11

� 1
2

1
2

1
2

§
A � £ 1 3 �1

1 4 0

�1 �3 2

§ ,  B � £ 8 �3 4

�2 1 �1

1 0 1

§
A � c2 �3

4 �7
d , B � c 7

2 �3
2

2 �1
d

A � c 4 1

7 2
d , B � c 2 �1

�7 4
d

5–6 ■ Find the inverse of the matrix and verify that 
A�1A � AA�1 � I2 and B�1B � BB�1 � I3.

5. 6.

7–22 ■ Find the inverse of the matrix if it exists.

7. 8.

9. 10.

11. 12. c 1
2

1
3

5 4
dc 6 �3

�8 4
d

c�7 4

8 �5
dc 2 5

�5 �13
d

c3 4

7 9
dc5 3

3 2
d

B � £ 1 3 2

0 2 2

�2 �1 0

§A � c7 4

3 2
d
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23–30 ■ Solve the system of equations by converting to a 
matrix equation and using the inverse of the coefficient matrix,
as in Example 6. Use the inverses from Exercises 7–10, 15,
16, 19, and 21.

23.

24. e 3x � 4y � 10

7x � 9y � 20

e 5x � 3y � 4

3x � 2y � 0

≥ 1 0 1 0

0 1 0 1

1 1 1 0

1 1 1 1

¥

≥ 1 2 0 3

0 1 1 1

0 1 0 1

1 2 0 2

¥
£3 �2 0

5 1 1

2 �2 0

§
£0 �2 2

3 1 3

1 �2 3

§
£2 1 0

1 1 4

2 1 2

§
£1 2 3

4 5 �1

1 �1 �10

§
£5 7 4

3 �1 3

6 7 5

§
£ 2 4 1

�1 1 �1

1 4 0

§
£4 2 3

3 3 2

1 0 1

§
c 0.4 �1.2

0.3 0.6
d 25.

26.

27.

28.

29.

30.

31–36 ■ Use a calculator that can perform matrix operations 
to solve the system, as in Example 7.

31.

32.

33.

34.

35.

36. dx � y � z � „ � 15

x � y � z � „ � 5

x � 2y � 3z � 4„ � 26

x � 2y � 3z � 4„ � 2

d x � y � 3„ � 0

x � 2z � 8

2y � z � „ � 5

2x � 3y � 2„ � 13

• x � 1
2 y � 1

3 z � 4

x � 1
4 y � 1

6 z � 7

x � y � z � �6

•12x � 1
2 y � 7z � 21

11x � 2y � 3z � 43

13x � y � 4z � 29

• 3x � 4y � z � 2

2x � 3y � z � �5

5x � 2y � 2z � �3

• x � y � 2z � 3

2x � 5z � 11

2x � 3y � 12

dx � 2y � 3„ � 0

y � z � „ � 1

y � „ � 2

x � 2y � 2„ � 3

• �2y � 2z � 12

3x � y � 3z � �2

x � 2y � 3z � 8

•5x � 7y � 4z � 1

3x � y � 3z � 1

6x � 7y � 5z � 1

• 2x � 4y � z � 7

�x � y � z � 0

x � 4y � �2

e�7x � 4y � 0

8x � 5y � 100

e 2x � 5y � 2

�5x � 13y � 20
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37–38 ■ Solve the matrix equation by multiplying each side by
the appropriate inverse matrix.

37.

38.

39–40 ■ Find the inverse of the matrix.

39. 40.

41–46 ■ Find the inverse of the matrix. For what value(s) of x,
if any, does the matrix have no inverse?

41. 42.

43. 44.

45. 46.

Applications

47. Nutrition A nutritionist is studying the effects of the 
nutrients folic acid, choline, and inositol. He has three types
of food available, and each type contains the following
amounts of these nutrients per ounce:

c sec x tan x

tan x sec x
dc cos x sin x

�sin x cos x
d

C x 1

�x
1

x � 1

S£1 ex 0

ex �e 2x 0

0 0 2

§
c ex �e 2x

e 2x e 3x dc2 x

x x 2 d
1abcd � 0 2

≥ a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

¥ca �a

a a
d

£0 �2 2

3 1 3

1 �2 3

§ £ x u

y √

z „

§ � £3 6

6 12

0 0

§
c 3 �2

�4 3
d c x y z

u √ „
d � c1 0 �1

2 1 3
d

(b) How many ounces of each food should the nutritionist
feed his laboratory rats if he wants their daily diet to
contain 10 mg of folic acid, 14 mg of choline, and 
13 mg of inositol?

(c) How much of each food is needed to supply 9 mg 
of folic acid, 12 mg of choline, and 10 mg of 
inositol?

(d) Will any combination of these foods supply 2 mg 
of folic acid, 4 mg of choline, and 11 mg of 
inositol?

48. Nutrition Refer to Exercise 47. Suppose food type C 
has been improperly labeled, and it actually contains 
4 mg of folic acid, 6 mg of choline, and 5 mg of inositol 
per ounce. Would it still be possible to use matrix inversion
to solve parts (b), (c), and (d) of Exercise 47? Why or 
why not?

49. Sales Commissions An encyclopedia saleswoman
works for a company that offers three different grades 
of bindings for its encyclopedias: standard, deluxe, and
leather. For each set she sells, she earns a commission based
on the set’s binding grade. One week she sells one standard,
one deluxe, and two leather sets and makes $675 in com-
mission. The next week she sells two standard, one deluxe,
and one leather set for a $600 commission. The third week
she sells one standard, two deluxe, and one leather set,
earning $625 in commission.

(a) Let x, y, and z represent the commission she earns 
on standard, deluxe, and leather sets, respectively.
Translate the given information into a system of 
equations in x, y, and z.

(b) Express the system of equations you found in part (a) 
as a matrix equation of the form AX � B.

(c) Find the inverse of the coefficient matrix A and use it 
to solve the matrix equation in part (b). How much
commission does the saleswoman earn on a set of 
encyclopedias in each grade of binding?

Discovery • Discussion

50. No Zero-Product Property for Matrices We have used
the Zero-Product Property to solve algebraic equations. 
Matrices do not have this property. Let O represent the 
2 � 2 zero matrix:

Find 2 � 2 matrices A � O and B � O such that AB � O.
Can you find a matrix A � O such that A2 � O?

O � c0 0

0 0
d

Type A Type B Type C

Folic acid (mg) 3 1 3
Choline (mg) 4 2 4
Inositol (mg) 3 2 4

1a � 0 2

(a) Find the inverse of the matrix

and use it to solve the remaining parts of this problem.

£3 1 3

4 2 4

3 2 4

§



Computer Graphics I

Matrix algebra is the basic tool used in computer graphics to manipulate images
on a computer screen. We will see how matrix multiplication can be used to
“move” a point in the plane to a prescribed location. Combining such moves en-
ables us to stretch, compress, rotate, and otherwise transform a figure, as we see
in the images below.

Moving Points in the Plane

Let’s represent the point in the plane by a 2 � 1 matrix:

For example, the point in the figure is represented by the matrix

Multiplying by a 2 � 2 matrix moves the point in the plane. For example, if

then multiplying P by T we get

We see that the point has been moved to the point . In general, mul-
tiplication by this matrix T reflects points in the x-axis. If every point in an image
is multiplied by this matrix, then the entire image will be flipped upside down
about the x-axis. Matrix multiplication “transforms” a point to a new point in the
plane. For this reason, a matrix used in this way is called a transformation.

Table 1 gives some standard transformations and their effects on the gray
square in the first quadrant.

13, �2 213, 2 2 (3, _2)

T1

10

y

x

TP � c1 0

0 �1
d c3

2
d � c 3

�2
d

T � c1 0

0 �1
d

1

10

y

x

(3, 2)P � c3
2
d

13, 2 2 1x, y 2   4  c x
y
d1x, y 2

Image Compressed Rotated Sheared
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Table 1 

Transformation matrix Effect

Reflection in x-axis

Expansion (or contraction) 
in the x-direction

Shear in x-direction

T � c1 c

0 1
d

T � c c 0

0 1
d

T � c1 0

0 �1
d

1

10

y

x

1

10

y

x

1

10

y

x

1

10

y

x

1

y

x

c

1

10

y

xc c+1

T

T

T

Moving Images in the Plane

Simple line drawings such as the house in Figure 1 consist of a collection of vertex
points and connecting line segments. The entire image in Figure 1 can be repre-
sented in a computer by the 2 � 11 data matrix

The columns of D represent the vertex points of the image. To draw the house, we
connect successive points (columns) in D by line segments. Now we can transform
the whole house by multiplying D by an appropriate transformation matrix. For 

example, if we apply the shear transformation , we get the 
following matrix.

� c2 0 1.5 4.5 5.5 4 3 4 3 2 3

0 0 3 5 3 0 0 2 2 0 0
d

TD � c1 0.5

0 1
d c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

T � c1 0.5

0 1 
d

D � c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

1

10

y

x

Figure 1



To draw the image represented by TD, we start with the point , connect it by 

a line segment to the point , then follow that by a line segment to , and

so on. The resulting tilted house is shown in Figure 2.
A convenient way to draw an image corresponding to a given data matrix is

to use a graphing calculator. The TI-83 program in the margin converts a data
matrix stored in [A] into the corresponding image, as shown in Figure 3. (To
use this program for a data matrix with m columns, store the matrix in [A] and
change the “10” in the For command to m � 1.)

Figure 3

We will revisit computer graphics in the Discovery Project on page 792,
where we will find matrices that rotate an image by any given angle.

1. The gray square in Table 1 has the following vertices.

Apply each of the three transformations given in Table 1 to these vertices and
sketch the result, to verify that each transformation has the indicated effect.
Use c � 2 in the expansion matrix and c � 1 in the shear matrix.

2. Verify that multiplication by the given matrix has the indicated effect when
applied to the gray square in the table. Use c � 3 in the expansion matrix and
c � 1 in the shear matrix.

Reflection in y-axis Expansion (or contraction) Shear in y-direction
in y-direction

3. Let .

(a) What effect does T have on the gray square in the Table 1?

T � c1 1.5

0 1
d

T1 � c�1 0

0 1
d    T2 � c1 0

0 c
d    T3 � c1 0

c 1
d

c0
0
d , c1

0
d , c1

1
d , c0

1
d

6

_1

_1 7

(a)

6

_1

_1 7

(b)House with
data matrix D

Tilted house
with data matrix TD

c1.5

3
dc0

0
d c2

0
d
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1

10

y

x

Figure 2

PROGRAM:IMAGE

:For(N,1,10)

:Line([A])(1,N),

[A](2,N),[A](1,N+1),

[A](2,N+1))

:End
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(b) Find T�1.

(c) What effect does T�1 have on the gray square?

(d) What happens to the square if we first apply T, then T�1?

4. (a) Let . What effect does T have on the gray square in Table 1?

(b) Let . What effect does S have on the gray square in Table 1?

(c) Apply S to the vertices of the square, and then apply T to the result.
What is the effect of the combined transformation?

(d) Find the product matrix W � TS.

(e) Apply the transformation W to the square. Compare to your final result
in part (c). What do you notice?

5. The figure shows three outline versions of the letter F. The second one is 
obtained from the first by shrinking horizontally by a factor of 0.75, and the
third is obtained from the first by shearing horizontally by a factor of 0.25.

(a) Find a data matrix D for the first letter F.

(b) Find the transformation matrix T that transforms the first F into the sec-
ond. Calculate TD and verify that this is a data matrix for the second F.

(c) Find the transformation matrix S that transforms the first F into the third.
Calculate SD and verify that this is a data matrix for the third F.

6. Here is a data matrix for a line drawing.

(a) Draw the image represented by D.

(b) Let . Calculate the matrix product TD and draw the image

represented by this product. What is the effect of the transformation T?

(c) Express T as a product of a shear matrix and a reflection matrix. (See
problem 2.)

T � c1 1

0 �1
d

D � c0 1 2 1 0 0

0 0 2 4 4 0
d

1

10

8

4 6

1

10

8

82

1

0

8

31

y y y

x x x

S � c1 0

0 2
d

T � c3 0

0 1
d



9.7 Determinants and Cramer’s Rule

If a matrix is square (that is, if it has the same number of rows as columns), then we
can assign to it a number called its determinant. Determinants can be used to solve
systems of linear equations, as we will see later in this section. They are also useful
in determining whether a matrix has an inverse.

Determinant of a 2 � 2 Matrix

We denote the determinant of a square matrix A by the symbol or . We first
define for the simplest cases. If A � [a] is a 1 � 1 matrix, then .
The following box gives the definition of a 2 � 2 determinant.

det1A 2 � adet1A 2 0 A 0det1A 2
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Determinant of a 2 � 2 Matrix

The determinant of the 2 � 2 matrix is

det1A 2 � 0 A 0 � ` a b

c d
` � ad � bc

A � ca b

c d
d

Example 1 Determinant of a 2 � 2 Matrix

Evaluate for .

Solution

■

Determinant of an n � n Matrix

To define the concept of determinant for an arbitrary n � n matrix, we need the 
following terminology.

` 6 �3

2 3
` � 6 # 3 � 1�3 22 � 18 � 1�6 2 � 24

A � c6 �3

2 3
d0 A 0

We will use both notations, and
, for the determinant of A. Although

the symbol looks like the absolute
value symbol, it will be clear from the
context which meaning is intended.

0 A 00 A 0 det1A 2

To evaluate a 2 � 2 determinant, we
take the product of the diagonal from
top left to bottom right, and subtract the
product from top right to bottom left, as
indicated by the arrows.

�——�

Let A be an n � n matrix.

1. The minor Mij of the element aij is the determinant of the matrix
obtained by deleting the ith row and jth column of A.

2. The cofactor Aij of the element aij is

Aij � Ó�1Ôi�jMij



For example, if A is the matrix

then the minor M12 is the determinant of the matrix obtained by deleting the first row
and second column from A. Thus

So, the cofactor . Similarly

So, .
Note that the cofactor of aij is simply the minor of aij multiplied by either 1 or �1,

depending on whether i � j is even or odd. Thus, in a 3 � 3 matrix we obtain the co-
factor of any element by prefixing its minor with the sign obtained from the follow-
ing checkerboard pattern:

We are now ready to define the determinant of any square matrix.

£ � � �

� � �

� � �

§

A33 � 1�1 2 3�3M33 � 4

M33 � 3 2 3 �1

0 2 4

�2 5 6

3 � ` 2 3

0 2
` � 2 # 2 � 3 # 0 � 4

A12 � 1�1 2 1�2M12 � �8

M12 � 3 2 3 1

0 2 4

�2 5 6

3 � ` 0 4

�2 6
` � 016 2 � 41�2 2 � 8

£ 2 3 �1

0 2 4

�2 5 6

§
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The Determinant of a Square Matrix

If A is an n � n matrix, then the determinant of A is obtained by multiplying
each element of the first row by its cofactor, and then adding the results. In
symbols,

det1A 2 � 0 A 0 � ∞ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

∞ � a11A11 � a12A12 � p � a1nA1n

Example 2 Determinant of a 3 � 3 Matrix

Evaluate the determinant of the matrix.

A � £ 2 3 �1

0 2 4

�2 5 6

§



Solution

■

In our definition of the determinant we used the cofactors of elements in the first
row only. This is called expanding the determinant by the first row. In fact, we can
expand the determinant by any row or column in the same way, and obtain the same
result in each case (although we won’t prove this). The next example illustrates this
principle.

Example 3 Expanding a Determinant about a Row 

and a Column

Let A be the matrix of Example 2. Evaluate the determinant of A by expanding

(a) by the second row

(b) by the third column

Verify that each expansion gives the same value.

Solution

(a) Expanding by the second row, we get

(b) Expanding by the third column gives

In both cases, we obtain the same value for the determinant as when we expanded
by the first row in Example 2. ■

The following criterion allows us to determine whether a square matrix has an in-
verse without actually calculating the inverse. This is one of the most important uses
of the determinant in matrix algebra, and it is the reason for the name determinant.

� �4 � 64 � 24 � �44

� � 30 # 5 � 21�2 2 4 � 4 32 # 5 � 31�2 2 4 � 612 # 2 � 3 # 0 2� �1 ` 0 2

�2 5
` � 4 ` 2 3

�2 5
` � 6 ` 2 3

0 2
`

 det1A 2 � † 2 3 �1

0 2 4

�2 5 6

†
� 0 � 20 � 64 � �44

� 0 � 2 32 # 6 � 1�1 2 1�2 2 4 � 4 32 # 5 � 31�2 2 4
 det1A 2 � † 2 3 �1

0 2 �4

�2 5 6

† � �0 ` 3 �1

5 6
` � 2 ` 2 �1

�2 6
` � 4 ` 2 3

�2 5
`

� �44

� �16 � 24 � 4

� 212 # 6 � 4 # 5 2 � 3 30 # 6 � 41�2 2 4 � 30 # 5 � 21�2 2 4
 det1A 2 � † 2 3 �1

0 2 4

�2 5 6

† � 2 ` 2 4

5 6
` � 3 ` 0 4

�2 6
` � 1�1 2 ` 0 2

�2 5
`
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Graphing calculators are capable of
computing determinants. Here is the
output when the TI-83 is used to calcu-
late the determinant in Example 3.

[A]
        [[2  3 -1]
         [0  2 4 ]
         [-2 5 6 ]]
det([A])
                       -44



We will not prove this fact, but from the formula for the inverse of a 2 � 2 matrix
(page 704), you can see why it is true in the 2 � 2 case.

Example 4 Using the Determinant to Show 

That a Matrix Is Not Invertible

Show that the matrix A has no inverse.

Solution We begin by calculating the determinant of A. Since all but one of the
elements of the second row is zero, we expand the determinant by the second row.
If we do this, we see from the following equation that only the cofactor A24 will
have to be calculated.

Since the determinant of A is zero, A cannot have an inverse, by the Invertibility
Criterion. ■

Row and Column Transformations

The preceding example shows that if we expand a determinant about a row or column
that contains many zeros, our work is reduced considerably because we don’t have to
evaluate the cofactors of the elements that are zero. The following principle often
simplifies the process of finding a determinant by introducing zeros into it without
changing its value.

� 31�2 2 11 # 4 � 2 # 2 2 � 0

� 31�2 2 ` 1 2

2 4
`

� 3 † 1 2 0

5 6 2

2 4 0

†
� �0 # A21 � 0 # A22 � 0 # A23 � 3 # A24 � 3A24

 det1A 2 � ∞ 1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

∞

A � ≥ 1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

¥
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Invertibility Criterion

If A is a square matrix, then A has an inverse if and only if .det1A 2 � 0

Expand this by column 3



Example 5 Using Row and Column Transformations 

to Calculate a Determinant

Find the determinant of the matrix A. Does it have an inverse?

Solution If we add �3 times row 1 to row 3, we change all but one element of
row 3 to zeros:

This new matrix has the same determinant as A, and if we expand its determinant
by the third row, we get

Now, adding 2 times column 3 to column 1 in this determinant gives us

Since the determinant of A is not zero, A does have an inverse. ■

Cramer’s Rule

The solutions of linear equations can sometimes be expressed using determinants. 
To illustrate, let’s solve the following pair of linear equations for the variable x.eax � by � r

cx � dy � s

� 41�25 2 321�1 2 � 1�4 22 4 � �600

� 41�25 2 ` 2 �4

2 �1
`

 det1A 2 � 4 † 0 2 �4

25 5 11

0 2 �1

†
det1A 2 � 4 † 8 2 �4

3 5 11

2 2 �1

†

≥ 8 2 �1 �4

3 5 �3 11

0 0 4 0

2 2 7 �1

¥

A � ≥ 8 2 �1 �4

3 5 �3 11

24 6 1 �12

2 2 7 �1

¥
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Row and Column Transformations of a Determinant

If A is a square matrix, and if the matrix B is obtained from A by adding a
multiple of one row to another, or a multiple of one column to another, then

.det1A 2 � det1B 2

Expand this by column 1

David Hilbert (1862–1943) was
born in Königsberg, Germany, and
became a professor at Göttingen
University. He is considered by
many to be the greatest mathe-
matician of the 20th century. At 
the International Congress of
Mathematicians held in Paris in
1900, Hilbert set the direction of
mathematics for the about-to-dawn 
20th century by posing 23 prob-
lems he believed to be of crucial
importance. He said that “these 
are problems whose solutions we
expect from the future.” Most of
Hilbert’s problems have now been
solved (see Julia Robinson, page
678 and Alan Turing, page 103),
and their solutions have led to 
important new areas of mathe-
matical research. Yet as we enter
the new millennium, some of his 
problems remain unsolved. In his 
work, Hilbert emphasized struc-
ture, logic, and the foundations of
mathematics. Part of his genius lay
in his ability to see the most gen-
eral possible statement of a prob-
lem. For instance, Euler proved
that every whole number is the sum
of four squares; Hilbert proved a 
similar statement for all powers of
positive integers.

B
. H

. W
ar
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K

. C
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ar
d

/C
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To eliminate the variable y, we multiply the first equation by d and the second by b,
and subtract.

Factoring the left-hand side, we get . Assuming that 
ad � bc � 0, we can now solve this equation for x:

Similarly, we find

The numerator and denominator of the fractions for x and y are determinants of 
2 � 2 matrices. So we can express the solution of the system using determinants as
follows.

y �
as � cr

ad � bc

x �
rd � bs

ad � bc

1ad � bc 2x � rd � bs

adx � bdy � rd

bcx � bdy � bs

adx � bcx � rd � bs
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Cramer’s Rule for Systems in Two Variables

The linear system

has the solution

provided .` a b

c d
` � 0

x �

` r b

s d
`

` a b

c d
`    y �

` a r

c s
`

` a b

c d
`

eax � by � r

cx � dy � s

Using the notation

we can write the solution of the system as

 x �
0 Dx 00 D 0   and  y �

0 Dy 00 D 0

Dy � ca r

c s
dDx � c r b

s d
dD � ca b

c d
d

Coefficient
matrix

Replace first 
column of D by
r and s.

Replace second
column of D by
r and s.



Example 6 Using Cramer’s Rule to Solve a System

with Two Variables

Use Cramer’s Rule to solve the system.

Solution For this system we have

The solution is

■

Cramer’s Rule can be extended to apply to any system of n linear equations in 
n variables in which the determinant of the coefficient matrix is not zero. As we saw
in the preceding section, any such system can be written in matrix form as

By analogy with our derivation of Cramer’s Rule in the case of two equations in 
two unknowns, we let D be the coefficient matrix in this system, and be the ma-
trix obtained by replacing the ith column of D by the numbers b1, b2, . . . , bn that ap-
pear to the right of the equal sign. The solution of the system is then given by the
following rule.

Dxi

≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

¥ ≥ x1

x2

o
xn

¥ � ≥ b1

b2

o
bn

¥

y �
0 Dy 00 D 0 �

5

10
�

1

2

x �
0 Dx 00 D 0 �

�20

10
� �2

0 Dy 0 � ` 2 �1

1 2
` � 2 # 2 � 1�1 21 � 5

0 Dx 0 � ` �1 6

2 8
` � 1�1 28 � 6 # 2 � �20

0 D 0 � ` 2 6

1 8
` � 2 # 8 � 6 # 1 � 10

e2x � 6y � �1

x � 8y � 2
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Cramer’s Rule

If a system of n linear equations in the n variables x1, x2, . . . , xn is equivalent
to the matrix equation DX � B, and if � 0, then its solutions are

where is the matrix obtained by replacing the ith column of D by the 
n � 1 matrix B.

Dxi

x1 �
0 Dx1
00 D 0 , x2 �

0 Dx2
00 D 0 , . . . , xn �

0 Dxn
00 D 0

0 D 0

Emmy Noether (1882–1935) was
one of the foremost mathemati-
cians of the early 20th century. Her
groundbreaking work in abstract
algebra provided much of the foun-
dation for this field, and her work
in Invariant Theory was essential
in the development of Einstein’s
theory of general relativity. Al-
though women weren’t allowed to
study at German universities at that
time, she audited courses unoffi-
cially and went on to receive a doc-
torate at Erlangen summa cum
laude, despite the opposition of the
academic senate, which declared
that women students would “over-
throw all academic order.” She
subsequently taught mathematics
at Göttingen, Moscow, and Frank-
furt. In 1933 she left Germany to
escape Nazi persecution, accepting
a position at Bryn Mawr College 
in suburban Philadelphia. She lec-
tured there and at the Institute for
Advanced Study in Princeton, New
Jersey, until her untimely death 
in 1935.
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Example 7 Using Cramer’s Rule to Solve a System 

with Three Variables

Use Cramer’s Rule to solve the system.

Solution First, we evaluate the determinants that appear in Cramer’s Rule. Note
that D is the coefficient matrix and that Dx, Dy, and Dz are obtained by replacing the
first, second, and third columns of D by the constant terms.

Now we use Cramer’s Rule to get the solution:

■

Solving the system in Example 7 using Gaussian elimination would involve ma-
trices whose elements are fractions with fairly large denominators. Thus, in cases like
Examples 6 and 7, Cramer’s Rule gives us an efficient way to solve systems of linear
equations. But in systems with more than three equations, evaluating the various de-
terminants involved is usually a long and tedious task (unless you are using a graph-
ing calculator). Moreover, the rule doesn’t apply if � 0 or if D is not a square
matrix. So, Cramer’s Rule is a useful alternative to Gaussian elimination, but only in
some situations.

Areas of Triangles Using Determinants

Determinants provide a simple way to calculate the area of a triangle in the coordi-
nate plane.

0 D 0

z �
0 Dz 00 D 0 �

13

�38
� �

13

38

y �
0 Dy 00 D 0 �

�22

�38
�

11

19

x �
0 Dx 00 D 0 �

�78

�38
�

39

19

0 Dy 0 � † 2 1 4

1 0 6

3 5 0

† � �22    0 Dz 0 � † 2 �3 1

1 0 0

3 �2 5

† � 13

0 D 0 � † 2 �3 4

1 0 6

3 �2 0

† � �38   0 Dx 0 � † 1 �3 4

0 0 6

5 �2 0

† � �78

•2x � 3y � 4z � 1

x � 6z � 0

3x � 2y � 5
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You are asked to prove this formula in Exercise 59.

Example 8 Area of a Triangle

Find the area of the triangle shown in Figure 1.

Figure 1

Solution The vertices are , , and . Using the formula in the
preceding box, we get:

To make the area positive, we choose the negative sign in the formula. Thus, the
area of the triangle is

■area � � 1
2 1�12 2 � 6

area � � 1
2 † �1 4 1

3 6 1

1 2 1

† � � 1
2 1�12 2

11, 2 213, 6 21�1, 4 2
0 1

2

4

6

3

y

x
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Area of a Triangle

If a triangle in the coordinate plane has vertices , and 
, then its area is

where the sign is chosen to make the area positive.

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

y

x

area � � 1
2 † a1 b1 1

a2 b2 1

a3 b3 1

†

1a3, b3 2 1a1, b1 2 , 1a2, b2 2

[A]
         [[-1 4 1]
          [3  6 1]

         
 [1  2 1]]

det([A])
                       -12

We can calculate the determinant by
hand or by using a graphing calculator.
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1–8 ■ Find the determinant of the matrix, if it exists.

1. 2.

3. 4.

5. 6.

7. 8.

9–14 ■ Evaluate the minor and cofactor using the matrix A.

9. M11, A11 10. M33, A33 11. M12, A12

12. M13, A13 13. M23, A23 14. M32, A32

15–22 ■ Find the determinant of the matrix. Determine whether
the matrix has an inverse, but don’t calculate the inverse.

15. 16.

17. 18.

19. 20.

21. 22.

23–26 ■ Evaluate the determinant, using row or column opera-
tions whenever possible to simplify your work.

23. 24.

25. ∞ ∞ 26. ∞ 2 �1 6 4

7 2 �2 5

4 �2 10 8

6 1 1 4

∞
1 2 3 4 5

0 2 4 6 8

0 0 3 6 9

0 0 0 4 8

0 0 0 0 5

∞ �2 3 �1 7

4 6 �2 3

7 7 0 5

3 �12 4 0

∞∞ 0 0 4 6

2 1 1 3

2 1 2 3

3 0 1 7

∞

≥ 1 2 0 2

3 �4 0 4

0 1 6 0

1 0 2 0

¥≥ 1 3 3 0

0 2 0 1

�1 0 0 2

1 6 4 1

¥
£ 1 2 5

�2 �3 2

3 5 3

§£30 0 20

0 �10 �20

40 0 10

§
£�2 �3

2
1
2

2 4 0
1
2 2 1

§£1 3 7

2 0 �1

0 2 6

§
£0 �1 0

2 6 4

1 0 3

§£2 1 0

0 �2 4

0 1 �3

§

A � £ 1 0 1
2

�3 5 2

0 0 4

§
c2.2 �1.4

0.5 1.0
dc 1

2
1
8

1 1
2

d
c3
0
d32  5 4

c�2 1

3 �2
dc4 5

0 �1
d

c0 �1

2 0
dc2 0

0 3
d 27. Let

(a) Evaluate by expanding by the second row.

(b) Evaluate by expanding by the third column.

(c) Do your results in parts (a) and (b) agree?

28. Consider the system

(a) Verify that x � �1, y � 0, z � 1 is a solution of the
system.

(b) Find the determinant of the coefficient matrix.

(c) Without solving the system, determine whether there
are any other solutions.

(d) Can Cramer’s Rule be used to solve this system? Why
or why not?

29–44 ■ Use Cramer’s Rule to solve the system.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. •2x � 5y � 4

x � y � z � 8

3x � 5z � 0

• 3y � 5z � 4

2x � z � 10

4x � 7y � 0

•2x � y � 5

5x � 3z � 19

4y � 7z � 17

• 1
3 x � 1

5 y � 1
2 z � 7

10

� 2
3 x � 2

5 y � 3
2 z � 11

10

x � 4
5 y � z � 9

5

•�2a � c � 2

a � 2b � c � 9

3a � 5b � 2c � 22

•2x1 � 3x2 � 5x3 � 1

x1 � x2 � x3 � 2

2x2 � x3 � 8

• 5x � 3y � z � 6

4y � 6z � 22

7x � 10y � �13

• x � y � 2z � 0

3x � z � 11

�x � 2y � 0

e10x � 17y � 21

20x � 31y � 39
e 0.4x � 1.2y � 0.4

1.2x � 1.6y � 3.2

e 1
2 x � 1

3 y � 1
1
4 x � 1

6 y � � 3
2

e x � 6y � 3

3x � 2y � 1

e6x � 12y � 33

4x � 7y � 20
e2x � y � �9

x � 2y � 8

• x � 2y � 6z � 5

�3x � 6y � 5z � 8

2x � 6y � 9z � 7

det1B 2det1B 2
B � £ 4 1 0

�2 �1 1

4 0 3

§
9.7 Exercises
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43. 44.

45–46 ■ Evaluate the determinants.

45. ∞ ∞ 46. ∞ ∞
47–50 ■ Solve for x.

47. 48.

49. 50.

51–54 ■ Sketch the triangle with the given vertices and use a
determinant to find its area.

51.

52.

53.

54.

55. Show that 

Applications

56. Buying Fruit A roadside fruit stand sells apples at 
75¢ a pound, peaches at 90¢ a pound, and pears at 60¢ a
pound. Muriel buys 18 pounds of fruit at a total cost of
$13.80. Her peaches and pears together cost $1.80 more
than her apples.

(a) Set up a linear system for the number of pounds of
apples, peaches, and pears that she bought.

(b) Solve the system using Cramer’s Rule.

† 1 x x 2

1 y y 2

1 z z 2

† � 1x � y 2 1y � z 2 1z � x 2
1�2, 5 2 , 17, 2 2 , 13, �4 21�1, 3 2 , 12, 9 2 , 15,�6 211, 0 2 , 13, 5 2 , 1�2, 2 210, 0 2 , 16, 2 2 , 13, 8 2

† a b x � a

x x � b x

0 1 1

† � 0† 1 0 x

x 2 1 0

x 0 1

† � 0

† x 1 1

1 1 x

x 1 x

† � 0† x 12 13

0 x � 1 23

0 0 x � 2

† � 0

a a a a a

0 a a a a

0 0 a a a

0 0 0 a a

0 0 0 0 a

a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 d 0

0 0 0 0 e

d x � y � 1

y � z � 2

z � „ � 3

„ � x � 4

d x � y � z � „ � 0

2x � „ � 0

y � z � 0

x � 2z � 1

57. The Arch of a Bridge The opening of a railway 
bridge over a roadway is in the shape of a parabola. 
A surveyor measures the heights of three points on the
bridge, as shown in the figure. He wishes to find an 
equation of the form

to model the shape of the arch.

(a) Use the surveyed points to set up a system of 
linear equations for the unknown coefficients a, b,
and c.

(b) Solve the system using Cramer’s Rule.

58. A Triangular Plot of Land An outdoors club is purchas-
ing land to set up a conservation area. The last remaining
piece they need to buy is the triangular plot shown in the
figure. Use the determinant formula for the area of a triangle
to find the area of the plot.

Discovery • Discussion

59. Determinant Formula for the Area of a Triangle The
figure shows a triangle in the plane with vertices

, and .

(a) Find the coordinates of the vertices of the surrounding
rectangle and find its area.

1a3, b3 21a1, b1 2 , 1a2, b2 2

2000

4000

6000

2000 4000 6000

E-W baseline (ft)

N-S baseline
(ft)

0

x (ft)10

25 ft
40 ft33   ft3

4

4015

y (ft)

y � ax 2 � bx � c
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(b) Find the area of the red triangle by subtracting the 
areas of the three blue triangles from the area of the
rectangle.

(c) Use your answer to part (b) to show that the area of the
red triangle is given by

60. Collinear Points and Determinants

(a) If three points lie on a line, what is the area of the 
“triangle” that they determine? Use the answer to this
question, together with the determinant formula for the
area of a triangle, to explain why the points 

, and are collinear if and only if

† a1 b1 1

a2 b2 1

a3 b3 1

† � 0

1a3, b3 21a2, b2 2 1a1, b1 2 ,

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

y

x

area � � 1
2 † a1 b1 1

a2 b2 1

a3 b3 1

†

(b) Use a determinant to check whether each set of points is
collinear. Graph them to verify your answer.

(i)

(ii)

61. Determinant Form for the Equation of a Line

(a) Use the result of Exercise 60(a) to show that the 
equation of the line containing the points and

is

(b) Use the result of part (a) to find an equation for the line
containing the points and .

62. Matrices with Determinant Zero Use the definition 
of determinant and the elementary row and column opera-
tions to explain why matrices of the following types have
determinant 0.

(a) A matrix with a row or column consisting entirely of
zeros

(b) A matrix with two rows the same or two columns the
same

(c) A matrix in which one row is a multiple of another row,
or one column is a multiple of another column

63. Solving Linear Systems Suppose you have to solve a
linear system with five equations and five variables without
the assistance of a calculator or computer. Which method
would you prefer: Cramer’s Rule or Gaussian elimination?
Write a short paragraph explaining the reasons for your 
answer.

1�10, 25 2120, 50 2
† x y 1

x 1 y 1 1

x 2 y 2 1

† � 0

1x2, y2 2 1x1, y1 2
1�5, 10 2 , 12, 6 2 , 115, �2 21�6, 4 2 , 12, 10 2 , 16, 13 2

9.8 Partial Fractions

To write a sum or difference of fractional expressions as a single fraction, we bring
them to a common denominator. For example,

But for some applications of algebra to calculus, we must reverse this process—that
is, we must express a fraction such as as the sum of the simpler
fractions and . These simpler fractions are called partial frac-
tions; we learn how to find them in this section.

1/ 12x � 1 21/ 1x � 1 2 3x/ 12x 2 � x � 1 2
1

x � 1
�

1

2x � 1
�
12x � 1 2 � 1x � 1 21x � 1 2 12x � 1 2 �

3x

2x 2 � x � 1
Common denominator

Partial fractions

2x2-x-1
=

3x

2x+1

1
+

x-1

1



Let r be the rational function

where the degree of P is less than the degree of Q. By the Linear and Quadratic Fac-
tors Theorem in Section 3.4, every polynomial with real coefficients can be factored
completely into linear and irreducible quadratic factors, that is, factors of the form 
ax � b and ax 2 � bx � c, where a, b, and c are real numbers. For instance,

After we have completely factored the denominator Q of r, we can express as a
sum of partial fractions of the form

This sum is called the partial fraction decomposition of r. Let’s examine the details
of the four possible cases.

A1ax � b 2 i  and  
Ax � B1ax 2 � bx � c 2 j

r1x 2x 4 � 1 � 1x 2 � 1 2 1x 2 � 1 2 � 1x � 1 2 1x � 1 2 1x 2 � 1 2

r 1x 2 �
P1x 2
Q1x 2
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Case 1: The Denominator Is a Product

of Distinct Linear Factors

Suppose that we can factor as

with no factor repeated. In this case, the partial fraction decomposition of
takes the form

P1x 2
Q1x 2 �

A1

a1x � b1
�

A2

a2x � b2
� p �

An

anx � bn

P1x 2 /Q1x 2
Q1x 2 � 1a1x � b1 2 1a2x � b2 2 p 1anx � bn 2Q1x 2

The constants A1, A2, . . . , An are determined as in the following example.

Example 1 Distinct Linear Factors

Find the partial fraction decomposition of .

Solution The denominator factors as follows:

This gives us the partial fraction decomposition

5x � 7

x 3 � 2x 2 � x � 2
�

A

x � 1
�

B

x � 1
�

C

x � 2

� 1x � 1 2 1x � 1 2 1x � 2 2x 3 � 2x 2 � x � 2 � x 21x � 2 2 � 1x � 2 2 � 1x 2 � 1 2 1x � 2 2
5x � 7

x 3 � 2x 2 � x � 2

The Rhind papyrus is the oldest
known mathematical document. It
is an Egyptian scroll written in
1650 B.C. by the scribe Ahmes,
who explains that it is an exact
copy of a scroll written 200 years
earlier. Ahmes claims that his pa-
pyrus contains “a thorough study
of all things, insight into all that ex-
ists, knowledge of all obscure se-
crets.” Actually, the document
contains rules for doing arithmetic,
including multiplication and divi-
sion of fractions and several exer-
cises with solutions. The exercise
shown below reads: A heap and its
seventh make nineteen; how large
is the heap? In solving problems of
this sort, the Egyptians used partial
fractions because their number
system required all fractions to be
written as sums of reciprocals of
whole numbers. For example,
would be written as .

The papyrus gives a correct for-
mula for the volume of a truncated
pyramid (page 143). It also gives
the formula for the area
of a circle with diameter d. How
close is this to the actual area?

A � A89 dB2
1
3 � 1

4

7
12



Multiplying each side by the common denominator, , we get

Expand

Combine like terms

If two polynomials are equal, then their coefficients are equal. Thus, since 
5x � 7 has no x 2-term, we have A � B � C � 0. Similarly, by comparing the
coefficients of x, we see that 3A � B � 5, and by comparing constant terms, we get
2A � 2B � C � 7. This leads to the following system of linear equations for A, B,
and C.

We use Gaussian elimination to solve this system.

Equation � Equation 2

From the third equation we get C � �1. Back-substituting we find that B � �1
and A � 2. So, the partial fraction decomposition is

■

The same approach works in the remaining cases. We set up the partial fraction de-
composition with the unknown constants, A, B, C, . . . . Then we multiply each side
of the resulting equation by the common denominator, simplify the right-hand side of
the equation, and equate coefficients. This gives a set of linear equations that will al-
ways have a unique solution (provided that the partial fraction decomposition has
been set up correctly).

5x � 7

x3 � 2x2 � x � 2
�

2

x � 1
�

�1

x � 1
�

�1

x � 2

3 � 1�2 2•A � B � C � 0

�2B � 3C � 5

3C � �3

Equation 2 � (�3) � Equation 1
Equation 3 � (�2) � Equation 1

•A � B � C � 0

�2B � 3C � 5

�4B � 3C � 7

Equation 1: Coefficients of x2

Equation 2: Coefficients of x
Equation 3: Constant coefficients

• A � B � C � 0

3A � B � 5

2A � 2B � C � 7

� 1A � B � C 2x2 � 13A � B 2x � 12A � 2B � C 2� A1x2 � 3x � 2 2 � B1x 2 � x � 2 2 � C1x 2 � 1 25x � 7 � A1x � 1 2 1x � 2 2 � B1x � 1 2 1x � 2 2 � C1x � 1 2 1x � 1 21x � 1 2 1x � 1 2 1x � 2 2
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Case 2: The Denominator Is a Product of 

Linear Factors, Some of Which Are Repeated

Suppose the complete factorization of contains the linear factor ax � b
repeated k times; that is, is a factor of . Then, corresponding to
each such factor, the partial fraction decomposition for contains

A1

ax � b
�

A21ax � b 2 2 � p �
Ak1ax � b 2 k

P1x 2 /Q1x 2Q1x 21ax � b 2 k Q1x 2



Example 2 Repeated Linear Factors

Find the partial fraction decomposition of .

Solution Because the factor x � 1 is repeated three times in the denominator,
the partial fraction decomposition has the form

Multiplying each side by the common denominator, , gives

Expand

Combine like
terms

Equating coefficients, we get the equations

If we rearrange these equations by putting the last one in the first position, we can
easily see (using substitution) that the solution to the system is A � �1, B � 1,
C � 0, D � 2, and so the partial fraction decomposition is

■
x 2 � 1

x1x � 1 2 3 �
�1
x

�
1

x � 1
�

21x � 1 2 3

Coefficients of x3

Coefficients of x2

Coefficients of x
Constant coefficients

µ A � B � 0

�3A � 2B � C � 1

3A � B � C � D � 0

�A � 1

� 1A � B 2x3 � 1�3A � 2B � C 2x 2 � 13A � B � C � D 2x � A

� A1x3 � 3x 2 � 3x � 1 2 � B1x 3 � 2x 2 � x 2 � C1x 2 � x 2 � Dx

x 2 � 1 � A1x � 1 2 3 � Bx1x � 1 2 2 � Cx1x � 1 2 � Dx

x1x � 1 2 3
x 2 � 1

x1x � 1 2 3 �
A
x

�
B

x � 1
�

C1x � 1 2 2 �
D1x � 1 2 3

x 2 � 1

x1x � 1 2 3
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Case 3: The Denominator Has Irreducible 

Quadratic Factors, None of Which Is Repeated

Suppose the complete factorization of contains the quadratic factor 
ax 2 � bx � c (which can’t be factored further). Then, corresponding to this,
the partial fraction decomposition of will have a term of the form

Ax � B

ax 2 � bx � c

P1x 2 /Q1x 2Q1x 2

Example 3 Distinct Quadratic Factors

Find the partial fraction decomposition of .

Solution Since , which can’t be factored further, we write

2x 2 � x � 4

x 3 � 4x
�

A
x

�
Bx � C

x 2 � 4

x 3 � 4x � x1x 2 � 4 2
2x 2 � x � 4

x 3 � 4x



Multiplying by , we get

Equating coefficients gives us the equations

and so A � 1, B � 1, and C � �1. The required partial fraction decomposition is

■
2x 2 � x � 4

x 3 � 4x
�

1
x

�
x � 1

x 2 � 4

Coefficients of x2

Coefficients of x
Constant coefficients

cA � B � 2

C � �1

4A � 4

� 1A � B 2x2 � Cx � 4A

2x 2 � x � 4 � A1x 2 � 4 2 � 1Bx � C 2xx1x 2 � 4 2
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Suppose the complete factorization of contains the factor
, where ax 2 � bx � c can’t be factored further. Then the 

partial fraction decomposition of will have the terms

A1x � B1

ax 2 � bx � c
�

A2x � B21ax 2 � bx � c 2 2 � p �
Ak x � Bk1ax 2 � bx � c 2 k

P1x 2 /Q1x 21ax 2 � bx � c 2 k Q1x 2

Example 4 Repeated Quadratic Factors

Write the form of the partial fraction decomposition of

Solution

■

To find the values of A, B, C, D, E, F, G, H, I, J, and K in Example 4, we would
have to solve a system of 11 linear equations. Although possible, this would certainly
involve a great deal of work!

The techniques we have described in this section apply only to rational functions
in which the degree of P is less than the degree of Q. If this isn’t the case,

we must first use long division to divide Q into P.
P1x 2 /Q1x 2

�
A
x

�
B

x 2 �
C

x 3 �
Dx � E

x 2 � x � 1
�

Fx � G

x 2 � 2
�

Hx � I1x 2 � 2 2 2 �
Jx � K1x 2 � 2 2 3

x 5 � 3x 2 � 12x � 1

x 31x 2 � x � 1 2 1x2 � 2 2 3

x 5 � 3x 2 � 12x � 1

x 31x 2 � x � 1 2 1x 2 � 2 2 3

Case 4: The Denominator Has a Repeated 

Irreducible Quadratic Factor



Example 5 Using Long Division to Prepare 

for Partial Fractions

Find the partial fraction decomposition of

Solution Since the degree of the numerator is larger than the degree of the 
denominator, we use long division to obtain

The remainder term now satisfies the requirement that the degree of the numerator
is less than the degree of the denominator. At this point we proceed as in Example 1
to obtain the decomposition

■

9.8 Exercises

2x 4 � 4x 3 � 2x 2 � x � 7

x 3 � 2x 2 � x � 2
� 2x �

2

x � 1
�

�1

x � 1
�

�1

x � 2

2x 4 � 4x 3 � 2x 2 � x � 7

x 3 � 2x 2 � x � 2
� 2x �

5x � 7

x 3 � 2x 2 � x � 2

2x 4 � 4x 3 � 2x 2 � x � 7

x 3 � 2x 2 � x � 2
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1–10 ■ Write the form of the partial fraction decomposition of
the function (as in Example 4). Do not determine the numerical
values of the coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11–42 ■ Find the partial fraction decomposition of the rational
function.

11. 12.

13. 14.

15. 16.
x � 12

x 2 � 4x

12

x 2 � 9

x � 6

x1x � 3 251x � 1 2 1x � 4 2
2x1x � 1 2 1x � 1 221x � 1 2 1x � 1 2

11x 3 � 1 2 1x 2 � 1 2
x 3 � x � 1

x12x � 5 2 31x 2 � 2x � 5 2 2
x 4 � x 2 � 1

x 21x 2 � 4 2 2x 3 � 4x 2 � 21x 2 � 1 2 1x 2 � 2 2
1

x 4 � 1

x 21x � 3 2 1x 2 � 4 2
1

x 4 � x 3

x 2 � 3x � 51x � 2 2 21x � 4 2
x

x 2 � 3x � 4

11x � 1 2 1x � 2 2
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.
x 2 � x � 1

2x 4 � 3x 2 � 1

2x 3 � 7x � 51x 2 � x � 2 2 1x 2 � 1 2
3x 2 � 2x � 8

x 3 � x 2 � 2x � 2

x � 3

x 3 � 3x

3x 2 � 12x � 20

x 4 � 8x 2 � 16

3x 3 � 22x 2 � 53x � 411x � 2 2 21x � 3 2 2
�2x 2 � 5x � 1

x 4 � 2x 3 � 2x � 1

�10x 2 � 27x � 141x � 1 2 31x � 2 2
x 3 � 2x 2 � 4x � 3

x 4

4x 2 � x � 2

x 4 � 2x 3

x � 412x � 5 2 22x

4x 2 � 12x � 9

3x 2 � 5x � 1313x � 2 2 1x 2 � 4x � 4 2x 2 � 1

x 3 � x 2

�3x 2 � 3x � 271x � 2 2 12x 2 � 3x � 9 29x 2 � 9x � 6

2x 3 � x 2 � 8x � 4

7x � 3

x 3 � 2x 2 � 3x

x

8x 2 � 10x � 3

8x � 3

2x 2 � x

x � 14

x 2 � 2x � 8

2x � 1

x 2 � x � 2

4

x 2 � 4

2x

x3 � 2x2 � x � 2�2x4 � 4x3 � 2x2 � x � 7

2x4 � 4x3 � 2x2 � 4x

5x � 7
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39. 40.

41.

42.

43. Determine A and B in terms of a and b:

44. Determine A, B, C, and D in terms of a and b:

Discovery • Discussion

45. Recognizing Partial Fraction Decompositions For
each expression, determine whether it is already a partial

ax 3 � bx 21x 2 � 1 2 2 �
Ax � B

x 2 � 1
�

Cx � D1x 2 � 1 2 2
ax � b

x 2 � 1
�

A

x � 1
�

B

x � 1

x 5 � 3x 4 � 3x 3 � 4x 2 � 4x � 121x � 2 2 21x 2 � 2 2
x 5 � 2x 4 � x 3 � x � 5

x 3 � 2x 2 � x � 2

2x 2 � x � 81x 2 � 4 2 2x 4 � x 3 � x 2 � x � 1

x1x 2 � 1 2 2 fraction decomposition, or whether it can be decomposed
further.

(a) (b)

(c) (d)

46. Assembling and Disassembling Partial Fractions The
following expression is a partial fraction decomposition:

Use a common denominator to combine the terms into one
fraction. Then use the techniques of this section to find its
partial fraction decomposition. Did you get back the original
expression?

2

x � 1
�

11x � 1 2 2 �
1

x � 1

x � 21x 2 � 1 2 21

x � 1
�

21x � 1 2 2
x1x � 1 2 2x

x 2 � 1
�

1

x � 1

9.9 Systems of Inequalities

In this section we study systems of inequalities in two variables from a graphical
point of view.

Graphing an Inequality

We begin by considering the graph of a single inequality. We already know that the
graph of y � x 2, for example, is the parabola in Figure 1. If we replace the equal sign
by the symbol �, we obtain the inequality

Its graph consists of not just the parabola in Figure 1, but also every point whose 
y-coordinate is larger than x 2. We indicate the solution in Figure 2(a) by shading the
points above the parabola.

Similarly, the graph of y 
 x 2 in Figure 2(b) consists of all points on and below
the parabola. However, the graphs of y 	 x 2 and y � x 2 do not include the points on
the parabola itself, as indicated by the dashed curves in Figures 2(c) and 2(d).

(a) y≥≈

0

y

x

1

1

1

10

y

x

1

10

y

x

1

10

y

x

(b) y≤≈ (c) y>≈ (d) y<≈

y � x 21

10

y

x

y=≈

Figure 1

Figure 2



The graph of an inequality, in general, consists of a region in the plane whose
boundary is the graph of the equation obtained by replacing the inequality sign (�,

, 	, or �) with an equal sign. To determine which side of the graph gives the solu-
tion set of the inequality, we need only check test points.
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Graphing Inequalities

To graph an inequality, we carry out the following steps.

1. Graph Equation. Graph the equation corresponding to the inequality.
Use a dashed curve for 	 or �, and a solid curve for 
 or �.

2. Test Points. Test one point in each region formed by the graph in Step 1.
If the point satisfies the inequality, then all the points in that region satisfy the
inequality. (In that case, shade the region to indicate it is part of the graph.) If
the test point does not satisfy the inequality, then the region isn’t part of the
graph.

Example 1 Graphs of Inequalities

Graph each inequality.

(a) x 2 � y 2 � 25 (b) x � 2y � 5

Solution

(a) The graph of x 2 � y 2 � 25 is a circle of radius 5 centered at the origin. 
The points on the circle itself do not satisfy the inequality because it is of the
form �, so we graph the circle with a dashed curve, as shown in Figure 3.

To determine whether the inside or the outside of the circle satisfies the 
inequality, we use the test points on the inside and on the outside.
To do this, we substitute the coordinates of each point into the inequality and
check if the result satisfies the inequality. (Note that any point inside or outside
the circle can serve as a test point. We have chosen these points for simplicity.)

16, 0 210, 0 2

Test point x 2 � y2 � 25 Conclusion

02 � 02 � 0 � 25 Part of graph
62 � 02 � 36 � 25 Not part of graph16, 0 210, 0 2

Thus, the graph of x 2 � y 2 � 25 is the set of all points inside the circle (see
Figure 3).

(b) The graph of x � 2y � 5 is the line shown in Figure 4. We use the test points
and on opposite sides of the line.15, 5 210, 0 2

Test point x � 2y � 5 Conclusion

Not part of graph
Part of graph5 � 215 2 � 15 � 515, 5 2 0 � 210 2 � 0 � 510, 0 2

1

10

y

x

≈+¥<25

(6, 0)

Figure 3



Our check shows that the points above the line satisfy the inequality.
Alternatively, we could put the inequality into slope-intercept form and graph it

directly:

From this form we see that the graph includes all points whose y-coordinates are
greater than those on the line ; that is, the graph consists of the points
on or above this line, as shown in Figure 4. ■

Systems of Inequalities

We now consider systems of inequalities. The solution of such a system is the set of
all points in the coordinate plane that satisfy every inequality in the system.

Example 2 A System of Two Inequalities

Graph the solution of the system of inequalities.

Solution These are the two inequalities of Example 1. In this example we wish
to graph only those points that simultaneously satisfy both inequalities. The solu-
tion consists of the intersection of the graphs in Example 1. In Figure 5(a) we show
the two regions on the same coordinate plane (in different colors), and in Figure 5(b)
we show their intersection.

VERTICES The points and in Figure 5(b) are the vertices of the 
solution set. They are obtained by solving the system of equations

We solve this system of equations by substitution. Solving for x in the second 
equation gives x � 5 � 2y, and substituting this into the first equation gives

Substitute x � 5 � 2y

Expand

Simplify

Factor

Thus, y � 0 or y � 4. When y � 0, we have , and when y � 4,
we have . So the points of intersection of these curves are

and .
Note that in this case the vertices are not part of the solution set, since they don’t

satisfy the inequality x 2 � y 2 � 25 (and so they are graphed as open circles in the
figure). They simply show where the “corners” of the solution set lie. ■

1�3, 4 215, 0 2 x � 5 � 214 2 � �3
x � 5 � 210 2 � 5

�5y14 � y 2 � 0

�20y � 5y2 � 0

125 � 20y � 4y 2 2 � y 2 � 25

15 � 2y 2 2 � y 2 � 25

e x 2 � y 2 � 25

x � 2y � 5

15, 0 21�3, 4 2

e x 2 � y 2 � 25

x � 2y � 5

y � � 1
2 x � 5

2

y � � 1
2 x � 5

2

 2y � �x � 5

x � 2y � 5
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(a)

0

y

x

(b)

0

y

x

(5, 0)

(_3, 4)

Figure 5e x 2 � y 2 � 25

x � 2y � 5

1

10

y

x

x+2y≥5

(5, 5)

Figure 4



Systems of Linear Inequalities

An inequality is linear if it can be put into one of the following forms:

In the next example we graph the solution set of a system of linear inequalities.

Example 3 A System of Four Linear Inequalities

Graph the solution set of the system, and label its vertices.

Solution In Figure 6 we first graph the lines given by the equations that corre-
spond to each inequality. To determine the graphs of the linear inequalities, we only
need to check one test point. For simplicity let’s use the point .

Inequality Test point (0, 0) Conclusion

x � 3y 
 12 Satisfies inequality
x � y 
 8 0 � 0 � 0 
 8 Satisfies inequality

Since is below the line x � 3y � 12, our check shows that the region on 
or below the line must satisfy the inequality. Likewise, since is below the 
line x � y � 8, our check shows that the region on or below this line must satisfy
the inequality. The inequalities x � 0 and y � 0 say that x and y are nonnegative.
These regions are sketched in Figure 6(a), and the intersection—the solution 
set—is sketched in Figure 6(b).

VERTICES The coordinates of each vertex are obtained by simultaneously 
solving the equations of the lines that intersect at that vertex. From the system

we get the vertex . The other vertices are the x- and y-intercepts of the 
corresponding lines, and , and the origin . In this case, all 
the vertices are part of the solution set.

(b)

0

y

x

(8, 0)

(6, 2)

(0, 4)

12

8

(a)

0

y

x

12

8

x+y=8

x=0

y=0

x+3y=12

8

4

10, 0 210, 4 218, 0 216, 2 2 e x � 3y � 12

x � y � 8

10, 0 210, 0 2
0 � 310 2 � 0 
 12

10, 0 2
µ x � 3y 
 12

x � y 
 8

x � 0

y � 0

ax � by � c   ax � by 
 c   ax � by 	 c   ax � by � c
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Example 4 A System of Linear Inequalities

Graph the solution set of the system.

Solution We must graph the lines that correspond to these inequalities and then
shade the appropriate regions, as in Example 3. We will use a graphing calculator,
so we must first isolate y on the left-hand side of each inequality.

Using the shading feature of the calculator, we obtain the graph in Figure 7. The 
solution set is the triangular region that is shaded in all three patterns. We then use

or the Intersect command to find the vertices of the region. The solution
set is graphed in Figure 8. ■

When a region in the plane can be covered by a (sufficiently large) circle, it is said
to be bounded. A region that is not bounded is called unbounded. For example, the
regions graphed in Figures 3, 5(b), 6(b), and 8 are bounded, whereas those in Figures
2 and 4 are unbounded. An unbounded region cannot be “fenced in”—it extends
infinitely far in at least one direction.

Application: Feasible Regions

Many applied problems involve constraints on the variables. For instance, a factory
manager has only a certain number of workers that can be assigned to perform 
jobs on the factory floor. A farmer deciding what crops to cultivate has only a 
certain amount of land that can be seeded. Such constraints or limitations can usually
be expressed as systems of inequalities. When dealing with applied inequalities, we 
usually refer to the solution set of a system as a feasible region, because the points 
in the solution set represent feasible (or possible) values for the quantities being
studied.

Example 5 Restricting Pollutant Outputs

A factory produces two agricultural pesticides, A and B. For every barrel of A,
the factory emits 0.25 kg of carbon monoxide (CO) and 0.60 kg of sulfur dioxide
(SO2), and for every barrel of B, it emits 0.50 kg of CO and 0.20 kg of SO2. Pollu-
tion laws restrict the factory’s output of CO to a maximum of 75 kg and SO2 to a
maximum of 90 kg per day.

(a) Find a system of inequalities that describes the number of barrels of each pesti-
cide the factory can produce and still satisfy the pollution laws. Graph the fea-
sible region.

(b) Would it be legal for the factory to produce 100 barrels of A and 80 barrels of B
per day?

(c) Would it be legal for the factory to produce 60 barrels of A and 160 barrels of B
per day?

TRACE

• y � � 1
2 x � 4

y 
 1
2 x � 2

y � 3
2 x � 4

• x � 2y � 8

�x � 2y 
 4

3x � 2y 
 8
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8

_2

_2 8

Figure 7

0 1

1

(2, 3)

(4, 2)

(6, 5)

y

x

Figure 8



Solution

(a) To set up the required inequalities, it’s helpful to organize the given information
into a table.

726 CHAPTER 9 Systems of Equations and Inequalities

A B Maximum

CO (kg) 0.25 0.50 75
SO2 (kg) 0.60 0.20 90

We let

From the data in the table and the fact that x and y can’t be negative, we obtain
the following inequalities.

Multiplying the first inequality by 4 and the second by 5 simplifies this to

The feasible region is the solution of this system of inequalities, shown in 
Figure 9.

(b) Since the point lies inside the feasible region, this production plan is
legal (see Figure 9).

(c) Since the point lies outside the feasible region, this production plan 
is not legal. It violates the CO restriction, although it does not violate the SO2

restriction (see Figure 9). ■

9.9 Exercises

160, 160 2
1100, 80 2

• x � 2y 
 300

3x � y 
 450

x � 0, y � 0

CO inequality
SO2 inequality•0.25x � 0.50y 
 75

0.60x � 0.20y 
 90

x � 0 , y � 0

y � number of barrels of B produced per day

x � number of barrels of A produced per day

0

y

x

(100, 80)

(60, 160)

300200100

200

100

400

300

3x+y=450

x+2y=300

Figure 9

1–14 ■ Graph the inequality.

1. x � 3 2. y � �2

3. y 	 x 4. y � x � 2

5. y 
 2x � 2 6. y � �x � 5

7. 2x � y 
 8 8. 3x � 4y � 12 	 0

9. 4x � 5y � 20 10. �x2 � y � 10

11. y 	 x 2 � 1 12. x 2 � y 2 � 9

13. x 2 � y 2 
 25 14. x 2 � 1y � 1 2 2 
 1

15–18 ■ An equation and its graph are given. Find an 
inequality whose solution is the shaded region.

15. 16. y � x 2 � 2

1
1

0

y

x

1

1

0

y

x

y � 1
2 x � 1
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17. x 2 � y 2 � 4 18. y � x 3 � 4x

19–40 ■ Graph the solution of the system of inequalities. 
Find the coordinates of all vertices, and determine whether 
the solution set is bounded.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. • x 2 � y � 0

x � y � 6

x � y � 6

• x2 � y 2 
 8

x � 2

y � 0

• x � y 	 12

y � 1
2 x � 6

3x � y � 6

• y 	 x � 1

x � 2y 
 12

x � 1 	 0

µ x � 0

y � 0

y 
 4

2x � y 
 8

µ x � 0

y � 0

x 
 5

x � y 
 7

• y � x � 6

3x � 2y � 12

x � 2y 
 2

• x � 2y 
 14

3x � y � 0

x � y � 2

e x2 � y 2 � 9

2x � y 2 � 1
e x 2 � y 
 0

2x 2 � y 
 12

µ x 	 0

y 	 0

x � y � 10

x 2 � y 2 	 9

e x 2 � y 2 
 4

x � y 	 0

e y � x 2

x � y � 6
e y � 9 � x 2

y � x � 3

• x 	 2

y � 12

2x � 4y 	 8

µ x � 0

y � 0

3x � 5y 
 15

3x � 2y 
 9

e x � y 	 0

4 � y 
 2x
e y � 1

4 x � 2

y � 2x � 5

e2x � 3y 	 12

3x � y � 21
e x � y 
 4

y � x

1

1

0

y

x
1

1

0

y

x

39. 40.

41–44 ■ Use a graphing calculator to graph the solution of 
the system of inequalities. Find the coordinates of all vertices,
correct to one decimal place.

41. 42.

43. 44.

Applications

45. Publishing Books A publishing company publishes 
a total of no more than 100 books every year. At least 20 
of these are nonfiction, but the company always publishes 
at least as much fiction as nonfiction. Find a system of 
inequalities that describes the possible numbers of fiction
and nonfiction books that the company can produce 
each year consistent with these policies. Graph the
solution set.

46. Furniture Manufacturing A man and his daughter 
manufacture unfinished tables and chairs. Each table 
requires 3 hours of sawing and 1 hour of assembly. 
Each chair requires 2 hours of sawing and 2 hours of 
assembly. The two of them can put in up to 12 hours of 
sawing and 8 hours of assembly work each day. Find a 
system of inequalities that describes all possible combina-
tions of tables and chairs that they can make daily. 
Graph the solution set.

47. Coffee Blends A coffee merchant sells two different 
coffee blends. The Standard blend uses 4 oz of arabica and
12 oz of robusta beans per package; the Deluxe blend uses
10 oz of arabica and 6 oz of robusta beans per package. 
The merchant has 80 lb of arabica and 90 lb of robusta
beans available. Find a system of inequalities that describes
the possible number of Standard and Deluxe packages he
can make. Graph the solution set.

48. Nutrition A cat food manufacturer uses fish and beef 
by-products. The fish contains 12 g of protein and 3 g of fat
per ounce. The beef contains 6 g of protein and 9 g of fat
per ounce. Each can of cat food must contain at least 60 g 
of protein and 45 g of fat. Find a system of inequalities that
describes the possible number of ounces of fish and beef
that can be used in each can to satisfy these minimum 
requirements. Graph the solution set.

• y � x 3

2x � y � 0

y 
 2x � 6

e y 
 6x � x 2

x � y � 4

• x � y � 12

2x � y 
 24

x � y � �6

• y � x � 3

y � �2x � 6

y 
 8

• y � x3

y 
 2x � 4

x � y � 0

• x 2 � y 2 � 9

x � y 	 0

x 
 0
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Discovery • Discussion

49. Shading Unwanted Regions To graph the solution of a
system of inequalities, we have shaded the solution of each
inequality in a different color; the solution of the system is
the region where all the shaded parts overlap. Here is a dif-
ferent method: For each inequality, shade the region that
does not satisfy the inequality. Explain why the part of the

plane that is left unshaded is the solution of the system.
Solve the following system by both methods. Which do 
you prefer?

µ x � 2y 	 4

�x � y � 1

x � 3y � 9

x � 3

9 Review

Concept Check

1. Suppose you are asked to solve a system of two equations
(not necessarily linear) in two variables. Explain how 
you would solve the system

(a) by the substitution method

(b) by the elimination method

(c) graphically

2. Suppose you are asked to solve a system of two linear
equations in two variables.

(a) Would you prefer to use the substitution method or the
elimination method?

(b) How many solutions are possible? Draw diagrams to 
illustrate the possibilities.

3. What operations can be performed on a linear system that
result in an equivalent system?

4. Explain how Gaussian elimination works. Your explanation
should include a discussion of the steps used to obtain a 
system in triangular form, and back-substitution.

5. What does it mean to say that A is a matrix with dimension
m � n?

6. What is the augmented matrix of a system? Describe the
role of elementary row operations, row-echelon form,
back-substitution, and leading variables when solving a 
system in matrix form.

7. (a) What is meant by an inconsistent system?

(b) What is meant by a dependent system?

8. Suppose you have used Gaussian elimination to transform
the augmented matrix of a linear system into row-echelon
form. How can you tell if the system has

(a) exactly one solution?

(b) no solution?

(c) infinitely many solutions?

9. How can you tell if a matrix is in reduced row-echelon form?

10. How do Gaussian elimination and Gauss-Jordan elimination
differ? What advantage does Gauss-Jordan elimination have?

11. If A and B are matrices with the same dimension and k is a
real number, how do you find A � B, A � B, and kA?

12. (a) What must be true of the dimensions of A and B for the
product AB to be defined?

(b) If the product AB is defined, how do you calculate it?

13. (a) What is the identity matrix In?

(b) If A is a square n � n matrix, what is its inverse matrix?

(c) Write a formula for the inverse of a 2 � 2 matrix.

(d) Explain how you would find the inverse of a 3 � 3
matrix.

14. (a) Explain how to express a linear system as a matrix
equation of the form AX � B.

(b) If A has an inverse, how would you solve the matrix
equation AX � B?

15. Suppose A is an n � n matrix.

(a) What is the minor Mij of the element aij?

(b) What is the cofactor Aij?

(c) How do you find the determinant of A?

(d) How can you tell if A has an inverse?

16. State Cramer’s Rule for solving a system of linear equations
in terms of determinants. Do you prefer to use Cramer’s
Rule or Gaussian elimination? Explain.

17. Explain how to find the partial fraction decomposition of a
rational expression. Include in your explanation a discussion
of each of the four cases that arise.

18. How do you graph an inequality in two variables?

19. How do you graph the solution set of a system of 
inequalities?
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Exercises

16.

17. 18.

19–24 ■ A matrix is given.

(a) State the dimension of the matrix.

(b) Is the matrix in row-echelon form?

(c) Is the matrix in reduced row-echelon form?

(d) Write the system of equations for which the given 
matrix is the augmented matrix.

19. 20.

21. 22.

23. 24.

25–46 ■ Find the complete solution of the system, or show that
the system has no solution.

25.

26.

27.

28.

29.

30. • x � y � z � 2

x � y � 3z � 6

2y � 3z � 5

• x � 2y � 2z � 6

x � y � �1

2x � y � 3z � 7

d x � y � z � „ � 2

2x � 3z � 5

x � 2y � 4„ � 9

x � y � 2z � 3„ � 5

• x � 2y � 3z � 1

2x � y � z � 3

2x � 7y � 11z � 2

• x � 2y � 3z � 1

x � 3y � z � 0

2x � 6z � 6

• x � y � 2z � 6

2x � 5z � 12

x � 2y � 3z � 9

≥ 1 8 6 �4

0 1 �3 5

0 0 2 �7

1 1 1 0

¥£0 1 �3 4

1 1 0 7

1 2 1 2

§
£1 3 6 2

2 1 0 5

0 0 1 0

§£1 0 8 0

0 1 5 �1

0 0 0 0

§
c1 0 6

0 1 0
dc1 2 �5

0 1 3
d

e y � 5x � x

y � x 5 � 5
e x � y 2 � 10

x � 1
22 y � 12

e112x � 312y � 660

7137x � 3931y � 20,000

1–4 ■ Two equations and their graphs are given. Find the inter-
section point(s) of the graphs by solving the system.

1. 2.

3. 4.

5–10 ■ Solve the system of equations and graph the lines.

5. 6.

7. 8.

9. 10.

11–14 ■ Solve the system of equations.

11. 12.

13. 14.

15–18 ■ Use a graphing device to solve the system, correct to
the nearest hundredth.

15. e0.32x � 0.43y � 0

7x � 12y � 341

e x2 � y 2 � 10

x 2 � 2y 2 � 7y � 0
µ 3x �

4
y

� 6

x �
8
y

� 4

e x 2 � y 2 � 8

y � x � 2
e y � x 2 � 2x

y � 6 � x

• 2x � 5y � 9

�x � 3y � 1

7x � 2y � 14

•2x � y � 1

x � 3y � 10

3x � 4y � 15

e 6x � 8y � 15 

� 3
2 x � 2y � �4

e2x � 7y � 28

y � 2
7 x � 4

e y �  2x � 6

y � �x � 3
e 3x � y � 5

2x � y � 5

2

1
0

y

x
10

1

y

x

e x � y � �2

x 2 � y 2 � 4y � 4
e x 2 � y � 2

x 2 � 3x � y � 0

20

2

y

x

1

1

0

y

x

e3x � y � 8

y � x 2 � 5x
e2x � 3y � 7

x � 2y � 0
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44. • x � 2y � 3z � 2

2x � y � 5z � 1

4x � 3y � z � 6

• x � y � z � 0

3x � 2y � z � 6

x � 4y � 3z � 3

• x � y � 3

2x � y � 6

x � 2y � 9

e x � y � z � „ � 0

3x � y � z � „ � 2

• x � y � 1

x � y � 2z � 3

x � 3y � 2z � �1

• x � y � 3z � 2

2x � y � z � 2

3x � 4z � 4

d x � z � „ � 2

2x � y � 2„ � 12

3y � z � „ � 4

x � y � z „ � 10

•�x � 4y � z � 8

2x � 6y � z � �9

x � 6y � 4z � �15

• 2x � 3y � 4z � 3

4x � 5y � 9z � 13

2x � 7z � 0

e x � 3y � z � 4

4x � y � 15z � 5

d x � 3z � �1

y � 4„ � 5

2y � z � „ � 0

2x � y � 5z � 4„ � 4

d x � y � z � „ � 0

x � y � 4z � „ � �1

x � 2y � 4„ � �7

2x � 2y � 3z � 4„ � �3

• x � y � z � 2

x � y � 3z � 6

3x � y � 5z � 10

• x � 2y � 3z � �2

2x � y � z � 2

2x � 7y � 11z � �9
45.

46.

47. A man invests his savings in two accounts, one paying 6%
interest per year and the other paying 7%. He has twice as
much invested in the 7% account as in the 6% account, and
his annual interest income is $600. How much is invested in
each account?

48. A piggy bank contains 50 coins, all of them nickels, dimes,
or quarters. The total value of the coins is $5.60, and the
value of the dimes is five times the value of the nickels.
How many coins of each type are there?

49. Clarisse invests $60,000 in money-market accounts at three
different banks. Bank A pays 2% interest per year, bank B
pays 2.5%, and bank C pays 3%. She decides to invest twice
as much in bank B as in the other two banks. After one year,
Clarisse has earned $1575 in interest. How much did she 
invest in each bank?

50. A commercial fisherman fishes for haddock, sea bass, and
red snapper. He is paid $1.25 a pound for haddock, $0.75 
a pound for sea bass, and $2.00 a pound for red snapper. 
Yesterday he caught 560 lb of fish worth $575. The haddock
and red snapper together are worth $320. How many pounds
of each fish did he catch?

51–62 ■ Let

Carry out the indicated operation, or explain why it cannot be
performed.

51. A � B 52. C � D 53. 2C � 3D

54. 5B � 2C 55. GA 56. AG

G � 35 4
F � £ 4 0 2

�1 1 0

7 5 0

§E � c 2 �1

�1
2 1

d
D � £1 4

0 �1

2 0

§C � £ 1
2 3

2 3
2

�2 1

§
B � c 1 2 4

�2 1 0
dA � 32 0 �1 4

c x � y � 2z � 3„ � 0

y � z � „ � 1

3x � 2y � 7z � 10„ � 2

d x � y � z � „ � 2

x � y � z � „ � 0

2x � 2„ � 2

2x � 4y � 4z � 2„ � 6
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57. BC 58. CB 59. BF

60. FC 61. 62.

63–64 ■ Verify that the matrices A and B are inverses of each
other by calculating the products AB and BA.

63.

64.

65–70 ■ Solve the matrix equation for the unknown matrix, X,
or show that no solution exists, where

65. A � 3X � B 66.

67. 68. 2X � C � 5A

69. AX � C 70. AX � B

71–78 ■ Find the determinant and, if possible, the inverse of
the matrix.

71. 72.

73. 74.

75. 76.

77. 78.

79–82 ■ Express the system of linear equations as a matrix
equation. Then solve the matrix equation by multiplying each
side by the inverse of the coefficient matrix.

79. 80.

81. 82. •2x � 3z � 5

x � y � 6z � 0

3x � y � z � 5

•2x � y � 5z � 1
3

x � 2y � 2z � 1
4

x � 3z � 1
6

e6x � 5y � 1

8x � 7y � �1
e12x � 5y � 10

5x � 2y � 17

≥ 1 0 1 0

0 1 0 1

1 1 1 2

1 2 1 2

¥≥ 1 0 0 1

0 2 0 2

0 0 3 3

0 0 0 4

¥
£1 2 3

2 4 5

2 5 6

§£3 0 1

2 �3 0

4 �2 1

§
£ 2 4 0

�1 1 2

0 3 2

§c 4 �12

�2 6
d

c 2 2

1 �3
dc1 4

2 9
d

21X � A 2 � 3B

1
2 1X � 2B 2 � A

A � c 2 1

3 2
d ,  B � c 1 �2

�2 4
d ,  C � c 0 1 3

�2 4 0
d

A � £ 2 �1 3

2 �2 1

0 1 1

§ , B � £ � 3
2 2 5

2

�1 1 2

1 �1 �1

§
A � c 2 �5

�2 6
d , B � c3 5

2

1 1
d

F12C � D 21C � D 2E 83–86 ■ Solve the system using Cramer’s Rule.

83.

84.

85.

86.

87–88 ■ Use the determinant formula for the area of a triangle
to find the area of the triangle in the figure.

87. 88.

89–94 ■ Find the partial fraction decomposition of the rational
function.

89. 90.

91. 92.

93. 94.

95–96 ■ An equation and its graph are given. Find an inequal-
ity whose solution is the shaded region.

95. x � y 2 � 4 96. x 2 � y 2 � 8

1

1

0

y

x
1

1

0

y

x

5x 2 � 3x � 10

x 4 � x 2 � 2

2x � 1

x 3 � x

x � 6

x 3 � 2x 2 � 4x � 8

2x � 4

x1x � 1 2 2
8

x 3 � 4x

3x � 1

x 2 � 2x � 15

y

x

0

2

3

0

y

x

1
1

• 3x � 4y � z � 10

x � 4z � 20

2x � y � 5z � 30

• 2x � y � 5z � 0

�x � 7y � 9

5x � 4y � 3z � �9

e12x � 11y � 140

7x � 9y � 20

e2x � 7y � 13

6x � 16y � 30
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97–100 ■ Graph the inequality.

97. 3x � y 
 6 98. y � x 2 � 3

99. x 2 � y 2 	 9 100. x � y 2 � 4

101–104 ■ The figure shows the graphs of the equations 
corresponding to the given inequalities. Shade the solution set 
of the system of inequalities.

101. 102.

103. 104.

4

40

y

x

1

1

0

y

x

• y � �2x

y 
 2x

y 
 �1
2 x � 2

• x � y � 2

y � x 
 2

x 
 3

1

1

0

y

x
1

1

0

y

x

e y � x � 1

x 2 � y 2 
 1
e y � x 2 � 3x

y 
 1
3 x � 1

105–108 ■ Graph the solution set of the system of inequalities.
Find the coordinates of all vertices, and determine whether 
the solution set is bounded or unbounded.

105. 106.

107. 108.

109–110 ■ Solve for x, y, and z in terms of a, b, and c.

109.

110.

111. For what values of k do the following three lines have a
common point of intersection?

112. For what value of k does the following system have
infinitely many solutions?

• kx � y � z � 0

x � 2y � kz � 0

�x � 3z � 0

y � x � 2k

kx � y � 0

x � y � 12

1a � b, b � c, c � 0 2•ax � by � cz � a � b � c

bx � by � cz � c

cx � cy � cz � c

•�x � y � z � a

x � y � z � b

x � y � z � c

• x � 4

x � y � 24

x 
 2y � 12

• x � 0, y � 0

x � 2y 
 12

y 
 x � 4

e y � x2 � 4

y � 20
e x 2 � y 2 � 9

x � y � 0
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9 Test

1–2 ■ A system of equations is given.

(a) Determine whether the system is linear or nonlinear.

(b) Find all solutions of the system.

1. 2.

3. Use a graphing device to find all solutions of the system correct to two decimal places.

4. In an airplane travels 600 km against the wind. It takes 50 min to travel 300 km
with the wind. Find the speed of the wind and the speed of the airplane in still air.

5. Determine whether each matrix is in reduced row-echelon form, row-echelon form, or
neither.

(a) (b) (c)

6. Use Gaussian elimination to find the complete solution of the system, or show that 
no solution exists.

(a) (b)

7. Use Gauss-Jordan elimination to find the complete solution of the system.

8. Anne, Barry, and Cathy enter a coffee shop. Anne orders two coffees, one juice, and 
two donuts, and pays $6.25. Barry orders one coffee and three donuts, and pays $3.75.
Cathy orders three coffees, one juice, and four donuts, and pays $9.25. Find the price 
of coffee, juice, and donuts at this coffee shop.

9. Let

Carry out the indicated operation, or explain why it cannot be performed.

(a) A � B (b) AB (c) BA � 3B (d) CBA

(e) A�1 (f) B�1 (g) det(B) (h) det(C)

10. (a) Write a matrix equation equivalent to the following system.

(b) Find the inverse of the coefficient matrix, and use it to solve the system.

e4x � 3y � 10

3x � 2y � 30

A � c2 3

2 4
d   B � £ 2 4

�1 1

3 0

§   C � £ 1 0 4

�1 1 2

0 1 3

§

• x � 3y � z � 0

3x � 4y � 2z � �1

�x � 2y � 1

•2x � 3y � z � 3

x � 2y � 2z � �1

4x � y � 5z � 4

• x � y � 2z � 0

2x � 4y � 5z � �5

2y � 3z � 5

£1 1 0

0 0 1

0 1 3

§≥ 1 0 �1 0 0

0 1 3 0 0

0 0 0 1 0

0 0 0 0 1

¥c1 2 4 �6

0 1 �3 0
d

21
2 h

e x � 2y � 1

y � x 3 � 2x 2

e6x � y 2 � 10

3x � y � 5
e x � 3y � 7

5x � 2y � �4



11. Only one of the following matrices has an inverse. Find the determinant of each matrix,
and use the determinants to identify the one that has an inverse. Then find the inverse.

12. Solve using Cramer’s Rule:

13. Find the partial fraction decomposition of the rational function.

(a) (b)

14. Graph the solution set of the system of inequalities. Label the vertices with their 
coordinates.

(a) (b) e x 2 � y 
 5

y 
 2x � 5
•2x � y 
 8

x � y � �2

x � 2y � 4

2x � 3

x 3 � 3x

4x � 11x � 1 2 21x � 2 2

•2x � z � 14

3x � y � 5z � 0

4x � 2y � 3z � �2

A � £1 4 1

0 2 0

1 0 1

§   B � £ 1 4 0

0 2 0

�3 0 1

§
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Focus on Modeling

Linear Programming

Linear programming is a modeling technique used to determine the optimal allo-
cation of resources in business, the military, and other areas of human endeavor. For
example, a manufacturer who makes several different products from the same raw
materials can use linear programming to determine how much of each product should
be produced to maximize the profit. This modeling technique is probably the most
important practical application of systems of linear inequalities. In 1975 Leonid Kan-
torovich and T. C. Koopmans won the Nobel Prize in economics for their work in the
development of this technique.

Although linear programming can be applied to very complex problems with hun-
dreds or even thousands of variables, we consider only a few simple examples to
which the graphical methods of Section 9.9 can be applied. (For large numbers of
variables, a linear programming method based on matrices is used.) Let’s examine a
typical problem.

Example 1 Manufacturing for Maximum Profit

A small shoe manufacturer makes two styles of shoes: oxfords and loafers. Two
machines are used in the process: a cutting machine and a sewing machine. Each
type of shoe requires 15 min per pair on the cutting machine. Oxfords require
10 min of sewing per pair, and loafers require 20 min of sewing per pair. Because
the manufacturer can hire only one operator for each machine, each process is
available for just 8 hours per day. If the profit is $15 on each pair of oxfords and
$20 on each pair of loafers, how many pairs of each type should be produced per
day for maximum profit?

Solution First we organize the given information into a table. To be consistent,
let’s convert all times to hours.

Oxfords Loafers Time available

Time on cutting machine (h) 8

Time on sewing machine (h) 8

Profit $15 $20

1
3

1
6

1
4

1
4

We describe the model and solve the problem in four steps.

CHOOSING THE VARIABLES To make a mathematical model, we first give
names to the variable quantities. For this problem we let

FINDING THE OBJECTIVE FUNCTION Our goal is to determine which values for
x and y give maximum profit. Since each pair of oxfords generates $15 profit and

y � number of pairs of loafers made daily

x � number of pairs of oxfords made daily

Because loafers produce more 
profit per pair, it would seem best to
manufacture only loafers. Surprisingly,
this does not turn out to be the most
profitable solution.



each pair of loafers $20, the total profit is given by

This function is called the objective function.

GRAPHING THE FEASIBLE REGION The larger x and y are, the greater the profit.
But we cannot choose arbitrarily large values for these variables, because of the 
restrictions, or constraints, in the problem. Each restriction is an inequality in the
variables.

In this problem the total number of cutting hours needed is . Since only 
8 hours are available on the cutting machine, we have

Similarly, by considering the amount of time needed and available on the sewing
machine, we get

We cannot produce a negative number of shoes, so we also have

Thus, x and y must satisfy the constraints

If we multiply the first inequality by 4 and the second by 6, we obtain the simplified
system

The solution of this system (with vertices labeled) is sketched in Figure 1. The only
values that satisfy the restrictions of the problem are the ones that correspond to
points of the shaded region in Figure 1. This is called the feasible region for the
problem.

FINDING MAXIMUM PROFIT As x or y increases, profit increases as well. Thus, it
seems reasonable that the maximum profit will occur at a point on one of the outside
edges of the feasible region, where it’s impossible to increase x or y without going
outside the region. In fact, it can be shown that the maximum value occurs at a vertex.
This means that we need to check the profit only at the vertices. The largest value of
P occurs at the point , where P � $560. Thus, the manufacturer should make
16 pairs of oxfords and 16 pairs of loafers, for a maximum daily profit of $560.

116,16 2

µ x � y 
 32

x � 2y 
 48

x � 0

y � 0

µ 1
4 x � 1

4 y 
 8
1
6 x � 1

3 y 
 8

x � 0

y � 0

x � 0  and  y � 0

1
6 x � 1

3 y 
 8

1
4 x � 1

4 y 
 8

1
4 x � 1

4 y

P � 15x � 20y
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y

x10

10

x+y=32

x+2y=48

(0, 24)

(0, 0) (32, 0)

(16, 16)

Figure 1

Vertex P � 15x � 20y

0

15132 2 � 2010 2 � $480132, 0 2 15116 2 � 20116 2 � $560116, 16 2 1510 2  � 20124 2 � $48010, 24 210, 0 2
Maximum profit

■



The linear programming problems that we consider all follow the pattern of Ex-
ample 1. Each problem involves two variables. The problem describes restrictions,
called constraints, that lead to a system of linear inequalities whose solution is called
the feasible region. The function we wish to maximize or minimize is called the 
objective function. This function always attains its largest and smallest values at the
vertices of the feasible region. This modeling technique involves four steps, summa-
rized in the following box.

Linear Programming 737

Guidelines for Linear Programming

1. Choose the Variables. Decide what variable quantities in the problem
should be named x and y.

2. Find the Objective Function. Write an expression for the function we
want to maximize or minimize.

3. Graph the Feasible Region. Express the constraints as a system of 
inequalities and graph the solution of this system (the feasible region).

4. Find the Maximum or Minimum. Evaluate the objective function at
the vertices of the feasible region to determine its maximum or minimum
value.

Example 2 A Shipping Problem

A car dealer has warehouses in Millville and Trenton and dealerships in Camden
and Atlantic City. Every car sold at the dealerships must be delivered from one of
the warehouses. On a certain day the Camden dealers sell 10 cars, and the Atlantic
City dealers sell 12. The Millville warehouse has 15 cars available, and the Trenton
warehouse has 10. The cost of shipping one car is $50 from Millville to Camden,
$40 from Millville to Atlantic City, $60 from Trenton to Camden, and $55 from
Trenton to Atlantic City. How many cars should be moved from each warehouse to
each dealership to fill the orders at minimum cost?

Solution Our first step is to organize the given information. Rather than con-
struct a table, we draw a diagram to show the flow of cars from the warehouses to
the dealerships (see Figure 2 on the next page). The diagram shows the number of
cars available at each warehouse or required at each dealership and the cost of ship-
ping between these locations.

CHOOSING THE VARIABLES The arrows in Figure 2 indicate four possible
routes, so the problem seems to involve four variables. But we let

To fill the orders, we must have

12 � y � number of cars shipped from Trenton to Atlantic City

10 � x � number of cars shipped from Trenton to Camden

y � number of cars to be shipped from Millville to Atlantic City

x � number of cars to be shipped from Millville to Camden

Linear programming helps the
telephone industry determine the
most efficient way to route tele-
phone calls. The computerized rout-
ing decisions must be made very
rapidly so callers are not kept wait-
ing for connections. Since the data-
base of customers and routes is
huge, an extremely fast method for
solving linear programming prob-
lems is essential. In 1984 the 28-
year-old mathematician Narendra
Karmarkar, working at Bell Labs
in Murray Hill, New Jersey, discov-
ered just such a method. His idea is
so ingenious and his method so fast
that the discovery caused a sensa-
tion in the mathematical world. Al-
though mathematical discoveries
rarely make the news, this one was
reported in Time, on December 3,
1984. Today airlines routinely use
Karmarkar’s technique to minimize
costs in scheduling passengers,
flight personnel, fuel, baggage, and
maintenance workers.



So the only variables in the problem are x and y.

FINDING THE OBJECTIVE FUNCTION The objective of this problem is to mini-
mize cost. From Figure 2 we see that the total cost C of shipping the cars is

This is the objective function.

GRAPHING THE FEASIBLE REGION Now we derive the constraint inequalities
that define the feasible region. First, the number of cars shipped on each route can’t
be negative, so we have

Second, the total number of cars shipped from each warehouse can’t exceed the
number of cars available there, so

Simplifying the latter inequality, we get

The inequalities 10 � x � 0 and 12 � y � 0 can be rewritten as x 
 10 and 
y 
 12. Thus, the feasible region is described by the constraints

The feasible region is graphed in Figure 3.

µ x � y 
 15

x � y � 12

0 
 x 
 10

0 
 y 
 12

x � y � 12

�x � y 
 �12

22 � x � y 
 10

110 � x 2 � 112 � y 2 
 10

x � y 
 15

 10 � x � 0    12 � y � 0

x � 0   y � 0

� 1260 � 10x � 15y

� 50x � 40y � 600 � 60x � 660 � 55y

C � 50x � 40y � 60110 � x 2 � 55112 � y 2

Camden
Sell 10

Millville
15 cars

Atlantic City
Sell 12

Trenton
10 cars

$50

$40

Ship
x cars

Ship
10-x

cars

$60

$55

Ship
y cars

Ship
12-y

cars
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y

x

x+y=12

y=12

(0, 12)

(3, 12)

x+y=15

x=10

(10, 2)

(10, 5)

Figure 3

Figure 2



FINDING MINIMUM COST We check the value of the objective function at each
vertex of the feasible region.

The lowest cost is incurred at the point . Thus, the dealer should ship

3 cars from Millville to Camden
12 cars from Millville to Atlantic City
7 cars from Trenton to Camden
0 cars from Trenton to Atlantic City ■

In the 1940s mathematicians developed matrix methods for solving linear pro-
gramming problems that involve more than two variables. These methods were first
used by the Allies in World War II to solve supply problems similar to (but, of course,
much more complicated than) Example 2. Improving such matrix methods is an ac-
tive and exciting area of current mathematical research.

Problems

1– 4 ■ Find the maximum and minimum values of the given objective function on the indi-
cated feasible region.

1. M � 200 � x � y 2.

3. P � 140 � x � 3y 4. Q � 70x � 82y

5. Making Furniture A furniture manufacturer makes wooden tables and chairs. The 
production process involves two basic types of labor: carpentry and finishing. A table
requires 2 hours of carpentry and 1 hour of finishing, and a chair requires 3 hours of 

µ x � 0, y � 0

x 
 10, y 
 20

x � y � 5

x � 2y 
 18

• x � 0, y � 0

2x � y 
 10

2x � 4y 
 28

y

x1

1

4

4

y=x

y

x0 4

2

5

N � 1
2 x � 1

4 y � 40

13, 12 2
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Vertex C � 1260 � 10x � 15y

1260 � 10110 2 � 1512 2 � $1130110, 2 2 1260 � 10110 2 � 1515 2 � $1085110, 5 2 1260 � 1013 2 � 15112 2 � $105013, 12 2 1260 � 1010 2 � 15112 2 � $108010, 12 2
Minimum cost



carpentry and hour of finishing. The profit is $35 per table and $20 per chair. The 
manufacturer’s employees can supply a maximum of 108 hours of carpentry work and
20 hours of finishing work per day. How many tables and chairs should be made each
day to maximize profit?

6. A Housing Development A housing contractor has subdivided a farm into 100
building lots. He has designed two types of homes for these lots: colonial and ranch
style. A colonial requires $30,000 of capital and produces a profit of $4000 when sold.
A ranch-style house requires $40,000 of capital and provides an $8000 profit. If he has
$3.6 million of capital on hand, how many houses of each type should he build for max-
imum profit? Will any of the lots be left vacant?

7. Hauling Fruit A trucker hauls citrus fruit from Florida to Montreal. Each crate of 
oranges is 4 ft3 in volume and weighs 80 lb. Each crate of grapefruit has a volume of 
6 ft3 and weighs 100 lb. Her truck has a maximum capacity of 300 ft3 and can carry no
more than 5600 lb. Moreover, she is not permitted to carry more crates of grapefruit
than crates of oranges. If her profit is $2.50 on each crate of oranges and $4 on each
crate of grapefruit, how many crates of each fruit should she carry for maximum profit?

8. Manufacturing Calculators A manufacturer of calculators produces two models:
standard and scientific. Long-term demand for the two models mandates that the com-
pany manufacture at least 100 standard and 80 scientific calculators each day. However,
because of limitations on production capacity, no more than 200 standard and 170 sci-
entific calculators can be made daily. To satisfy a shipping contract, a total of at least
200 calculators must be shipped every day.

(a) If the production cost is $5 for a standard calculator and $7 for a scientific one,
how many of each model should be produced daily to minimize this cost?

(b) If each standard calculator results in a $2 loss but each scientific one produces a 
$5 profit, how many of each model should be made daily to maximize profit?

9. Shipping Stereos An electronics discount chain has a sale on a certain brand of
stereo. The chain has stores in Santa Monica and El Toro and warehouses in Long
Beach and Pasadena. To satisfy rush orders, 15 sets must be shipped from the ware-
houses to the Santa Monica store, and 19 must be shipped to the El Toro store. The cost
of shipping a set is $5 from Long Beach to Santa Monica, $6 from Long Beach to El
Toro, $4 from Pasadena to Santa Monica, and $5.50 from Pasadena to El Toro. If the
Long Beach warehouse has 24 sets and the Pasadena warehouse has 18 sets in stock,
how many sets should be shipped from each warehouse to each store to fill the orders at
a minimum shipping cost?

10. Delivering Plywood A man owns two building supply stores, one on the east side 
and one on the west side of a city. Two customers order some -inch plywood. Customer
A needs 50 sheets and customer B needs 70 sheets. The east-side store has 80 sheets and
the west-side store has 45 sheets of this plywood in stock. The east-side store’s delivery
costs per sheet are $0.50 to customer A and $0.60 to customer B. The west-side store’s
delivery costs per sheet are $0.40 to A and $0.55 to B. How many sheets should be
shipped from each store to each customer to minimize delivery costs?

11. Packaging Nuts A confectioner sells two types of nut mixtures. The standard-
mixture package contains 100 g of cashews and 200 g of peanuts and sells for $1.95.
The deluxe-mixture package contains 150 g of cashews and 50 g of peanuts and sells for
$2.25. The confectioner has 15 kg of cashews and 20 kg of peanuts available. Based on
past sales, he needs to have at least as many standard as deluxe packages available. 
How many bags of each mixture should he package to maximize his revenue?

12. Feeding Lab Rabbits A biologist wishes to feed laboratory rabbits a mixture of two
types of foods. Type I contains 8 g of fat, 12 g of carbohydrate, and 2 g of protein per
ounce. Type II contains 12 g of fat, 12 g of carbohydrate, and 1 g of protein per ounce.

1
2

1
2
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Type I costs $0.20 per ounce and type II costs $0.30 per ounce. The rabbits each receive
a daily minimum of 24 g of fat, 36 g of carbohydrate, and 4 g of protein, but get no
more than 5 oz of food per day. How many ounces of each food type should be fed to
each rabbit daily to satisfy the dietary requirements at minimum cost?

13. Investing in Bonds A woman wishes to invest $12,000 in three types of bonds:
municipal bonds paying 7% interest per year, bank investment certificates paying 8%,
and high-risk bonds paying 12%. For tax reasons, she wants the amount invested in 
municipal bonds to be at least three times the amount invested in bank certificates. To
keep her level of risk manageable, she will invest no more than $2000 in high-risk
bonds. How much should she invest in each type of bond to maximize her annual inter-
est yield? [Hint: Let x � amount in municipal bonds and y � amount in bank
certificates. Then the amount in high-risk bonds will be 12,000 � x � y.]

14. Annual Interest Yield Refer to Problem 13. Suppose the investor decides to 
increase the maximum invested in high-risk bonds to $3000 but leaves the other condi-
tions unchanged. By how much will her maximum possible interest yield increase?

15. Business Strategy A small software company publishes computer games and 
educational and utility software. Their business strategy is to market a total of 36 new
programs each year, with at least four of these being games. The number of utility 
programs published is never more than twice the number of educational programs. On
average, the company makes an annual profit of $5000 on each computer game, $8000
on each educational program, and $6000 on each utility program. How many of each
type of software should they publish annually for maximum profit?

16. Feasible Region All parts of this problem refer to the following feasible region and
objective function.

(a) Graph the feasible region.

(b) On your graph from part (a), sketch the graphs of the linear equations obtained by
setting P equal to 40, 36, 32, and 28.

(c) If we continue to decrease the value of P, at which vertex of the feasible region will
these lines first touch the feasible region?

(d) Verify that the maximum value of P on the feasible region occurs at the vertex you
chose in part (c).

P � x � 4y

µ x � 0

x � y

x � 2y 
 12

x � y 
 10
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Chapter Overview

Conic sections are the curves we get when we make a straight cut in a cone, as shown
in the figure. For example, if a cone is cut horizontally, the cross section is a circle.
So a circle is a conic section. Other ways of cutting a cone produce parabolas,
ellipses, and hyperbolas.

Our goal in this chapter is to find equations whose graphs are the conic sections.
We already know from Section 1.8 that the graph of the equation x 2 � y 2 � r 2 is a
circle. We will find equations for each of the other conic sections by analyzing their
geometric properties.

Conic sections are important because their shapes are hidden in the structure of
many things. For example, the path of a planet moving around the sun is an ellipse.

The trajectory of a
basketball is a parabola.

The orbit of a planet
is an ellipse.

The shape of a cooling
tower is a hyperbola.

Ellipse Parabola HyperbolaCircle
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10.1 Parabolas

10.2 Ellipses

10.3 Hyperbolas

10.4 Shifted Conics

10.5 Rotation of Axes

10.6 Polar Equations of Conics

10.7 Plane Curves and Parametric Equations
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The path of a projectile (such as a rocket, a basketball, or water spouting from a foun-
tain) is a parabola—which makes the study of parabolas indispensable in rocket sci-
ence. The conic sections also occur in many unexpected places. For example, the
graph of crop yield as a function of amount of rainfall is a parabola (see page 321).
We will examine some uses of the conics in medicine, engineering, navigation, and
astronomy.

In Section 10.7 we study parametric equations, which we can use to describe the
curve that a moving body traces out over time. In Focus on Modeling, page 816, we
derive parametric equations for the path of a projectile.

10.1 Parabolas

We saw in Section 2.5 that the graph of the equation y � ax 2 � bx � c is a U-shaped
curve called a parabola that opens either upward or downward, depending on
whether the sign of a is positive or negative.

In this section we study parabolas from a geometric rather than an algebraic point
of view. We begin with the geometric definition of a parabola and show how this leads
to the algebraic formula that we are already familiar with.
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Geometric Definition of a Parabola

A parabola is the set of points in the plane equidistant from a fixed point F
(called the focus) and a fixed line l (called the directrix).

This definition is illustrated in Figure 1. The vertex V of the parabola lies halfway
between the focus and the directrix, and the axis of symmetry is the line that runs
through the focus perpendicular to the directrix.

In this section we restrict our attention to parabolas that are situated with the ver-
tex at the origin and that have a vertical or horizontal axis of symmetry. (Parabolas in
more general positions will be considered in Sections 10.4 and 10.5.) If the focus of
such a parabola is the point , then the axis of symmetry must be vertical and
the directrix has the equation y � �p. Figure 2 illustrates the case p 	 0.

Figure 2

y=_p

F(0, p)

P(x, y)

y

x

y

0 p

p

F10, p 2

parabola

l

axis

focus

vertex directrix

F

V

Figure 1



If is any point on the parabola, then the distance from P to the focus F (us-
ing the Distance Formula) is

The distance from P to the directrix is

By the definition of a parabola, these two distances must be equal:

Square both sides

Expand

Simplify

If p 	 0, then the parabola opens upward, but if p � 0, it opens downward. When x
is replaced by �x, the equation remains unchanged, so the graph is symmetric about
the y-axis.

Equations and Graphs of Parabolas

The following box summarizes what we have just proved about the equation and fea-
tures of a parabola with a vertical axis.

x2 � 4py

x2 � 2py � 2py

x2 � y2 � 2py � p2 � y2 � 2py � p2

x2 � 1y � p 2 2 � 0 y � p 0 2 � 1y � p 2 22x2 � 1y � p 2 2 � 0 y � p 0
0 y � 1�p 2 0 � 0 y � p 0
2x2 � 1y � p 2 2

P1x, y 2
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Parabola with Vertical Axis

The graph of the equation

is a parabola with the following properties.

VERTEX

FOCUS

DIRECTRIX

The parabola opens upward if p 	 0 or downward if p � 0.

y=_p

F(0, p)

x

y

0

≈=4py with p>0 ≈=4py with p<0

y=_p

F(0, p)

x

y

0

y � �p

F10, p 2V10, 0 2
x2 � 4py



Example 1 Finding the Equation of a Parabola

Find the equation of the parabola with vertex and focus , and sketch
its graph.

Solution Since the focus is , we conclude that p � 2 (and so the directrix
is ). Thus, the equation of the parabola is

x2 � 4py with p � 2

Since p � 2 	 0, the parabola opens upward. See Figure 3.

■

Example 2 Finding the Focus and Directrix 

of a Parabola from Its Equation

Find the focus and directrix of the parabola y � �x 2, and sketch the graph.

Solution To find the focus and directrix, we put the given equation in the 
standard form x 2 � �y. Comparing this to the general equation x 2 � 4py, we see
that 4p � �1, so . Thus, the focus is and the directrix is .
The graph of the parabola, together with the focus and the directrix, is shown in
Figure 4(a). We can also draw the graph using a graphing calculator as shown 
in Figure 4(b).

■

x

y

2_2

1

_2
y=_≈

F!0, _   @
1

4

1

4
y=

(a) (b)

1

2_2

_4

Figure 4

y � 1
4F A0,� 1

4Bp � � 1
4

y=_2

F(0, 2)

≈=8y

x

y

3_3

_3

3

0

Figure 3

x2 � 8y

x2 � 412 2yy � �2
F10, 2 2

F10, 2 2V10, 0 2
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Mathematics in 

the Modern World

Looking Inside Your Head

How would you like to look inside
your head? The idea isn’t particu-
larly appealing to most of us, but
doctors often need to do just that. If
they can look without invasive
surgery, all the better. An X-ray
doesn’t really give a look inside, it
simply gives a “graph” of the den-
sity of tissue the X-rays must pass
through. So an X-ray is a “flat-
tened” view in one direction. Sup-
pose you get an X-ray view from
many different directions—can
these “graphs” be used to recon-
struct the three-dimensional inside
view?This is a purely mathematical
problem and was solved by mathe-
maticians a long time ago. How-
ever, reconstructing the inside view
requires thousands of tedious com-
putations. Today, mathematics and
high-speed computers make it pos-
sible to “look inside” by a process
called Computer Aided Tomogra-
phy (or CAT scan). Mathematicians
continue to search for better ways
of using mathematics to reconstruct
images. One of the latest tech-
niques, called magnetic resonance
imaging (MRI), combines molecu-
lar biology and mathematics for a
clear “look inside.”
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Reflecting the graph in Figure 2 about the diagonal line y � x has the effect of 
interchanging the roles of x and y. This results in a parabola with horizontal axis. 
By the same method as before, we can prove the following properties.
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Parabola with Horizontal Axis

The graph of the equation

is a parabola with the following properties.

VERTEX

FOCUS

DIRECTRIX

The parabola opens to the right if p 	 0 or to the left if p � 0.

x=_p

F( p, 0)

x

y

0

x=_p

F( p, 0)

x

y

0

¥=4px with p>0 ¥=4px with p<0

x � �p

F1p, 0 2V10, 0 2
y2 � 4px

Example 3 A Parabola with Horizontal Axis

A parabola has the equation 6x � y 2 � 0.

(a) Find the focus and directrix of the parabola, and sketch the graph.

(b) Use a graphing calculator to draw the graph.

Solution

(a) To find the focus and directrix, we put the given equation in the standard form
y 2 � �6x. Comparing this to the general equation y 2 � 4px, we see that 
4p � �6, so . Thus, the focus is and the directrix is .
Since p � 0, the parabola opens to the left. The graph of the parabola, together
with the focus and the directrix, is shown in Figure 5(a) on the next page.

(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract 6x

Take square rootsy � ;1�6x

y2 � �6x

 6x � y2 � 0

x � 3
2F A� 3

2, 0Bp � �3
2



To obtain the graph of the parabola, we graph both functions

as shown in Figure 5(b).

Figure 5
■

The equation y 2 � 4px does not define y as a function of x (see page 164). So,
to use a graphing calculator to graph a parabola with horizontal axis, we must first
solve for y. This leads to two functions, and . We need to
graph both functions to get the complete graph of the parabola. For example, in Fig-
ure 5(b) we had to graph both and to graph the parabola 
y 2 � �6x.

We can use the coordinates of the focus to estimate the “width” of a parabola when
sketching its graph. The line segment that runs through the focus perpendicular to the
axis, with endpoints on the parabola, is called the latus rectum, and its length is the
focal diameter of the parabola. From Figure 6 we can see that the distance from an
endpoint Q of the latus rectum to the directrix is . Thus, the distance from Q to
the focus must be as well (by the definition of a parabola), and so the focal di-
ameter is . In the next example we use the focal diameter to determine the
“width” of a parabola when graphing it.

latus
rectum

x=_p

F( p, 0)

2p

pp

Q

x

y

0

Figure 6

0 4p 0 0 2p 0 0 2p 0

y � �1�6xy � 1�6x

y � �14pxy � 14px

(a)

3

2
x=

3

2
_F !      , 0@

1

1

6x+¥=0

x

y

0
2_6

_6

6

y = – –6x

(b)

y = –6x

y � 1�6x  and  y � �1�6x
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Archimedes (287–212 B.C.) was
the greatest mathematician of the
ancient world. He was born in
Syracuse, a Greek colony on Sicily,
a generation after Euclid (see page
532). One of his many discoveries
is the Law of the Lever (see page
69). He famously said, “Give me a
place to stand and a fulcrum for my
lever, and I can lift the earth.”

Renowned as a mechanical ge-
nius for his many engineering in-
ventions, he designed pulleys for
lifting heavy ships and the spiral
screw for transporting water to
higher levels. He is said to have
used parabolic mirrors to concen-
trate the rays of the sun to set fire to
Roman ships attacking Syracuse.

King Hieron II of Syracuse once
suspected a goldsmith of keeping
part of the gold intended for the
king’s crown and replacing it with
an equal amount of silver. The king
asked Archimedes for advice.
While in deep thought at a public
bath, Archimedes discovered the
solution to the king’s problem
when he noticed that his body’s
volume was the same as the volume
of water it displaced from the tub.
As the story is told, he ran home
naked, shouting “Eureka, eureka!”
(“I have found it, I have found it!”)
This incident attests to his enor-
mous powers of concentration.

In spite of his engineering
prowess, Archimedes was most
proud of his mathematical discov-

(continued)



Example 4 The Focal Diameter of a Parabola

Find the focus, directrix, and focal diameter of the parabola , and sketch 
its graph.

Solution We first put the equation in the form x 2 � 4py.

Multiply each side by 2

From this equation we see that 4p � 2, so the focal diameter is 2. Solving for p
gives , so the focus is and the directrix is . Since the focal 
diameter is 2, the latus rectum extends 1 unit to the left and 1 unit to the right of 
the focus. The graph is sketched in Figure 7. ■

In the next example we graph a family of parabolas, to show how changing the
distance between the focus and the vertex affects the “width” of a parabola.

Example 5 A Family of Parabolas

(a) Find equations for the parabolas with vertex at the origin and foci
, and .

(b) Draw the graphs of the parabolas in part (a). What do you conclude?

Solution

(a) Since the foci are on the positive y-axis, the parabolas open upward and have
equations of the form x 2 � 4py. This leads to the following equations.

Equation Form of the equation 
Focus p x 2 � 4py for graphing calculator

y � 2x 2

x 2 � 2y y � 0.5x 2

p � 1 x 2 � 4y y � 0.25x 2

p � 4 x 2 � 16y y � 0.0625x 2

(b) The graphs are drawn in Figure 8. We see that the closer the focus to the vertex,
the narrower the parabola.

Figure 8

A family of parabolas ■

5

_0.5

_5 5

5

_0.5

_5 5

5

_0.5

_5 5

5

_0.5

_5 5

y=2≈ y=0.5≈ y=0.25≈ y=0.0625≈

F410, 4 2F310, 1 2 p � 1
2F2A0, 1

2B x2 � 1
2 yp � 1

8F1A0, 1
8B

F410, 4 2F1A0, 1
8B, F2A0, 1

2B, F3A0, 1B

y � � 1
2A0, 1

2Bp � 1
2

x2 � 2y

y � 1
2 x2

y � 1
2 x2
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eries. These include the formulas
for the volume of a sphere,

; the surface area of a
sphere, ; and a careful
analysis of the properties of
parabolas and other conics.

S � 4pr 2
V � 4

3pr 3

x

y

2

1 1

1

2
y=_

1

2
y= x™

1

2
F !0,   @

1

2
!_1,   @

1

2
!1,   @

Figure 7



Applications

Parabolas have an important property that makes them useful as reflectors for lamps
and telescopes. Light from a source placed at the focus of a surface with parabolic
cross section will be reflected in such a way that it travels parallel to the axis of the
parabola (see Figure 9). Thus, a parabolic mirror reflects the light into a beam of par-
allel rays. Conversely, light approaching the reflector in rays parallel to its axis of
symmetry is concentrated to the focus. This reflection property, which can be proved
using calculus, is used in the construction of reflecting telescopes.

Example 6 Finding the Focal Point of 

a Searchlight Reflector

A searchlight has a parabolic reflector that forms a “bowl,” which is 12 in. wide
from rim to rim and 8 in. deep, as shown in Figure 10. If the filament of the light
bulb is located at the focus, how far from the vertex of the reflector is it?

Solution We introduce a coordinate system and place a parabolic cross 
section of the reflector so that its vertex is at the origin and its axis is vertical 
(see Figure 11). Then the equation of this parabola has the form x 2 � 4py. From
Figure 11 we see that the point lies on the parabola. We use this to find p.

The point  satisfies the equation x2 � 4py

The focus is , so the distance between the vertex and the focus is .
Because the filament is positioned at the focus, it is located . from the vertex 
of the reflector. ■

11
8 in

9
8 � 11

8 inF A0, 9
8Bp � 9
8

 36 � 32p

16, 8 2 62 � 4p18 2 16, 8 2

8 in.

12 in.

Figure 10

A parabolic reflector

F

Figure 9

Parabolic reflector
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(6, 8)

8

12

1
1

8

x

y

0_6 6

Figure 11
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1–6 ■ Match the equation with the graphs labeled I–VI. Give
reasons for your answers.

1. y 2 � 2x 2. 3. x 2 � �6y

4. 2x 2 � y 5. y 2 � 8x � 0 6. 12y � x 2 � 0

7–18 ■ Find the focus, directrix, and focal diameter of the
parabola, and sketch its graph.

7. y 2 � 4x 8. x 2 � y

9. x 2 � 9y 10. y 2 � 3x

11. y � 5x 2 12. y � �2x 2

13. x � �8y 2 14.

15. x 2 � 6y � 0 16. x � 7y 2 � 0

17. 5x � 3y 2 � 0 18. 8x 2 � 12y � 0

19–24 ■ Use a graphing device to graph the parabola.

19. x 2 � 16y 20. x 2 � �8y

21. 22. 8y 2 � x

23. 4x � y 2 � 0 24. x � 2y 2 � 0

25–36 ■ Find an equation for the parabola that has its vertex at
the origin and satisfies the given condition(s).

25. Focus 26. Focus F A0, � 1
2BF10, 2 2

y2 � � 1
3 x

x � 1
2 y2

I II

x10

1

y

III IV

x

1
1

y

x10

1

y

x

2

2

y

V VI

x10

1

y

x1

1

y

0

y2 � � 1
4 x

27. Focus 28. Focus 

29. Directrix x � 2 30. Directrix y � 6

31. Directrix y � �10 32. Directrix

33. Focus on the positive x-axis, 2 units away from the directrix

34. Directrix has y-intercept 6

35. Opens upward with focus 5 units from the vertex

36. Focal diameter 8 and focus on the negative y-axis

37–46 ■ Find an equation of the parabola whose graph is
shown.

37. 38.

39. 40.

41. 42.

43. 44.

directrix

square has
area 16

y

0 x

(4, _2)

0

y

x

focus

y

0 x5

3

2

3

2
0

y

x

focus

0

y

x

_3

focus

x=4

0

y

x

directrix

x=_2

0

y

x

directrix

0

y

x

2

focus

x � � 1
8

F15, 0 2F1�8, 0 210.1 Exercises
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45. 46.

47. (a) Find equations for the family of parabolas with vertex 
at the origin and with directrixes , y � 1, y � 4,
and y � 8.

(b) Draw the graphs. What do you conclude?

48. (a) Find equations for the family of parabolas with vertex at
the origin, focus on the positive y-axis, and with focal
diameters 1, 2, 4, and 8.

(b) Draw the graphs. What do you conclude?

Applications

49. Parabolic Reflector A lamp with a parabolic reflector is
shown in the figure. The bulb is placed at the focus and the
focal diameter is 12 cm.

(a) Find an equation of the parabola.

(b) Find the diameter of the opening, 20 cm from
the vertex.

50. Satellite Dish A reflec-
tor for a satellite dish is
parabolic in cross section,
with the receiver at the 
focus F. The reflector 
is 1 ft deep and 20 ft wide
from rim to rim (see the
figure). How far is the re-
ceiver from the vertex of
the parabolic reflector?

51. Suspension Bridge In a suspension bridge the shape 
of the suspension cables is parabolic. The bridge shown in
the figure has towers that are 600 m apart, and the lowest

A

B

6 cm

6 cm

20 cmO

D

C

F

d1C, D 2

y � 1
2

focus

y

0 x2

1
2slope=

focus shaded
region
has area 8

0

y

x

point of the suspension cables is 150 m below the top of 
the towers. Find the equation of the parabolic part of the 
cables, placing the origin of the coordinate system at the
vertex.

NOTE This equation is used to find the length of cable
needed in the construction of the bridge.

52. Reflecting Telescope The Hale
telescope at the Mount Palomar
Observatory has a 200-in. mirror,
as shown. The mirror is con-
structed in a parabolic shape that
collects light from the stars and 
focuses it at the prime focus, that
is, the focus of the parabola. The
mirror is 3.79 in. deep at its center.
Find the focal length of this para-
bolic mirror, that is, the distance
from the vertex to the focus.

Discovery • Discussion

53. Parabolas in the Real World Several examples of the
uses of parabolas are given in the text. Find other situations
in real life where parabolas occur. Consult a scientific ency-
clopedia in the reference section of your library, or search
the Internet.

54. Light Cone from a Flashlight A flashlight is held to
form a lighted area on the ground, as shown in the figure. 
Is it possible to angle the flashlight in such a way that the
boundary of the lighted area is a parabola? Explain your 
answer.

600 m

150 m

F

1 ft
20 ft

?

Prime
focus

200 in.

3.79 in.



10.2 Ellipses

An ellipse is an oval curve that looks like an elongated circle. More precisely, we have
the following definition.

The geometric definition suggests a simple method for drawing an ellipse. Place a
sheet of paper on a drawing board and insert thumbtacks at the two points that are to be
the foci of the ellipse. Attach the ends of a string to the tacks, as shown in Figure 2(a).
With the point of a pencil, hold the string taut. Then carefully move the pencil around
the foci, keeping the string taut at all times. The pencil will trace out an ellipse, because
the sum of the distances from the point of the pencil to the foci will always equal the
length of the string, which is constant.

If the string is only slightly longer than the distance between the foci, then the 
ellipse traced out will be elongated in shape as in Figure 2(a), but if the foci are close
together relative to the length of the string, the ellipse will be almost circular, as
shown in Figure 2(b).

To obtain the simplest equation for an ellipse, we place the foci on the x-axis at
and , so that the origin is halfway between them (see Figure 3).

For later convenience we let the sum of the distances from a point on the ellipse to
the foci be 2a. Then if is any point on the ellipse, we have

So, from the Distance Formula

or

Squaring each side and expanding, we get

which simplifies to

4a21x � c 2 2 � y2 � 4a2 � 4cx

x2 � 2cx � c2 � y2 � 4a2 � 4a21x � c 2 2 � y2 � 1x2 � 2cx � c2 � y2 2
21x � c 2 2 � y2 � 2a � 21x � c 2 2 � y2

21x � c 2 2 � y2 � 21x � c 2 2 � y2 � 2a

d1P, F1 2 � d1P, F2 2 � 2a

P1x, y 2F21c, 0 2F11�c, 0 2
(b)(a)Figure 2
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P(x, y)

F¤(c, 0)F⁄(_c, 0) 0

y

x

Figure 3

F⁄

P

F¤

Figure 1

Geometric Definition of an Ellipse

An ellipse is the set of all points in the plane the sum of whose distances
from two fixed points F1 and F2 is a constant. (See Figure 1.) These two fixed
points are the foci (plural of focus) of the ellipse.



(0, b)

(a, 0)

(_a, 0)

(0, _b)

(_c, 0) (c, 0)

b

c

a

0

y

x

Dividing each side by 4 and squaring again, we get

Since the sum of the distances from P to the foci must be larger than the distance be-
tween the foci, we have that 2a 	 2c, or a 	 c. Thus, a 2 � c 2 	 0, and we can divide
each side of the preceding equation by to get

For convenience let b 2 � a 2 � c 2 1with b 	 02. Since b 2 � a 2, it follows that b � a.
The preceding equation then becomes

This is the equation of the ellipse. To graph it, we need to know the x- and y-intercepts.
Setting y � 0, we get

so x 2 � a 2, or x � �a. Thus, the ellipse crosses the x-axis at and , as
in Figure 4. These points are called the vertices of the ellipse, and the segment that
joins them is called the major axis. Its length is 2a.

1�a, 0 21a, 0 2
x2

a2 � 1

x2

a2 �
y2

b2 � 1  with a 	 b

x2

a2 �
y2

a2 � c2 � 1

a21a2 � c2 2
1a2 � c2 2x2 � a2y2 � a21a2 � c2 2a2x2 � 2a2cx � a2c2 � a2y2 � a4 � 2a2cx � c2x2

a2 3 1x � c 2 2 � y2 4 � 1a2 � cx 2 2
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Figure 4

x2

a2 �
y2

b2 � 1 with a 	 b

Similarly, if we set x � 0, we get y � �b, so the ellipse crosses the y-axis at 
and . The segment that joins these points is called the minor axis, and it has
length 2b. Note that 2a 	 2b, so the major axis is longer than the minor axis. The ori-
gin is the center of the ellipse.

If the foci of the ellipse are placed on the y-axis at rather than on the 
x-axis, then the roles of x and y are reversed in the preceding discussion, and we get
a vertical ellipse.

Equations and Graphs of Ellipses

The following box summarizes what we have just proved about the equation and fea-
tures of an ellipse centered at the origin.

10, �c 2
10, �b 2 10, b 2

The orbits of the planets are ellipses,
with the sun at one focus.



Example 1 Sketching an Ellipse

An ellipse has the equation

(a) Find the foci, vertices, and the lengths of the major and minor axes, and sketch
the graph.

(b) Draw the graph using a graphing calculator.

Solution

(a) Since the denominator of x 2 is larger, the ellipse has horizontal major axis. This
gives a 2 � 9 and b 2 � 4, so c 2 � a 2 � b 2 � 9 � 4 � 5. Thus, a � 3, b � 2,
and .

FOCI

VERTICES

LENGTH OF MAJOR AXIS 6

LENGTH OF MINOR AXIS 4

The graph is shown in Figure 5(a) on the next page.

1�3, 0 21�15, 0 2c � 15

x2

9
�

y2

4
� 1
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Ellipse with Center at the Origin

The graph of each of the following equations is an ellipse with center at the
origin and having the given properties.

EQUATION

a 	 b 	 0 a 	 b 	 0

VERTICES

MAJOR AXIS Horizontal, length 2a Vertical, length 2a

MINOR AXIS Vertical, length 2b Horizontal, length 2b

FOCI , c 2 � a 2 � b 2 , c 2 � a 2 � b 2

GRAPH

b

a

_a

_b

F⁄(0, _c)

F¤(0, c)
y

x0

b

a_a

_b

F⁄(_c, 0) F¤(c, 0)

y

x0

10, �c 21�c, 0 2
10, �a 21�a, 0 2
x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1

In the standard equation for an ellipse,
a 2 is the larger denominator and b 2 is
the smaller. To find c 2, we subtract:
larger denominator minus smaller 
denominator.



(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract x2/9

Multiply by 4

Take square roots

To obtain the graph of the ellipse, we graph both functions

as shown in Figure 5(b).

■

Example 2 Finding the Foci of an Ellipse

Find the foci of the ellipse 16x 2 � 9y 2 � 144, and sketch its graph.

Solution First we put the equation in standard form. Dividing by 144, we get

Since 16 	 9, this is an ellipse with its foci on the y-axis, and with a � 4 and 
b � 3. We have

Thus, the foci are . The graph is shown in Figure 6(a).10, �17 2c � 17

c2 � a2 � b2 � 16 � 9 � 7

x2

9
�

y2

16
� 1

(b)(a)

3

40 x

y

F⁄!_œ∑5, 0@

F¤!œ∑5, 0@

4.7_4.7

_3.1

3.1

y = –2 œ∑∑∑∑∑1 – x2/9

y = 2 œ∑∑∑∑∑1 – x2/9

y � 221 � x2/9  and  y � �2 21 � x2/9

y � �2B1 �
x2

9

y2 � 4 a1 �
x2

9
b

y2

4
� 1 �

x2

9

x2

9
�

y2

4
� 1
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Figure 5

x2

9
�

y2

4
� 1

Note that the equation of an ellipse
does not define y as a function of x (see
page 164). That’s why we need to
graph two functions to graph an ellipse.



We can also draw the graph using a graphing calculator as shown in Figure 6(b).

■

Example 3 Finding the Equation of an Ellipse

The vertices of an ellipse are and the foci are . Find its equation 
and sketch the graph.

Solution Since the vertices are , we have a � 4. The foci are ,
so c � 2. To write the equation, we need to find b. Since c 2 � a 2 � b 2, we have

Thus, the equation of the ellipse is

The graph is shown in Figure 7. ■

Eccentricity of an Ellipse

We saw earlier in this section (Figure 2) that if 2a is only slightly greater than 2c, the
ellipse is long and thin, whereas if 2a is much greater than 2c, the ellipse is almost
circular. We measure the deviation of an ellipse from being circular by the ratio of a
and c.

x2

16
�

y2

12
� 1

b2 � 16 � 4 � 12

 22 � 42 � b2

1�2, 0 21�4, 0 2
1�2, 0 21�4, 0 2

0 x

y

4

F¤ !0, œ∑7@
5

F⁄!0, _œ∑7@

9_9

_5

5

5

y = –4œ∑∑∑∑∑1 – x2/9

y = 4 œ∑∑∑∑∑1 – x2/9

(a) (b)
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Figure 6

16x 2 � 9y 2 � 144

4

0 x

y

5

F⁄(_2, 0)

F¤(2, 0)

Figure 7

x2

16
�

y2

12
� 1

Definition of Eccentricity

For the ellipse or 1with a 	 b 	 02, the 

eccentricity e is the number

where . The eccentricity of every ellipse satisfies 0 � e � 1.c � 2a2 � b2

e �
c
a

x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1



Thus, if e is close to 1, then c is almost equal to a, and the ellipse is elongated in
shape, but if e is close to 0, then the ellipse is close to a circle in shape. The eccen-
tricity is a measure of how “stretched” the ellipse is.

In Figure 8 we show a number of ellipses to demonstrate the effect of varying the
eccentricity e.

Figure 8

Ellipses with various eccentricities

Example 4 Finding the Equation of an Ellipse 

from Its Eccentricity and Foci

Find the equation of the ellipse with foci and eccentricity , and sketch
its graph.

Solution We are given and c � 8. Thus

Eccentricity

Cross multiply

To find b, we use the fact that c 2 � a 2 � b 2.

Thus, the equation of the ellipse is

Because the foci are on the y-axis, the ellipse is oriented vertically. To sketch the 
ellipse, we find the intercepts: The x-intercepts are �6 and the y-intercepts are
�10. The graph is sketched in Figure 9. ■

Gravitational attraction causes the planets to move in elliptical orbits around the
sun with the sun at one focus. This remarkable property was first observed by 
Johannes Kepler and was later deduced by Isaac Newton from his inverse square law
of gravity, using calculus. The orbits of the planets have different eccentricities,
but most are nearly circular (see the margin note above).

x2

36
�

y2

100
� 1

b � 6

b2 � 102 � 82 � 36

 82 � 102 � b2

a � 10

 4a � 40

e �
c
a

4

5
�

8
a

e � 4
5

e � 4
510, �8 2

e=0.86e=0.1 e=0.5 e=0.68
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0 x

y

6
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_6

_10

F⁄(0, 8)

F¤(0, _8)

Figure 9

x2

36
�

y2

100
� 1

Eccentricities of the Orbits 

of the Planets

The orbits of the planets are el-
lipses with the sun at one focus.
For most planets these ellipses
have very small eccentricity, so
they are nearly circular. However,
Mercury and Pluto, the innermost
and outermost known planets, have
visibly elliptical orbits.

Planet Eccentricity

Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.056
Uranus 0.046
Neptune 0.010
Pluto 0.248
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1–4 ■ Match the equation with the graphs labeled I–IV. Give
reasons for your answers.

1. 2.

3. 4x 2 � y 2 � 4 4. 16x 2 � 25y 2 � 400

5–18 ■ Find the vertices, foci, and eccentricity of the ellipse.
Determine the lengths of the major and minor axes, and sketch
the graph.

5. 6.
x2

16
�

y2

25
� 1

x2

25
�

y2

9
� 1

I II

III IV

y

x0

1

1

y

x0

1

1

x0

1

2

yy

x0

1

1

x2 �
y2

9
� 1

x2

16
�

y2

4
� 1

7. 9x 2 � 4y 2 � 36 8. 4x 2 � 25y 2 � 100

9. x 2 � 4y 2 � 16 10. 4x 2 � y 2 � 16

11. 2x 2 � y 2 � 3 12. 5x 2 � 6y 2 � 30

13. x 2 � 4y 2 � 1 14. 9x 2 � 4y 2 � 1

15. 16. x 2 � 4 � 2y 2

17. y 2 � 1 � 2x 2 18. 20x 2 � 4y 2 � 5

19–24 ■ Find an equation for the ellipse whose graph is shown.

19. 20.

21. 22.

0

4 F(0, 3)

y

x

F(0, 2)

0

y

x2

0

5

y

x2

y

x0

4

5

1
2 x2 � 1

8 y2 � 1
4

Ellipses, like parabolas, have an interesting reflection property that leads to a num-
ber of practical applications. If a light source is placed at one focus of a reflecting sur-
face with elliptical cross sections, then all the light will be reflected off the surface to
the other focus, as shown in Figure 10. This principle, which works for sound waves
as well as for light, is used in lithotripsy, a treatment for kidney stones. The patient is
placed in a tub of water with elliptical cross sections in such a way that the kidney
stone is accurately located at one focus. High-intensity sound waves generated at the
other focus are reflected to the stone and destroy it with minimal damage to sur-
rounding tissue. The patient is spared the trauma of surgery and recovers within days
instead of weeks.

The reflection property of ellipses is also used in the construction of whispering
galleries. Sound coming from one focus bounces off the walls and ceiling of an el-
liptical room and passes through the other focus. In these rooms even quiet whispers
spoken at one focus can be heard clearly at the other. Famous whispering galleries 
include the National Statuary Hall of the U.S. Capitol in Washington, D.C. (see 
page 771), and the Mormon Tabernacle in Salt Lake City, Utah.

10.2 Exercises

F⁄ F¤

Figure 10
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23. 24.

25–28 ■ Use a graphing device to graph the ellipse.

25. 26.

27. 6x 2 � y 2 � 36 28. x 2 � 2y 2 � 8

29–40 ■ Find an equation for the ellipse that satisfies the given
conditions.

29. Foci , vertices 

30. Foci , vertices 

31. Length of major axis 4, length of minor axis 2, foci on 
y-axis

32. Length of major axis 6, length of minor axis 4, foci on 
x-axis

33. Foci , length of minor axis 6

34. Foci , length of major axis 12

35. Endpoints of major axis , distance between foci 6

36. Endpoints of minor axis , distance between foci 8

37. Length of major axis 10, foci on x-axis, ellipse passes
through the point 

38. Eccentricity , foci 

39. Eccentricity 0.8, foci 

40. Eccentricity , foci on y-axis, length of major axis 4

41–43 ■ Find the intersection points of the pair of ellipses.
Sketch the graphs of each pair of equations on the same coordi-
nate axes and label the points of intersection.

41. 42.

43.

44. The ancillary circle of an ellipse is the circle with radius
equal to half the length of the minor axis and center the

c100x2 � 25y2 � 100

x2 �
y2

9
� 1

µ x2

16
�

y2

9
� 1

x2

9
�

y2

16
� 1

e 4x2 � y2 � 4

4x2 � 9y2 � 36

13/2

1�1.5, 0 210, �2 21
9

115, 2 2
10, �3 21�10, 0 21�5, 0 210, �2 2

10, �5 210, �3 2 1�5, 0 21�4, 0 2

x2 �
y2

12
� 1

x2

25
�

y2

20
� 1

(_1, 2)

0

y

x20

y

x16

(8, 6)

same as the ellipse (see the figure). The ancillary circle is
thus the largest circle that can fit within an ellipse.

(a) Find an equation for the ancillary circle of the ellipse 
x 2 � 4y 2 � 16.

(b) For the ellipse and ancillary circle of part (a), show that
if is a point on the ancillary circle, then is a
point on the ellipse.

45. (a) Use a graphing device to sketch the top half (the portion
in the first and second quadrants) of the family of el-
lipses x 2 � ky 2 � 100 for k � 4, 10, 25, and 50.

(b) What do the members of this family of ellipses have in
common? How do they differ?

46. If k 	 0, the following equation represents an ellipse:

Show that all the ellipses represented by this equation have
the same foci, no matter what the value of k.

Applications

47. Perihelion and Aphelion The planets move around the
sun in elliptical orbits with the sun at one focus. The point
in the orbit at which the planet is closest to the sun is called
perihelion, and the point at which it is farthest is called
aphelion. These points are the vertices of the orbit. The
earth’s distance from the sun is 147,000,000 km at perihe-
lion and 153,000,000 km at aphelion. Find an equation for
the earth’s orbit. (Place the origin at the center of the orbit
with the sun on the x-axis.)

48. The Orbit of Pluto With an eccentricity of 0.25,
Pluto’s orbit is the most eccentric in the solar system. The
length of the minor axis of its orbit is approximately
10,000,000,000 km. Find the distance between Pluto and 
the sun at perihelion and at aphelion. (See Exercise 47.)

aphelion perihelion

x2

k
�

y2

4 � k
� 1

ancillary
circle

ellipse

12s, t 21s, t 2
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49. Lunar Orbit For an object in an elliptical orbit around 
the moon, the points in the orbit that are closest to and 
farthest from the center of the moon are called perilune
and apolune, respectively. These are the vertices of the 
orbit. The center of the moon is at one focus of the orbit.
The Apollo 11 spacecraft was placed in a lunar orbit with
perilune at 68 mi and apolune at 195 mi above the surface 
of the moon. Assuming the moon is a sphere of radius
1075 mi, find an equation for the orbit of Apollo 11. (Place
the coordinate axes so that the origin is at the center of the
orbit and the foci are located on the x-axis.)

50. Plywood Ellipse A carpenter wishes to construct an el-
liptical table top from a sheet of plywood, 4 ft by 8 ft. He
will trace out the ellipse using the “thumbtack and string”
method illustrated in Figures 2 and 3. What length of string
should he use, and how far apart should the tacks be located,
if the ellipse is to be the largest possible that can be cut out
of the plywood sheet?

51. Sunburst Window A “sunburst” window above a door-
way is constructed in the shape of the top half of an ellipse,
as shown in the figure. The window is 20 in. tall at its high-
est point and 80 in. wide at the bottom. Find the height of
the window 25 in. from the center of the base.

80 in.

25 in.

h
20 in.

moon

68 mi

195 mi
periluneapolune

Discovery • Discussion

52. Drawing an Ellipse on a Blackboard Try drawing an
ellipse as accurately as possible on a blackboard. How
would a piece of string and two friends help this process?

53. Light Cone from a Flashlight A flashlight shines on 
a wall, as shown in the figure. What is the shape of the
boundary of the lighted area? Explain your answer.

54. How Wide Is an Ellipse at Its Foci? A latus rectum for
an ellipse is a line segment perpendicular to the major axis
at a focus, with endpoints on the ellipse, as shown. Show
that the length of a latus rectum is 2b 2/a for the ellipse

55. Is It an Ellipse? A piece of paper is wrapped around 
a cylindrical bottle, and then a compass is used to draw 
a circle on the paper, as shown in the figure. When the 
paper is laid flat, is the shape drawn on the paper an ellipse?
(You don’t need to prove your answer, but you may want to
do the experiment and see what you get.)

b

a

_b

_a

foci

latus rectum

y

x

x2

a2 �
y2

b2 � 1  with a 	 b



10.3 Hyperbolas

Although ellipses and hyperbolas have completely different shapes, their definitions
and equations are similar. Instead of using the sum of distances from two fixed foci,
as in the case of an ellipse, we use the difference to define a hyperbola.

762 CHAPTER 10 Analytic Geometry

Geometric Definition of a Hyperbola

A hyperbola is the set of all points in the plane, the difference of whose dis-
tances from two fixed points F1 and F2 is a constant. (See Figure 1.) These
two fixed points are the foci of the hyperbola.

As in the case of the ellipse, we get the simplest equation for the hyperbola by
placing the foci on the x-axis at , as shown in Figure 1. By definition, if 
lies on the hyperbola, then either or must
equal some positive constant, which we call 2a. Thus, we have

or

Proceeding as we did in the case of the ellipse (Section 10.2), we simplify this to

From triangle PF1F2 in Figure 1 we see that . It follows
that 2a � 2c, or a � c. Thus, c 2 � a 2 	 0, so we can set b 2 � c 2 � a 2. We then sim-
plify the last displayed equation to get

This is the equation of the hyperbola. If we replace x by �x or y by �y in this equa-
tion, it remains unchanged, so the hyperbola is symmetric about both the x- and 
y-axes and about the origin. The x-intercepts are �a, and the points and

are the vertices of the hyperbola. There is no y-intercept, because setting 
x � 0 in the equation of the hyperbola leads to �y 2 � b 2, which has no real solution.
Furthermore, the equation of the hyperbola implies that

so x 2/a 2 � 1; thus, x 2 � a 2, and hence x � a or x 
 �a. This means that the hyper-
bola consists of two parts, called its branches. The segment joining the two vertices
on the separate branches is the transverse axis of the hyperbola, and the origin is
called its center.

If we place the foci of the hyperbola on the y-axis rather than on the x-axis, then
this has the effect of reversing the roles of x and y in the derivation of the equation of
the hyperbola. This leads to a hyperbola with a vertical transverse axis.

x2

a2 �
y2

b2 � 1 � 1

1�a, 0 2 1a, 0 2
x2

a2 �
y2

b2 � 1

0 d1P, F1 2 � d1P, F2 2 0 � 2c

1c2 � a2 2x2 � a2y2 � a21c2 � a2 2
21x � c 2 2 � y2 � 21x � c 2 2 � y2 � �2a

d1P, F1 2 � d1P, F2 2 � �2a

d1P, F2 2 � d1P, F1 2d1P, F1 2 � d1P, F2 2 P1x, y 21�c, 0 2
x

y

0 F¤(c, 0)

P(x, y)

F⁄(_c, 0)

Figure 1

P is on the hyperbola if
.0 d1P, F1 2 � d1P, F2 2 0 � 2a



Equations and Graphs of Hyperbolas

The main properties of hyperbolas are listed in the following box.
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Hyperbola with Center at the Origin

The graph of each of the following equations is a hyperbola with center at the origin and having the given properties.

EQUATION

VERTICES

TRANSVERSE AXIS Horizontal, length 2a Vertical, length 2a

ASYMPTOTES

FOCI , c 2 � a 2 � b 2 , c 2 � a 2 � b 2

GRAPH

x

yy=_    x
b
a

y=   x
b
a

F¤(c, 0)

b

F⁄(_c, 0)

_b

a_a x

y

b

F⁄(0, c)

_b

F¤(0, _c)

a

_a

y=_    x
a
b

y=   x
a
b

10, �c 21�c, 0 2 y � �
a

b
xy � �

b
a

x

10, �a 21�a, 0 2
y2

a2 �
x2

b2 � 1  1a 	 0, b 	 0 2x2

a2 �
y2

b2 � 1  1a 	 0, b 	 0 2

The asymptotes mentioned in this box are lines that the hyperbola approaches for
large values of x and y. To find the asymptotes in the first case in the box, we solve
the equation for y to get

As x gets large, a 2/x 2 gets closer to zero. In other words, as x �qwe have a 2/x 2 � 0.
So, for large x the value of y can be approximated as . This shows that
these lines are asymptotes of the hyperbola.

Asymptotes are an essential aid for graphing a hyperbola; they help us determine
its shape. A convenient way to find the asymptotes, for a hyperbola with horizontal
transverse axis, is to first plot the points , , , and . Then
sketch horizontal and vertical segments through these points to construct a rectangle,
as shown in Figure 2(a) on the next page. We call this rectangle the central box of
the hyperbola. The slopes of the diagonals of the central box are �b/a, so by extend-
ing them we obtain the asymptotes , as sketched in part (b) of the fig-
ure. Finally, we plot the vertices and use the asymptotes as a guide in sketching the 

y � �1b/a 2x
10, �b 210, b 21�a, 0 21a, 0 2

y � �1b/a 2x
� �

b
a

xB1 �
a2

x2

y � �
b
a
2x2 � a2

Asymptotes of rational functions are
discussed in Section 3.6.



hyperbola shown in part (c). (A similar procedure applies to graphing a hyperbola
that has a vertical transverse axis.)

Figure 2

Steps in graphing the hyperbola 
x2

a2 �
y2

b2 � 1

(a) Central box (b) Asymptotes (c) Hyperbola

x

y

b

_b

a_a x

y

b

_b

a_a0 x

y

b

_b

a_a
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How to Sketch a Hyperbola

1. Sketch the Central Box. This is the rectangle centered at the origin,
with sides parallel to the axes, that crosses one axis at �a, the other at �b.

2. Sketch the Asymptotes. These are the lines obtained by extending 
the diagonals of the central box.

3. Plot the Vertices. These are the two x-intercepts or the two y-intercepts.

4. Sketch the Hyperbola. Start at a vertex and sketch a branch of the 
hyperbola, approaching the asymptotes. Sketch the other branch in the 
same way.

Example 1 A Hyperbola with Horizontal

Transverse Axis

A hyperbola has the equation

(a) Find the vertices, foci, and asymptotes, and sketch the graph.

(b) Draw the graph using a graphing calculator.

Solution

(a) First we divide both sides of the equation by 144 to put it into standard form:

x2

16
�

y2

9
� 1

9x2 � 16y2 � 144



Because the x 2-term is positive, the hyperbola has a horizontal transverse 
axis; its vertices and foci are on the x-axis. Since a 2 � 16 and b 2 � 9, we get 
a � 4, b � 3, and . Thus, we have

VERTICES (�4, 0)

FOCI (�5, 0)

ASYMPTOTES

After sketching the central box and asymptotes, we complete the sketch of 
the hyperbola as in Figure 3(a).

(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract 9x2

Divide by �16 and factor 9

Take square roots

To obtain the graph of the hyperbola, we graph the functions

as shown in Figure 3(b).

■

Example 2 A Hyperbola with Vertical Transverse Axis

Find the vertices, foci, and asymptotes of the hyperbola, and sketch its graph.

Solution We begin by writing the equation in the standard form for a hyperbola.

Divide by �9y2 �
x2

9
� 1

x2 � 9y2 � �9

x2 � 9y2 � 9 � 0

x

yy = – 3
4

(5, 0)

3

(_5, 0)

_3

4_4

(a) (b)

10_10

x y = 3
4

x

_6

6

_

y = –3œ (x2/16) – 1

(x2/16) – 1y = 3œ

y � 321x2/16 2 � 1  and  y � �321x2/16 2 � 1

y � �3B
x2

16
� 1

y2 � 9 a x2

16
� 1 b�16y2 � �9x2 � 144

 9x2 � 16y2 � 144

y � � 3
4 x

c � 116 � 9 � 5
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Figure 3

9x 2 � 16y 2 � 144

Note that the equation of a hyperbola
does not define y as a function of x (see
page 164). That’s why we need to graph
two functions to graph a hyperbola.



Because the y 2-term is positive, the hyperbola has a vertical transverse axis; its foci
and vertices are on the y-axis. Since a 2 � 1 and b 2 � 9, we get a � 1, b � 3, and

. Thus, we have

VERTICES 10, �12
FOCI 10, � 2
ASYMPTOTES

We sketch the central box and asymptotes, then complete the graph, as shown in
Figure 4(a).

We can also draw the graph using a graphing calculator, as shown in Figure 4(b).

Figure 4

x 2 � 9y 2 � 9 � 0 ■

Example 3 Finding the Equation of a Hyperbola

from Its Vertices and Foci

Find the equation of the hyperbola with vertices and foci . Sketch
the graph.

Solution Since the vertices are on the x-axis, the hyperbola has a horizontal
transverse axis. Its equation is of the form

We have a � 3 and c � 4. To find b, we use the relation a 2 � b 2 � c 2:

Thus, the equation of the hyperbola is

x2

9
�

y2

7
� 1

b � 17

b2 � 42 � 32 � 7

 32 � b2 � 42

x2

32 �
y2

b2 � 1

1�4, 0 21�3, 0 2

(a) (b)

5_5
x

y

3

1

F¤Ó0, _œ∑10Ô

F⁄Ó0, œ∑10Ô
2

_2

y = – œ 1 + x2/9

y = œ 1 + x2/9

y � � 1
3 x

110

c � 11 � 9 � 110
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Paths of Comets

The path of a comet is an ellipse, a
parabola, or a hyperbola with the
sun at a focus. This fact can be
proved using calculus and New-
ton’s laws of motion.* If the path is
a parabola or a hyperbola, the
comet will never return. If the path
is an ellipse, it can be determined
precisely when and where the
comet can be seen again. Halley’s
comet has an elliptical path and re-
turns every 75 years; it was last
seen in 1987. The brightest comet
of the 20th century was comet
Hale-Bopp, seen in 1997. Its orbit
is a very eccentric ellipse; it is ex-
pected to return to the inner solar
system around the year 4377.

*James Stewart, Calculus, 5th ed. (Pa-
cific Grove, CA: Brooks/Cole, 2003),
pp. 912–914.



The graph is shown in Figure 5.
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x2
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y2

7
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y

1

F⁄

F¤

Figure 6

y2

4
� x2 � 1

Example 4 Finding the Equation of a Hyperbola 

from Its Vertices and Asymptotes

Find the equation and the foci of the hyperbola with vertices and asymp-
totes y � �2x. Sketch the graph.

Solution Since the vertices are on the y-axis, the hyperbola has a vertical trans-
verse axis with a � 2. From the asymptote equation we see that a/b � 2. Since 
a � 2, we get 2/b � 2, and so b � 1. Thus, the equation of the hyperbola is

To find the foci, we calculate c 2 � a 2 � b 2 � 22 � 12 � 5, so . Thus, the
foci are . The graph is shown in Figure 6. ■

Like parabolas and ellipses, hyperbolas have an interesting reflection property.
Light aimed at one focus of a hyperbolic mirror is reflected toward the other focus, as
shown in Figure 7. This property is used in the construction of Cassegrain-type tele-
scopes. A hyperbolic mirror is placed in the telescope tube so that light reflected from
the primary parabolic reflector is aimed at one focus of the hyperbolic mirror. The light
is then refocused at a more accessible point below the primary reflector (Figure 8).

Figure 7 Figure 8

Reflection property of hyperbolas Cassegrain-type telescope

F⁄

F¤

Hyperbolic
reflector

Parabolic reflector

F⁄F¤

10, �15 2 c � 15

y2

4
� x2 � 1

10, �2 2
■



The LORAN (LOng RAnge Navigation) system was used until the early 1990s; it
has now been superseded by the GPS system (see page 656). In the LORAN system,
hyperbolas are used onboard a ship to determine its location. In Figure 9 radio sta-
tions at A and B transmit signals simultaneously for reception by the ship at P. The
onboard computer converts the time difference in reception of these signals into a dis-
tance difference . From the definition of a hyperbola this locates
the ship on one branch of a hyperbola with foci at A and B (sketched in black in the
figure). The same procedure is carried out with two other radio stations at C and D,
and this locates the ship on a second hyperbola (shown in red in the figure). (In prac-
tice, only three stations are needed because one station can be used as a focus for both
hyperbolas.) The coordinates of the intersection point of these two hyperbolas, which
can be calculated precisely by the computer, give the location of P.

10.3 Exercises

A

B
C

D

P

d1P, A 2 � d1P, B 2
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1–4 ■ Match the equation with the graphs labeled I–IV. Give
reasons for your answers.

1. 2.

3. 16y 2 � x 2 � 144 4. 9x 2 � 25y 2 � 225

I II

III IV

x

y

2

1

4

1

x

y

x

y

1

1

y

x2

2

y2 �
x2

9
� 1

x2

4
� y2 � 1

5–16 ■ Find the vertices, foci, and asymptotes of the hyperbola,
and sketch its graph.

5. 6.

7. 8.

9. x 2 � y 2 � 1 10. 9x 2 � 4y 2 � 36

11. 25y 2 � 9x 2 � 225 12. x 2 � y 2 � 4 � 0

13. x 2 � 4y 2 � 8 � 0 14. x 2 � 2y 2 � 3

15. 4y 2 � x 2 � 1 16. 9x 2 � 16y 2 � 1

17–22 ■ Find the equation for the hyperbola whose graph is
shown.

17.

0 x

y

1

F¤(4, 0)F⁄(_4, 0)

1

x2

2
� y2 � 1y2 �

x2

25
� 1

y2

9
�

x2

16
� 1

x2

4
�

y2

16
� 1

Figure 9

LORAN system for finding
the location of a ship
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18. 19.

20.

21. 22.

23–26 ■ Use a graphing device to graph the hyperbola.

23. x 2 � 2y 2 � 8 24. 3y 2 � 4x 2 � 24

25. 26.

27–38 ■ Find an equation for the hyperbola that satisfies the
given conditions.

27. Foci , vertices 

28. Foci , vertices 

29. Foci , vertices 

30. Foci , vertices 

31. Vertices , asymptotes y � �5x

32. Vertices , asymptotes 

33. Foci , asymptotes y � � 1
2 x10, �8 2 y � � 1

3 x10, �6 21�1, 0 2 1�2, 0 21�6, 0 2 10, �1 210, �2 2 10, �8 210, �10 2 1�3, 0 21�5, 0 2

x2

100
�

y2

64
� 1

y2

2
�

x2

6
� 1

y=3x

y=_3x

0 x

y

3

1

y=_   x
1
2 y=   x

1
2

x

y

_5 5

(4, 4)

2œ∑3

2

x

y

0 x

y

_4

4

(3, _5)

20 x

y

_12

12
F⁄(0, 13)

F¤(0, _13)

34. Vertices , hyperbola passes through 

35. Asymptotes y � �x, hyperbola passes through 

36. Foci , hyperbola passes through 

37. Foci , length of transverse axis 6

38. Foci , length of transverse axis 1

39. (a) Show that the asymptotes of the hyperbola x 2 � y 2 � 5
are perpendicular to each other.

(b) Find an equation for the hyperbola with foci 
and with asymptotes perpendicular to each other.

40. The hyperbolas

are said to be conjugate to each other.

(a) Show that the hyperbolas

are conjugate to each other, and sketch their graphs on
the same coordinate axes.

(b) What do the hyperbolas of part (a) have in common?

(c) Show that any pair of conjugate hyperbolas have the 
relationship you discovered in part (b).

41. In the derivation of the equation of the hyperbola at the 
beginning of this section, we said that the equation

simplifies to

Supply the steps needed to show this.

42. (a) For the hyperbola

determine the values of a, b, and c, and find the coordi-
nates of the foci F1 and F2.

(b) Show that the point lies on this hyperbola.

(c) Find and .

(d) Verify that the difference between and 
is 2a.

43. Hyperbolas are called confocal if they have the same foci.

(a) Show that the hyperbolas

are confocal.

y2

k
�

x2

16 � k
� 1    with 0 � k � 16

d1P, F2 2d1P, F1 2d1P, F2 2d1P, F1 2 P15, 16
3 2

x2

9
�

y2

16
� 1

1c2 � a2 2x2 � a2y2 � a21c2 � a2 2
21x � c 2 2 � y2 � 21x � c 2 2 � y2 � �2a

x2 � 4y2 � 16 � 0  and  4y2 � x2 � 16 � 0

x2

a2 �
y2

b2 � 1  and  
x2

a2 �
y2

b2 � �1

1�c, 0 2
10, �1 21�5, 0 2 14, 1 21�3, 0 2 15, 3 21�5, 9 210, �6 2
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(b) Use a graphing device to draw the top branches of 
the family of hyperbolas in part (a) for k � 1, 4, 8,
and 12. How does the shape of the graph change as k
increases?

Applications

44. Navigation In the figure, the LORAN stations at A and B
are 500 mi apart, and the ship at P receives station A’s sig-
nal 2640 microseconds (ms) before it receives the signal
from B.

(a) Assuming that radio signals travel at 980 ft/ms, find

(b) Find an equation for the branch of the hyperbola indi-
cated in red in the figure. (Use miles as the unit of 
distance.)

(c) If A is due north of B, and if P is due east of A, how far
is P from A?

45. Comet Trajectories Some comets, such as Halley’s
comet, are a permanent part of the solar system, traveling 
in elliptical orbits around the sun. Others pass through the
solar system only once, following a hyperbolic path with the
sun at a focus. The figure shows the path of such a comet.
Find an equation for the path, assuming that the closest the
comet comes to the sun is 2 � 109 mi and that the path the
comet was taking before it neared the solar system is at a
right angle to the path it continues on after leaving the solar
system.

x

y

2 � 10ª mi

x (mi)

y (mi)

P
A

B

0

250

_250

d1P, A 2 � d1P, B 2

46. Ripples in Pool Two stones are dropped simultaneously
in a calm pool of water. The crests of the resulting waves
form equally spaced concentric circles, as shown in the
figures. The waves interact with each other to create certain
interference patterns.

(a) Explain why the red dots lie on an ellipse.

(b) Explain why the blue dots lie on a hyperbola.

Discovery • Discussion

47. Hyperbolas in the Real World Several examples of the
uses of hyperbolas are given in the text. Find other situa-
tions in real life where hyperbolas occur. Consult a scientific
encyclopedia in the reference section of your library, or
search the Internet.

48. Light from a Lamp The light from a lamp forms a
lighted area on a wall, as shown in the figure. Why is the
boundary of this lighted area a hyperbola? How can one
hold a flashlight so that its beam forms a hyperbola on the
ground?
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Conics in Architecture

In ancient times architecture was part of mathematics, so architects had to 
be mathematicians. Many of the structures they built—pyramids, temples,
amphitheaters, and irrigation projects—still stand. In modern times architects
employ even more sophisticated mathematical principles. The photographs 
below show some structures that employ conic sections in their design.

D I S C O V E R Y
P R O J E C T

Roman Amphitheater in Alexandria, Egypt
(circle)
Nik Wheeler/Corbis

Ceiling of Statuary Hall in the U.S. Capitol
(ellipse)
Architect of the Capitol

Roof of the Skydome in Toronto, Canada
(parabola)
Walter Schmid/Stone/Getty Images

Roof of Washington Dulles Airport
(hyperbola and parabola)
Richard T. Nowitz /Corbis

McDonnell Planetarium, St. Louis, MO
(hyperbola)
Courtesy of Chamber of Commerce, St. Louis, MO

Attic in La Pedrera, Barcelona, Spain
(parabola)
O. Alamany and Vincens/Corbis

Architects have different reasons for using conics in their designs. For example,
the Spanish architect Antoni Gaudi used parabolas in the attic of La Pedrera
(see photo above). He reasoned that since a rope suspended between two points
with an equally distributed load (like in a suspension bridge) has the shape of 
a parabola, an inverted parabola would provide the best support for a flat 
roof.

Constructing Conics

The equations of the conics are helpful in manufacturing small objects, because
a computer-controlled cutting tool can accurately trace a curve given by an 
equation. But in a building project, how can we construct a portion of a



parabola, ellipse, or hyperbola that spans the ceiling or walls of a building? The
geometric properties of the conics provide practical ways of constructing them.
For example, if you were building a circular tower, you would choose a center
point, then make sure that the walls of the tower are a fixed distance from that
point. Elliptical walls can be constructed using a string anchored at two points,
as shown in Figure 1.

To construct a parabola, we can use the apparatus shown in Figure 2. A piece 
of string of length a is anchored at F and A. The T-square, also of length a, slides
along the straight bar L. A pencil at P holds the string taut against the T-square.
As the T-square slides to the right the pencil traces out a curve.

From the figure we see that

The string is of length a

The T-square is of length a

It follows that . Subtracting from
each side, we get

The last equation says that the distance from F to P is equal to the distance 
from P to the line L. Thus, the curve is a parabola with focus F and directrix L.

In building projects it’s easier to construct a straight line than a curve. So in
some buildings, such as in the Kobe Tower (see problem 4), a curved surface is
produced by using many straight lines. We can also produce a curve using
straight lines, such as the parabola shown in Figure 3.

Figure 3

Tangent lines to a parabola

d1F, P 2 � d1L, P 2
d1P, A 2d1F, P 2 � d1P, A 2 � d1L, P 2 � d1P, A 2d1L, P 2 � d1P, A 2 � a

d1F, P 2 � d1P, A 2 � a

Parabola

L

F

a
P

A

Figure 2

Constructing a parabola
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Circle

C

P

F1

P

F2

Ellipse

Figure 1

Constructing a circle and an
ellipse
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Each line is tangent to the parabola; that is, the line meets the parabola at 
exactly one point and does not cross the parabola. The line tangent to the
parabola y � x 2 at the point is

You are asked to show this in problem 6. The parabola is called the envelope of
all such lines.

1. The photographs on page 771 show six examples of buildings that contain
conic sections. Search the Internet to find other examples of structures that
employ parabolas, ellipses, or hyperbolas in their design. Find at least one
example for each type of conic.

2. In this problem we construct a hyperbola. The wooden bar in the figure can
pivot at F1. A string shorter than the bar is anchored at F2 and at A, the other
end of the bar. A pencil at P holds the string taut against the bar as it moves
counterclockwise around F1.

(a) Show that the curve traced out by the pencil is one branch of a hyperbola
with foci at F1 and F2.

(b) How should the apparatus be reconfigured to draw the other branch of
the hyperbola?

3. The following method can be used to construct a parabola that fits in a 
given rectangle. The parabola will be approximated by many short line 
segments.

First, draw a rectangle. Divide the rectangle in half by a vertical line 
segment and label the top endpoint V. Next, divide the length and width of
each half rectangle into an equal number of parts to form grid lines, as shown
in the figure on the next page. Draw lines from V to the endpoints of horizon-
tal grid line 1, and mark the points where these lines cross the vertical grid
lines labeled 1. Next, draw lines from V to the endpoints of horizontal grid
line 2, and mark the points where these lines cross the vertical grid lines la-
beled 2. Continue in this way until you have used all the horizontal grid lines.

Pivot
point

Hyperbola

F1 F2

P

A

y � 2ax � a2

1a, a2 2



Now, use line segments to connect the points you have marked to obtain an
approximation to the desired parabola. Apply this procedure to draw a
parabola that fits into a 6 ft by 10 ft rectangle on a lawn.

4. In this problem we construct hyperbolic shapes using straight lines. Punch
equally spaced holes into the edges of two large plastic lids. Connect corre-
sponding holes with strings of equal lengths as shown in the figure. Holding
the strings taut, twist one lid against the other. An imaginary surface passing
through the strings has hyperbolic cross sections. (An architectural example
of this is the Kobe Tower in Japan shown in the photograph.) What happens
to the vertices of the hyperbolic cross sections as the lids are twisted more?

5. In this problem we show that the line tangent to the parabola y � x 2 at the
point has the equation .

(a) Let m be the slope of the tangent line at . Show that the equation
of the tangent line is .

(b) Use the fact that the tangent line intersects the parabola at only one point
to show that is the only solution of the system.

(c) Eliminate y from the system in part (b) to get a quadratic equation in x.
Show that the discriminant of this quadratic is . Since the 
system in (b) has exactly one solution, the discriminant must equal 0.
Find m.

(d) Substitute the value for m you found in part (c) into the equation in part
(a) and simpify to get the equation of the tangent line.

1m � 2a 2 2
e y � a2 � m1x � a 2

y � x2

1a, a2 2 y � a2 � m1x � a 21a, a2 2y � 2ax � a21a, a 2 2

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V
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6. In this problem we prove that when a cylinder is cut by a plane an ellipse 
is formed. An architectural example of this is the Tycho Brahe Planetarium
in Copenhagen (see the photograph). In the figure a cylinder is cut by a 
plane resulting in the red curve. Two spheres with the same radius as the
cylinder slide inside the cylinder so that they just touch the plane at F1 and
F2. Choose an arbitrary point P on the curve and let Q1 and Q2 be the two
points on the cylinder where a vertical line through P touches the “equator”
of each sphere.

(a) Show that PF1 � PQ1 and PF2 � PQ2. [Hint: Use the fact that all tan-
gents to a sphere from a given point outside the sphere are of the same
length.]

(b) Explain why PQ1 � PQ2 is the same for all points P on the curve.

(c) Show that PF1 � PF2 is the same for all points P on the curve.

(d) Conclude that the curve is an ellipse with foci F1 and F2.

10.4 Shifted Conics

In the preceding sections we studied parabolas with vertices at the origin and ellipses
and hyperbolas with centers at the origin. We restricted ourselves to these cases be-
cause these equations have the simplest form. In this section we consider conics
whose vertices and centers are not necessarily at the origin, and we determine how
this affects their equations.

In Section 2.4 we studied transformations of functions that have the effect of shift-
ing their graphs. In general, for any equation in x and y, if we replace x by x � h or
by x � h, the graph of the new equation is simply the old graph shifted horizontally;
if y is replaced by y � k or by y � k, the graph is shifted vertically. The following box
gives the details.

Q1

Q2

P

F2

F1

Bo
b 

Kr
is

t/
Co

rb
is



Shifted Ellipses

Let’s apply horizontal and vertical shifting to the ellipse with equation

whose graph is shown in Figure 1. If we shift it so that its center is at the point 
instead of at the origin, then its equation becomes

Example 1 Sketching the Graph of a Shifted Ellipse

Sketch the graph of the ellipse

and determine the coordinates of the foci.

Solution The ellipse

Shifted ellipse
1x � 1 2 2

4
�
1y � 2 2 2

9
� 1

1x � 1 2 2
4

�
1y � 2 2 2

9
� 1

y

x

b

a(0, 0)

+     =1
y™

b™

x

™
a™

b

a

(h, k)

h

k

(x-h, y-k)

(x, y)

=1
(y-k)™

b™

(x-h)™

a™
+

Figure 1

Shifted ellipse

1x � h 2 2
a2 �

1y � k 2 2
b2 � 1

1h, k 2
x2

a2 �
y2

b2 � 1
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Shifting Graphs of Equations

If h and k are positive real numbers, then replacing x by x � h or by x � h
and replacing y by y � k or by y � k has the following effect(s) on the graph
of any equation in x and y.

Replacement How the graph is shifted

1. x replaced by x � h Right h units

2. x replaced by x � h Left h units

3. y replaced by y � k Upward k units

4. y replaced by y � k Downward k units



is shifted so that its center is at . It is obtained from the ellipse

Ellipse with center at origin

by shifting it left 1 unit and upward 2 units. The endpoints of the minor and 
major axes of the unshifted ellipse are , , , . We apply the
required shifts to these points to obtain the corresponding points on the shifted 
ellipse:

This helps us sketch the graph in Figure 2.
To find the foci of the shifted ellipse, we first find the foci of the ellipse with

center at the origin. Since a 2 � 9 and b 2 � 4, we have c 2 � 9 � 4 � 5, so .
So the foci are . Shifting left 1 unit and upward 2 units, we get

Thus, the foci of the shifted ellipse are

■

Shifted Parabolas

Applying shifts to parabolas leads to the equations and graphs shown in Figure 3.

Figure 3

Shifted parabolas

Example 2 Graphing a Shifted Parabola

Determine the vertex, focus, and directrix and sketch the graph of the parabola.

x2 � 4x � 8y � 28

(a) (x-h)™=4p(y-k)

p>0

(b) (x-h)™=4p(y-k)

p<0

(c) (y-k)™=4p(x-h)

p>0

(d) (y-k)™=4p(x-h)

p<0

x

y

0

(h, k) x

y

0

(h, k)

x

y

0

(h, k)

x

y

0

(h, k)

A�1, 2 � 15B  and  A�1, 2 � 15B
A0, �15B �  A0 � 1, �15 � 2B � A�1, 2 � 15BA0, 15B �  A0 � 1, 15 � 2B � A�1, 2 � 15BA0, �15B c � 15

10, �3 2  �  10 � 1, �3 � 2 2 � 1�1, �1 210, 3 2  �  10 � 1, 3 � 2 2 � 1�1, 5 21�2, 0 2  �  1�2 � 1, 0 � 2 2 � 1�3, 2 212, 0 2  �  12 � 1, 0 � 2 2 � 11, 2 2
10,�3 210,3 21�2,0 212,0 2

x2

4
�

y2

9
� 1

1�1, 2 2
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�
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Solution We complete the square in x to put this equation into one of the forms
in Figure 3.

Add 4 to complete the square

Shifted parabola

This parabola opens upward with vertex at . It is obtained from the parabola

Parabola with vertex at origin

by shifting right 2 units and upward 3 units. Since 4p � 8, we have p � 2, so the
focus is 2 units above the vertex and the directrix is 2 units below the vertex. Thus,
the focus is and the directrix is y � 1. The graph is shown in Figure 4. ■

Shifted Hyperbolas

Applying shifts to hyperbolas leads to the equations and graphs shown in Figure 5.

Example 3 Graphing a Shifted Hyperbola

A shifted conic has the equation

(a) Complete the square in x and y to show that the equation represents a
hyperbola.

(b) Find the center, vertices, foci, and asymptotes of the hyperbola and sketch 
its graph.

(c) Draw the graph using a graphing calculator.

Solution

(a) We complete the squares in both x and y:

Complete the squares

Divide this by 144

Shifted hyperbola

Comparing this to Figure 5(a), we see that this is the equation of a shifted 
hyperbola.

1x � 4 2 2
16

�
1y � 1 2 2

9
� 1

 91x � 4 2 2 � 161y � 1 2 2 � 144

 91x2 � 8x � 16 2 � 161y2 � 2y � 1 2 � 16 � 9 # 16 � 16 # 1
 91x2 � 8x 2 � 161y2 � 2y 2 � 16

9x2 � 72x � 16y2 � 32y � 16

x

y

0

(h, k)

x

y

0

(h, k)

=1
(x-h)™

a™

(y-k)™

b™
-(a) =1

( y-k)™

b™

(x-h)™

a™
+-(b)

12, 5 2
x2 � 8y

12, 3 21x � 2 2 2 � 81y � 3 21x � 2 2 2 � 8y � 24

x2 � 4x � 4 � 8y � 28 � 4
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0 x

y

(2, 3)

F(2, 5)

y=1

Figure 4

x 2 � 4x � 8y � 28

Figure 5

Shifted hyperbolas



(b) The shifted hyperbola has center and a horizontal transverse axis.

CENTER

Its graph will have the same shape as the unshifted hyperbola

Hyperbola with center at origin

Since a 2 � 16 and b 2 � 9, we have a � 4, b � 3, and 
. Thus, the foci lie 5 units to the left and to the right of the center,

and the vertices lie 4 units to either side of the center.

FOCI

VERTICES

The asymptotes of the unshifted hyperbola are , so the asymptotes of
the shifted hyperbola are found as follows.

ASYMPTOTES

To help us sketch the hyperbola, we draw the central box; it extends 4 units left
and right from the center and 3 units upward and downward from the center.
We then draw the asymptotes and complete the graph of the shifted hyperbola
as shown in Figure 6(a).

Figure 6

9x 2 � 72x � 16y 2 � 32y � 16

(c) To draw the graph using a graphing calculator, we need to solve for y. The
given equation is a quadratic equation in y, so we use the quadratic formula to
solve for y. Writing the equation in the form

16y2 � 32y � 9x 2 � 72x � 16 � 0

(a) (b)

13_5

_7

5

0

x

y

(4, 2)

(4, _4)

(4, _1)

F¤(9, _1)F⁄(_1, _1)
(0, _1) (8, _1)

y=_   x+2
3

4
y=   x-4

3

4

œ∑∑∑∑∑∑∑y = –1 + 0.75 x2 – 8x

œ∑∑∑∑∑∑∑y = –1 – 0.75 x2 – 8x

y � 3
4 x � 4  and  y � � 3

4 x � 2

y � 1 � � 3
4 x � 3

y � 1 � � 3
4 1x � 4 2
y � � 3

4 x

10, �1 2 and 18, �1 21�1, �1 2  and 19, �1 2
116 � 9 � 5

c � 2a2 � b2 �

x2

16
�

y2

9
� 1

14, �1 214, �1 2
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we get

Quadratic formula

Expand

Simplify

To obtain the graph of the hyperbola, we graph the functions

as shown in Figure 6(b). ■

The General Equation of a Shifted Conic

If we expand and simplify the equations of any of the shifted conics illustrated in 
Figures 1, 3, and 5, then we will always obtain an equation of the form

where A and C are not both 0. Conversely, if we begin with an equation of this form,
then we can complete the square in x and y to see which type of conic section the
equation represents. In some cases, the graph of the equation turns out to be just a 
pair of lines, a single point, or there may be no graph at all. These cases are called 
degenerate conics. If the equation is not degenerate, then we can tell whether it rep-
resents a parabola, an ellipse, or a hyperbola simply by examining the signs of A and
C, as described in the following box.

Ax2 � Cy2 � Dx � Ey � F � 0

y � �1 � 0.752x2 � 8x  and  y � �1 � 0.752x2 � 8x

� �1 � 3
42x2 � 8x

Factor 576 from un-
der the radical�

�32 � 242x2 � 8x

32

�
�32 � 2576x2 � 4608x

32

y �
�32 � 2322 � 4116 2 1�9x2 � 72x � 16 2

2116 2
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Johannes Kepler (1571–1630)
was the first to give a correct de-
scription of the motion of the plan-
ets. The cosmology of his time
postulated complicated systems of
circles moving on circles to de-
scribe these motions. Kepler
sought a simpler and more harmo-
nious description. As the official
astronomer at the imperial court in
Prague, he studied the astronomi-
cal observations of the Danish as-
tronomer Tycho Brahe, whose data
were the most accurate available at
the time. After numerous attempts
to find a theory, Kepler made the
momentous discovery that the or-
bits of the planets are elliptical. His
three great laws of planetary mo-
tion are

1. The orbit of each planet is an
ellipse with the sun at one 
focus.

2. The line segment that joins 
the sun to a planet sweeps out
equal areas in equal time 
(see the figure).

3. The square of the period of
revolution of a planet is 
proportional to the cube of the
length of the major axis of 
its orbit.

His formulation of these laws is
perhaps the most impressive de-
duction from empirical data in the
history of science.

General Equation of a Shifted Conic

The graph of the equation

where A and C are not both 0, is a conic or a degenerate conic. In the 
nondegenerate cases, the graph is

1. a parabola if A or C is 0

2. an ellipse if A and C have the same sign (or a circle if A � C)

3. a hyperbola if A and C have opposite signs

Ax2 � Cy2 � Dx � Ey � F � 0

Example 4 An Equation That Leads to a Degenerate Conic

Sketch the graph of the equation

Solution Because the coefficients of x 2 and y 2 are of opposite sign, this equation
looks as if it should represent a hyperbola (like the equation of Example 3). To see

9x2 � y2 � 18x � 6y � 0



whether this is in fact the case, we complete the squares:

Group terms and factor 9

Complete the square

Factor

Divide by 9

For this to fit the form of the equation of a hyperbola, we would need a nonzero
constant to the right of the equal sign. In fact, further analysis shows that this is the
equation of a pair of intersecting lines:

Take square roots

These lines are graphed in Figure 7. ■

Because the equation in Example 4 looked at first glance like the equation of a hy-
perbola but, in fact, turned out to represent simply a pair of lines, we refer to its graph
as a degenerate hyperbola. Degenerate ellipses and parabolas can also arise when we
complete the square(s) in an equation that seems to represent a conic. For example, the
equation

looks as if it should represent an ellipse, because the coefficients of x 2 and y 2 have
the same sign. But completing the squares leads to

which has no solution at all (since the sum of two squares cannot be negative). This
equation is therefore degenerate.

10.4 Exercises

1x � 1 2 2 �
1y � 1 2 2

4
� �

1

4

4x2 � y2 � 8x � 2y � 6 � 0

y � 3x � 6   y � �3x

y � 31x � 1 2 � 3  or  y � �31x � 1 2 � 3

y � 3 � �31x � 1 21y � 3 2 2 � 91x � 1 2 2
1x � 1 2 2 �

1y � 3 2 2
9

� 0

 91x � 1 2 2 � 1y � 3 2 2 � 0

 91x2 � 2x � 1 2 � 1y2 � 6y � 9 2 � 0 � 9 # 1 � 9

 91x2 � 2x 2 � 1y2 � 6y 2 � 0
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Figure 7

9x2 � y2 � 18x � 6y � 0

0 x

y

6

_2

1–4 ■ Find the center, foci, and vertices of the ellipse, and 
determine the lengths of the major and minor axes. Then sketch
the graph.

1. 2.

3. 4.

5–8 ■ Find the vertex, focus, and directrix of the parabola, and
sketch the graph.

5. 6. 1y � 5 2 2 � �6x � 121x � 3 2 2 � 81y � 1 2

1x � 2 2 2
4

� y2 � 1
x2

9
�
1y � 5 2 2

25
� 1

1x � 3 2 2
16

� 1y � 3 2 2 � 1
1x � 2 2 2

9
�
1y � 1 2 2

4
� 1

7. 8. y 2 � 16x � 8

9–12 ■ Find the center, foci, vertices, and asymptotes of the 
hyperbola. Then sketch the graph.

9.

10.

11.

12.
1y � 1 2 2

25
� 1x � 3 2 2 � 1

y2 �
1x � 1 2 2

4
� 1

1x � 8 2 2 � 1y � 6 2 2 � 1

1x � 1 2 2
9

�
1y � 3 2 2

16
� 1

�4Ax � 1
2B2 � y



0 x

y

_6

directrix
y=_12

5
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13–18 ■ Find an equation for the conic whose graph is shown.

13. 14.

15. 16.

17. 18.

19–30 ■ Complete the square to determine whether the equa-
tion represents an ellipse, a parabola, a hyperbola, or a degener-
ate conic. If the graph is an ellipse, find the center, foci, vertices,
and lengths of the major and minor axes. If it is a parabola, find
the vertex, focus, and directrix. If it is a hyperbola, find the cen-
ter, foci, vertices, and asymptotes. Then sketch the graph of the
equation. If the equation has no graph, explain why.

19. 9x 2 � 36x � 4y 2 � 0 20.

21. x 2 � 4y 2 � 2x � 16y � 20

22. x 2 � 6x � 12y � 9 � 0

23. 4x 2 � 25y 2 � 24x � 250y � 561 � 0

24. 2x 2 � y 2 � 2y � 1

25. 16x 2 � 9y 2 � 96x � 288 � 0

26. 4x 2 � 4x � 8y � 9 � 0

27. 28.

29. 3x 2 � 4y 2 � 6x � 24y � 39 � 0

30. x 2 � 4y 2 � 20x � 40y � 300 � 0

x2 � y2 � 101x � y 2 � 1x2 � 16 � 41y2 � 2x 2

y2 � 41x � 2y 2

0 x

y

4

2

_4

6
0 x

y

1

asymptote
y=x+1

0 x

y

_3

2

F(8, 0)

4

0 x

y

10

_2 20 x

y

4

31–34 ■ Use a graphing device to graph the conic.

31. 2x 2 � 4x � y � 5 � 0

32. 4x 2 � 9y 2 � 36y � 0

33. 9x 2 � 36 � y 2 � 36x � 6y

34. x 2 � 4y 2 � 4x � 8y � 0

35. Determine what the value of F must be if the graph of the
equation

is (a) an ellipse, (b) a single point, or (c) the empty set.

36. Find an equation for the ellipse that shares a vertex and a 
focus with the parabola x 2 � y � 100 and has its other 
focus at the origin.

37. This exercise deals with confocal parabolas, that is,
families of parabolas that have the same focus.

(a) Draw graphs of the family of parabolas

for .

(b) Show that each parabola in this family has its focus at
the origin.

(c) Describe the effect on the graph of moving the vertex
closer to the origin.

Applications

38. Path of a Cannonball A cannon fires a cannonball as
shown in the figure. The path of the cannonball is a parabola
with vertex at the highest point of the path. If the cannon-
ball lands 1600 ft from the cannon and the highest point it
reaches is 3200 ft above the ground, find an equation for 
the path of the cannonball. Place the origin at the location 
of the cannon.

39. Orbit of a Satellite A satellite is in an elliptical orbit
around the earth with the center of the earth at one focus.
The height of the satellite above the earth varies between
140 mi and 440 mi. Assume the earth is a sphere with radius

(feet)

y

(feet)

3200

1600
x 

p � �2, � 3
2, �1, � 1

2,
1
2, 1, 32, 2

x2 � 4p1y � p 2

4x2 � y2 � 41x � 2y 2 � F � 0
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(b) Find equations of two different hyperbolas that have
these properties.

(c) Explain why only one parabola satisfies these proper-
ties. Find its equation.

(d) Sketch the conics you found in parts (a), (b), and (c) on
the same coordinate axes (for the hyperbolas, sketch the
top branches only).

(e) How are the ellipses and hyperbolas related to the
parabola?

0 x

y

1

3960 mi. Find an equation for the path of the satellite with
the origin at the center of the earth.

Discovery • Discussion

40. A Family of Confocal Conics Conics that share a focus
are called confocal. Consider the family of conics that have
a focus at and a vertex at the origin (see the figure).

(a) Find equations of two different ellipses that have these
properties.

10,1 2

440 mi 140 mi

10.5 Rotation of Axes

In Section 10.4 we studied conics with equations of the form

We saw that the graph is always an ellipse, parabola, or hyperbola with horizontal or
vertical axes (except in the degenerate cases). In this section we study the most gen-
eral second-degree equation

We will see that the graph of an equation of this form is also a conic. In fact, by 
rotating the coordinate axes through an appropriate angle, we can eliminate the 
term Bxy and then use our knowledge of conic sections to analyze the graph.

Rotation of Axes

In Figure 1 the x- and y-axes have been rotated through an acute angle f about the
origin to produce a new pair of axes, which we call the X- and Y-axes. A point P that
has coordinates in the old system has coordinates in the new system. If
we let r denote the distance of P from the origin and let u be the angle that the seg-
ment OP makes with the new X-axis, then we can see from Figure 2 on the next page
(by considering the two right triangles in the figure) that

x � r cos1u � f 2   y � r sin1u � f 2X � r cos u      Y � r sin u

1X, Y 21x, y 2

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Ax2 � Cy2 � Dx � Ey � F � 0

0

P(x, y)

P(X, Y)

y

x

Y

X

ƒ

Figure 1



Using the addition formula for cosine, we see that

Similarly, we can apply the addition formula for sine to the expression for y to obtain
y � X sin f � Y cos f. By treating these equations for x and y as a system of linear
equations in the variables X and Y (see Exercise 33), we obtain expressions for X and
Y in terms of x and y, as detailed in the following box.

� X cos f � Y sin f

� 1r cos u 2  cos f � 1r sin u 2  sin f

� r 1cos u cos f � sin u sin f 2x � r cos1u � f 2
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y

0

P

x

Y

X

ƒ

¨

y
r

X

Y

x

Figure 2

Rotation of Axes Formulas

Suppose the x- and y-axes in a coordinate plane are rotated through the acute
angle f to produce the X- and Y-axes, as shown in Figure 1. Then the coordi-
nates and of a point in the xy- and the XY-planes are related as
follows:

y � X sin f � Y cos f   Y � �x sin f � y cos f

x � X cos f � Y sin f   X � x cos f � y sin f

1X, Y 21x, y 2

Example 1 Rotation of Axes

If the coordinate axes are rotated through 30�, find the XY-coordinates of the
point with xy-coordinates .

Solution Using the Rotation of Axes Formulas with x � 2, y � �4, and 
f � 30�, we get

The XY-coordinates are . ■

Example 2 Rotating a Hyperbola

Rotate the coordinate axes through 45� to show that the graph of the equation 
xy � 2 is a hyperbola.

Solution We use the Rotation of Axes Formulas with f � 45� to obtain

y � X sin 45° � Y cos 45° �
X

12
�

Y

12

x � X cos 45° � Y sin 45° �
X

12
�

Y

12

1�2 � 13, �1 � 213 2Y � �2 sin 30° � 1�4 2  cos 30° � �2 a 1

2
b � 4 a 13

2
b � �1 � 213

X � 2 cos 30° � 1�4 2  sin 30° � 2 a 13

2
b � 4 a 1

2
b � 13 � 2

12, �4 2



Substituting these expressions into the original equation gives

We recognize this as a hyperbola with vertices in the XY-coordinate system.
Its asymptotes are Y � �X, which correspond to the coordinate axes in the 
xy-system (see Figure 3).

■

General Equation of a Conic

The method of Example 2 can be used to transform any equation of the form

into an equation in X and Y that doesn’t contain an XY-term by choosing an appro-
priate angle of rotation. To find the angle that works, we rotate the axes through an
angle f and substitute for x and y using the Rotation of Axes Formulas:

If we expand this and collect like terms, we obtain an equation of the form

where

C¿ � A sin2f � B sin f cos f � C cos2f

B¿ � 21C � A 2  sin f cos f � B1cos2f � sin2f 2A¿ � A cos2f � B sin f cos f � C sin2f

A¿X 2 � B¿XY � C¿Y 2 � D¿X � E¿Y � F¿ � 0

� E1X sin f � Y cos f 2 � F � 0

� C1X sin f � Y cos f 22 � D1X cos f � Y sin f 2A1X cos f � Y sin f 22 � B1X cos f � Y sin f 2 1X sin f � Y cos f 2
Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

y

x
0

X
Y

45*

Figure 3

xy � 2

1�2, 0 2
X 2

4
�

Y 2

4
� 1

X 2

2
�

Y 2

2
� 2

a X

12
�

Y

12
b a X

12
�

Y

12
b � 2
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To eliminate the XY-term, we would like to choose f so that B� � 0, that is,

Double-angle 
formulas for sine 
and cosine

Divide by B sin 2f

The preceding calculation proves the following theorem.

 cot 2f �
A � C

B

B cos 2f � 1A � C 2  sin 2f

1C � A 2  sin 2f � B cos 2f � 0

 21C � A 2  sin f cos f � B1cos2f � sin2f 2 � 0

F¿ � F

E¿ � �D sin f � E cos f

D¿ � D cos f � E sin f
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Simplifying the General Conic Equation

To eliminate the xy-term in the general conic equation

rotate the axes through the acute angle f that satisfies

cot 2f �
A � C

B

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Double-angle formulas

cos 2f � cos2f � sin2f

sin 2f � 2 sin f cos f

Example 3 Eliminating the xy-Term

Use a rotation of axes to eliminate the xy-term in the equation

Identify and sketch the curve.

Solution To eliminate the xy-term, we rotate the axes through an angle f that
satisfies

Thus, 2f � 60� and hence f � 30�. With this value of f, we get

Rotation of Axes Formulas

Substituting these values for x and y into the given equation leads to

613 a X13

2
�

Y

2
b 2

� 6 a X13

2
�

Y

2
b a X

2
�

Y13

2
b � 413 a X

2
�

Y13

2
b 2

� 2113

cos f �
13
2

, sin f � 1
2y � X a 1

2
b � Y a 13

2
b

x � X a 13

2
b � Y a 1

2
b

cot 2f �
A � C

B
�

613 � 413

6
�
13

3

613x2 � 6xy � 413y2 � 2113



Expanding and collecting like terms, we get

Divide by 

This is the equation of an ellipse in the XY-coordinate system. The foci lie on the 
Y-axis. Because a2 � 7 and b2 � 3, the length of the major axis is , and the
length of the minor axis is . The ellipse is sketched in Figure 4. ■

In the preceding example we were able to determine fwithout difficulty, since we
remembered that . In general, finding f is not quite so easy. The next
example illustrates how the following half-angle formulas, which are valid for 
0 � f � p/2, are useful in determining f (see Section 7.3):

Example 4 Graphing a Rotated Conic

A conic has the equation

(a) Use a rotation of axes to eliminate the xy-term.

(b) Identify and sketch the graph.

(c) Draw the graph using a graphing calculator.

Solution

(a) To eliminate the xy-term, we rotate the axes through an angle f that satisfies

In Figure 5 we sketch a triangle with . We see that

so, using the half-angle formulas, we get

The Rotation of Axes Formulas then give

Substituting into the given equation, we have

� 36A35X � 4
5YB2 � 15A45X � 3

5YB � 20A35X � 4
5YB � 25 � 0

 64A45X � 3
5YB2 � 96A45X � 3

5YB A35X � 4
5YB

x � 4
5X � 3

5Y  and  y � 3
5X � 4

5Y

sin f � B
1 � 7

25

2
� B

9

25
�

3

5

cos f � B
1 � 7

25

2
� B

16

25
�

4

5

cos 2f � 7
25

cot 2f � 7
24

cot 2f �
A � C

B
�

64 � 36

96
�

7

24

64x2 � 96xy � 36y2 � 15x � 20y � 25 � 0

cos f � B
1 � cos 2f

2
   sin f � B

1 � cos 2f

2

cot 60° � 13/3

213
217

2113
X 2

3
�

Y 2

7
� 1

 713X 2 � 313Y 2 � 2113

SECTION 10.5 Rotation of Axes 787

7

2425

2ƒ

Figure 5

y

x

X

Y

30*

Figure 4

613x2 � 6xy � 413y2 � 2113



Expanding and collecting like terms, we get

Simplify

Divide by 4

(b) We recognize this as the equation of a parabola that opens along the negative 
Y-axis and has vertex in XY-coordinates. Since , we have

, so the focus is and the directrix is . Using

we sketch the graph in Figure 6(a).

(c) To draw the graph using a graphing calculator, we need to solve for y. The
given equation is a quadratic equation in y, so we can use the quadratic formula
to solve for y. Writing the equation in the form

we get

Expand

Simplify

Simplify�
�24x � 5 � 5215x � 10

18

�
�96x � 20 � 20215x � 10

72

�
�196x � 20 2 � 26000x � 4000

72

Quadratic
formulay �

�196x � 20 2 � 2196x � 20 2 2 � 4136 2 164x2 � 15x � 25 2
2136 2

36y2 � 196x � 20 2y � 164x2 � 15x � 25 2 � 0

y

x

X

Y

ƒÅ37*

(0, 1)

(a) (b)

2_2

_2

2

y = (–24x – 5 – 5 15x + 10)/18

y = (–24x – 5 + 5 15x + 10)/18

f � cos�1 4
5 � 37°

Y � 17
16A0, 15

16Bp � � 1
16

4p � � 1
410, 1 2

X 2 � � 1
4 1Y � 1 2�4X 2 � Y � 1

 100X 2 � 25Y � 25 � 0
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Figure 6

15x � 20y � 25 � 064x2 � 96xy � 36y2 �



To obtain the graph of the parabola, we graph the functions

as shown in Figure 6(b). ■

The Discriminant

In Examples 3 and 4 we were able to identify the type of conic by rotating the axes.
The next theorem gives rules for identifying the type of conic directly from the equa-
tion, without rotating axes.

y � A�24x � 5 � 5215x � 10B/18  and  y � A�24x � 5 � 5215x � 10B/18
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Identifying Conics by the Discriminant

The graph of the equation

is either a conic or a degenerate conic. In the nondegenerate cases, the graph is

1. a parabola if B2 � 4AC � 0

2. an ellipse if B2 � 4AC � 0

3. a hyperbola if B2 � 4AC 	 0

The quantity B2 � 4AC is called the discriminant of the equation.

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

■ Proof If we rotate the axes through an angle f, we get an equation of the form

where A�, B�, C�, . . . are given by the formulas on pages 785–786. A straightfor-
ward calculation shows that

Thus, the expression B 2 � 4AC remains unchanged for any rotation. In particular,
if we choose a rotation that eliminates the xy-term , we get

In this case, B 2 � 4AC � �4A�C�. So B 2 � 4AC � 0 if either A� or C� is zero; 
B 2 � 4AC � 0 if A� and C� have the same sign; and B 2 � 4AC 	 0 if A� and C�
have opposite signs. According to the box on page 780, these cases correspond to 
the graph of the last displayed equation being a parabola, an ellipse, or a hyperbola,
respectively. ■

In the proof we indicated that the discriminant is unchanged by any rotation; for
this reason, the discriminant is said to be invariant under rotation.

A¿X 2 � C¿Y 2 � D¿X � E¿Y � F¿ � 0

1B¿ � 0 2
1B¿ 2 2 � 4A¿C¿ � B2 � 4AC

A¿X 2 � B¿XY � C¿Y 2 � D¿X � E¿Y � F¿ � 0



Example 5 Identifying a Conic by the Discriminant

A conic has the equation

(a) Use the discriminant to identify the conic.

(b) Confirm your answer to part (a) by graphing the conic with a graphing 
calculator.

Solution

(a) Since A � 3, B � 5, and C � �2, the discriminant is

So the conic is a hyperbola.

(b) Using the quadratic formula, we solve for y to get

We graph these functions in Figure 7. The graph confirms that this is a
hyperbola. ■

10.5 Exercises

3_3

_5

55

y = (5x – 1 + œ49x2 – 2x + 33 )/4∑∑∑∑∑∑∑∑∑∑∑∑

y = (5x – 1 – œ49x2 – 2x + 33 )/4∑∑∑∑∑∑∑∑∑∑∑∑
Figure 7

y �
5x � 1 � 249x2 � 2x � 33

4

B2 � 4AC � 52 � 413 2 1�2 2 � 49 	 0

3x2 � 5xy � 2y2 � x � y � 4 � 0
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1–6 ■ Determine the XY-coordinates of the given point if the
coordinate axes are rotated through the indicated angle.

1.

2.

3.

4.

5.

6. A12, 412B, f � 45°

10, 2 2 , f � 55°

12, 0 2 , f � 15°

A3, �13B, f � 60°

1�2, 1 2 , f � 30°

11, 1 2 , f � 45°

7–12 ■ Determine the equation of the given conic in 
XY-coordinates when the coordinate axes are rotated through 
the indicated angle.

7. x 2 � 3y 2 �4, f � 60�

8.

9.

10.

11.

12. xy � x � y, f � p/4

x2 � 213xy � y2 � 4, f � 30°

x2 � 2y2 � 16, f � sin�1 3
5

x2 � y2 � 2y, f � cos�1 3
5

y � 1x � 1 2 2, f � 45°
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13–26 ■ (a) Use the discriminant to determine whether the
graph of the equation is a parabola, an ellipse, or a hyperbola.
(b) Use a rotation of axes to eliminate the xy-term. (c) Sketch 
the graph.

13. xy � 8

14. xy � 4 � 0

15. x 2 � 2xy � y 2 � x � y � 0

16.

17.

18.

19. 11x 2 � 24xy � 4y 2 � 20 � 0

20. 25x 2 � 120xy � 144y 2 � 156x � 65y � 0

21.

22. 153x 2 � 192xy � 97y 2 � 225

23.

24.

25. 52x 2 � 72xy � 73y 2 � 40x � 30y � 75

26.

27–30 ■ (a) Use the discriminant to identify the conic. 
(b) Confirm your answer by graphing the conic using a graphing
device.

27. 2x 2 � 4xy � 2y 2 � 5x � 5 � 0

28. x 2 � 2xy � 3y 2 � 8

29. 6x 2 � 10xy � 3y 2 � 6y � 36

30. 9x 2 � 6xy � y 2 � 6x � 2y � 0

31. (a) Use rotation of axes to show that the following equation
represents a hyperbola:

(b) Find the XY- and xy-coordinates of the center, vertices,
and foci.

(c) Find the equations of the asymptotes in XY- and 
xy-coordinates.

32. (a) Use rotation of axes to show that the following equation
represents a parabola:

2121x � y 2 2 � 7x � 9y

7x2 � 48xy � 7y2 � 200x � 150y � 600 � 0

17x � 24y 2 2 � 600x � 175y � 25

9x2 � 24xy � 16y2 � 1001x � y � 1 2213x2 � 6xy � 13x � 3y � 0

13x2 � 3xy � 3

21x2 � 1013xy � 31y2 � 144

x2 � 213xy � y2 � 2 � 0

13x2 � 613xy � 7y2 � 16

(b) Find the XY- and xy-coordinates of the vertex and focus.

(c) Find the equation of the directrix in XY- and 
xy-coordinates.

33. Solve the equations:

for X and Y in terms of x and y. [Hint: To begin, multiply the
first equation by cos f and the second by sin f, and then
add the two equations to solve for X.]

34. Show that the graph of the equation

is part of a parabola by rotating the axes through an angle of
45�. [Hint: First convert the equation to one that does not 
involve radicals.]

Discovery • Discussion

35. Matrix Form of Rotation of Axes Formulas

Let Z, Z�, and R be the matrices

Show that the Rotation of Axes Formulas can be written as

36. Algebraic Invariants A quantity is invariant under rota-
tion if it does not change when the axes are rotated. It was
stated in the text that for the general equation of a conic, the
quantity B 2 � 4AC is invariant under rotation.

(a) Use the formulas for A�, B�, and C� on page 785 to
prove that the quantity B 2 � 4AC is invariant under 
rotation; that is, show that

(b) Prove that A � C is invariant under rotation.

(c) Is the quantity F invariant under rotation?

37. Geometric Invariants Do you expect that the distance
between two points is invariant under rotation? Prove your
answer by comparing the distance and 
where P� and Q� are the images of P and Q under a rotation
of axes.

d1P¿, Q¿ 2d1P, Q 2

B2 � 4AC � B¿2 � 4A¿C¿

Z � RZ¿  and  Z¿ � R�1Z

R � c cos f �sin f

sin f cos f
d

Z � c x
y
d   Z¿ � cX

Y
d

1x � 1y � 1

y � X sin f � Y cos f

x � X cos f � Y sin f



Computer Graphics II

In the Discovery Project on page 700 we saw how matrix multiplication is 
used in computer graphics. We found matrices that reflect, expand, or shear an
image. We now consider matrices that rotate an image, as in the graphics 
shown here.

Rotating Points in the Plane

Recall that a point in the plane is represented by the 2 � 1 matrix . The
matrix that rotates this point about the origin through an angle f is

Rotation matrix

When the point is rotated clockwise about the origin through an angle 

f, it moves to a new location given by the matrix product P� � RP,

as shown in Figure 1.

For example, if f � 90�, the rotation matrix is

Rotation matrix 

Applying a 90� rotation to the point moves it to the point

See Figure 2.

Rotating Images in the Plane

If the rotation matrix is applied to every point in an image, then the entire image
is rotated. To rotate the house in Figure 3(a) through a 30� angle about the 

P¿ � RP � c0 �1

1 0
d c1

2
d � c�2

1
d

P � c1
2
d

1f � 90° 2R � c cos 90° �sin 90°

sin 90° cos 90°
d � c0 �1

1 0
d

P¿ � RP � c cos f �sin f

sin f cos f
d c x

y
d � c x cos f � y sin f

x sin f � y cos f
d

P¿ � c x¿
y¿
dP � c x

y
d

R � c cos f �sin f

sin f cos f
d

c x
y
d1x, y 2
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P�(x�, y�)

P(x, y)

ƒ

0

y

x

Figure 1

Figure 2

P�(_2, 1)

P(1, 2)

90*

0 1

1

y

x

Compare this matrix with the rota-
tion of axes matrix in Exercise 35,
Section 10.5. Note that rotating a
point counterclockwise corresponds
to rotating the axes clockwise.
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origin, we multiply its data matrix (described on page 701) by the rotation ma-
trix that has f � 30�.

The new data matrix RD represents the rotated house in Figure 3(b).

The Discovery Project on page 702 describes a TI-83 program that draws the
image corresponding to a given data matrix. You may find it convenient to use
this program in some of the following activities.

1. Use a rotation matrix to find the new coordinates of the given point when it is
rotated through the given angle.

(a) (b)
(c) (d)

2. Find a data matrix for the line drawing in the figure shown in the margin.
Multiply the data matrix by a suitable rotation matrix to rotate the image
about the origin by f � 120�. Sketch the rotated image given by the new data
matrix.

3. Sketch the image represented by the data matrix D.

Find the rotation matrix R that corresponds to a 45� rotation, and the transfor-
mation matrix T that corresponds to an expansion by a factor of 2 in the 
x-direction (see page 701). How does multiplying the data matrix by RT
change the image? How about multiplying by TR? Calculate the products
RTD and TRD, and sketch the corresponding images to confirm your answers.

4. Let R be the rotation matrix for the angle f. Show that R�1 is the rotation
matrix for the angle �f.

D � c2 3 3 4 4 1 1 2 2

1 1 3 3 4 4 3 3 1
d

17, 3 2 , f � �60°1�2, �2 2 , f � 135°

1�2, 1 2 , f � 60°11, 4 2 , f � 90°

1

10

y

x

(a)

1

10

y

x

(b)Figure 3

� c1.73 0 �1.50 �0.77 1.96 3.46 2.60 1.60 0.73 1.73 2.60

1 0 2.60 5.33 4.60 2 1.50 3.23 2.73 1 1.50
d

RD � c 13
2 � 1

2
1
2

13
2

d c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

1

10

y

x



5. To translate an image by , we add h to each x-coordinate and 
k to each y-coordinate of each point in the image (see the figure in the 
margin). This can be done by adding an appropriate matrix M to D, but the
dimension of M would change depending on the dimension of D. In practice,
translation is accomplished by matrix multiplication. To see how this is done,
we introduce homogeneous coordinates; that is, we represent the point

by a 3 � 1 matrix:

(a) Let T be the matrix

Show that T translates the point to the point by
verifying the following matrix multiplication.

(b) Find T�1 and describe how T�1 translates points.

(c) Verify that multiplying by the following matrices has the indicated 

effects on a point represented by its homogeneous coordinates .

Reflection Expansion (or Shear in Rotation about the 
in x-axis contraction) x-direction origin by 

in x-direction the angle f

(d) Sketch the image represented (in homogeneous coordinates) by this data
matrix:

Find a matrix T that translates the image by and a matrix R
that rotates the image by 45�. Sketch the images represented by the data
matrices TD, RTD, and T�1RTD. Describe how an image is changed
when its data matrix is multiplied by T, by RT, and by T�1RT.

1�6, �8 2
D � £3 5 5 7 7 9 9 7 7 5 5 3 3

7 7 5 5 7 7 9 9 11 11 9 9 7

1 1 1 1 1 1 1 1 1 1 1 1 1

§

£1 0 0

0 �1 0

0 0 1

§ £ c 0 0

0 1 0

0 0 1

§ £1 c 0

0 1 0

0 0 1

§ £ cos f �sin f 0

sin f cos f 0

0 0 1

§
£ xy

1

§1x, y 2

£1 0 h

0 1 k

0 0 1

§ £ x

y

1

§ � £ x � h

y � k

1

§
1x � h, y � h 21x, y 2

T � £1 0 h

0 1 k

0 0 1

§

1x, y 2 4 £ x

y

1

§
1x, y 2

1h, k 2
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10.6 Polar Equations of Conics

Earlier in this chapter we defined a parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more
unified treatment of all three types of conics in terms of a focus and directrix. If we
place the focus at the origin, then a conic section has a simple polar equation. More-
over, in polar form, rotation of conics becomes a simple matter. Polar equations of 
ellipses are crucial in the derivation of Kepler’s Laws (see page 780).
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Equivalent Description of Conics

Let F be a fixed point (the focus), / a fixed line (the directrix), and e a fixed
positive number (the eccentricity). The set of all points P such that the ratio
of the distance from P to F to the distance from P to / is the constant e is a
conic. That is, the set of all points P such that

is a conic. The conic is a parabola if e � 1, an ellipse if e � 1, or a hyperbola
if e 	 1.

d1P, F 2
d1P, / 2 � e

■ Proof If e � 1, then , and so the given condition becomes the
definition of a parabola as given in Section 10.1.

Now, suppose e � 1. Let’s place the focus F at the origin and the directrix paral-
lel to the y-axis and d units to the right. In this case the directrix has equation x � d
and is perpendicular to the polar axis. If the point P has polar coordinates , we
see from Figure 1 that and . Thus, the condition

, or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates,
we get

Expand and simplify

Divide by 1 � e2 and complete
the square

If e � 1, then dividing both sides of this equation by gives an
equation of the form

where

h �
�e2d

1 � e2   a2 �
e2d 211 � e2 2 2   b2 �

e2d 2

1 � e2

1x � h 2 2
a2 �

y2

b2 � 1

e2d 2/ 11 � e2 2 2
a x �

e2d

1 � e2 b 2

�
y2

1 � e2 �
e2d 211 � e2 2 2

11 � e2 2x2 � 2de2x � y2 � e2d 2

x2 � y2 � e21d � x 2 2
r � e1d � r cos u 2d1P, F 2 � e # d1P, / 2d1P, F 2 /d1P, / 2 � e

d1P, / 2 � d � r cos ud1P, F 2 � r
1r,u 2

d1P, F 2 � d1P, / 2

r ç ¨

y

x
F

� (directrix)

x=d

P

¨

r

d

Figure 1



This is the equation of an ellipse with center . In Section 10.2 we found that the
foci of an ellipse are a distance c from the center, where c2 � a2 � b2. In our case

Thus, , which confirms that the focus defined in the 
theorem is the same as the focus defined in Section 10.2. It also follows that

If e 	 1, a similar proof shows that the conic is a hyperbola with e � c/a, where
c 2 � a 2 � b 2. ■

In the proof we saw that the polar equation of the conic in Figure 1 is
. Solving for r, we get

If the directrix is chosen to be to the left of the focus , then we get the 
equation . If the directrix is parallel to the polar axis

, then we get sin u instead of cos u in the equation. These obser-
vations are summarized in the following box and in Figure 2.
1y � d or y � �d 2r � ed/ 11 � e cos u 2 1x � �d 2r �

ed

1 � e cos u

r � e1d � r cos u 2

c � e2d/ 11 � e2 2 � �h

c2 � a2 � b2 �
e4d 211 � e2 2 2

1h, 0 2
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(a) r=
ed

1+e ç ¨
(b) r=

ed

1-e ç ¨
(c) r=

ed

1+e ß ¨
(d) r=

ed

1-e ß ¨

y

xF

x=d

directrix

axis
F

x=_d

directrix

y

xaxis F

y=d             directrix
y

x

axis y=_d           directrix

F

y

x

axis

Figure 2

The form of the polar equation of a conic indicates the location of the directrix.

Polar Equations of Conics

A polar equation of the form

represents a conic with one focus at the origin and with eccentricity e. The
conic is

1. a parabola if e � 1

2. an ellipse if 0 � e � 1

3. a hyperbola if e 	 1

r �
ed

1 � e cos u
  or  r �

ed

1 � e sin u

e �
c
a



To graph the polar equation of a conic, we first determine the location of the di-
rectrix from the form of the equation. The four cases that arise are shown in Figure 2.
(The figure shows only the parts of the graphs that are close to the focus at the origin.
The shape of the rest of the graph depends on whether the equation represents 
a parabola, an ellipse, or a hyperbola.) The axis of a conic is perpendicular to the 
directrix—specifically we have the following:

1. For a parabola, the axis of symmetry is perpendicular to the directrix.

2. For an ellipse, the major axis is perpendicular to the directrix.

3. For a hyperbola, the transverse axis is perpendicular to the directrix.

Example 1 Finding a Polar Equation 

for a Conic

Find a polar equation for the parabola that has its focus at the origin and whose 
directrix is the line y � �6.

Solution Using e � 1 and d � 6, and using part (d) of Figure 2, we see that the
polar equation of the parabola is

■

To graph a polar conic, it is helpful to plot the points for which u � 0, p/2, p,
and 3p/2. Using these points and a knowledge of the type of conic (which we obtain
from the eccentricity), we can easily get a rough idea of the shape and location of the
graph.

Example 2 Identifying and Sketching 

a Conic

A conic is given by the polar equation

(a) Show that the conic is an ellipse and sketch the graph.

(b) Find the center of the ellipse, and the lengths of the major and minor axes.

Solution

(a) Dividing the numerator and denominator by 3, we have

Since , the equation represents an ellipse. For a rough graph we plot
the points for which u � 0, p/2, p, 3p/2 (see Figure 3 on the next page).

(b) Comparing the equation to those in Figure 2, we see that the major axis is 
horizontal. Thus, the endpoints of the major axis are and . V212,p 2V1110, 0 2

e � 2
3 � 1

r �
10
3

1 � 2
3 cos u

r �
10

3 � 2 cos u

r �
6

1 � sin u
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The distance between the vertices V1 and V2 is 12; thus, the length of the ma-
jor axis is 2a � 12, and so a � 6. To determine the length of the minor axis, we
need to find b. From page 796 we have , so

Thus, , and the length of the minor axis is
. ■

Example 3 Identifying and Sketching a Conic

A conic is given by the polar equation

(a) Show that the conic is a hyperbola and sketch the graph.

(b) Find the center of the hyperbola and sketch the asymptotes.

Solution

(a) Dividing the numerator and denominator by 2, we have

Since e � 2 	 1, the equation represents a hyperbola. For a rough graph we
plot the points for which u � 0, p/2, p, 3p/2 (see Figure 4).

(b) Comparing the equation to those in Figure 2, we see that the transverse axis is
vertical. Thus, the endpoints of the transverse axis (the vertices of the hyper-
bola) are and . So the center of the 
hyperbola is , the midpoint of V1V2.

To sketch the asymptotes, we need to find a and b. The distance between V1

and V2 is 4; thus, the length of the transverse axis is 2a � 4, and so a � 2. To
find b, we first find c. From page 796 we have c � ae � 2 �2 � 4, so

b2 � c2 � a2 � 42 � 22 � 12

C14,p/2 2 V21�6, 3p/2 2 � V216,p/2 2V112,p/2 2

r �
6

1 � 2 sin u

r �
12

2 � 4 sin u

2b � 415 � 8.94
b � 120 � 215 � 4.47

b2 � a2 � c2 � 62 � 42 � 20

c � ae � 6A23B � 4
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r �
10

3 � 2 cos u

u r

0 6
p/2 2
p 6

3p/2 �6

(6, 0)

focus

0(6, π)
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3π
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V⁄ !2,    @
π

2

π

6

5π

6

5π

4

7π

4

Figure 4

r �
12

2 � 4 sin u

So the center of the ellipse is at , the midpoint of V1V2.C14, 0 2



Thus, . Knowing a and b allows us to sketch the cen-
tral box, from which we obtain the asymptotes shown in Figure 4. ■

When we rotate conic sections, it is much more convenient to use polar equations
than Cartesian equations. We use the fact that the graph of is the graph
of rotated counterclockwise about the origin through an angle a (see
Exercise 55 in Section 8.2).

Example 4 Rotating an Ellipse

Suppose the ellipse of Example 2 is rotated through an angle p/4 about the origin.
Find a polar equation for the resulting ellipse, and draw its graph.

Solution We get the equation of the rotated ellipse by replacing u with u � p/4
in the equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse
has been rotated about the focus at the origin. ■

In Figure 6 we use a computer to sketch a number of conics to demonstrate the ef-
fect of varying the eccentricity e. Notice that when e is close to 0, the ellipse is nearly
circular and becomes more elongated as e increases. When e � 1, of course, the conic
is a parabola. As e increases beyond 1, the conic is an ever steeper hyperbola.

Figure 6

10.6 Exercises

e=0.86e=0.5 e=1 e=1.4 e=4

r �
10

3 � 2 cos1u � p/4 2

r � f1u 2 r � f1u � a 2
b � 112 � 213 � 3.46
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11

_6

_5 15

r=
10

3-2 ç(¨ _ π/4)

r=
10

3-2 ç ¨

Figure 5

1–8 ■ Write a polar equation of a conic that has its focus at the
origin and satisfies the given conditions.

1. Ellipse, eccentricity , directrix x � 3

2. Hyperbola, eccentricity , directrix x � �3

3. Parabola, directrix y � 2

4
3

2
3

4. Ellipse, eccentricity , directrix y � �4

5. Hyperbola, eccentricity 4, directrix r � 5 sec u

6. Ellipse, eccentricity 0.6, directrix r � 2 csc u

7. Parabola, vertex at 

8. Ellipse, eccentricity 0.4, vertex at 12, 0 215,p/2 2
1
2
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9–14 ■ Match the polar equations with the graphs labeled 
I–VI. Give reasons for your answer.

9. 10. r �
2

2 � cos u
r �

6

1 � cos u

11. 12.

13. 14. r �
12

2 � 3 cos u
r �

12

3 � 2 sin u

r �
5

3 � 3 sin u
r �

3

1 � 2 sin u

π

2

3π

2

π
1

I

IV

II

V

III

VI

1

π

2

3π

2

π

π

2

3π

2

π
1

π

2

3π

2

π
5 10

π

2

π

3π

2

7 15

π

2

3π

2

π
1

r

r

r r

r

r

15–22 ■ (a) Find the eccentricity and identify the conic. 
(b) Sketch the conic and label the vertices.

15. 16.

17. 18.

19. 20.

21. 22.

23. (a) Find the eccentricity and directrix of the conic
and graph the conic and its 

directrix.

(b) If this conic is rotated about the origin through an angle
p/3, write the resulting equation and draw its graph.

r � 1/ 14 � 3 cos u 2
r �

8

3 � cos u
r �

7

2 � 5 sin u

r �
5

2 � 3 sin u
r �

6

2 � sin u

r �
10

3 � 2 sin u
r �

2

1 � cos u

r �
8

3 � 3 cos u
r �

4

1 � 3 cos u

24. Graph the parabola and its directrix.
Also graph the curve obtained by rotating this parabola
about its focus through an angle p/6.

25. Graph the conics with e � 0.4, 0.6, 0.8,
and 1.0 on a common screen. How does the value of e affect
the shape of the curve?

26. (a) Graph the conics 

for e � 1 and various values of d. How does the value
of d affect the shape of the conic?

(b) Graph these conics for d � 1 and various values of e.
How does the value of e affect the shape of the conic?

r �
ed11 � e sin u 2

r � e/ 11 � e cos u 2
r � 5/ 12 � 2 sin u 2
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Applications

27. Orbit of the Earth The polar equation of an ellipse can
be expressed in terms of its eccentricity e and the length a
of its major axis.

(a) Show that the polar equation of an ellipse with directrix
x � �d can be written in the form

[Hint: Use the relation given in the
proof on page 795.]

(b) Find an approximate polar equation for the elliptical 
orbit of the earth around the sun (at one focus) given
that the eccentricity is about 0.017 and the length of the
major axis is about 2.99 � 108 km.

28. Perihelion and Aphelion The planets move around the
sun in elliptical orbits with the sun at one focus. The posi-
tions of a planet that are closest to, and farthest from, the
sun are called its perihelion and aphelion, respectively.

aphelionperihelion
sun

planet

¨

r

a2 � e2d 2/ 11 � e2 2 2r �
a11 � e2 2

1 � e cos u

(a) Use Exercise 27(a) to show that the perihelion distance
from a planet to the sun is and the aphelion
distance is .

(b) Use the data of Exercise 27(b) to find the distances
from the earth to the sun at perihelion and at aphelion.

29. Orbit of Pluto The distance from the planet Pluto to the
sun is 4.43 � 109 km at perihelion and 7.37 � 109 km at
aphelion. Use Exercise 28 to find the eccentricity of 
Pluto’s orbit.

Discovery • Discussion

30. Distance to a Focus When we found polar equations for
the conics, we placed one focus at the pole. It’s easy to find
the distance from that focus to any point on the conic. 
Explain how the polar equation gives us this distance.

31. Polar Equations of Orbits When a satellite orbits the
earth, its path is an ellipse with one focus at the center of the
earth. Why do scientists use polar (rather than rectangular)
coordinates to track the position of satellites? [Hint: Your
answer to Exercise 30 is relevant here.]

a11 � e 2 a11 � e 2

10.7 Plane Curves and Parametric Equations

So far we’ve described a curve by giving an equation (in rectangular or polar coordi-
nates) that the coordinates of all the points on the curve must satisfy. But not all
curves in the plane can be described in this way. In this section we study parametric
equations, which are a general method for describing any curve.

Plane Curves

We can think of a curve as the path of a point moving in the plane; the x- and 
y-coordinates of the point are then functions of time. This idea leads to the following
definition.

Plane Curves and Parametric Equations

If f and g are functions defined on an interval I, then the set of points
is a plane curve. The equations

where t � I, are parametric equations for the curve, with parameter t.

x � f 1t 2   y � g1t 21f 1t 2 , g1t 22



Example 1 Sketching a Plane Curve

Sketch the curve defined by the parametric equations

Solution For every value of t, we get a point on the curve. For example, if t � 0,
then x � 0 and y � �1, so the corresponding point is . In Figure 1 we plot
the points determined by the values of t shown in the following table.

Figure 1

As t increases, a particle whose position is given by the parametric equations moves
along the curve in the direction of the arrows. ■

If we replace t by �t in Example 1, we obtain the parametric equations

The graph of these parametric equations (see Figure 2) is the same as the curve in Fig-
ure 1, but traced out in the opposite direction. On the other hand, if we replace t by 2t
in Example 1, we obtain the parametric equations

The graph of these parametric equations (see Figure 3) is again the same, but is traced
out “twice as fast.” Thus, a parametrization contains more information than just the
shape of the curve; it also indicates how the curve is being traced out.

Figure 2 Figure 3

x � t 2 � 3t, y � �t � 1 x � 4t 2 � 6t, y � 2t � 1

t = −1

t = 0

t = 2

t = 1

y

x

1

5 10

t = 2

t = −5

t = 1
t = 0

t = −4
t = −3

t = −2

t = −1

y

x

1

5 10

x � 4t2 � 6t   y � 2t � 1

x � t2 � 3t   y � �t � 1

y

x

1

5 10

t = −2

t = 5

t = −1

t = 4
t = 3

t = 2

t = 1

t = 0

1x, y 2 10, �1 2
x � t2 � 3t   y � t � 1
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t x y

�2 10 �3
�1 4 �2

0 0 �1
1 �2 0
2 �2 1
3 0 2
4 4 3
5 10 4

Maria Gaetana Agnesi (1718–
1799) is famous for having written
Instituzioni Analitiche, considered
to be the first calculus textbook.

Maria was born into a wealthy
family in Milan, Italy, the oldest
of 21 children. She was a child
prodigy, mastering many languages
at an early age, including Latin,
Greek, and Hebrew.At the age of 20
she published a series of essays on
philosophy and natural science.Af-
ter Maria’s mother died, she took
on the task of educating her broth-
ers. In 1748 Agnesi published her
famous textbook, which she origi-
nally wrote as a text for tutoring her
brothers. The book compiled and
explained the mathematical knowl-
edge of the day. It contains many
carefully chosen examples, one of
which is the curve now known as
the “witch of Agnesi” (see page
809). One review calls her book an
“exposition by examples rather
than by theory.” The book gained
Agnesi immediate recognition.
Pope Benedict XIV appointed her
to a position at the University of
Bologna, writing “we have had the
idea that you should be awarded the
well-known chair of mathematics,
by which it comes of itself that you
should not thank us but we you.”
This appointment was an extremely
high honor for a woman, since very
few women then were even allowed

(continued)
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Eliminating the Parameter

Often a curve given by parametric equations can also be represented by a single rect-
angular equation in x and y. The process of finding this equation is called eliminating
the parameter. One way to do this is to solve for t in one equation, then substitute into
the other.

Example 2 Eliminating the Parameter

Eliminate the parameter in the parametric equations of Example 1.

Solution First we solve for t in the simpler equation, then we substitute into the
other equation. From the equation y � t � 1, we get t � y � 1. Substituting into
the equation for x, we get

Thus, the curve in Example 1 has the rectangular equation x � y 2 � y � 2, so it is a
parabola. ■

Eliminating the parameter often helps us identify the shape of a curve, as we see
in the next two examples.

Example 3 Eliminating the Parameter

Describe and graph the curve represented by the parametric equations

Solution To identify the curve, we eliminate the parameter. Since 
cos2 t � sin2 t � 1 and since x � cos t and y � sin t for every point on 
the curve, we have

This means that all points on the curve satisfy the equation x 2 � y 2 � 1, so the
graph is a circle of radius 1 centered at the origin. As t increases from 0 to 2p, the
point given by the parametric equations starts at and moves counterclockwise
once around the circle, as shown in Figure 4. Notice that the parameter t can be 
interpreted as the angle shown in the figure. ■

Example 4 Sketching a Parametric Curve

Eliminate the parameter and sketch the graph of the parametric equations

Solution To eliminate the parameter, we first use the trigonometric identity 
cos2 t � 1 � sin2 t to change the second equation:

Now we can substitute sin t � x from the first equation to get

y � 1 � x2

y � 2 � cos2t � 2 � 11 � sin2t 2 � 1 � sin2t

x � sin t   y � 2 � cos2t

11, 0 2
x2 � y2 � 1cos t 2 2 � 1sin t 2 2 � 1

1x, y 2
x � cos t   y � sin t   0 
 t 
 2p

x � t2 � 3t � 1y � 1 2 2 � 31y � 1 2 � y2 � y � 2
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3π

2
t=

π

2
t=

0 x

t
t=0

(1, 0)

(ç t, ß t)

t=2π

t=π

y

Figure 4

to attend university. Just two years
later, Agnesi’s father died and she
left mathematics completely. She
became a nun and devoted the rest
of her life and her wealth to caring
for sick and dying women, herself
dying in poverty at a poorhouse of
which she had once been director.



and so the point moves along the parabola y � 1 � x 2. However, since 
�1 
 sin t 
 1, we have �1 
 x 
 1, so the parametric equations represent only
the part of the parabola between x � �1 and x � 1. Since sin t is periodic, the point

moves back and forth infinitely often along the parabola
between the points and as shown in Figure 5. ■

Finding Parametric Equations for a Curve

It is often possible to find parametric equations for a curve by using some geometric
properties that define the curve, as in the next two examples.

Example 5 Finding Parametric Equations for a Graph

Find parametric equations for the line of slope 3 that passes through the point .

Solution Let’s start at the point and move up and to the right along this
line. Because the line has slope 3, for every 1 unit we move to the right, we must
move up 3 units. In other words, if we increase the x-coordinate by t units, we must
correspondingly increase the y-coordinate by 3t units. This leads to the parametric
equations

To confirm that these equations give the desired line, we eliminate the parameter.
We solve for t in the first equation and substitute into the second to get

Thus, the slope-intercept form of the equation of this line is y � 3x, which is a 
line of slope 3 that does pass through as required. The graph is shown in 
Figure 6. ■

Example 6 Parametric Equations for the Cycloid

As a circle rolls along a straight line, the curve traced out by a fixed point P on the
circumference of the circle is called a cycloid (see Figure 7). If the circle has radius
a and rolls along the x-axis, with one position of the point P being at the origin, find
parametric equations for the cycloid.

Figure 7

Solution Figure 8 shows the circle and the point P after the circle has rolled
through an angle u (in radians). The distance that the circle has rolled must
be the same as the length of the arc PT, which, by the arc length formula, is au (see
Section 6.1). This means that the center of the circle is .C1au, a 2d1O, T 2

P

P

P

12, 6 2
y � 6 � 31x � 2 2 � 3x

x � 2 � t   y � 6 � 3t

12, 6 2 12, 6 2

11, 2 21�1, 2 21x, y 2 � 1sin t, 2 � cos2t 2
1x, y 2
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x0

y

(1, 2)(_1, 2)

Figure 5



Let the coordinates of P be . Then from Figure 8 (which illustrates the case
0 � u � p/2), we see that

so parametric equations for the cycloid are

■

The cycloid has a number of interesting physical properties. It is the “curve of
quickest descent” in the following sense. Let’s choose two points P and Q that are not
directly above each other, and join them with a wire. Suppose we allow a bead to slide
down the wire under the influence of gravity (ignoring friction). Of all possible
shapes that the wire can be bent into, the bead will slide from P to Q the fastest when
the shape is half of an arch of an inverted cycloid (see Figure 9). The cycloid is also
the “curve of equal descent” in the sense that no matter where we place a bead B on
a cycloid-shaped wire, it takes the same time to slide to the bottom (see Figure 10).
These rather surprising properties of the cycloid were proved (using calculus) in the
17th century by several mathematicians and physicists, including Johann Bernoulli,
Blaise Pascal, and Christiaan Huygens.

Figure 9 Figure 10

Using Graphing Devices to Graph Parametric Curves

Most graphing calculators and computer graphing programs can be used to graph
parametric equations. Such devices are particularly useful when sketching compli-
cated curves like the one shown in Figure 11.

Example 7 Graphing Parametric Curves

Use a graphing device to draw the following parametric curves. Discuss their simi-
larities and differences.

(a) x � sin 2t (b) x � sin 3t
y � 2 cos t y � 2 cos t

Solution In both parts (a) and (b), the graph will lie inside the rectangle given 
by �1 
 x 
 1, �2 
 y 
 2, since both the sine and the cosine of any number will
be between �1 and 1. Thus, we may use the viewing rectangle by

.3�2.5, 2.5 4 3�1.5, 1.5 4

B

B

B

P

Q
cycloid

x � a1u � sin u 2   y � a11 � cos u 2
y � d1T, C 2 � d1Q, C 2 � a � a cos u � a11 � cos u 2x � d1O, T 2 � d1P, Q 2 � au � a sin u � a1u � sin u 2

1x, y 2
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8

_8

_6.5 6.5

Figure 11

x � t � 2 sin 2t, y � t � 2 cos 5t

P

x0

y

T

C (a¨, a)
a ¨

x
y

a¨

Q

Figure 8



(a) Since 2 cos t is periodic with period 2p (see Section 5.3), and since sin 2t has
period p, letting t vary over the interval 0 
 t 
 2p gives us the complete
graph, which is shown in Figure 12(a).

(b) Again, letting t take on values between 0 and 2p gives the complete graph
shown in Figure 12(b).

Both graphs are closed curves, which means they form loops with the same
starting and ending point; also, both graphs cross over themselves. However, the
graph in Figure 12(a) has two loops, like a figure eight, whereas the graph in
Figure 12(b) has three loops. ■

The curves graphed in Example 7 are called Lissajous figures. A Lissajous figure
is the graph of a pair of parametric equations of the form

where A, B, v1, and v2 are real constants. Since sin v1t and cos v2t are both between
�1 and 1, a Lissajous figure will lie inside the rectangle determined by �A 
 x 
 A,
�B 
 y 
 B. This fact can be used to choose a viewing rectangle when graphing a
Lissajous figure, as in Example 7.

Recall from Section 8.1 that rectangular coordinates and polar coordinates
are related by the equations x � r cos u, y � r sin u. Thus, we can graph the 

polar equation by changing it to parametric form as follows:

Since

Replacing u by the standard parametric variable t, we have the following result.

y � r sin u � f 1u 2  sin u

r � f 1u 2x � r cos u � f 1u 2  cos u

r � f1u 21r, u 2 1x, y 2

x � A sin v1t   y � B cos v2t
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(a) x=ß 2t, y=2 ç t

2.5

_2.5

_1.5 1.5

(b) x=ß 3t, y=2 ç t

2.5

_2.5

_1.5 1.5

Figure 12

Polar Equations in Parametric Form

The graph of the polar equation is the same as the graph of the 
parametric equations

x � f 1t 2  cos t   y � f 1t 2  sin t

r � f 1u 2

Example 8 Parametric Form of a Polar Equation

Consider the polar equation r � u, 1 
 u 
 10p.

(a) Express the equation in parametric form.

(b) Draw a graph of the parametric equations from part (a).

Solution

(a) The given polar equation is equivalent to the parametric equations

(b) Since 10p � 31.42, we use the viewing rectangle by ,
and we let t vary from 1 to 10p. The resulting graph shown in Figure 13 is 
a spiral. ■

3�32, 32 43�32, 32 4x � t cos t   y � t sin t

32

_32

_32 32

Figure 13

x � t cos t, y � t sin t
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1–22 ■ A pair of parametric equations is given.

(a) Sketch the curve represented by the parametric equations.

(b) Find a rectangular-coordinate equation for the curve by
eliminating the parameter.

1. x � 2t, y � t � 6

2. x � 6t � 4, y � 3t, t � 0

3. x � t2, y � t � 2, 2 
 t 
 4

4. x � 2t � 1,

5. , y � 1 � t

6. x � t2, y � t 4 � 1

7.

8.

9. x � 4t 2, y � 8t 3

10.

11. x � 2 sin t, y � 2 cos t, 0 
 t 
 p

12. x � 2 cos t, y � 3 sin t, 0 
 t 
 2p

13. x � sin2 t, y � sin4 t 14. x � sin2 t, y � cos t

15. x � cos t, y � cos 2t

16. x � cos 2t, y � sin 2t

17 x � sec t, y � tan t, 0 
 t � p/2

18 x � cot t, y � csc t, 0 � t � p

19 x � tan t, y � cot t, 0 � t � p/2

20. x � sec t, y � tan2t, 0 
 t � p/2

21. x � cos2t, y � sin2t

22. x � cos3t, y � sin3t, 0 
 t 
 2p

23–26 ■ Find parametric equations for the line with the given
properties.

23. Slope , passing through 

24. Slope �2, passing through 

25. Passing through and 

26. Passing through and the origin

27. Find parametric equations for the circle x 2 � y 2 � a 2.

28. Find parametric equations for the ellipse

x2

a2 �
y2

b2 � 1

112, 7 2 17, 8 216, 7 2 1�10, �20 214, �1 21
2

x � 0 t 0 , y � 0 1 � 0 t 0 0
x � t � 1, y �

t

t � 1

x �
1

t
, y � t � 1

x � 1t

y � At � 1
2B2

29. Show by eliminating the parameter u that the following
parametric equations represent a hyperbola:

30. Show that the following parametric equations represent a
part of the hyperbola of Exercise 29:

31–34 ■ Sketch the curve given by the parametric equations.

31. x � t cos t, y � t sin t, t � 0

32. x � sin t, y � sin 2t

33.

34. x � cot t, y � 2 sin2 t, 0 � t � p

35. If a projectile is fired with an initial speed of √0 ft/s at 
an angle a above the horizontal, then its position after 
t seconds is given by the parametric equations

(where x and y are measured in feet). Show that the path of
the projectile is a parabola by eliminating the parameter t.

36. Referring to Exercise 35, suppose a gun fires a bullet into
the air with an initial speed of 2048 ft/s at an angle of 30� to
the horizontal.

(a) After how many seconds will the bullet hit the ground?

(b) How far from the gun will the bullet hit the ground?

(c) What is the maximum height attained by the bullet?

37–42 ■ Use a graphing device to draw the curve represented
by the parametric equations.

37. x � sin t, y � 2 cos 3t

38. x � 2 sin t, y � cos 4t

39. x � 3 sin 5t, y � 5 cos 3t

40. x � sin 4t, y � cos 3t

41.

42. x � 2 cos t � cos 2t, y � 2 sin t � sin 2t

43–46 ■ A polar equation is given.

(a) Express the polar equation in parametric form.

(b) Use a graphing device to graph the parametric equations
you found in part (a).

43. r � 2u/12, 0 
 u 
 4p 44. r � sin u � 2 cos u

45. 46. r � 2sin ur �
4

2 � cos u

x � sin1cos t 2 , y � cos1t3/2 2 , 0 
 t 
 2p

x � 1√0 cos a 2 t   y � 1√0 sin a 2 t � 16t2

x �
3t

1 � t3 , y �
3t2

1 � t3

x � a1t   y � b2t � 1

x � a tan u   y � b sec u

10.7 Exercises
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47–50 ■ Match the parametric equations with the graphs 
labeled I–IV. Give reasons for your answers.

47. x � t 3 � 2t, y � t 2 � t

48. x � sin 3t, y � sin 4t

49. x � t � sin 2t, y � t � sin 3t

50.

51. (a) In Example 6 suppose the point P that traces out the
curve lies not on the edge of the circle, but rather at a
fixed point inside the rim, at a distance b from the center
(with b � a). The curve traced out by P is called a cur-
tate cycloid (or trochoid). Show that parametric equa-
tions for the curtate cycloid are

(b) Sketch the graph using a � 3 and b � 2.

52. (a) In Exercise 51 if the point P lies outside the circle 
at a distance b from the center (with b 	 a), then the
curve traced out by P is called a prolate cycloid.
Show that parametric equations for the prolate 
cycloid are the same as the equations for the curtate 
cycloid.

(b) Sketch the graph for the case where a � 1 and b � 2.

53. A circle C of radius b rolls on the inside of a larger circle of
radius a centered at the origin. Let P be a fixed point on the
smaller circle, with initial position at the point as1a, 0 2

x � au � b sin u   y � a � b cos u

0 x

y

0 x

yI II

0 x

y

0 x

yIII IV

x � sin1t � sin t 2 , y � cos1t � cos t 2

shown in the figure. The curve traced out by P is called a
hypocycloid.

(a) Show that parametric equations for the hypocycloid are

(b) If a � 4b, the hypocycloid is called an astroid. Show
that in this case the parametric equations can be 
reduced to

Sketch the curve. Eliminate the parameter to obtain an
equation for the astroid in rectangular coordinates.

54. If the circle C of Exercise 53 rolls on the outside of the
larger circle, the curve traced out by P is called an 
epicycloid. Find parametric equations for the epicycloid.

55. In the figure, the circle of radius a is stationary and, for
every u, the point P is the midpoint of the segment QR. The
curve traced out by P for 0 � u � p is called the longbow
curve. Find parametric equations for this curve.

P

Q

¨

x0

y

a

2a R

y=2a

x � a cos3u   y � a sin3u

y � 1a � b 2  sin u � b sin a a � b

b
u b

x � 1a � b 2  cos u � b cos a a � b

b
u b

b

C

P
(a, 0)¨

x0

y
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56. Two circles of radius a and b are centered at the origin, as
shown in the figure. As the angle u increases, the point P
traces out a curve that lies between the circles.

(a) Find parametric equations for the curve, using u as the
parameter.

(b) Graph the curve using a graphing device, with a � 3
and b � 2.

(c) Eliminate the parameter and identify the curve.

57. Two circles of radius a and b are centered at the origin, as
shown in the figure.

(a) Find parametric equations for the curve traced out by
the point P, using the angle u as the parameter. (Note
that the line segment AB is always tangent to the larger
circle.)

(b) Graph the curve using a graphing device, with a � 3
and b � 2.

58. A curve, called a witch of Maria Agnesi, consists of all
points P determined as shown in the figure.

(a) Show that parametric equations for this curve can be
written as

x � 2a cot u   y � 2a sin2u

¨

x0

y

a
b P

A

B

¨

x0

y

a
b

P

(b) Graph the curve using a graphing device, with a � 3.

59. Eliminate the parameter u in the parametric equations for
the cycloid (Example 6) to obtain a rectangular coordinate
equation for the section of the curve given by 0 
 u 
 p.

Applications

60. The Rotary Engine The Mazda RX-8 uses an 
unconventional engine (invented by Felix Wankel in 1954)
in which the pistons are replaced by a triangular rotor that
turns in a special housing as shown in the figure. The 
vertices of the rotor maintain contact with the housing at all
times, while the center of the triangle traces out a circle of
radius r, turning the drive shaft. The shape of the housing is
given by the parametric equations below (where R is the 
distance between the vertices and center of the rotor).

(a) Suppose that the drive shaft has radius r � 1. Graph 
the curve given by the parametric equations for the 
following values of R: 0.5, 1, 3, 5.

(b) Which of the four values of R given in part (a) seems to
best model the engine housing illustrated in the figure?

x � r cos 3u � R cos u   y � r sin 3u � R sin u

¨

x0

y

a

y=2a

PA

C
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61. Spiral Path of a Dog A dog is tied to a circular tree 
trunk of radius 1 ft by a long leash. He has managed to wrap
the entire leash around the tree while playing in the yard,
and finds himself at the point in the figure. Seeing a
squirrel, he runs around the tree counterclockwise, keeping
the leash taut while chasing the intruder.

(a) Show that parametric equations for the dog’s path
(called an involute of a circle) are

[Hint: Note that the leash is always tangent to the tree,
so OT is perpendicular to TD.]

(b) Graph the path of the dog for 0 
 u 
 4p.

Discovery • Discussion

62. More Information in Parametric Equations In this
section we stated that parametric equations contain more 

D

T

O

¨

x

y

1

1

1

x � cos u � u sin u   y � sin u � u cos u

11, 0 2
information than just the shape of a curve. Write a short 
paragraph explaining this statement. Use the following 
example and your answers to parts (a) and (b) below in your 
explanation.

The position of a particle is given by the parametric 
equations

where t represents time. We know that the shape of the path
of the particle is a circle.

(a) How long does it take the particle to go once around the
circle? Find parametric equations if the particle moves
twice as fast around the circle.

(b) Does the particle travel clockwise or counterclockwise
around the circle? Find parametric equations if the 
particle moves in the opposite direction around the
circle.

63. Different Ways of Tracing Out a Curve The curves C,
D, E, and F are defined parametrically as follows, where the
parameter t takes on all real values unless otherwise stated:

(a) Show that the points on all four of these curves satisfy
the same rectangular coordinate equation.

(b) Draw the graph of each curve and explain how the
curves differ from one another.

F: x � 3t, y � 32t

E: x � sin t, y � sin2 t

D: x � 1t, y � t, t � 0

C: x � t, y � t2

x � sin t   y � cos t

10 Review

Concept Check

1. (a) Give the geometric definition of a parabola. What are
the focus and directrix of the parabola?

(b) Sketch the parabola x2 � 4py for the case p 	 0. Iden-
tify on your diagram the vertex, focus, and directrix.
What happens if p � 0?

(c) Sketch the parabola y2 � 4px, together with its vertex,
focus, and directrix, for the case p 	 0. What happens if
p � 0?

2. (a) Give the geometric definition of an ellipse. What are the
foci of the ellipse?

(b) For the ellipse with equation

where a 	 b 	 0, what are the coordinates of the ver-
tices and the foci? What are the major and minor axes?
Illustrate with a graph.

(c) Give an expression for the eccentricity of the ellipse in
part (b).

(d) State the equation of an ellipse with foci on the y-axis.

x2

a2 �
y2

b2 � 1
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3. (a) Give the geometric definition of a hyperbola. What are
the foci of the hyperbola?

(b) For the hyperbola with equation

what are the coordinates of the vertices and foci? 
What are the equations of the asymptotes? What is the
transverse axis? Illustrate with a graph.

(c) State the equation of a hyperbola with foci on the 
y-axis.

(d) What steps would you take to sketch a hyperbola with a
given equation?

4. Suppose h and k are positive numbers. What is the effect on
the graph of an equation in x and y if

(a) x is replaced by x � h? By x � h?

(b) y is replaced by y � k? By y � k?

5. How can you tell whether the following nondegenerate
conic is a parabola, an ellipse, or a hyperbola?

Ax2 � Cy2 � Dx � Ey � F � 0

x2

a2 �
y2

b2 � 1

6. Suppose the x- and y-axes are rotated through an acute angle
f to produce the X- and Y-axes. Write equations that relate
the coordinates and of a point in the xy-plane
and XY-plane, respectively.

7. (a) How do you eliminate the xy-term in this equation?

(b) What is the discriminant of the conic in part (a)? 
How can you use the discriminant to determine 
whether the conic is a parabola, an ellipse, or a 
hyperbola?

8. (a) Write polar equations that represent a conic with 
eccentricity e.

(b) For what values of e is the conic an ellipse? 
A hyperbola? A parabola?

9. A curve is given by the parametric equations
.

(a) How do you sketch the curve?

(b) How do you eliminate the parameter?

x � f 1t 2 , y � g1t 2

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

1X, Y 21x, y 2

Exercises

1–8 ■ Find the vertex, focus, and directrix of the parabola, and
sketch the graph.

1. y 2 � 4x 2.

3. x 2 � 8y � 0 4. 2x � y 2 � 0

5. x � y 2 � 4y � 2 � 0 6. 2x 2 � 6x � 5y � 10 � 0

7. 8.

9–16 ■ Find the center, vertices, foci, and the lengths of the
major and minor axes of the ellipse, and sketch the graph.

9. 10.

11. x 2 � 4y 2 � 16 12. 9x 2 � 4y 2 � 1

13. 14.

15. 4x 2 � 9y 2 � 36y 16.

17–24 ■ Find the center, vertices, foci, and asymptotes of the
hyperbola, and sketch the graph.

17. 18.

19. x 2 � 2y 2 � 16 20. x 2 � 4y 2 � 16 � 0

x2

49
�

y2

32
� 1�

x2

9
�

y2

16
� 1

2x2 � y2 � 2 � 41x � y 2
1x � 2 2 2

25
�
1y � 3 2 2

16
� 1

1x � 3 2 2
9

�
y2

16
� 1

x2

49
�

y2

9
� 1

x2

9
�

y2

25
� 1

x2 � 31x � y 21
2 x2 � 2x � 2y � 4

x � 1
12 y2

21. 22.

23. 9y 2 � 18y � x 2 � 6x � 18 24. y 2 � x 2 � 6y

25–30 ■ Find an equation for the conic whose graph is shown.

25.

26.

0 x

y

5

_12

_5

12

0 x

y

2 F(2, 0)

1x � 2 2 2
8

�
1y � 2 2 2

8
� 1

1x � 4 2 2
16

�
y2

16
� 1
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27.

28.

29.

30.

31–42 ■ Determine the type of curve represented by the 
equation. Find the foci and vertices (if any), and sketch the
graph.

31.

32.

33. x 2 � y 2 � 144 � 0

x2

12
�

y2

144
�

y

12

x2

12
� y � 1

0 x

y

1

1 2

0 x

y

2

4

0 x

y

V(4, 4)

4

8

0 x

y

F(0, 5)4

_4

34. x 2 � 6x � 9y 2

35.

36.

37. x � y 2 � 16y

38. 2x 2 � 4 � 4x � y 2

39. 2x 2 � 12x � y 2 � 6y � 26 � 0

40. 36x 2 � 4y 2 � 36x � 8y � 31

41. 9x 2 � 8y 2 � 15x � 8y � 27 � 0

42. x 2 � 4y 2 � 4x � 8

43–50 ■ Find an equation for the conic section with the given
properties.

43. The parabola with focus and directrix y � �1

44. The ellipse with center , foci and ,
and major axis of length 10

45. The hyperbola with vertices and asymptotes

46. The hyperbola with center , foci and
, and vertices and 

47. The ellipse with foci and , and with one 
vertex on the x-axis

48. The parabola with vertex and directrix the y-axis

49. The ellipse with vertices and , and 
passing through the point 

50. The parabola with vertex and horizontal axis of
symmetry, and crossing the y-axis at y � 2

51. The path of the earth around the sun is an ellipse with the
sun at one focus. The ellipse has major axis 186,000,000 mi
and eccentricity 0.017. Find the distance between the earth
and the sun when the earth is (a) closest to the sun and 
(b) farthest from the sun.

52. A ship is located 40 mi from a straight shoreline. LORAN
stations A and B are located on the shoreline, 300 mi apart.
From the LORAN signals, the captain determines that his
ship is 80 mi closer to A than to B. Find the location of the

186,000,000 mi

V1�1, 0 2P11, 8 2 V217, �8 2V117, 12 2V15, 5 2
F211, 3 2F111, 1 2 V212, 2 2V112, 6 2F212, 7 2 F112, 1 2C12, 4 2y � � 1

2 x
V10, �2 2

F210, 8 2F110, 0 2C10, 4 2F10, 1 2

3x2 � 61x � y 2 � 10

4x2 � y2 � 81x � y 2
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ship. (Place A and B on the y-axis with the x-axis halfway
between them. Find the x- and y-coordinates of the ship.)

53. (a) Draw graphs of the following family of ellipses for 
k � 1, 2, 4, and 8.

(b) Prove that all the ellipses in part (a) have the same foci.

54. (a) Draw graphs of the following family of parabolas for
, 1, 2, and 4.

(b) Find the foci of the parabolas in part (a).

(c) How does the location of the focus change as 
k increases?

55–58 ■ An equation of a conic is given.

(a) Use the discriminant to determine whether the graph of the
equation is a parabola, an ellipse, or a hyperbola.

(b) Use a rotation of axes to eliminate the xy-term.

(c) Sketch the graph.

55. x 2 � 4xy � y 2 � 1

56. 5x 2 � 6xy � 5y 2 � 8x � 8y � 8 � 0

57.

58. 9x 2 � 24xy � 16y 2 � 25

59–62 ■ Use a graphing device to graph the conic. Identify the
type of conic from the graph.

59. 5x 2 � 3y 2 � 60

60. 9x 2 � 12y 2 � 36 � 0

61. 6x � y 2 � 12y � 30

62. 52x 2 � 72xy � 73y 2 � 100

7x2 � 613xy � 13y2 � 413x � 4y � 0

y � kx2

k � 1
2

x2

16 � k2 �
y2

k2 � 1

300 mi

40 mi

A

B

63–66 ■ A polar equation of a conic is given.

(a) Find the eccentricity and identify the conic.

(b) Sketch the conic and label the vertices.

63.

64.

65.

66.

67–70 ■ A pair of parametric equations is given.

(a) Sketch the curve represented by the parametric equations.

(b) Find a rectangular-coordinate equation for the curve by
eliminating the parameter.

67. x � 1 � t 2, y � 1 � t

68. x � t 2 � 1, y � t 2 � 1

69. x � 1 � cos t, y � 1 � sin t, 0 
 t 
 p/2

70.

71–72 ■ Use a graphing device to draw the parametric curve.

71. x � cos 2t, y � sin 3t

72.

73. In the figure the point P is the midpoint of the segment QR
and 0 
 u � p/2. Using u as the parameter, find a para-
metric representation for the curve traced out by P.

P

¨

x0

y

1

R

Q

1

x � sin1t � cos 2t 2 , y � cos1t � sin 3t 2

x �
1

t
� 2, y �

2

t2, 0 � t 
 2

r �
12

1 � 4 cos u

r �
4

1 � 2 sin u

r �
2

3 � 2 sin u

r �
1

1 � cos u



10 Test

1. Find the focus and directrix of the parabola x 2 � �12y, and sketch its graph.

2. Find the vertices, foci, and the lengths of the major and minor axes for the ellipse 

. Then sketch its graph.

3. Find the vertices, foci, and asymptotes of the hyperbola . Then sketch its
graph.

4–6 ■ Find an equation for the conic whose graph is shown.

4. 5.

6.

7–9 ■ Sketch the graph of the equation.

7. 16x 2 � 36y 2 � 96x � 36y � 9 � 0

8. 9x 2 � 8y 2 � 36x � 64y � 164

9. 2x � y 2 � 8y � 8 � 0

10. Find an equation for the hyperbola with foci and with asymptotes .

11. Find an equation for the parabola with focus and directrix the x-axis.

12. A parabolic reflector for a car headlight forms a bowl shape that is 6 in. wide at its 
opening and 3 in. deep, as shown in the figure at the left. How far from the vertex should
the filament of the bulb be placed if it is to be located at the focus?

12, 4 2 y � �3
4x10, �5 2

0 x

y

1

1 F(4, 0)

2

2

(4, 3)

0 x

y

(_4, 2)

1

_1 0 x

y

y2

9
�

x2

16
� 1

x2

16
�

y2

4
� 1
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6 in.



13. (a) Use the discriminant to determine whether the graph of this equation is a parabola,
an ellipse, or a hyperbola:

(b) Use rotation of axes to eliminate the xy-term in the equation.

(c) Sketch the graph of the equation.

(d) Find the coordinates of the vertices of this conic (in the xy-coordinate system).

14. (a) Find the polar equation of the conic that has a focus at the origin, eccentricity ,
and directrix x � 2. Sketch the graph.

(b) What type of conic is represented by the following equation? Sketch its graph.

15. (a) Sketch the graph of the parametric curve

(b) Eliminate the parameter u in part (a) to obtain an equation for this curve in 
rectangular coordinates.

x � 3 sin u � 3   y � 2 cos u   0 
 u 
 p

r �
3

2 � sin u

e � 1
2

5x2 � 4xy � 2y2 � 18
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Modeling motion is one of the most important ideas in both classical and modern
physics. Much of Isaac Newton’s work dealt with creating a mathematical model for
how objects move and interact—this was the main reason for his invention of calcu-
lus. Albert Einstein developed his Special Theory of Relativity in the early 1900s to
refine Newton’s laws of motion.

In this section we use coordinate geometry to model the motion of a projectile,
such as a ball thrown upward into the air, a bullet fired from a gun, or any other sort
of missile. A similar model was created by Galileo, but we have the advantage of us-
ing our modern mathematical notation to make describing the model much easier
than it was for Galileo!

Parametric Equations for the Path of a Projectile

Suppose that we fire a projectile into the air from ground level, with an initial speed
√0 and at an angle u upward from the ground. The initial velocity of the projectile is a
vector (see Section 8.4) with horizontal component √0 cos u and vertical component
√0 sin u, as shown in Figure 1.

If there were no gravity (and no air resistance), the projectile would just keep 
moving indefinitely at the same speed and in the same direction. Since distance �
speed � time, the projectile’s position at time t would therefore be given by the fol-
lowing parametric equations (assuming the origin of our coordinate system is placed
at the initial location of the projectile):

No gravity

But, of course, we know that gravity will pull the projectile back to ground level.
Using calculus, it can be shown that the effect of gravity can be accounted for by 
subtracting from the vertical position of the projectile. In this expression, g is
the gravitational acceleration: g � 32 ft/s2 � 9.8 m/s2. Thus, we have the following 
parametric equations for the path of the projectile:

With gravity

Example The Path of a Cannonball

Find parametric equations that model the path of a cannonball fired into the air with
an initial speed of 150.0 m/s at a 30� angle of elevation. Sketch the path of the 
cannonball.

x � 1√0 cos u 2 t   y � 1√0 sin u 2 t � 1
2 gt2

1
2 gt2

x � 1√0 cos u 2 t   y � 1√0 sin u 2 t

x

y

0

√‚

¨

√‚ ç ¨

√‚ ß ¨

Figure 1
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Solution Substituting the given initial speed and angle into the general paramet-
ric equations of the path of a projectile, we get

Substitute
√0 � 150.0, u� 30�

Simplify

This path is graphed in Figure 2.

■

Range of a Projectile

How can we tell where and when the cannonball of the above example hits the
ground? Since ground level corresponds to y � 0, we substitute this value for y and
solve for t.

Set y � 0

Factor

Solve for t

The first solution, t � 0, is the time when the cannon was fired; the second solution
means that the cannonball hits the ground after 15.3 s of flight. To see where this hap-
pens, we substitute this value into the equation for x, the horizontal location of the
cannonball.

The cannonball travels almost 2 km before hitting the ground.
Figure 3 shows the paths of several projectiles, all fired with the same initial speed

but at different angles. From the graphs we see that if the firing angle is too high or
too low, the projectile doesn’t travel very far.

Let’s try to find the optimal firing angle—the angle that shoots the projectile as far
as possible. We’ll go through the same steps as we did in the preceding example, but

¨=85*

¨=75*

¨=60*

¨=45*

¨=30*

¨=15*

¨=5*

y

x0Figure 3

Paths of projectiles

x � 129.9115.3 2 � 1987.5 m

t � 0  or  t �
75.0

4.9
� 15.3

 0 � t175.0 � 4.9t 2 0 � 75.0t � 4.9t2

y

500 x

(meters)
Figure 2

Path of a cannonball

y � 75.0t � 4.9t2x � 129.9t

y � 1150.0 sin 30° 2 t � 1
2 19.8 2 t2x � 1150.0 cos 30° 2 t
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Galileo Galilei (1564–1642) was
born in Pisa, Italy. He studied med-
icine, but later abandoned this in
favor of science and mathematics.
At the age of 25 he demonstrated
that light objects fall at the same
rate as heavier ones, by dropping
cannonballs of various sizes from
the Leaning Tower of Pisa. This
contradicted the then-accepted
view of Aristotle that heavier ob-
jects fall more quickly. He also
showed that the distance an object
falls is proportional to the square 
of the time it has been falling, and
from this was able to prove that the
path of a projectile is a parabola.

Galileo constructed the first tel-
escope, and using it, discovered the
moons of Jupiter. His advocacy of
the Copernican view that the earth
revolves around the sun (rather
than being stationary) led to his be-
ing called before the Inquisition.
By then an old man, he was forced
to recant his views, but he is said to
have muttered under his breath “the
earth nevertheless does move.”
Galileo revolutionized science by
expressing scientific principles in
the language of mathematics. He
said, “The great book of nature is
written in mathematical symbols.”

Th
e 

Gr
an

ge
r C

ol
le

ct
io

n



818 Focus on Modeling

we’ll use the general parametric equations instead. First, we solve for the time when
the projectile hits the ground by substituting y � 0.

Substitute y � 0

Factor

Set second factor equal to 0

Solve for t

Now we substitute this into the equation for x to see how far the projectile has trav-
eled horizontally when it hits the ground.

Parametric equation for x

Substitute

Simplify

Use identity sin 2u � 2 sin u cos u

We want to choose u so that x is as large as possible. The largest value that the sine
of any angle can have is 1, the sine of 90�. Thus, we want 2u� 90�, or u� 45�. So to
send the projectile as far as possible, it should be shot up at an angle of 45�. From the
last equation in the preceding display, we can see that it will then travel a distance 
x � √2

0 / g.

Problems

1. Trajectories are Parabolas From the graphs in Figure 3 the paths of projectiles 
appear to be parabolas that open downward. Eliminate the parameter t from the general
parametric equations to verify that these are indeed parabolas.

2. Path of a Baseball Suppose a baseball is thrown at 30 ft/s at a 60� angle to the 
horizontal, from a height of 4 ft above the ground.

(a) Find parametric equations for the path of the baseball, and sketch its graph.

(b) How far does the baseball travel, and when does it hit the ground?

3. Path of a Rocket Suppose that a rocket is fired at an angle of 5� from the vertical,
with an initial speed of 1000 ft/s.

(a) Find the length of time the rocket is in the air.

(b) Find the greatest height it reaches.

(c) Find the horizontal distance it has traveled when it hits the ground.

(d) Graph the rocket’s path.

4. Firing a Missile The initial speed of a missile is 330 m/s.

(a) At what angle should the missile be fired so that it hits a target 10 km away? (You
should find that there are two possible angles.) Graph the missile paths for both angles.

(b) For which angle is the target hit sooner?

�
√ 2

0 sin 2u

g

�
2√ 2

0 sin u cos u

g

t � 12√0 sin u 2 /g� 1√0 cos u 2 a 2√0 sin u

g
bx � 1√0 cos u 2 t

t �
2√0 sin u

g

 0 � √0 sin u � 1
2 gt

 0 � t1√0 sin u � 1
2 gt 2 0 � 1√0 sin u 2 t � 1

2 gt2



5. Maximum Height Show that the maximum height reached by a projectile as a func-
tion of its initial speed √0 and its firing angle u is

6. Shooting into the Wind Suppose that a projectile is fired into a headwind that
pushes it back so as to reduce its horizontal speed by a constant amount „. Find 
parametric equations for the path of the projectile.

7. Shooting into the Wind Using the parametric equations you derived in Problem 6,
draw graphs of the path of a projectile with initial speed √0 � 32 ft/s, fired into a 
headwind of „ � 24 ft/s, for the angles u � 5�, 15�, 30�, 40�, 45�, 55�, 60�, and 75�. Is it
still true that the greatest range is attained when firing at 45�? Draw some more graphs
for different angles, and use these graphs to estimate the optimal firing angle.

8. Simulating the Path of a Projectile The path of a projectile can be simulated on 
a graphing calculator. On the TI-83 use the “Path” graph style to graph the general 
parametric equations for the path of a projectile and watch as the circular cursor moves,
simulating the motion of the projectile. Selecting the size of the Tstep determines the
speed of the “projectile.”

(a) Simulate the path of a projectile. Experiment with various values of u. Use 
√0 � 10 ft/s and Tstep � 0.02. Part (a) of the figure below shows one such path.

(b) Simulate the path of two projectiles, fired simultaneously, one at u � 30� and the
other at u� 60�. This can be done on the TI-83 using Simul mode (“simultaneous”
mode). Use √0 � 10 ft/s and Tstep � 0.02. See part (b) of the figure. Where do
the projectiles land? Which lands first?

(c) Simulate the path of a ball thrown straight up . Experiment with values 
of √0 between 5 and 20 ft/s. Use the “Animate” graph style and Tstep � 0.02.
Simulate the path of two balls thrown simultaneously at different speeds. To bet-
ter distinguish the two balls, place them at different x-coordinates (for example,
x � 1 and x � 2). See part (c) of the figure. How does doubling √0 change the 
maximum height the ball reaches?

1u � 90° 2

y �
√2

0 sin2u

2g
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(a) (b) (c)

2

0 3

2

0 3

2

0 3
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Chapter Overview

In this chapter we study sequences and series of numbers. Roughly speaking, a 
sequence is a list of numbers written in a specific order. The numbers in the sequence
are often written as a1, a2, a3, . . . . The dots mean that the list continues forever. 
A simple example is the sequence

� � � � �

Sequences arise in many real-world situations. For example, if you deposit a sum
of money into an interest-bearing account, the interest earned each month forms a 
sequence. If you drop a ball and let it bounce, the height the ball reaches at each 
successive bounce is a sequence. An interesting sequence is hidden in the internal
structure of a nautilus shell.

We can describe the pattern of the sequence displayed above by the formula:

You may have already thought of a different way to describe the pattern—namely,
“you go from one number to the next by adding 5.” This natural way of describing the
sequence is expressed by the recursive formula:

starting with a1 � 5. Try substituting n � 1, 2, 3, . . . in each of these formulas to see

an � an�1 � 5

an � 5n

1

1/2

1/4
1/8
1/16

a5 . . .a4a3a2a1

5,  10,  15,  20,  25, . . .

821Su
sa

n 
Va

n 
Et

te
n/

Ph
ot

oE
di

t

11.1 Sequences and Summation Notation

11.2 Arithmetic Sequences

11.3 Geometric Sequences

11.4 Mathematics of Finance

11.5 Mathematical Induction

11.6 The Binomial Theorem



how they produce the numbers in the sequence.
We often use sequences to model real-world phenomena—for example, the

monthly payments on a mortgage form a sequence. We will explore many other ap-
plications of sequences in this chapter and in Focus on Modeling on page 874.

11.1 Sequences and Summation Notation

Many real-world processes generate lists of numbers. For instance, the balance in a
bank account at the end of each month forms a list of numbers when tracked over
time. Mathematicians call such lists sequences. In this section we study sequences
and their applications.

Sequences

A sequence is a set of numbers written in a specific order:

The number a1 is called the first term, a2 is the second term, and in general an is the
nth term. Since for every natural number n there is a corresponding number an, we
can define a sequence as a function.

a1, a2, a3, a4, . . . , an, . . .

822 CHAPTER 11 Sequences and Series

1st
term

2nd
term

3rd
term

4th
term

nth
term

Definition of a Sequence

A sequence is a function f whose domain is the set of natural numbers. The
values are called the terms of the sequence.f 11 2 , f 12 2 , f 13 2 , . . .

We usually write an instead of the function notation for the value of the function
at the number n.

Here is a simple example of a sequence:

The dots indicate that the sequence continues indefinitely. We can write a sequence
in this way when it’s clear what the subsequent terms of the sequence are. This se-
quence consists of even numbers. To be more accurate, however, we need to specify
a procedure for finding all the terms of the sequence. This can be done by giving a
formula for the nth term an of the sequence. In this case,

and the sequence can be written as

2,     4,     6,     8,  . . . ,  2n,  . . .

an � 2n

2, 4, 6, 8, 10, . . .

f 1n 2

Another way to write this sequence is
to use function notation:

so a11 2 � 2, a12 2 � 4, a13 2 � 6, . . .

a1n 2 � 2n



Notice how the formula an � 2n gives all the terms of the sequence. For instance, sub-
stituting 1, 2, 3, and 4 for n gives the first four terms:

To find the 103rd term of this sequence, we use n � 103 to get

Example 1 Finding the Terms of a Sequence

Find the first five terms and the 100th term of the sequence defined by each 
formula.

(a) (b)

(c) (d)

Solution To find the first five terms, we substitute n � 1, 2, 3, 4, and 5 in the
formula for the nth term. To find the 100th term, we substitute n � 100. This gives
the following.

nth term First five terms 100th term

(a) 2n � 1 1, 3, 5, 7, 9 199

(b) n2 � 1 0, 3, 8, 15, 24 9999

(c)

(d) ■

In Example 1(d) the presence of in the sequence has the effect of making
successive terms alternately negative and positive.

It is often useful to picture a sequence by sketching its graph. Since a sequence is
a function whose domain is the natural numbers, we can draw its graph in the Cartesian
plane. For instance, the graph of the sequence

is shown in Figure 1. Compare this to the graph of

shown in Figure 2. The graph of every sequence consists of isolated points that are
not connected.

Graphing calculators are useful in analyzing sequences. To work with 
sequences on a TI-83, we put the calculator in Seq mode (“sequence” mode) as in 
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a103 � 2 # 103 � 206

a3 � 2 # 3 � 6   a4 � 2 # 4 � 8

a1 � 2 # 1 � 2   a2 � 2 # 2 � 4
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an

n0

1

1 2 3 4 5 6

Terms are
decreasing.

Figure 1

Figure 2

an

n0

1

1

_1

3 5

Terms alternate
in sign.



Figure 3(a). If we enter the sequence of Example 1(c), we can 
display the terms using the command as shown in Figure 3(b). We can also
graph the sequence as shown in Figure 3(c).

Finding patterns is an important part of mathematics. Consider a sequence that 
begins

Can you detect a pattern in these numbers? In other words, can you define a sequence
whose first four terms are these numbers? The answer to this question seems easy;
these numbers are the squares of the numbers 1, 2, 3, 4. Thus, the sequence we are
looking for is defined by an � n2. However, this is not the only sequence whose first
four terms are 1, 4, 9, 16. In other words, the answer to our problem is not unique (see
Exercise 78). In the next example we are interested in finding an obvious sequence
whose first few terms agree with the given ones.

Example 2 Finding the nth Term of a Sequence

Find the nth term of a sequence whose first several terms are given.

(a) (b) �2, 4, �8, 16, �32, . . .

Solution

(a) We notice that the numerators of these fractions are the odd numbers and the
denominators are the even numbers. Even numbers are of the form 2n, and odd
numbers are of the form 2n � 1 (an odd number differs from an even number
by 1). So, a sequence that has these numbers for its first four terms is given by

(b) These numbers are powers of 2 and they alternate in sign, so a sequence that
agrees with these terms is given by

You should check that these formulas do indeed generate the given terms. ■

Recursively Defined Sequences

Some sequences do not have simple defining formulas like those of the preceding ex-
ample. The nth term of a sequence may depend on some or all of the terms preceding
it. A sequence defined in this way is called recursive. Here are two examples.

an � 1�1 2 n2n

an �
2n � 1

2n

1
2,

3
4,

5
6,

7
8, . . .

1, 4, 9, 16, . . .

FIGURE 3

(b) (c)

1.5

0 15

   u( )
 1 .5
 2 .66667
 3 .75
 4 .8
 5 .83333
 6 .85714
 7 .875

 =1

(a)

 Plot1 Plot2 Plot3
 Min=1

 u( ) = /( +1)=

TABLE

u1n 2 � n/ 1n � 1 2
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Figure 3

u1n 2 � n/ 1n � 1 2

Not all sequences can be defined by a
formula. For example, there is no
known formula for the sequence of
prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

Large Prime Numbers

The search for large primes fas-
cinates many people. As of this
writing, the largest known prime
number is

It was discovered in 2005 by Dr.
Martin Nowak, an eye surgeon and
math hobbyist in Michelfeld, Ger-
many, using a 2.4-GHz Pentium 4
computer. In decimal notation this
number contains 7,816,230 digits.
If it were written in full, it would
occupy almost twice as many pages
as this book contains. Nowak was
working with a large Internet group
known as GIMPS (the Great Inter-
net Mersenne Prime Search). Num-
bers of the form 2 p � 1, where p is
prime, are called Mersenne num-
bers and are more easily checked
for primality than others. That is
why the largest known primes are
of this form.

225,964,951 � 1



Example 3 Finding the Terms of a Recursively

Defined Sequence

Find the first five terms of the sequence defined recursively by a1 � 1 and

Solution The defining formula for this sequence is recursive. It allows us to find
the nth term an if we know the preceding term an�1. Thus, we can find the second
term from the first term, the third term from the second term, the fourth term from
the third term, and so on. Since we are given the first term a1 � 1, we can proceed
as follows.

Thus, the first five terms of this sequence are

■

Note that in order to find the 20th term of the sequence in Example 3, we must first
find all 19 preceding terms. This is most easily done using a graphing calculator. Fig-
ure 4(a) shows how to enter this sequence on the TI-83 calculator. From Figure 4(b)
we see that the 20th term of the sequence is a20 � 4,649,045,865.

Example 4 The Fibonacci Sequence

Find the first 11 terms of the sequence defined recursively by F1 � 1,
F2 � 1 and

Solution To find Fn, we need to find the two preceding terms Fn�1 and Fn�2.
Since we are given F1 and F2, we proceed as follows.

F5 � F4 � F3 � 3 � 2 � 5

F4 � F3 � F2 � 2 � 1 � 3

F3 � F2 � F1 � 1 � 1 � 2

Fn � Fn�1 � Fn�2

(a) (b)

u(20)
4649045865

 Plot1 Plot2 Plot3
  Min=1
 u( )=3(u( -1)+2)
 u( Min)={1}

1, 9, 33, 105, 321, . . .

a5 � 31a4 � 2 2 � 31105 � 2 2 � 321

a4 � 31a3 � 2 2 � 3133 � 2 2 � 105

a3 � 31a2 � 2 2 � 319 � 2 2 � 33

a2 � 31a1 � 2 2 � 311 � 2 2 � 9

an � 31an�1 � 2 2
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Figure 4

u1n 2 � 31u1n � 1 2 � 2 2 , u11 2 � 1

Eratosthenes (circa 276–195 B.C.)
was a renowned Greek geographer,
mathematician, and astronomer.
He accurately calculated the cir-
cumference of the earth by an in-
genious method (see Exercise 72,
page 476). He is most famous,
however, for his method for finding
primes, now called the sieve of Er-
atosthenes. The method consists of
listing the integers, beginning with
2 (the first prime), and then cross-
ing out all the multiples of 2, which
are not prime. The next number re-
maining on the list is 3 (the second
prime), so we again cross out all
multiples of it. The next remaining
number is 5 (the third prime num-
ber), and we cross out all multiples
of it, and so on. In this way all
numbers that are not prime are
crossed out, and the remaining
numbers are the primes.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100



It’s clear what is happening here. Each term is simply the sum of the two terms that
precede it, so we can easily write down as many terms as we please. Here are the
first 11 terms:

■

The sequence in Example 4 is called the Fibonacci sequence, named after the
13th-century Italian mathematician who used it to solve a problem about the breed-
ing of rabbits (see Exercise 77). The sequence also occurs in numerous other appli-
cations in nature. (See Figures 5 and 6.) In fact, so many phenomena behave like the
Fibonacci sequence that one mathematical journal, the Fibonacci Quarterly, is de-
voted entirely to its properties.

1 1

2
3

5

8

13

21

34

Fibonacci spiral Nautilus shellFigure 6

1

1

2

3

5

8

Figure 5

The Fibonacci sequence in the 
branching of a tree

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
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Fibonacci (1175–1250) was born
in Pisa, Italy, and educated in
North Africa. He traveled widely in
the Mediterranean area and learned
the various methods then in use for
writing numbers. On returning to
Pisa in 1202, Fibonacci advocated
the use of the Hindu-Arabic deci-
mal system, the one we use today,
over the Roman numeral system
used in Europe in his time. His
most famous book, Liber Abaci,
expounds on the advantages of the
Hindu-Arabic numerals. In fact,
multiplication and division were 
so complicated using Roman num-
erals that a college degree was 
necessary to master these skills. 
Interestingly, in 1299 the city of
Florence outlawed the use of the
decimal system for merchants and
businesses, requiring numbers to
be written in Roman numerals or
words. One can only speculate
about the reasons for this law.
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Example 5 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by 
an � 1/2n.

Solution The terms of the sequence are

The first four partial sums are

S4 �
1

2
�

1

4
�

1

8
�

1

16
�

15

16

S3 �
1

2
�

1

4
�

1

8
�

7

8

S2 �
1

2
�

1

4
�

3

4

S1 �
1

2
�

1

2

1

2
, 

1

4
, 

1

8
, . . .
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The Partial Sums of a Sequence

For the sequence

the partial sums are

.

.

.

.

.

.

S1 is called the first partial sum, S2 is the second partial sum, and so on. Sn

is called the nth partial sum. The sequence S1, S2, S3, . . . , Sn, . . . is called
the sequence of partial sums.

Sn � a1 � a2 � a3 � . . . � an

S4 � a1 � a2 � a3 � a4

S3 � a1 � a2 � a3

S2 � a1 � a2

S1 � a1

a1, a2, a3, a4, . . . , an, . . .

The Partial Sums of a Sequence

In calculus we are often interested in adding the terms of a sequence. This leads to
the following definition.



Notice that in the value of each partial sum the denominator is a power of 2 and the
numerator is one less than the denominator. In general, the nth partial sum is

The first five terms of an and Sn are graphed in Figure 7. ■

Example 6 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by

Solution The first four partial sums are

Do you detect a pattern here? Of course. The nth partial sum is

■

Sigma Notation

Given a sequence

we can write the sum of the first n terms using summation notation, or sigma
notation. This notation derives its name from the Greek letter � (capital sigma,
corresponding to our S for “sum”). Sigma notation is used as follows:

The left side of this expression is read “The sum of ak from k � 1 to k � n.” The let-
ter k is called the index of summation, or the summation variable, and the idea is
to replace k in the expression after the sigma by the integers 1, 2, 3, . . . , n, and add
the resulting expressions, arriving at the right side of the equation.

a1, a2, a3, a4, . . .

Sn � 1 �
1

n � 1

S4 � a1 �
1

2
b � a 1

2
�

1

3
b � a 1

3
�

1

4
b � a 1

4
�

1

5
b � 1 �

1

5

S3 � a1 �
1

2
b � a 1

2
�

1

3
b � a 1

3
�

1

4
b      � 1 �

1

4

S2 � a1 �
1

2
b � a 1

2
�

1

3
b           � 1 �

1

3

S1 � a1 �
1

2
b                  � 1 �

1

2

an �
1
n

�
1

n � 1

Sn �
2n � 1

2n � 1 �
1

2n
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a⁄

n0

1

1

1

2

S⁄

S¤

a¤

S‹

a‹

S›

a›

Sfi

afi

2 3 4 5

Partial sums of
the sequence

Terms of the
sequence

Figure 7

Graph of the sequence an and the
sequence of partial sums Sn

a
n

k�1
ak

This tells us to
end with k � n.

This tells us to
start with k � 1.

This tells
us to add. a

n

k�1
ak � a1 � a2 � a3 � a4 � . . . � an



Example 7 Sigma Notation

Find each sum.

(a) (b) (c) (d)

Solution

(a)

(b)

(c)

(d) ■

We can use a graphing calculator to evaluate sums. For instance, Figure 8 shows
how the TI-83 can be used to evaluate the sums in parts (a) and (b) of Example 7.

Example 8 Writing Sums in Sigma Notation

Write each sum using sigma notation.

(a) 13 � 23 � 33 � 43 � 53 � 63 � 73

(b)

Solution

(a) We can write

(b) A natural way to write this sum is

However, there is no unique way of writing a sum in sigma notation. We could
also write this sum as

or ■13 � 14 � 15 � . . . � 177 � a
75

k�1
1k � 2

13 � 14 � 15 � . . . � 177 � a
74

k�0
1k � 3

13 � 14 � 15 � . . . � 177 � a
77

k�3
1k

13 � 23 � 33 � 43 � 53 � 63 � 73 � a
7

k�1
k3

13 � 14 � 15 � . . . � 177

sum(seq(K2 ,K,1,5,1))
55

sum(seq(1/J,J,3,5,
1)) Frac

47/60

Figure 8

a
6

i�1
2 � 2 � 2 � 2 � 2 � 2 � 2 � 12

a
10

i�5
i � 5 � 6 � 7 � 8 � 9 � 10 � 45

a
5

j�3

1

j
�

1

3
�

1

4
�

1

5
�

47

60

a
5

k�1
k2 � 12 � 22 � 32 � 42 � 52 � 55

a
6

i�1
2a

10

i�5
ia

5

j�3

1

ja
5

k�1
k2
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The ancient Greeks considered a
line segment to be divided into 
the golden ratio if the ratio of the
shorter part to the longer part is the
same as the ratio of the longer part
to the whole segment.

Thus, the segment shown is di-
vided into the golden ratio if

This leads to a quadratic equation
whose positive solution is

This ratio occurs naturally in many
places. For instance, psychological
experiments show that the most
pleasing shape of rectangle is one
whose sides are in golden ratio. The
ancient Greeks agreed with this and
built their temples in this ratio.

The golden ratio is related to
the Fibonacci sequence. In fact, it
can be shown using calculus* that
the ratio of two successive Fi-
bonacci numbers

gets closer to the golden ratio the
larger the value of n. Try finding
this ratio for n � 10.

*James Stewart, Calculus, 5th ed. (Pa-
cific Grove, CA: Brooks/Cole, 2003) 
p. 748.

1

1.618

Fn�1

Fn

x �
1 � 15

2
� 1.618

1
x

�
x

1 � x

1 x

Co
rb

is
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1–10 ■ Find the first four terms and the 100th term of the 
sequence.

1. an � n � 1 2. an � 2n � 3

3. 4. an � n2 � 1

5. 6.

7. 8.

9. an � nn 10. an � 3

an � 1�1 2 n�1 n

n � 1
an � 1 � 1�1 2 n

an �
1

n2an �
1�1 2 n

n2

an �
1

n � 1

11–16 ■ Find the first five terms of the given recursively
defined sequence.

11.

12.

13. an � 2an�1 � 1 and a1 � 1

14.

15. an � an�1 � an�2 and a1 � 1, a2 � 2

16. an � an�1 � an�2 � an�3 and a1 � a2 � a3 � 1

an �
1

1 � an�1
 and a1 � 1

an �
an�1

2
 and a1 � �8

an � 21an�1 � 2 2 and a1 � 3

■ Proof To prove Property 1, we write out the left side of the equation to get

Because addition is commutative and associative, we can rearrange the terms on the
right side to read

Rewriting the right side using sigma notation gives Property 1. Property 2 is proved
in a similar manner. To prove Property 3, we use the Distributive Property:

■

11.1 Exercises

� c1a1 � a2 � a3 � . . . � an 2 � c a an
k�1

ak b
a

n

k�1
cak � ca1 � ca2 � ca3 � . . . � can

a
n

k�1
1ak � bk 2 � 1a1 � a2 � a3 � . . . � an 2 � 1b1 � b2 � b3 � . . . � bn 2
a

n

k�1
1ak � bk 2 � 1a1 � b1 2 � 1a2 � b2 2 � 1a3 � b3 2 � . . . � 1an � bn 2

The following properties of sums are natural consequences of properties of the
real numbers.

Properties of Sums

Let a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . be sequences. Then for every posi-
tive integer n and any real number c, the following properties hold.

1.

2.

3. a
n

k�1
cak � c a an

k�1
ak b

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk
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17–22 ■ Use a graphing calculator to do the following.

(a) Find the first 10 terms of the sequence.

(b) Graph the first 10 terms of the sequence.

17. an � 4n � 3 18. an � n2 � n

19. 20.

21.

22. an � an�1 � an�2 and a1 � 1, a2 � 3

23–30 ■ Find the nth term of a sequence whose first several
terms are given.

23. 2, 4, 8, 16, . . . 24.

25. 1, 4, 7, 10, . . . 26. 5, �25, 125, �625, . . .

27. 28.

29. 0, 2, 0, 2, 0, 2, . . . 30.

31–34 ■ Find the first six partial sums S1, S2, S3, S4, S5, S6 of the
sequence.

31. 1, 3, 5, 7, . . . 32. 12, 22, 32, 42, . . .

33. 34. �1, 1, �1, 1, . . .

35–38 ■ Find the first four partial sums and the nth partial sum
of the sequence an.

35. 36.

37.

38. [Hint: Use a property of logarithms to

write the nth term as a difference.]

39–46 ■ Find the sum.

39. 40.

41. 42.

43. 44.

45. 46. a
3

i�1
i2i

a
5

k�1
2k�1

a
12

i�4
10a

8

i�1
31 � 1�1 2 i 4

a
100

j�1
1�1 2 ja

3

k�1

1

k

a
4

k�1
k2

a
4

k�1
k

an � log a n

n � 1
ban � 1n � 1n � 1

an �
1

n � 1
�

1

n � 2
an �

2

3n

1

3
,

1

32,
1

33,
1

34, . . .

1, 1
2, 3, 14, 5, 16, . . .

3
4,

4
5,

5
6,

6
7, . . .1, 3

4,
5
9,

7
16,

9
25, . . .

� 1
3,

1
9, � 1

27,
1
81, . . .

an �
1

an�1
 and a1 � 2

an � 4 � 21�1 2 nan �
12
n

47–52 ■ Use a graphing calculator to evaluate the sum.

47. 48.

49. 50.

51. 52.

53–58 ■ Write the sum without using sigma notation.

53. 54.

55. 56.

57. 58.

59–66 ■ Write the sum using sigma notation.

59. 1 � 2 � 3 � 4 � . . . � 100

60. 2 � 4 � 6 � . . . � 20 61. 12 � 22 � 32 � . . . � 102

62.

63.

64.

65. 1 � x � x2 � x3 � . . . � x100

66. 1 � 2x � 3x2 � 4x3 � 5x4 � . . . � 100x99

67. Find a formula for the nth term of the sequence

[Hint: Write each term as a power of 2.]

68. Define the sequence

Use the command on a graphing calculator to 
find the first 10 terms of this sequence. Compare to the 
Fibonacci sequence Fn.

Applications

69. Compound Interest Julio deposits $2000 in a savings
account that pays 2.4% interest per year compounded

TABLE

Gn �
1

15
a 11 � 15 2 n � 11 � 15 2 n

2n b
12, 2212, 322212, 42322212, . . .

11

12 �
12

22 �
13

32 � . . . �
1n

n2

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

999 # 1000

1

2 ln 2
�

1

3 ln 3
�

1

4 ln 4
�

1

5 ln 5
� . . . �

1

100 ln 100

a
n

j�1
1�1 2 j�1xj

a
100

k�3
xk

a
9

k�6
k1k � 3 2a

6

k�0
1k � 4

a
4

i�0

2i � 1

2i � 1a
5

k�1
1k

a
100

n�1

1�1 2 n
na

22

n�0
1�1 2 n2n

a
15

j�5

1

j2 � 1a
20

j�7
j211 � j 2

a
100

k�1
13k � 4 2a

10

k�1
k2
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monthly. The amount in the account after n months is given
by the sequence

(a) Find the first six terms of the sequence.

(b) Find the amount in the account after 3 years.

70. Compound Interest Helen deposits $100 at the end of
each month into an account that pays 6% interest per year
compounded monthly. The amount of interest she has accu-
mulated after n months is given by the sequence

(a) Find the first six terms of the sequence.

(b) Find the interest she has accumulated after 5 years.

71. Population of a City A city was incorporated in 2004
with a population of 35,000. It is expected that the popula-
tion will increase at a rate of 2% per year. The population 
n years after 2004 is given by the sequence

(a) Find the first five terms of the sequence.

(b) Find the population in 2014.

72. Paying off a Debt Margarita borrows $10,000 from her
uncle and agrees to repay it in monthly installments of $200.
Her uncle charges 0.5% interest per month on the balance.

(a) Show that her balance An in the nth month is given 
recursively by A0 � 10,000 and

(b) Find her balance after six months.

73. Fish Farming A fish farmer has 5000 catfish in his pond.
The number of catfish increases by 8% per month, and the
farmer harvests 300 catfish per month.

(a) Show that the catfish population Pn after n months is
given recursively by P0 � 5000 and

(b) How many fish are in the pond after 12 months?

74. Price of a House The median price of a house in Orange
County increases by about 6% per year. In 2002 the median
price was $240,000. Let Pn be the median price n years after
2002.

(a) Find a formula for the sequence Pn.

(b) Find the expected median price in 2010.

75. Salary Increases A newly hired salesman is promised a
beginning salary of $30,000 a year with a $2000 raise every
year. Let Sn be his salary in his nth year of employment.

(a) Find a recursive definition of Sn.

(b) Find his salary in his fifth year of employment.

Pn � 1.08Pn�1 � 300

An � 1.005An�1 � 200

Pn � 35,00011.02 2 n

In � 100 a 1.005n � 1

0.005
� n b

An � 2000 a1 �
0.024

12
b n

76. Concentration of a Solution A biologist is trying to
find the optimal salt concentration for the growth of a cer-
tain species of mollusk. She begins with a brine solution
that has 4 g/L of salt and increases the concentration by
10% every day. Let C0 denote the initial concentration and
Cn the concentration after n days.

(a) Find a recursive definition of Cn.

(b) Find the salt concentration after 8 days.

77. Fibonacci’s Rabbits Fibonacci posed the following prob-
lem: Suppose that rabbits live forever and that every month
each pair produces a new pair that becomes productive at
age 2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the nth month? Show that
the answer is Fn, where Fn is the nth term of the Fibonacci
sequence.

Discovery • Discussion

78. Different Sequences That Start the Same

(a) Show that the first four terms of the sequence an � n2

are

(b) Show that the first four terms of the sequence
are also

(c) Find a sequence whose first six terms are the same as
those of an � n2 but whose succeeding terms differ
from this sequence.

(d) Find two different sequences that begin

79. A Recursively Defined Sequence Find the first 
40 terms of the sequence defined by

and a1 � 11. Do the same if a1 � 25. Make a conjecture
about this type of sequence. Try several other values for a1,
to test your conjecture.

80. A Different Type of Recursion Find the first 10 terms of
the sequence defined by

with

How is this recursive sequence different from the others in
this section?

a1 � 1    and    a2 � 1

an � an�an�1
� an�an�2

an�1 � can

2
if an is an even number

3an � 1 if an is an odd number

2, 4, 8, 16, . . .

1, 4, 9, 16, . . .

an � n2 � 1n � 1 2 1n � 2 2 1n � 3 2 1n � 4 2
1, 4, 9, 16, . . .



11.2 Arithmetic Sequences

In this section we study a special type of sequence, called an arithmetic sequence.

Arithmetic Sequences

Perhaps the simplest way to generate a sequence is to start with a number a and add
to it a fixed constant d, over and over again.

SECTION 11.2 Arithmetic Sequences 833

Definition of an Arithmetic Sequence

An arithmetic sequence is a sequence of the form

The number a is the first term, and d is the common difference of the 
sequence. The nth term of an arithmetic sequence is given by

an � a � 1n � 1 2d
a, a � d, a � 2d, a � 3d, a � 4d, . . .

The number d is called the common difference because any two consecutive terms
of an arithmetic sequence differ by d.

Example 1 Arithmetic Sequences

(a) If a � 2 and d � 3, then we have the arithmetic sequence

or

Any two consecutive terms of this sequence differ by d � 3. The nth term is
.

(b) Consider the arithmetic sequence

Here the common difference is d � �5. The terms of an arithmetic 
sequence decrease if the common difference is negative. The nth term is

.

(c) The graph of the arithmetic sequence is shown in Figure 1.
Notice that the points in the graph lie on a straight line with slope d � 2.

■

20

0 10Figure 1

an � 1 � 21n � 1 2an � 9 � 51n � 1 2
9, 4, �1, �6, �11, . . .

an � 2 � 31n � 1 2
2, 5, 8, 11, . . .

2, 2 � 3, 2 � 6, 2 � 9, . . .



An arithmetic sequence is determined completely by the first term a and the com-
mon difference d. Thus, if we know the first two terms of an arithmetic sequence, then
we can find a formula for the nth term, as the next example shows.

Example 2 Finding Terms of an Arithmetic Sequence

Find the first six terms and the 300th term of the arithmetic sequence

Solution Since the first term is 13, we have a � 13. The common difference is 
d � 7 � 13 � �6. Thus, the nth term of this sequence is

From this we find the first six terms:

The 300th term is . ■

The next example shows that an arithmetic sequence is determined completely by
any two of its terms.

Example 3 Finding Terms of an Arithmetic Sequence

The 11th term of an arithmetic sequence is 52, and the 19th term is 92. Find the
1000th term.

Solution To find the nth term of this sequence, we need to find a and d in the
formula

From this formula we get

Since a11 � 52 and a19 � 92, we get the two equations:

Solving this system for a and d, we get a � 2 and d � 5. (Verify this.) Thus, the nth
term of this sequence is

The 1000th term is . ■

Partial Sums of Arithmetic Sequences

Suppose we want to find the sum of the numbers 1, 2, 3, 4, . . . , 100, that is,

When the famous mathematician C. F. Gauss was a schoolboy, his teacher posed this
problem to the class and expected that it would keep the students busy for a long time.
But Gauss answered the question almost immediately. His idea was this: Since we are

a
100

k�1
k

a1000 � 2 � 51999 2 � 4997

an � 2 � 51n � 1 2
e 52 � a � 10d

92 � a � 18d

a19 � a � 119 � 1 2d � a � 18d

a11 � a � 111 � 1 2d � a � 10d

an � a � 1n � 1 2d

a300 � 13 � 61299 2 � �1781

13, 7, 1, �5, �11, �17, . . .

an � 13 � 61n � 1 2
13, 7, . . .
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Mathematics in 

the Modern World

Fair Division of Assets

Dividing an asset fairly among a
number of people is of great inter-
est to mathematicians. Problems of
this nature include dividing the 
national budget, disputed land, or
assets in divorce cases. In 1994
Brams and Taylor found a mathe-
matical way of dividing things
fairly. Their solution has been ap-
plied to division problems in polit-
ical science, legal proceedings,
and other areas. To understand the
problem, consider the following
example. Suppose persons A and B
want to divide a property fairly 
between them. To divide it fairly
means that both A and B must be
satisfied with the outcome of the
division. Solution: A gets to divide
the property into two pieces, then
B gets to choose the piece he wants.
Since both A and B had a part in the
division process, each should be
satisfied. The situation becomes
much more complicated if three or
more people are involved (and
that’s where mathematics comes
in). Dividing things fairly involves
much more than simply cutting
things in half; it must take into ac-
count the relative worth each per-
son attaches to the thing being
divided. A story from the Bible il-
lustrates this clearly. Two women
appear before King Solomon, each
claiming to be the mother of the
same newborn baby. King Solo-
mon’s solution is to divide the baby
in half! The real mother, who at-
taches far more worth to the baby
than anyone, immediately gives up
her claim to the baby in order to
save its life.

Mathematical solutions to fair-
division problems have recently
been applied in an international
treaty, the Convention on the Law
of the Sea. If a country wants to de-
velop a portion of the sea floor, it is 

(continued)



adding numbers produced according to a fixed pattern, there must also be a pattern
(or formula) for finding the sum. He started by writing the numbers from 1 to 100 and
below them the same numbers in reverse order. Writing S for the sum and adding 
corresponding terms gives

It follows that and so S � 5050.
Of course, the sequence of natural numbers 1, 2, 3, . . . is an arithmetic sequence

(with a � 1 and d � 1), and the method for summing the first 100 terms of this se-
quence can be used to find a formula for the nth partial sum of any arithmetic se-
quence. We want to find the sum of the first n terms of the arithmetic sequence whose
terms are ; that is, we want to find

Using Gauss’s method, we write

Sn � a � Óa � dÔ � . . . � 3a � Ón � 2Ôd 4 � 3a � Ón � 1Ôd 4
Sn � 3a � Ón � 1Ôd 4 � 3a � Ón � 2Ôd 4 � . . . � Óa � d Ô � a

2Sn � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4 � . . . � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4
There are n identical terms on the right side of this equation, so

Notice that is the nth term of this sequence. So, we can write

This last formula says that the sum of the first n terms of an arithmetic sequence is
the average of the first and nth terms multiplied by n, the number of terms in the sum.
We now summarize this result.

Sn �
n

2
3a � a � 1n � 1 2d 4 � n a a � an

2
ban � a � 1n � 1 2dSn �

n

2
32a � 1n � 1 2d 4 2Sn � n 32a � 1n � 1 2d 4

� a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4Sn � a
n

k�1
3a � 1k � 1 2d 4ak � a � 1k � 1 2d

2S � 1001101 2 � 10,100

S � 1 � 2 � 3 � . . . � 98 � 99 � 100

S � 100 � 99 � 98 � . . . � 3 � 2 � 1

2S � 101 � 101 � 101 � . . . � 101 � 101 � 101
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Partial Sums of an Arithmetic Sequence

For the arithmetic sequence , the nth partial sum

is given by either of the following formulas.

1.

2. Sn � n a a � an

2
b

Sn �
n

2
32a � 1n � 1 2d 4

Sn � a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4an � a � 1n � 1 2d

required to divide the portion into
two parts, one part to be used by 
itself, the other by a consortium
that will preserve it for later use by
a less developed country. The con-
sortium gets first pick.



Example 4 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 40 terms of the arithmetic sequence

Solution For this arithmetic sequence, a � 3 and d � 4. Using Formula 1 for 
the partial sum of an arithmetic sequence, we get

■

Example 5 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 50 odd numbers.

Solution The odd numbers form an arithmetic sequence with a � 1 and 
d � 2. The nth term is , so the 50th odd number 
is . Substituting in Formula 2 for the partial sum of an 
arithmetic sequence, we get

■

Example 6 Finding the Seating Capacity 

of an Amphitheater

An amphitheater has 50 rows of seats with 30 seats in the first row, 32 in the 
second, 34 in the third, and so on. Find the total number of seats.

Solution The numbers of seats in the rows form an arithmetic sequence with 
a � 30 and d � 2. Since there are 50 rows, the total number of seats is the sum

Thus, the amphitheater has 3950 seats. ■

Example 7 Finding the Number of Terms in a Partial Sum

How many terms of the arithmetic sequences 5, 7, 9, . . . must be added to get 572?

Solution We are asked to find n when Sn � 572. Substituting a � 5, d � 2, and
Sn � 572 in Formula 1 for the partial sum of an arithmetic sequence, we get

This gives n � 22 or n � �26. But since n is the number of terms in this partial
sum, we must have n � 22. ■

 0 � 1n � 22 2 1n � 26 2 0 � n2 � 4n � 572

 572 � 5n � n1n � 1 2 Sn �
n
2
32a � 1n � 1 2d 4 572 �

n

2
32 # 5 � 1n � 1 22 4

� 3950

Sn �
n
2
32a � 1n � 1 2d 4S50 � 50

2 32130 2 � 4912 2 4

S50 � 50 a a � a50

2
b � 50 a 1 � 99

2
b � 50 # 50 � 2500

a50 � 2150 2 � 1 � 99
an � 1 � 21n � 1 2 � 2n � 1

S40 � 40
2 3213 2 � 140 � 1 24 4 � 2016 � 156 2 � 3240

3, 7, 11, 15, . . .
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1–4 ■ A sequence is given.

(a) Find the first five terms of the sequence.

(b) What is the common difference d?

(c) Graph the terms you found in (a).

1. 2.

3. 4.

5–8 ■ Find the nth term of the arithmetic sequence with given
first term a and common difference d. What is the 10th term?

5. a � 3, d � 5 6. a � �6, d � 3

7. 8.

9–16 ■ Determine whether the sequence is arithmetic. If it is
arithmetic, find the common difference.

9. 5, 8, 11, 14, . . . 10. 3, 6, 9, 13, . . .

11. 2, 4, 8, 16, . . . 12. 2, 4, 6, 8, . . .

13. 14. ln 2, ln 4, ln 8, ln 16, . . .

15. 2.6, 4.3, 6.0, 7.7, . . . 16.

17–22 ■ Find the first five terms of the sequence and determine
if it is arithmetic. If it is arithmetic, find the common difference
and express the nth term of the sequence in the standard form

.

17. an � 4 � 7n 18. an � 4 � 2n

19. 20.

21. an � 6n � 10 22.

23–32 ■ Determine the common difference, the fifth term, the
nth term, and the 100th term of the arithmetic sequence.

23. 2, 5, 8, 11, . . . 24. 1, 5, 9, 13, . . .

25. 4, 9, 14, 19, . . . 26. 11, 8, 5, 2, . . .

27. �12, �8, �4, 0, . . . 28.

29. 25, 26.5, 28, 29.5, . . . 30. 15, 12.3, 9.6, 6.9, . . .

31. 2, 2 � s, 2 � 2s, 2 � 3s, . . .

32. �t, �t � 3, �t � 6, �t � 9, . . .

33. The tenth term of an arithmetic sequence is , and the sec-
ond term is . Find the first term.

34. The 12th term of an arithmetic sequence is 32, and the fifth
term is 18. Find the 20th term.

7
2

55
2

7
6,

5
3,

13
6 , 8

3, . . .

an � 3 � 1�1 2 nnan � 1 �
n

2
an �

1

1 � 2n

an � a � 1n � 1 2d

1
2,

1
3,

1
4,

1
5, . . .

3, 3
2, 0, � 3

2, . . .

a � 13, d � 13a � 5
2, d � �1

2

an � 1
2 1n � 1 2an � 5

2 � 1n � 1 2 an � 3 � 41n � 1 2an � 5 � 21n � 1 2
35. The 100th term of an arithmetic sequence is 98, and the

common difference is 2. Find the first three terms.

36. The 20th term of an arithmetic sequence is 101, and the
common difference is 3. Find a formula for the nth term.

37. Which term of the arithmetic sequence 1, 4, 7, . . . is 88?

38. The first term of an arithmetic sequence is 1, and the com-
mon difference is 4. Is 11,937 a term of this sequence? If so,
which term is it?

39–44 ■ Find the partial sum Sn of the arithmetic sequence that
satisfies the given conditions.

39. a � 1, d � 2, n � 10 40. a � 3, d � 2, n � 12

41. a � 4, d � 2, n � 20 42. a � 100, d � �5, n � 8

43. a1 � 55, d � 12, n � 10 44. a2 � 8, a5 � 9.5, n � 15

45–50 ■ A partial sum of an arithmetic sequence is given. Find
the sum.

45. 1 � 5 � 9 � . . . � 401

46.

47. 0.7 � 2.7 � 4.7 � . . . � 56.7

48. �10 � 9.9 � 9.8 � . . . � 0.1

49. 50.

51. Show that a right triangle whose sides are in arithmetic 
progression is similar to a 3–4–5 triangle.

52. Find the product of the numbers

53. A sequence is harmonic if the reciprocals of the terms of
the sequence form an arithmetic sequence. Determine
whether the following sequence is harmonic:

54. The harmonic mean of two numbers is the reciprocal of the
average of the reciprocals of the two numbers. Find the har-
monic mean of 3 and 5.

55. An arithmetic sequence has first term a � 5 and common
difference d � 2. How many terms of this sequence must be
added to get 2700?

56. An arithmetic sequence has first term a1 � 1 and fourth
term a4 � 16. How many terms of this sequence must be
added to get 2356?

1, 3
5,

3
7,

1
3, . . .

101/10, 102/10, 103/10, 104/10, . . . , 1019/10

a
20

n�0
11 � 2n 2a

10

k�0
13 � 0.25k 2

�3 � A� 3
2B � 0 � 3

2 � 3 � . . . � 30

11.2 Exercises

SECTION 11.2 Arithmetic Sequences 837
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Applications

57. Depreciation The purchase value of an office computer is
$12,500. Its annual depreciation is $1875. Find the value of
the computer after 6 years.

58. Poles in a Pile Telephone poles are stored in a pile with
25 poles in the first layer, 24 in the second, and so on. If
there are 12 layers, how many telephone poles does the pile
contain?

59. Salary Increases A man gets a job with a salary of
$30,000 a year. He is promised a $2300 raise each subse-
quent year. Find his total earnings for a 10-year period.

60. Drive-In Theater A drive-in theater has spaces for 20
cars in the first parking row, 22 in the second, 24 in the
third, and so on. If there are 21 rows in the theater, find the
number of cars that can be parked.

61. Theater Seating An architect designs a theater with 15
seats in the first row, 18 in the second, 21 in the third, and so
on. If the theater is to have a seating capacity of 870, how
many rows must the architect use in his design?

62. Falling Ball When an object is allowed to fall freely near
the surface of the earth, the gravitational pull is such that the
object falls 16 ft in the first second, 48 ft in the next second,
80 ft in the next second, and so on.

(a) Find the total distance a ball falls in 6 s.

(b) Find a formula for the total distance a ball falls in 
n seconds.

63. The Twelve Days of Christmas In the well-known 
song “The Twelve Days of Christmas,” a person gives his
sweetheart k gifts on the kth day for each of the 12 days of
Christmas. The person also repeats each gift identically on
each subsequent day. Thus, on the 12th day the sweetheart
receives a gift for the first day, 2 gifts for the second, 3 gifts
for the third, and so on. Show that the number of gifts re-
ceived on the 12th day is a partial sum of an arithmetic 
sequence. Find this sum.

Discovery • Discussion

64. Arithmetic Means The arithmetic mean (or average) of
two numbers a and b is

Note that m is the same distance from a as from b, so a, m, b
is an arithmetic sequence. In general, if m1, m2, . . . , mk are
equally spaced between a and b so that

is an arithmetic sequence, then m1, m2, . . . , mk are called k
arithmetic means between a and b.

(a) Insert two arithmetic means between 10 and 18.

(b) Insert three arithmetic means between 10 and 18.

(c) Suppose a doctor needs to increase a patient’s dosage of
a certain medicine from 100 mg to 300 mg per day in
five equal steps. How many arithmetic means must be
inserted between 100 and 300 to give the progression of
daily doses, and what are these means?

a, m1, m2, . . . , mk, b

m �
a � b

2

11.3 Geometric Sequences

In this section we study geometric sequences. This type of sequence occurs fre-
quently in applications to finance, population growth, and other fields.

Geometric Sequences

Recall that an arithmetic sequence is generated when we repeatedly add a number d
to an initial term a. A geometric sequence is generated when we start with a number
a and repeatedly multiply by a fixed nonzero constant r.



The number r is called the common ratio because the ratio of any two consecutive
terms of the sequence is r.

Example 1 Geometric Sequences

(a) If a � 3 and r � 2, then we have the geometric sequence

or

Notice that the ratio of any two consecutive terms is r � 2. The nth term is
.

(b) The sequence

is a geometric sequence with a � 2 and r � �5. When r is negative, the terms
of the sequence alternate in sign. The nth term is .

(c) The sequence

is a geometric sequence with a � 1 and . The nth term is .

(d) The graph of the geometric sequence is shown in Figure 1. Notice
that the points in the graph lie on the graph of the exponential function

.

If 0 � r � 1, then the terms of the geometric sequence arn�1 decrease, but if r 	 1,
then the terms increase. (What happens if r � 1?) ■

Geometric sequences occur naturally. Here is a simple example. Suppose a ball
has elasticity such that when it is dropped it bounces up one-third of the distance it
has fallen. If this ball is dropped from a height of 2 m, then it bounces up to a height
of . On its second bounce, it returns to a height of , and so on
(see Figure 2). Thus, the height hn that the ball reaches on its nth bounce is given by
the geometric sequence

We can find the nth term of a geometric sequence if we know any two terms, as
the following examples show.

hn � 2
3A13Bn�1

� 2A13Bn
A23B A13B � 2

9  m2A13B � 2
3 m

y � 1
5
# 2x�1

an � 1
5
# 2n�1

an � 1A13Bn�1
r � 1

3

1, 
1

3
, 

1

9
, 

1

27
, 

1

81
, . . .

an � 21�5 2 n�1

2, �10, 50, �250, 1250, . . .

an � 312 2 n�1

3, 6, 12, 24, 48, . . .

3,  3 # 2,  3 # 22,  3 # 23,  3 # 24,  . . .
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Definition of a Geometric Sequence

A geometric sequence is a sequence of the form

The number a is the first term, and r is the common ratio of the sequence.
The nth term of a geometric sequence is given by

an � ar n�1

a, ar, ar 2, ar 3, ar 4, . . .

20

0 8

1 2 3

2 m

m2
3

m2
9

0 t

h

Figure 1

Figure 2



Example 2 Finding Terms of a Geometric Sequence

Find the eighth term of the geometric sequence 5, 15, 45, . . . .

Solution To find a formula for the nth term of this sequence, we need to find a
and r. Clearly, a � 5. To find r, we find the ratio of any two consecutive terms. For
instance, . Thus

The eighth term is . ■

Example 3 Finding Terms of a Geometric Sequence

The third term of a geometric sequence is , and the sixth term is . Find the 
fifth term.

Solution Since this sequence is geometric, its nth term is given by the formula
. Thus

From the values we are given for these two terms, we get the following system of
equations: u
We solve this system by dividing.

Simplify

Take cube root of each side

Substituting for r in the first equation, , gives

Solve for a

It follows that the nth term of this sequence is

Thus, the fifth term is

■

Partial Sums of Geometric Sequences

For the geometric sequence a, ar, ar 2, ar 3, ar 4, . . . , arn�1, . . . , the nth partial sum is

Sn � a
n

k�1
ar k�1 � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1

a5 � 7A32B5�1
� 7A32B4 � 567

16

an � 7A32Bn�1

a � 7

63
4 � aA32B263

4 � ar 2

r � 3
2

r 3 � 27
8

ar 5

ar 2 �
1701
32
63
4

63
4 � ar 2

1701
32 � ar 5

a6 � ar 6�1 � ar 5

a3 � ar 3�1 � ar 2

an � ar n�1

1701
32

63
4

a8 � 513 2 8�1 � 513 2 7 � 10,935

an � 513 2 n�1

r � 45
15 � 3
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Srinivasa Ramanujan (1887–
1920) was born into a poor family
in the small town of Kumbakonam
in India. Self-taught in mathemat-
ics, he worked in virtual isolation
from other mathematicians. At the
age of 25 he wrote a letter to 
G. H. Hardy, the leading British
mathematician at the time, listing
some of his discoveries. Hardy 
immediately recognized Ramanu-
jan’s genius and for the next six
years the two worked together in
London until Ramanujan fell ill
and returned to his hometown in
India, where he died a year later.
Ramanujan was a genius with phe-
nomenal ability to see hidden pat-
terns in the properties of numbers.
Most of his discoveries were writ-
ten as complicated infinite series,
the importance of which was not
recognized until many years after
his death. In the last year of his life
he wrote 130 pages of mysterious
formulas, many of which still defy
proof. Hardy tells the story that
when he visited Ramanujan in a
hospital and arrived in a taxi, he 
remarked to Ramanujan that the
cab’s number, 1729, was uninter-
esting. Ramanujan replied “No, it
is a very interesting number. It is
the smallest number expressible as
the sum of two cubes in two differ-
ent ways.” (See Problem 23 on
page 144.)
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To find a formula for Sn, we multiply Sn by r and subtract from Sn:

So,

We summarize this result.

Sn �
a11 � r n 2

1 � r
  1r � 1 2Sn11 � r 2 � a11 � r n 2Sn � rSn � a � ar n

rSn � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � ar n

Sn � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1
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Partial Sums of a Geometric Sequence

For the geometric sequence an � arn�1, the nth partial sum

is given by

Sn � a
1 � r n

1 � r

Sn � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1  1r � 1 2

Example 4 Finding a Partial Sum of a Geometric Sequence

Find the sum of the first five terms of the geometric sequence

Solution The required sum is the sum of the first five terms of a geometric 
sequence with a � 1 and r � 0.7. Using the formula for Sn with n � 5, we get

Thus, the sum of the first five terms of this sequence is 2.7731. ■

Example 5 Finding a Partial Sum 

of a Geometric Sequence

Find the sum .

Solution The given sum is the fifth partial sum of a geometric sequence with
first term and common ratio . Thus, by the formula for
Sn, we have

■

What Is an Infinite Series?

An expression of the form

a1 � a2 � a3 � a4 � . . .

S5 � �
14

3
# 1 � A� 2

3B5
1 � A� 2

3B � �
14

3
# 1 � 32

243
5
3

� �
770

243

r � � 2
3a � 7A� 2

3B � � 14
3

a
5

k�1
 7A� 2

3Bk

S5 � 1 # 1 � 10.7 2 5
1 � 0.7

� 2.7731

1, 0.7, 0.49, 0.343, . . .



is called an infinite series. The dots mean that we are to continue the addition
indefinitely. What meaning can we attach to the sum of infinitely many numbers? It
seems at first that it is not possible to add infinitely many numbers and arrive at a
finite number. But consider the following problem. You have a cake and you want to
eat it by first eating half the cake, then eating half of what remains, then again eating
half of what remains. This process can continue indefinitely because at each stage
some of the cake remains. (See Figure 3.)

Does this mean that it’s impossible to eat all of the cake? Of course not. Let’s write
down what you have eaten from this cake:

This is an infinite series, and we note two things about it: First, from Figure 3 it’s clear
that no matter how many terms of this series we add, the total will never exceed 1.
Second, the more terms of this series we add, the closer the sum is to 1 (see Figure 3).
This suggests that the number 1 can be written as the sum of infinitely many smaller
numbers:

To make this more precise, let’s look at the partial sums of this series:

and, in general (see Example 5 of Section 11.1),

As n gets larger and larger, we are adding more and more of the terms of this series.
Intuitively, as n gets larger, Sn gets closer to the sum of the series. Now notice that as
n gets large, 1/2n gets closer and closer to 0. Thus, Sn gets close to 1 � 0 � 1. Using
the notation of Section 3.6, we can write

Sn � 1  as  n �q

Sn � 1 �
1

2n

S4 �
1

2
�

1

4
�

1

8
�

1

16
�

15

16

S3 �
1

2
�

1

4
�

1

8
�

7

8

S2 �
1

2
�

1

4
�

3

4

S1 �
1

2
�

1

2

1 �
1

2
�

1

4
�

1

8
�

1

16
� . . . �

1

2n � . . .

1

2
�

1

4
�

1

8
�

1

16
� . . . �

1

2n � . . .

1
2

1
4

1
8

1
16

1
32

1
2

1
4

1
8

1
16

1
2

1
4

1
8

1
2

1
4

1
2
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In general, if Sn gets close to a finite number S as n gets large, we say that S is the sum
of the infinite series.

Infinite Geometric Series

An infinite geometric series is a series of the form

We can apply the reasoning used earlier to find the sum of an infinite geometric 
series. The nth partial sum of such a series is given by the formula

It can be shown that if , then rn gets close to 0 as n gets large (you can eas-
ily convince yourself of this using a calculator). It follows that Sn gets close to

as n gets large, or

Thus, the sum of this infinite geometric series is .a/ 11 � r 2Sn �
a

1 � r
  as  n �q

a/ 11 � r 2 0 r 0 � 1

Sn � a
1 � r n

1 � r
  1r � 1 2

a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � . . .

SECTION 11.3 Geometric Sequences 843

Sum of an Infinite Geometric Series

If , then the infinite geometric series

has the sum

S �
a

1 � r

a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � . . .

0 r 0 � 1

Example 6 Finding the Sum of an Infinite

Geometric Series

Find the sum of the infinite geometric series

Solution We use the formula for the sum of an infinite geometric series. In this
case, a � 2 and . Thus, the sum of this infinite series is

■

Example 7 Writing a Repeated Decimal as a Fraction

Find the fraction that represents the rational number .

Solution This repeating decimal can be written as a series:

23

10
�

51

1000
�

51

100,000
�

51

10,000,000
�

51

1,000,000,000
� . . .

2.351

S �
2

1 � 1
5

�
5

2

r � 1
5

2 �
2

5
�

2

25
�

2

125
� . . . �

2

5n � . . .

Here is another way to arrive at the 
formula for the sum of an infinite 
geometric series:

Solve the equation S � a � rS for S
to get

S �
a

1 � r

11 � r 2S � a

S � rS � a

� a � rS

� a � r 1a � ar � ar 2 � . . . 2S � a � ar � ar 2 � ar 3 � . . .
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1–4 ■ The nth term of a sequence is given.

(a) Find the first five terms of the sequence.

(b) What is the common ratio r?

(c) Graph the terms you found in (a).

1. 2.

3. 4.

5–8 ■ Find the nth term of the geometric sequence with given
first term a and common ratio r. What is the fourth term?

5. a �3, r � 5 6. a � �6, r � 3

7. 8.

9–16 ■ Determine whether the sequence is geometric. If it is
geometric, find the common ratio.

9. 2, 4, 8, 16, . . . 10. 2, 6, 18, 36, . . .

11. 12. 27, �9, 3, �1, . . .

13. 14. e 2, e 4, e 6, e 8, . . .

15. 1.0, 1.1, 1.21, 1.331, . . . 16.

17–22 ■ Find the first five terms of the sequence and determine
if it is geometric. If it is geometric, find the common ratio and
express the nth term of the sequence in the standard form 
an � arn�1.

17. 18.

19. 20.

21. 22. an � nn

23–32 ■ Determine the common ratio, the fifth term, and the
nth term of the geometric sequence.

23. 2, 6, 18, 54, . . . 24.

25. 0.3, �0.09, 0.027, �0.0081, . . .

26. 1, 12, 2, 212, . . .

7, 14
3 , 28

9 , 56
27, . . .

an � ln15n�1 2 an � 1�1 2 n2nan �
1

4n

an � 4 � 3nan � 213 2 n

1
2,

1
4,

1
6,

1
8, . . .

1
2,

1
3,

1
4,

1
5, . . .

3, 3
2,

3
4,

3
8, . . .

a � 13, r � 13a � 5
2, r � � 1

2

an � 3n�1an � 5
2 A� 1

2Bn�1

an � 31�4 2 n�1an � 512 2 n�1

27. 144, �12, 1, , . . . 28.

29. 3, 35/3, 37/3, 27, . . . 30.

31. 1, s 2/7, s 4/ 7, s 6/7, . . . 32. 5, 5c�1, 52c�1, 53c�1, . . .

33. The first term of a geometric sequence is 8, and the second
term is 4. Find the fifth term.

34. The first term of a geometric sequence is 3, and the third
term is . Find the fifth term.

35. The common ratio in a geometric sequence is , and the
fourth term is . Find the third term.

36. The common ratio in a geometric sequence is , and the fifth
term is 1. Find the first three terms.

37. Which term of the geometric sequence 2, 6, 18, . . . is
118,098?

38. The second and the fifth terms of a geometric sequence are
10 and 1250, respectively. Is 31,250 a term of this sequence?
If so, which term is it?

39–42 ■ Find the partial sum Sn of the geometric sequence that
satisfies the given conditions.

39. a � 5, r � 2, n � 6 40.

41. a3 � 28, a6 � 224, n � 6

42. a2 � 0.12, a5 � 0.00096, n � 4

43–46 ■ Find the sum.

43. 1 � 3 � 9 � . . . � 2187

44.

45. 46.

47–54 ■ Find the sum of the infinite geometric series.

47. 48. 1 �
1

2
�

1

4
�

1

8
� . . .1 �

1

3
�

1

9
�

1

27
� . . .

a
5

j�0
7A32B j

a
10

k�0
3A12B k

1 � 1
2 � 1

4 � 1
8 � . . . � 1

512

a � 2
3,  r � 1

3,  n � 4

3
2

5
2

2
5

4
3

t,
t2

2
,

t3

4
,

t4

8
, . . .

�8, �2, � 1
2, � 1

8, . . .� 1
12

After the first term, the terms of this series form an infinite geometric series with

Thus, the sum of this part of the series is

So, ■

11.3 Exercises

2.351 �
23

10
�

51

990
�

2328

990
�

388

165

S �
51

1000

1 � 1
100

�
51

1000
99
100

�
51

1000
# 100

99
�

51

990

a �
51

1000
  and  r �

1

100



SECTION 11.3 Geometric Sequences 845

49. 50.

51.

52.

53.

54.

55–60 ■ Express the repeating decimal as a fraction.

55. 0.777 . . . 56.

57. 0.030303 . . . 58.

59. 60. 0.123123123 . . .

61. If the numbers a1, a2, . . . , an form a geometric sequence,
then a2, a3, . . . , an�1 are geometric means between a1 and
an. Insert three geometric means between 5 and 80.

62. Find the sum of the first ten terms of the sequence

Applications

63. Depreciation A construction company purchases a 
bulldozer for $160,000. Each year the value of the bulldozer
depreciates by 20% of its value in the preceding year. Let Vn

be the value of the bulldozer in the nth year. (Let n � 1 be
the year the bulldozer is purchased.)

(a) Find a formula for Vn.

(b) In what year will the value of the bulldozer be less than
$100,000?

64. Family Tree A person has two parents, four grandparents,
eight great-grandparents, and so on. How many ancestors
does a person have 15 generations back?

65. Bouncing Ball A ball is dropped from a height of 80 ft.
The elasticity of this ball is such that it rebounds three-
fourths of the distance it has fallen. How high does the ball
rebound on the fifth bounce? Find a formula for how high
the ball rebounds on the nth bounce.

66. Bacteria Culture A culture initially has 5000 bacteria,
and its size increases by 8% every hour. How many bacteria

Father

Mother

Grandfather

Grandmother

Grandfather

Grandmother

a � b, a2 � 2b, a3 � 3b, a4 � 4b, . . .

0.112

2.1125

0.253

1

12
�

1

2
�

1

212
�

1

4
� . . .

�
100

9
�

10

3
� 1 �

3

10
� . . .

3 �
3

2
�

3

4
�

3

8
� . . .

1

36 �
1

38 �
1

310 �
1

312 � . . .

2

5
�

4

25
�

8

125
� . . .1 �

1

3
�

1

9
�

1

27
� . . . are present at the end of 5 hours? Find a formula for the

number of bacteria present after n hours.

67. Mixing Coolant A truck radiator holds 5 gal and is 
filled with water. A gallon of water is removed from the 
radiator and replaced with a gallon of antifreeze; then, a 
gallon of the mixture is removed from the radiator and 
again replaced by a gallon of antifreeze. This process is 
repeated indefinitely. How much water remains in the tank
after this process is repeated 3 times? 5 times? n times?

68. Musical Frequencies The frequencies of musical notes
(measured in cycles per second) form a geometric sequence.
Middle C has a frequency of 256, and the C that is an octave
higher has a frequency of 512. Find the frequency of C two
octaves below middle C.

69. Bouncing Ball A ball is dropped from a height of 9 ft.
The elasticity of the ball is such that it always bounces up
one-third the distance it has fallen.

(a) Find the total distance the ball has traveled at the instant
it hits the ground the fifth time.

(b) Find a formula for the total distance the ball has 
traveled at the instant it hits the ground the nth time.

70. Geometric Savings Plan A very patient woman wishes
to become a billionaire. She decides to follow a simple
scheme: She puts aside 1 cent the first day, 2 cents the 
second day, 4 cents the third day, and so on, doubling the
number of cents each day. How much money will she have
at the end of 30 days? How many days will it take this
woman to realize her wish?

71. St. Ives The following is a well-known children’s rhyme:

As I was going to St. Ives
I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;
Every cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?

Assuming that the entire group is actually going to St. Ives,
show that the answer to the question in the rhyme is a partial
sum of a geometric sequence, and find the sum.

72. Drug Concentration A certain drug is administered once
a day. The concentration of the drug in the patient’s blood-
stream increases rapidly at first, but each successive dose has
less effect than the preceding one. The total amount of the
drug (in mg) in the bloodstream after the nth dose is given by

a
n

k�1
50A12B k�1
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(a) Find the amount of the drug in the bloodstream after 
n � 10 days.

(b) If the drug is taken on a long-term basis, the amount in 
the bloodstream is approximated by the infinite series 

. Find the sum of this series.

73. Bouncing Ball A certain ball rebounds to half the height
from which it is dropped. Use an infinite geometric series to
approximate the total distance the ball travels, after being
dropped from 1 m above the ground, until it comes to rest.

74. Bouncing Ball If the ball in Exercise 73 is dropped from
a height of 8 ft, then 1 s is required for its first complete
bounce—from the instant it first touches the ground until it
next touches the ground. Each subsequent complete bounce
requires as long as the preceding complete bounce.
Use an infinite geometric series to estimate the time interval
from the instant the ball first touches the ground until it
stops bouncing.

75. Geometry The midpoints of the sides of a square of side
1 are joined to form a new square. This procedure is 
repeated for each new square. (See the figure.)

(a) Find the sum of the areas of all the squares.

(b) Find the sum of the perimeters of all the squares.

76. Geometry A circular disk of radius R is cut out of paper,
as shown in figure (a). Two disks of radius are cut out of
paper and placed on top of the first disk, as in figure (b), and
then four disks of radius are placed on these two disks
(figure (c)). Assuming that this process can be repeated
indefinitely, find the total area of all the disks.

(a) (b) (c)

1
4 R

1
2 R

1/12

a
q

k�1
50A12Bk�1

77. Geometry A yellow square of side 1 is divided into nine
smaller squares, and the middle square is colored blue as
shown in the figure. Each of the smaller yellow squares is in
turn divided into nine squares, and each middle square is
colored blue. If this process is continued indefinitely, what
is the total area colored blue?

Discovery • Discussion

78. Arithmetic or Geometric? The first four terms of a 
sequence are given. Determine whether these terms can be
the terms of an arithmetic sequence, a geometric sequence,
or neither. Find the next term if the sequence is arithmetic or
geometric.

(a) 5, �3, 5, �3, . . . (b) , 1, , , . . .

(c) , 3, 3 , 9, . . . (d) 1, �1, 1, �1, . . .

(e) 2, �1, , 2, . . . (f ) x � 1, x, x � 1, x � 2, . . .

(g) �3, , 0, , . . . (h) , , , 1, . . .

79. Reciprocals of a Geometric Sequence If a1, a2, a3, . . .
is a geometric sequence with common ratio r, show that the
sequence

is also a geometric sequence, and find the common ratio.

80. Logarithms of a Geometric Sequence If a1, a2, a3, . . .
is a geometric sequence with a common ratio r 	 0 and 
a1 	 0, show that the sequence

is an arithmetic sequence, and find the common difference.

81. Exponentials of an Arithmetic Sequence If a1, a2,
a3, . . . is an arithmetic sequence with common difference d,
show that the sequence

is a geometric sequence, and find the common ratio.

10a1, 10a2, 10a3, . . .

log a1, log a2, log a3, . . .

1
a1

,
1
a2

,
1
a3

, . . .

16 513 5153
2� 3

2

1
2

1313

7
3

5
3

1
3
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Finding Patterns

The ancient Greeks studied triangular numbers, square numbers, pentagonal 
numbers, and other polygonal numbers, like those shown in the figure.

To find a pattern for such numbers, we construct a first difference sequence
by taking differences of successive terms; we repeat the process to get a second
difference sequence, third difference sequence, and so on. For the sequence of
triangular numbers Tn we get the following difference table:

We stop at the second difference sequence because it’s a constant sequence. 
Assuming that this sequence will continue to have constant value 1, we can 
work backward from the bottom row to find more terms of the first difference 
sequence, and from these, more triangular numbers.

If a sequence is given by a polynomial function and if we calculate the first
differences, the second differences, the third differences, and so on, then eventu-
ally we get a constant sequence. For example, the triangular numbers are given
by the polynomial Tn � n2 � n (see the margin note on the next page); the sec-
ond difference sequence is the constant sequence 1, 1, 1, . . . .

1
2

1
2

61

2

3

1

3

1

4

10

1

5

15

1

6

21Triangular numbers

First differences

Second differences

1 5 12 22 35

2516941

1 21151063

D I S C O V E R Y
P R O J E C T

Triangular numbers

Square numbers

Pentagonal numbers
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1. Construct a difference table for the square numbers and the pentagonal 
numbers. Use your table to find the tenth pentagonal number.

2. From the patterns you’ve observed so far, what do you think the second 
difference would be for the hexagonal numbers? Use this, together with the
fact that the first two hexagonal numbers are 1 and 6, to find the first eight
hexagonal numbers.

3. Construct difference tables for Cn � n3. Which difference sequence is 
constant? Do the same for Fn � n4.

4. Make up a polynomial of degree 5 and construct a difference table. Which
difference sequence is constant?

5. The first few terms of a polynomial sequence are 1, 2, 4, 8, 16, 31, 57, . . . .
Construct a difference table and use it to find four more terms of this 
sequence.

The formula for the nth triangular
number can be found using the for-
mula for the sum of the first n whole
numbers (Example 2, Section 11.5).
From the definition of Tn we have

� 1
2 n2 � 1

2 n

�
n1n � 1 2

2

Tn � 1 � 2 � . . . � n

11.4 Mathematics of Finance

Many financial transactions involve payments that are made at regular intervals. For
example, if you deposit $100 each month in an interest-bearing account, what will the
value of your account be at the end of 5 years? If you borrow $100,000 to buy a house,
how much must your monthly payments be in order to pay off the loan in 30 years?
Each of these questions involves the sum of a sequence of numbers; we use the 
results of the preceding section to answer them here.

The Amount of an Annuity

An annuity is a sum of money that is paid in regular equal payments. Although the
word annuity suggests annual (or yearly) payments, they can be made semiannually,
quarterly, monthly, or at some other regular interval. Payments are usually made at
the end of the payment interval. The amount of an annuity is the sum of all the in-
dividual payments from the time of the first payment until the last payment is made,
together with all the interest. We denote this sum by Af (the subscript f here is used
to denote final amount).

Example 1 Calculating the Amount of an Annuity

An investor deposits $400 every December 15 and June 15 for 10 years in an account
that earns interest at the rate of 8% per year, compounded semiannually. How much
will be in the account immediately after the last payment?

Solution We need to find the amount of an annuity consisting of 20 semiannual
payments of $400 each. Since the interest rate is 8% per year, compounded semi-
annually, the interest rate per time period is i � 0.08/2 � 0.04. The first payment 
is in the account for 19 time periods, the second for 18 time periods, and so on.

When using interest rates in 
calculators, remember to convert 
percentages to decimals. For example,
8% is 0.08.



The last payment receives no interest. The situation can be illustrated by the time
line in Figure 1.

The amount Af of the annuity is the sum of these 20 amounts. Thus

But this is a geometric series with a � 400, r � 1.04, and n � 20, so

Thus, the amount in the account after the last payment is $11,911.23. ■

In general, the regular annuity payment is called the periodic rent and is denoted
by R. We also let i denote the interest rate per time period and n the number of pay-
ments. We always assume that the time period in which interest is compounded is
equal to the time between payments. By the same reasoning as in Example 1, we see
that the amount Af of an annuity is

Since this is the nth partial sum of a geometric sequence with a � R and r � 1 � i,
the formula for the partial sum gives

Af � R
1 � 11 � i 2 n
1 � 11 � i 2 � R

1 � 11 � i 2 n
�i

� R
11 � i 2 n � 1

i

Af � R � R11 � i 2 � R11 � i 2 2 � . . . � R11 � i 2 n�1

Af � 400
1 � 11.04 2 20

1 � 1.04
� 11,911.23

Af � 400 � 40011.04 2 � 40011.04 2 2 � . . . � 40011.04 2 19

1 2 3

400 400 400 400 400 400

9 10

400400 400 400
400(1.04)
400(1.04)2

400(1.04)3

400(1.04)14

400(1.04)15

400(1.04)16

400(1.04)17

400(1.04)18

400(1.04)19

Time
(years)

NOW

Payment
(dollars)

…

…
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Figure 1

Amount of an Annuity

The amount Af of an annuity consisting of n regular equal payments of size R
with interest rate i per time period is given by

Af � R
11 � i 2 n � 1

i



Example 2 Calculating the Amount of an Annuity

How much money should be invested every month at 12% per year,
compounded monthly, in order to have $4000 in 18 months?

Solution In this problem i � 0.12/12 � 0.01, Af � 4000, and n � 18. We need
to find the amount R of each payment. By the formula for the amount of an annuity,

Solving for R, we get

Thus, the monthly investment should be $203.93. ■

The Present Value of an Annuity

If you were to receive $10,000 five years from now, it would be worth much less than
getting $10,000 right now. This is because of the interest you could accumulate dur-
ing the next five years if you invested the money now. What smaller amount would
you be willing to accept now instead of receiving $10,000 in five years? This is the
amount of money that, together with interest, would be worth $10,000 in five years.
The amount we are looking for here is called the discounted value or present value. If
the interest rate is 8% per year, compounded quarterly, then the interest per time pe-
riod is i � 0.08/4 � 0.02, and there are 4 � 5 � 20 time periods. If we let PV denote
the present value, then by the formula for compound interest (Section 4.1) we have

so

Thus, in this situation, the present value of $10,000 is $6729.71. This reasoning leads
to a general formula for present value:

Similarly, the present value of an annuity is the amount Ap that must be invested
now at the interest rate i per time period in order to provide n payments, each of
amount R. Clearly, Ap is the sum of the present values of each individual payment (see
Exercise 22). Another way of finding Ap is to note that Ap is the present value of Af:

Ap � Af 11 � i 2�n � R
11 � i 2 n � 1

i
11 � i 2�n � R

1 � 11 � i 2�n

i

PV � A11 � i 2�n

PV � 10,00011 � 0.02 2�20 � 6729.713

10,000 � PV11 � i 2 n � PV11 � 0.02 2 20

R �
400010.01 211 � 0.01 2 18 � 1

� 203.928

4000 � R
11 � 0.01 2 18 � 1

0.01
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The Present Value of an Annuity

The present value Ap of an annuity consisting of n regular equal payments of
size R and interest rate i per time period is given by

Ap � R
1 � 11 � i 2�n

i

Mathematics in 

the Modern World

Mathematical Economics

The health of the global economy
is determined by such interrelated
factors as supply, demand, produc-
tion, consumption, pricing, distri-
bution, and thousands of other
factors. These factors are in turn
determined by economic decisions
(for example, whether or not you
buy a certain brand of toothpaste)
made by billions of different indi-
viduals each day. How will today’s
creation and distribution of goods
affect tomorrow’s economy? Such
questions are tackled by mathe-
maticians who work on mathemat-
ical models of the economy. In the
1940s Wassily Leontief, a pioneer
in this area, created a model con-
sisting of thousands of equations
that describe how different sectors
of the economy, such as the oil in-
dustry, transportation, and commu-
nication, interact with each other.
A different approach to economic
models, one dealing with individu-
als in the economy as opposed to
large sectors, was pioneered by
John Nash in the 1950s. In his
model, which uses Game Theory,
the economy is a game where indi-
vidual players make decisions that
often lead to mutual gain. Leontief
and Nash were awarded the Nobel
Prize in Economics in 1973 and
1994, respectively. Economic the-
ory continues to be a major area of
mathematical research.



Example 3 Calculating the Present Value of an Annuity

A person wins $10,000,000 in the California lottery, and the amount is paid in
yearly installments of half a million dollars each for 20 years. What is the present
value of his winnings? Assume that he can earn 10% interest, compounded 
annually.

Solution Since the amount won is paid as an annuity, we need to find its present
value. Here i � 0.1, R � $500,000, and n � 20. Thus

This means that the winner really won only $4,256,781.86 if it were paid 
immediately. ■

Installment Buying

When you buy a house or a car by installment, the payments you make are an annu-
ity whose present value is the amount of the loan.

Example 4 The Amount of a Loan

A student wishes to buy a car. He can afford to pay $200 per month but has no
money for a down payment. If he can make these payments for four years and the
interest rate is 12%, what purchase price can he afford?

Solution The payments the student makes constitute an annuity whose present
value is the price of the car (which is also the amount of the loan, in this case). Here
we have i � 0.12/12 � 0.01, R � 200, n � 12 � 4 � 48, so

Thus, the student can buy a car priced at $7594.79. ■

When a bank makes a loan that is to be repaid with regular equal payments R, then
the payments form an annuity whose present value Ap is the amount of the loan. So,
to find the size of the payments, we solve for R in the formula for the amount of an
annuity. This gives the following formula for R.

Ap � R
1 � 11 � i 2�n

i
� 200

1 � 11 � 0.01 2�48

0.01
� 7594.792

Ap � 500,000
1 � 11 � 0.1 2�20

0.1
� 4,256,781.859
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Installment Buying

If a loan Ap is to be repaid in n regular equal payments with interest rate i per
time period, then the size R of each payment is given by

R �
iAp

1 � 11 � i 2�n



Example 5 Calculating Monthly Mortgage Payments

A couple borrows $100,000 at 9% interest as a mortage loan on a house. They 
expect to make monthly payments for 30 years to repay the loan. What is the size 
of each payment?

Solution The mortgage payments form an annuity whose present value is 
Ap � $100,000. Also, i � 0.09/12 � 0.0075, and n � 12 � 30 � 360. We are 
looking for the amount R of each payment. From the formula for installment 
buying, we get

Thus, the monthly payments are $804.62. ■

We now illustrate the use of graphing devices in solving problems related to 
installment buying.

Example 6 Calculating the Interest Rate from the Size 

of Monthly Payments

A car dealer sells a new car for $18,000. He offers the buyer payments of $405 per
month for 5 years. What interest rate is this car dealer charging?

Solution The payments form an annuity with present value Ap � $18,000,
R � 405, and n � 12 � 5 � 60. To find the interest rate, we must solve for i in the
equation

A little experimentation will convince you that it’s not possible to solve this 
equation for i algebraically. So, to find i we use a graphing device to graph R as a
function of the interest rate x, and we then use the graph to find the interest rate cor-
responding to the value of R we want ($405 in this case). Since i � x/12, we graph
the function

in the viewing rectangle 30.06, 0.164 � 3350, 4504, as shown in Figure 2. We 
also graph the horizontal line in the same viewing rectangle. Then,
by moving the cursor to the point of intersection of the two graphs, we find that 
the corresponding x-value is approximately 0.125. Thus, the interest rate is 
about %. ■12 1

2

R1x 2 � 405

R1x 2 �

x

12
118,000 2

1 � a1 �
x

12
b�60

R �
iAp

1 � 11 � i 2�n

�
10.0075 2 1100,000 2

1 � 11 � 0.0075 2�360 � 804.623

R �
iAp

1 � 11 � i 2�n
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450

350

0.06 0.160.125

405

Figure 2
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1. Annuity Find the amount of an annuity that consists of 
10 annual payments of $1000 each into an account that pays
6% interest per year.

2. Annuity Find the amount of an annuity that consists of 
24 monthly payments of $500 each into an account that
pays 8% interest per year, compounded monthly.

3. Annuity Find the amount of an annuity that consists of 
20 annual payments of $5000 each into an account that pays
interest of 12% per year.

4. Annuity Find the amount of an annuity that consists of 
20 semiannual payments of $500 each into an account that
pays 6% interest per year, compounded semiannually.

5. Annuity Find the amount of an annuity that consists of 
16 quarterly payments of $300 each into an account that
pays 8% interest per year, compounded quarterly.

6. Saving How much money should be invested every quar-
ter at 10% per year, compounded quarterly, in order to have
$5000 in 2 years?

7. Saving How much money should be invested monthly at
6% per year, compounded monthly, in order to have $2000
in 8 months?

8. Annuity What is the present value of an annuity that con-
sists of 20 semiannual payments of $1000 at the interest rate
of 9% per year, compounded semiannually?

9. Funding an Annuity How much money must be invested
now at 9% per year, compounded semiannually, to fund an
annuity of 20 payments of $200 each, paid every 6 months,
the first payment being 6 months from now?

10. Funding an Annuity A 55-year-old man deposits
$50,000 to fund an annuity with an insurance company. The
money will be invested at 8% per year, compounded semi-
annually. He is to draw semiannual payments until he
reaches age 65. What is the amount of each payment?

11. Financing a Car A woman wants to borrow $12,000 in
order to buy a car. She wants to repay the loan by monthly
installments for 4 years. If the interest rate on this loan is

% per year, compounded monthly, what is the amount of
each payment?

12. Mortgage What is the monthly payment on a 30-year
mortgage of $80,000 at 9% interest? What is the monthly
payment on this same mortgage if it is to be repaid over a
15-year period?

13. Mortgage What is the monthly payment on a 30-year
mortgage of $100,000 at 8% interest per year, compounded
monthly? What is the total amount paid on this loan over the
30-year period?

14. Mortgage A couple can afford to make a monthly mort-
gage payment of $650. If the mortgage rate is 9% and the

10 1
2

couple intends to secure a 30-year mortgage, how much can
they borrow?

15. Mortgage A couple secures a 30-year loan of $100,000
at % per year, compounded monthly, to buy a house.

(a) What is the amount of their monthly payment?

(b) What total amount will they pay over the 30-year period?

(c) If, instead of taking the loan, the couple deposits the
monthly payments in an account that pays % interest
per year, compounded monthly, how much will be in
the account at the end of the 30-year period?

16. Financing a Car Jane agrees to buy a car for a down pay-
ment of $2000 and payments of $220 per month for 3 years.
If the interest rate is 8% per year, compounded monthly,
what is the actual purchase price of her car?

17. Financing a Ring Mike buys a ring for his fiancee by
paying $30 a month for one year. If the interest rate is 10%
per year, compounded monthly, what is the price of the ring?

18. Interest Rate Janet’s payments on her $12,500 car are
$420 a month for 3 years. Assuming that interest is com-
pounded monthly, what interest rate is she paying on the 
car loan?

19. Interest Rate John buys a stereo system for $640. He
agrees to pay $32 a month for 2 years. Assuming that inter-
est is compounded monthly, what interest rate is he paying?

20. Interest Rate A man purchases a $2000 diamond ring for
a down payment of $200 and monthly installments of $88
for 2 years. Assuming that interest is compounded monthly,
what interest rate is he paying?

21. Interest Rate An item at a department store is priced at
$189.99 and can be bought by making 20 payments of
$10.50. Find the interest rate, assuming that interest is com-
pounded monthly.

Discovery • Discussion

22. Present Value of an Annuity (a) Draw a time line as in
Example 1 to show that the present value of an annuity is
the sum of the present values of each payment, that is,

(b) Use part (a) to derive the formula for Ap given in the text.

23. An Annuity That Lasts Forever An annuity in 
perpetuity is one that continues forever. Such annuities 
are useful in setting up scholarship funds to ensure that 
the award continues.

Ap �
R

1 � i
�

R11 � i 2 2 �
R11 � i 2 3 � . . . �

R11 � i 2 n

93
4

9 3
4

11.4 Exercises



854 CHAPTER 11 Sequences and Series

(a) Draw a time line (as in Example 1) to show that to set
up an annuity in perpetuity of amount R per time pe-
riod, the amount that must be invested now is

where i is the interest rate per time period.

(b) Find the sum of the infinite series in part (a) to show that

(c) How much money must be invested now at 10% per
year, compounded annually, to provide an annuity in
perpetuity of $5000 per year? The first payment is due
in one year.

(d) How much money must be invested now at 8% per 
year, compounded quarterly, to provide an annuity in 
perpetuity of $3000 per year? The first payment is 
due in one year.

24. Amortizing a Mortgage When they bought their house,
John and Mary took out a $90,000 mortgage at 9% interest,
repayable monthly over 30 years. Their payment is $724.17
per month (check this using the formula in the text). The

Ap �
R

i

Ap �
R

1 � i
�

R11 � i 2 2 �
R11 � i 2 3 � . . . �

R11 � i 2 n � . . .

bank gave them an amortization schedule, which is a table
showing how much of each payment is interest, how much
goes toward the principal, and the remaining principal after
each payment. The table below shows the first few entries in
the amortization schedule.

11.5 Mathematical Induction

There are two aspects to mathematics—discovery and proof—and both are of equal
importance. We must discover something before we can attempt to prove it, and we
can only be certain of its truth once it has been proved. In this section we examine the
relationship between these two key components of mathematics more closely.

Conjecture and Proof

Let’s try a simple experiment. We add more and more of the odd numbers as follows:

What do you notice about the numbers on the right side of these equations? They are
in fact all perfect squares. These equations say the following:

.

.

.

.

.The sum of the first 5 odd numbers is 52

The sum of the first 4 odd numbers is 42

The sum of the first 3 odd numbers is 32

The sum of the first 2 odd numbers is 22

The sum of the first 1 odd number is 12

 1 � 3 � 5 � 7 � 9 � 25

 1 � 3 � 5 � 7 � 16

 1 � 3 � 5 � 9

 1 � 3 � 4

 1 � 1

Payment Total Interest Principal Remaining 
number payment payment payment principal

1 724.17 675.00 49.17 89,950.83
2 724.17 674.63 49.54 89,901.29
3 724.17 674.26 49.91 89,851.38
4 724.17 673.89 50.28 89,801.10

After 10 years they have made 120 payments and are won-
dering how much they still owe, but they have lost the amor-
tization schedule.

(a) How much do John and Mary still owe on their mort-
gage? [Hint: The remaining balance is the present value
of the 240 remaining payments.]

(b) How much of their next payment is interest and how
much goes toward the principal? [Hint: Since 9% �
12 � 0.75%, they must pay 0.75% of the remaining
principal in interest each month.]



This leads naturally to the following question: Is it true that for every natural number
n, the sum of the first n odd numbers is n2? Could this remarkable property be true?
We could try a few more numbers and find that the pattern persists for the first 6, 7,
8, 9, and 10 odd numbers. At this point, we feel quite sure that this is always true, so
we make a conjecture:

.

Since we know that the nth odd number is 2n � 1, we can write this statement more
precisely as

It’s important to realize that this is still a conjecture. We cannot conclude by check-
ing a finite number of cases that a property is true for all numbers (there are infinitely
many). To see this more clearly, suppose someone tells us he has added up the first
trillion odd numbers and found that they do not add up to 1 trillion squared. What
would you tell this person? It would be silly to say that you’re sure it’s true because
you’ve already checked the first five cases. You could, however, take out paper and
pencil and start checking it yourself, but this task would probably take the rest of your
life. The tragedy would be that after completing this task you would still not be sure
of the truth of the conjecture! Do you see why?

Herein lies the power of mathematical proof. A proof is a clear argument that
demonstrates the truth of a statement beyond doubt.

Mathematical Induction

Let’s consider a special kind of proof called mathematical induction. Here is how it
works: Suppose we have a statement that says something about all natural numbers
n. Let’s call this statement P. For example, we could consider the statement

.

Since this statement is about all natural numbers, it contains infinitely many state-
ments; we will call them P(1), P(2), . . . .

.

.

.
. .
. .
. .

How can we prove all of these statements at once? Mathematical induction is a clever
way of doing just that.

The crux of the idea is this: Suppose we can prove that whenever one of these
statements is true, then the one following it in the list is also true. In other words,

.

This is called the induction step because it leads us from the truth of one statement
to the next. Now, suppose that we can also prove that

.P11 2  is true

For every k, if P1k 2  is true, then P1k � 1 2  is true

P13 2 : The sum of the first 3 odd numbers is 32

P12 2 : The sum of the first 2 odd numbers is 22

P11 2 : The sum of the first 1 odd number is 12

P: For every natural number n, the sum of the first n odd numbers is n2

1 � 3 � 5 � . . . � 12n � 1 2 � n2

The sum of the first n odd numbers is n2

SECTION 11.5 Mathematical Induction 855

Consider the polynomial

Here are some values of :

All the values so far are prime num-
bers. In fact, if you keep going, you
will find is prime for all natural
numbers up to n � 40. It may seem 
reasonable at this point to conjecture
that is prime for every natural
number n. But out conjecture would be
too hasty, because it is easily seen that

is not prime. This illustrates that
we cannot be certain of the truth of a
statement no matter how many special
cases we check. We need a convincing
argument—a proof—to determine the
truth of a statement.

p141 2
p1n 2

p1n 2
p17 2 � 83 p18 2 � 97

p15 2 � 61 p16 2 � 71

p13 2 � 47 p14 2 � 53

p11 2 � 41 p12 2 � 43

p1n 2p1n 2 � n2 � n � 41



The induction step now leads us through the following chain of statements:

.

.

.
. .
. .
. .

So we see that if both the induction step and are proved, then statement P is
proved for all n. Here is a summary of this important method of proof.

P11 2
P13 2  is true, so P14 2  is true

P12 2  is true, so P13 2  is true

P11 2  is true, so P12 2  is true

856 CHAPTER 11 Sequences and Series

Principle of Mathematical Induction

For each natural number n, let be a statement depending on n. Suppose
that the following two conditions are satisfied.

1. is true.

2. For every natural number k, if is true then is true.

Then is true for all natural numbers n.P1n 2 P1k � 1 2P1k 2P11 2
P1n 2

To apply this principle, there are two steps:

Step 1 Prove that is true.

Step 2 Assume that is true and use this assumption to prove that 
is true.

Notice that in Step 2 we do not prove that is true. We only show that if
is true, then is also true. The assumption that is true is called the 
induction hypothesis.

P1k 2P1k � 1 2 P1k 2P1k 2
P1k � 1 2P1k 2P11 2
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We now use mathematical induction to prove that the conjecture we made at the
beginning of this section is true.



Example 1 A Proof by Mathematical Induction

Prove that for all natural numbers n,

Solution Let denote the statement .

Step 1 We need to show that is true. But is simply the statement that 
1 � 12, which is of course true.

Step 2 We assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

[Note that we get by substituting k � 1 for each n in the state-
ment .] We start with the left side and use the induction hypothesis to
obtain the right side of the equation:

Group the first
k terms

Induction
hypothesis

Distributive
Property

Simplify

Factor

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n. ■

Example 2 A Proof by Mathematical Induction

Prove that for every natural number n,

Solution Let be the statement . We
want to show that is true for all natural numbers n.

Step 1 We need to show that is true. But says that

and this statement is clearly true.

1 �
111 � 1 2

2

P11 2P11 2P1n 2 1 � 2 � 3 � . . . � n � n1n � 1 2 /2P1n 2 1 � 2 � 3 � . . . � n �
n1n � 1 2

2

P1n 2
P1k 2P1k � 1 2� 1k � 1 2 2� k2 � 2k � 1

� k2 � 32k � 2 � 1 4
� k2 � 321k � 1 2 � 1 4
� 31 � 3 � 5 � . . . � 12k � 1 2 4 � 321k � 1 2 � 1 41 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4

P1n 2 P1k � 1 21 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4 � 1k � 1 22P1k � 1 21 � 3 � 5 � . . . � 12k � 1 2 � k2

P1k 2
P11 2P11 2 1 � 3 � 5 � . . . � 12n � 1 2 � n2P1n 2 1 � 3 � 5 � . . . � 12n � 1 2 � n2
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This equals k 2 by the induction
hypothesis.



Step 2 Assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

So, we start with the left side and use the induction hypothesis to obtain
the right side:

Group the first k terms

Induction hypothesis

Factor k � 1

Common denominator

Write k � 2 as k � 1 � 1

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n. ■

Formulas for the sums of powers of the first n natural numbers are important in
calculus. Formula 1 in the following box is proved in Example 2. The other formulas
are also proved using mathematical induction (see Exercises 4 and 7).

P1n 2
P1k 2P1k � 1 2�

1k � 1 2 3 1k � 1 2 � 1 4
2

� 1k � 1 2 a k � 2

2
b

� 1k � 1 2 a k

2
� 1 b

�
k1k � 1 2

2
� 1k � 1 2� 31 � 2 � 3 � . . . � k 4 � 1k � 1 21 � 2 � 3 � . . . � k � 1k � 1 2

1 � 2 � 3 � . . . � k � 1k � 1 2 �
1k � 1 2 3 1k � 1 2 � 1 4

2

P1k � 1 21 � 2 � 3 � . . . � k �
k1k � 1 2

2

P1k 2
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Sums of Powers

0. 1.

2. 3. a
n

k�1
k3 �

n21n � 1 2 2
4a

n

k�1
k2 �

n1n � 1 2 12n � 1 2
6

a
n

k�1
k �

n1n � 1 2
2a

n

k�1
1 � n

It might happen that a statement is false for the first few natural numbers, but
true from some number on. For example, we may want to prove that is true for
n � 5. Notice that if we prove that is true, then this fact, together with the 
induction step, would imply the truth of , , , . . . . The next example
illustrates this point.

Example 3 Proving an Inequality

by Mathematical Induction

Prove that 4n � 2n for all n � 5.

P17 2P16 2P15 2P15 2 P1n 2P1n 2

Blaise Pascal (1623–1662) is con-
sidered one of the most versatile
minds in modern history. He was a
writer and philosopher as well as a
gifted mathematician and physi-
cist. Among his contributions that
appear in this book are Pascal’s tri-
angle and the Principle of Mathe-
matical Induction.

Pascal’s father, himself a math-
ematician, believed that his son
should not study mathematics until
he was 15 or 16. But at age 12,
Blaise insisted on learning geome-
try, and proved most of its elemen-
tary theorems himself. At 19, he
invented the first mechanical
adding machine. In 1647, after
writing a major treatise on the
conic sections, he abruptly aban-
doned mathematics because he felt
his intense studies were contribut-
ing to his ill health. He devoted
himself instead to frivolous recre-
ations such as gambling, but this
only served to pique his interest in
probability. In 1654 he miracu-
lously survived a carriage accident
in which his horses ran off a
bridge. Taking this to be a sign
from God, he entered a monastery,
where he pursued theology and
philosophy, writing his famous
Pensées. He also continued his
mathematical research. He valued
faith and intuition more than rea-
son as the source of truth, declaring
that “the heart has its own reasons,
which reason cannot know.”
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1–12 ■ Use mathematical induction to prove that the formula 
is true for all natural numbers n.

1.

2.

3.

4.

5.

6.

7.

8.

9. 23 � 43 � 63 � . . . � 12n 2 3 � 2n21n � 1 2 213 � 33 � 53 � . . . � 12n � 1 2 3 � n212n2 � 1 213 � 23 � 33 � . . . � n3 �
n21n � 1 2 2

4

�
n1n � 1 2 12n � 7 2

6

1 # 3 � 2 # 4 � 3 # 5 � . . . � n1n � 2 2�
n1n � 1 2 1n � 2 2

3

1 # 2 � 2 # 3 � 3 # 4 � . . . � n1n � 1 212 � 22 � 32 � . . . � n2 �
n1n � 1 2 12n � 1 2

6

5 � 8 � 11 � . . . � 13n � 2 2 �
n13n � 7 2

2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

2 � 4 � 6 � . . . � 2n � n1n � 1 2 10.

11.

12. 1 � 2 � 22 � . . . � 2n�1 � 2n � 1

13. Show that n2 � n is divisible by 2 for all natural numbers n.

14. Show that 5n � 1 is divisible by 4 for all natural numbers n.

15. Show that n2 � n � 41 is odd for all natural numbers n.

16. Show that n3 � n � 3 is divisible by 3 for all natural 
numbers n.

17. Show that 8n � 3n is divisible by 5 for all natural numbers n.

18. Show that 32n � 1 is divisible by 8 for all natural numbers n.

19. Prove that n � 2n for all natural numbers n.

20. Prove that for all natural numbers n � 3.

21. Prove that if x 	 �1, then for all natural
numbers n.

22. Show that 100n 
 n2 for all n � 100.

23. Let an�1 � 3an and a1 � 5. Show that an � 5 
 3n�1 for all
natural numbers n.

11 � x 2 n � 1 � nx

1n � 1 2 2 � 2n2

� 2 31 � 1n � 1 22n 41 # 2 � 2 # 22 � 3 # 23 � 4 # 24 � . . . � n # 2n

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

n1n � 1 2 �
n1n � 1 2

Solution Let denote the statement 4n � 2n.

Step 1 is the statement that � 25, or 20 � 32, which is true.

Step 2 Assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

So, we start with the left side of the inequality and use the induction 
hypothesis to show that it is less than the right side. For k � 5, we have

Induction hypothesis

Because 4 � 4k

Induction hypothesis

Property of exponents

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n � 5. ■

11.5 Exercises

P1n 2
P1k 2P1k � 1 2 � 2k�1

� 2 # 2k

� 2k � 2k

� 2k � 4k

� 2k � 4

 41k � 1 2 � 4k � 4

41k � 1 2 � 2k�1

P1k � 1 24k � 2k

P1k 2 4 # 5P15 2 P1n 2

We get P(k � 1) by replacing k by
k � 1 in the statement P(k).
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24. A sequence is defined recursively by an�1 � 3an � 8 and 
a1 � 4. Find an explicit formula for an and then use mathe-
matical induction to prove that the formula you found is true.

25. Show that x � y is a factor of xn � yn for all natural 
numbers n.

26. Show that x � y is a factor of x 2n�1 � y2n�1 for all natural
numbers n.

27–31 ■ Fn denotes the nth term of the Fibonacci sequence 
discussed in Section 11.1. Use mathematical induction to prove
the statement.

27. F3n is even for all natural numbers n.

28. F1 � F2 � F3 � . . . � Fn � Fn�2 � 1

29. F 2
1 � F 2

2 � F 2
3 � . . . � F 2

n � FnFn�1

30. F1 � F3 � . . . � F2n�1 � F2n

31. For all n � 2,

32. Let an be the nth term of the sequence defined recursively by

and a1 � 1. Find a formula for an in terms of the Fibonacci
numbers Fn. Prove that the formula you found is valid for all
natural numbers n.

33. Let Fn be the nth term of the Fibonacci sequence. Find and
prove an inequality relating n and Fn for natural numbers n.

34. Find and prove an inequality relating 100n and n3.

Discovery • Discussion

35. True or False? Determine whether each statement is true
or false. If you think the statement is true, prove it. If you
think it is false, give an example where it fails.

(a) is prime for all n.p1n 2 � n2 � n � 11

an�1 �
1

1 � an

c1 1

1 0
d n � cFn�1 Fn

Fn Fn�1
d

3Hint: xk�1 � yk�1 � xk1x � y 2 � 1xk � yk 2y 4

(b) n2 	 n for all n � 2.

(c) 22n�1 � 1 is divisible by 3 for all n � 1.

(d) for all n � 2.

(e) n3 � n is divisible by 3 for all n � 2.

(f ) n3 � 6n2 � 11n is divisible by 6 for all n � 1.

36. All Cats Are Black? What is wrong with the following
“proof” by mathematical induction that all cats are black?
Let denote the statement: In any group of n cats, if one
is black, then they are all black.

Step 1 The statement is clearly true for n � 1.

Step 2 Suppose that is true. We show that 
is true.

Suppose we have a group of k � 1 cats, one of
whom is black; call this cat “Midnight.” Remove
some other cat (call it “Sparky”) from the group.
We are left with k cats, one of whom (Midnight) is
black, so by the induction hypothesis, all k of these
are black. Now put Sparky back in the group and
take out Midnight. We again have a group of k cats,
all of whom—except possibly Sparky—are black.
Then by the induction hypothesis, Sparky must be
black, too. So all k � 1 cats in the original group
are black.

Thus, by induction is true for all n. Since everyone has
seen at least one black cat, it follows that all cats are black.

Midnight Sparky

P1n 2

P1k � 1 2P1k 2
P1n 2

n3 � 1n � 1 2 2

11.6 The Binomial Theorem

An expression of the form a � b is called a binomial. Although in principle it’s easy
to raise a � b to any power, raising it to a very high power would be tedious. In this
section we find a formula that gives the expansion of for any natural num-
ber n and then prove it using mathematical induction.

1a � b 2 n



Expanding (a � b)n

To find a pattern in the expansion of , we first look at some special cases:

.

.

.

The following simple patterns emerge for the expansion of :

1. There are n � 1 terms, the first being an and the last bn.

2. The exponents of a decrease by 1 from term to term while the exponents of b
increase by 1.

3. The sum of the exponents of a and b in each term is n.

For instance, notice how the exponents of a and b behave in the expansion of
.

The exponents of a decrease:

The exponents of b increase:

With these observations we can write the form of the expansion of for any
natural number n. For example, writing a question mark for the missing coefficients,
we have

Óa � bÔ8 � a8 � a7b � a6b2 � a5b3 � a4b4 � a3b5 � a2b6 � ab7 � b8

To complete the expansion, we need to determine these coefficients. To find a pattern,
let’s write the coefficients in the expansion of for the first few values of n in
a triangular array as shown in the following array, which is called Pascal’s triangle.

1a � b 2 51a � b 2 41a � b 2 31a � b 2 21a � b 2 1

1 5 10 110 5

1

1

1

1

1

1

1

1

1

4

3

2

4

3

6

1a � b 2 0
1a � b 2 n

???????

1a � b 2 n1a � b 2 5 � a5 � 5a4b  �  10a3b  �  10a2b � 5a1b  �  b

1a � b 2 5 � a �  5a b1 �  10a b2 �  10a b3 � 5a  b4 � b5

1a � b 2 5

1a � b 2 n
1a � b 2 5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

1a � b 2 4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4

1a � b 2 3 � a3 � 3a2b � 3ab2 � b3

1a � b 2 2 � a2 � 2ab � b2

1a � b 2 1 � a � b

1a � b 2 n

5 4 3 2 1

1 2 3 4 5
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The row corresponding to is called the zeroth row and is included to show
the symmetry of the array. The key observation about Pascal’s triangle is the follow-
ing property.

1a � b 2 0
862 CHAPTER 11 Sequences and Series

Key Property of Pascal’s Triangle

Every entry (other than a 1) is the sum of the two entries diagonally above it.

From this property it’s easy to find any row of Pascal’s triangle from the row above
it. For instance, we find the sixth and seventh rows, starting with the fifth row:

To see why this property holds, let’s consider the following expansions:

We arrive at the expansion of by multiplying by . Notice,
for instance, that the circled term in the expansion of is obtained via this
multiplication from the two circled terms above it. We get this term when the two
terms above it are multiplied by b and a, respectively. Thus, its coefficient is the sum
of the coefficients of these two terms. We will use this observation at the end of this
section when we prove the Binomial Theorem.

Having found these patterns, we can now easily obtain the expansion of any bino-
mial, at least to relatively small powers.

Example 1 Expanding a Binomial Using Pascal’s Triangle

Find the expansion of using Pascal’s triangle.

Solution The first term in the expansion is a7, and the last term is b7. Using the
fact that the exponent of a decreases by 1 from term to term and that of b increases
by 1 from term to term, we have1a � b2 7 � a7 � a6b � a5b2 � a4b3 � a3b4 � a2b5 � ab6 � b7

The appropriate coefficients appear in the seventh row of Pascal’s triangle. Thus

■

Example 2 Expanding a Binomial Using 

Pascal’s Triangle

Use Pascal’s triangle to expand .

Solution We find the expansion of and then substitute 2 for a and �3x
for b. Using Pascal’s triangle for the coefficients, we get1a � b 2 5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

1a � b 2 512 � 3x 2 5
1a � b 2 7 � a7 � 7a6b � 21a5b2 � 35a4b3 � 35a3b4 � 21a2b5 � 7ab6 � b7

??????

1a � b 2 7

1a � b 2 6 1a � b 21a � b 2 51a � b 2 61a � b 2 6 � a6 � 6a5b � 15a4b2 � 20a3b3 �  15a2b4 � 6ab5 � b6

1a � b 2 5 � a5 � 5a4b � 10a3b2 �  10a2b3 �  5ab4 � b5

1a � b 2 71a � b 2 6 1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1a � b 2 5

�––

�

Pascal’s triangle appears in this
Chinese document by Chu Shikie,
dated 1303. The title reads “The
Old Method Chart of the Seven
Multiplying Squares.” The triangle
was rediscovered by Pascal (see
page 858).

� � �

� � � � � �

� � �

� � � � � �

� � � �



Substituting a � 2 and b � �3x gives

■

The Binomial Coefficients

Although Pascal’s triangle is useful in finding the binomial expansion for reasonably
small values of n, it isn’t practical for finding for large values of n. The rea-
son is that the method we use for finding the successive rows of Pascal’s triangle is
recursive. Thus, to find the 100th row of this triangle, we must first find the preced-
ing 99 rows.

We need to examine the pattern in the coefficients more carefully to develop a for-
mula that allows us to calculate directly any coefficient in the binomial expansion.
Such a formula exists, and the rest of this section is devoted to finding and proving it.
However, to state this formula we need some notation.

The product of the first n natural numbers is denoted by n! and is called 
n factorial:

We also define 0! as follows:

This definition of 0! makes many formulas involving factorials shorter and easier to
write.

1a � b 2 n
� 32 � 240x � 720x2 � 1080x3 � 810x4 � 243x5

12 � 3x 2 5 � 12 2 5 � 512 2 41�3x 2 � 1012 2 31�3x 2 2 � 1012 2 21�3x 2 3 � 512 2 1�3x 2 4 � 1�3x 2 5
SECTION 11.6 The Binomial Theorem 863

The Binomial Coefficient

Let n and r be nonnegative integers with r 
 n. The binomial coefficient is
denoted by ( ) and is defined by

an

r
b �

n!

r!1n � r 2 !
n
r

Example 3 Calculating Binomial Coefficients

(a)

(b)

�
98 # 99 # 100

1 # 2 # 3 � 161,700

a100

3
b �

100!

3!1100 � 3 2 ! �
1 # 2 # 3 # p # 97 # 98 # 99 # 10011 # 2 # 3 2 11 # 2 # 3 # p # 97 2
�

6 # 7 # 8 # 9
1 # 2 # 3 # 4 � 126

a9

4
b �

9!

4!19 � 4 2 ! �
9!

4!5!
�

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 911 # 2 # 3 # 4 2 11 # 2 # 3 # 4 # 5 2

� 3,628,800

 10! � 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

 7! � 1 # 2 # 3 # 4 # 5 # 6 # 7 � 5040

 4! � 1 # 2 # 3 # 4 � 24

n! � 1 # 2 # 3 # . . . # 1n � 1 2 # n
0! � 1



(c)

■

Although the binomial coefficient ( ) is defined in terms of a fraction, all the re-
sults of Example 3 are natural numbers. In fact, ( ) is always a natural number (see
Exercise 50). Notice that the binomial coefficients in parts (b) and (c) of Example 3
are equal. This is a special case of the following relation, which you are asked to
prove in Exercise 48.

To see the connection between the binomial coefficients and the binomial expan-
sion of , let’s calculate the following binomial coefficients:

These are precisely the entries in the fifth row of Pascal’s triangle. In fact, we can
write Pascal’s triangle as follows.

To demonstrate that this pattern holds, we need to show that any entry in this version
of Pascal’s triangle is the sum of the two entries diagonally above it. In other words,
we must show that each entry satisfies the key property of Pascal’s triangle. We now
state this property in terms of the binomial coefficients.

an

0
b   an

1
b  an

2
b  #   #   #   a n

n � 1
b  an

n
b

#    #    #    #    #    #    #
a5

0
b  a5

1
b  a5

2
b  a5

3
b  a5

4
b  a5

5
b

a4

0
b  a4

1
b  a4

2
b  a4

3
b  a4

4
b

a3

0
b  a3

1
b  a3

2
b  a3

3
b

a2

0
b   a2

1
b  a2

2
b

a1

0
b   a1

1
b

a0

0
b

a5

0
b � 1  a5

1
b � 5  a5

2
b � 10  a5

3
b � 10  a5

4
b � 5  a5

5
b � 1

1a � b 2 n

n
r

n
r

�
98 # 99 # 100

1 # 2 # 3 � 161,700

a100

97
b �

100!

97!1100 � 97 2 ! �
1 # 2 # 3 # p # 97 # 98 # 99 # 10011 # 2 # 3 # p # 97 2 11 # 2 # 3 2
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a5

2
b �

5!

2!15 � 2 2 ! � 10

an

r
b � a n

n � r
b
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Key Property of the Binomial Coefficients

For any nonnegative integers r and k with r 
 k,a k

r � 1
b � a k

r
b � a k � 1

r
b

Notice that the two terms on the left side of this equation are adjacent entries in the
kth row of Pascal’s triangle and the term on the right side is the entry diagonally be-
low them, in the st row. Thus, this equation is a restatement of the key prop-
erty of Pascal’s triangle in terms of the binomial coefficients. A proof of this formula
is outlined in Exercise 49.

The Binomial Theorem

We are now ready to state the Binomial Theorem.

1k � 1 2

The Binomial Theorem

1a � b 2n � an

0
ban � an

1
ban�1b � an

2
ban�2b2 � . . . � a n

n � 1
babn�1 � an

n
bbn

We prove this theorem at the end of this section. First, let’s look at some of its 
applications.

Example 4 Expanding a Binomial Using 

the Binomial Theorem

Use the Binomial Theorem to expand .

Solution By the Binomial Theorem,

Verify that

It follows that

■1x � y 2 4 � x4 � 4x3y � 6x2y2 � 4xy3 � y4

a4

0
b � 1  a4

1
b � 4  a4

2
b � 6  a4

3
b � 4  a4

4
b � 1

1x � y 2 4 � a4

0
b x4 � a4

1
b x3y � a4

2
b x2y2 � a4

3
b xy3 � a4

4
b y4

1x � y 2 4



Example 5 Expanding a Binomial Using 

the Binomial Theorem

Use the Binomial Theorem to expand .

Solution We first find the expansion of and then substitute for a
and �1 for b. Using the Binomial Theorem, we have

Verify that

So

Performing the substitutions a � x1/2 and b � �1 gives

This simplifies to

■

The Binomial Theorem can be used to find a particular term of a binomial expan-
sion without having to find the entire expansion.

11x � 1 2 8 � x4 � 8x7/2 � 28x3 � 56x5/2 � 70x2 � 56x3/2 � 28x � 8x1/2 � 1

� 81x1/2 2 1�1 2 7 � 1�1 2 8� 701x1/2 2 41�1 2 4 � 561x1/2 2 31�1 2 5 � 281x1/2 2 21�1 2 6A1x � 1B8 � 1x1/2 2 8 � 81x1/2 2 71�1 2 � 281x1/2 2 61�1 2 2 � 561x1/2 2 51�1 2 3
� 28a2b6 � 8ab7 � b8

1a � b 2 8 � a8 � 8a7b � 28a6b2 � 56a5b3 � 70a4b4 � 56a3b5

a8

5
b � 56  a8

6
b � 28  a8

7
b � 8  a8

8
b � 1

a8

0
b � 1  a8

1
b � 8  a8

2
b � 28  a8

3
b � 56  a8

4
b � 70

� a8

5
ba3b5 � a8

6
ba2b6 � a8

7
bab7 � a8

8
bb8

1a � b 2 8 � a8

0
ba8 � a8

1
ba7b � a8

2
ba6b2 � a8

3
ba5b3 � a8

4
ba4b4

1x1a � b 2 8A1x � 1B8
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General Term of the Binomial Expansion

The term that contains ar in the expansion of isa n

n � r
barbn�r

1a � b 2 n



Example 6 Finding a Particular Term in a Binomial Expansion

Find the term that contains x5 in the expansion of .

Solution The term that contains x5 is given by the formula for the general term
with a � 2x, b � y, n � 20, and r � 5. So, this term is

■

Example 7 Finding a Particular Term in a Binomial Expansion

Find the coefficient of x8 in the expansion of .

Solution Both x2 and 1/x are powers of x, so the power of x in each term of 
the expansion is determined by both terms of the binomial. To find the required
coefficient, we first find the general term in the expansion. By the formula we 
have a � x2, b � 1/x, and n � 10, so the general term is

Thus, the term that contains x8 is the term in which

So the required coefficient is

■

Proof of the Binomial Theorem

We now give a proof of the Binomial Theorem using mathematical induction.

■ Proof Let denote the statement

Step 1 We show that is true. But is just the statement

which is certainly true.

Step 2 We assume that is true. Thus, our induction hypothesis is1a � b 2 k � a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk

P1k 2
1a � b 2 1 � a1

0
ba1 � a1

1
bb1 � 1a � 1b � a � b

P11 2P11 2
1a � b 2 n � an

0
ban � an

1
ban�1b � an

2
ban�2b2 � . . . � a n

n � 1
babn�1 � an

n
bbn

P1n 2

a 10

10 � 6
b � a10

4
b � 210

r � 6

 3r � 10 � 8

a 10

10 � r
b 1x2 2 r a 1

x
b 10�r

� a 10

10 � r
b x2r1x�1 2 10�r � a 10

10 � r
b x3r�10

a x2 �
1
x
b 10

a20

15
ba5b15 �

20!

15!120 � 15 2 ! 12x 2 5y15 �
20!

15!5!
32x5y15 � 496,128x5y15

12x � y 2 20

SECTION 11.6 The Binomial Theorem 867



868 CHAPTER 11 Sequences and Series

1–12 ■ Use Pascal’s triangle to expand the expression.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12. a2 �
x

2
b 5a 1

x
� 1x b 511 � x3 2 3 12x � 3y 2 3A1 � 12B61x2y � 1 2 5 A1a � 1bB61x � 1 2 51x � y 2 5 a x �

1
x
b 412x � 1 2 41x � y 2 6 13–20 ■ Evaluate the expression.

13. 14. 15.

16. 17. 18.

19. a5

0
b � a5

1
b � a5

2
b � a5

3
b � a5

4
b � a5

5
b
a5

2
b a5

3
ba3

1
b a4

2
ba10

5
b

a100

98
ba8

3
ba6

4
b

We use this to show that is true.

Group like terms

Using the key property of the binomial coefficients, we can write each of the 
expressions in square brackets as a single binomial coefficient. Also, writing
the first and last coefficients as ( ) and ( ) (these are equal to 1 by Exer-
cise 46) gives

But this last equation is precisely , and this completes the induc-
tion step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that the theorem is true for all natural numbers n. ■

11.6 Exercises

P1k � 1 2
1a � b 2 k�1 � a k � 1

0
bak�1 � a k � 1

1
bakb � a k � 1

2
bak�1b2 � . . . � a k � 1

k
babk � a k � 1

k � 1
bbk�1

k�1
k�1

k�1
0

� . . . � c a k

k � 1
b � a k

k
b d abk � a k

k
bbk�1

� a k

0
bak�1 � c a k

0
b � a k

1
b d akb � c a k

1
b � a k

2
b d ak�1b2

Distributive
Property� a k

0
bakb � a k

1
bak�1b2 � a k

2
bak�2b3 � . . . � a k

k � 1
babk � a k

k
bbk�1

� a k

0
bak�1 � a k

1
bakb � a k

2
bak�1b2 � . . . � a k

k � 1
ba2bk�1 � a k

k
babk

Distributive
Property� b c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d

� a c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d

Induction
hypothesis� 1a � b 2 c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d1a � b 2 k�1 � 1a � b 2 3 1a � b 2 k 4 P1k � 1 2
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20.

21–24 ■ Use the Binomial Theorem to expand the expression.

21. 22.

23. 24.

25. Find the first three terms in the expansion of .

26. Find the first four terms in the expansion of .

27. Find the last two terms in the expansion of .

28. Find the first three terms in the expansion of

29. Find the middle term in the expansion of .

30. Find the fifth term in the expansion of .

31. Find the 24th term in the expansion of .

32. Find the 28th term in the expansion of .

33. Find the 100th term in the expansion of .

34. Find the second term in the expansion of

35. Find the term containing x4 in the expansion of .

36. Find the term containing y3 in the expansion of .

37. Find the term containing b8 in the expansion of .

38. Find the term that does not contain x in the expansion of

39–42 ■ Factor using the Binomial Theorem.

39.

40.

41.

42. x8 � 4x6y � 6x4y2 � 4x2y3 � y4

8a3 � 12a2b � 6ab2 � b3

101x � 1 2 2 � 51x � 1 2 � 1
1x � 1 2 5 � 51x � 1 2 4 � 101x � 1 2 3 �

x4 � 4x3y � 6x2y2 � 4xy3 � y4

a8x �
1

2x
b 8

1a � b2 2 12

A12 � yB12

1x � 2y 2 10

a x2 �
1
x
b 25

11 � y 2 100

1A � B 2 30

1a � b 2 25

1ab � 1 2 20

1x2 � 1 2 18

a x �
1
x
b 40

1a2/3 � a1/3 2 25

1x1/2 � 1 2 30

1x � 2y 2 20

12A � B2 2 4a1 �
1
x
b 6

11 � x 2 51x � 2y 2 4
a5

0
b � a 5

1
b � a 5

2
b � a5

3
b � a5

4
b � a5

5
b 43–44 ■ Simplify using the Binomial Theorem.

43. 44.

45. Show that .

[Hint: Note that and use the Bino-
mial Theorem to show that the sum of the first two terms of
the expansion is greater than 2.]

46. Show that and .

47. Show that .

48. Show that for 0 
 r 
 n.

49. In this exercise we prove the identity

(a) Write the left side of this equation as the sum of two
fractions.

(b) Show that a common denominator of the expression
you found in part (a) is .

(c) Add the two fractions using the common denominator
in part (b), simplify the numerator, and note that the 
resulting expression is equal to the right side of the
equation.

50. Prove that 1nr 2 is an integer for all n and for 0 
 r 
 n.
[Suggestion: Use induction to show that the statement is
true for all n, and use Exercise 49 for the induction step.]

Discovery • Discussion

51. Powers of Factorials Which is larger, or
[Hint: Try factoring the expressions. Do they

have any common factors?]

52. Sums of Binomial Coefficients Add each of the 
first five rows of Pascal’s triangle, as indicated. Do you 
see a pattern?

1 � 5 � 10 � 10 � 5 � 1 �

1 � 4 � 6 � 4 � 1 �

1 � 3 � 3 � 1 �

1 � 2 � 1 �

1 � 1 �

1101! 2100?
1100! 2 101

r!1n � r � 1 2 !
a n

r � 1
b � an

r
b � an � 1

r
b

an

r
b � a n

n � r
b

an

1
b � a n

n � 1
b � n

an

n
b � 1an

0
b � 1

11.01 2100 � 11 � 0.01 2 100

11.01 2 100 	 2

1x � h 2 4 � x4

h

1x � h 2 3 � x3

h

?

?

?

?

?
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1–6 ■ Find the first four terms as well as the tenth term of the
sequence with the given nth term.

1. 2.

3. 4.

5. 6.

7–10 ■ A sequence is defined recursively. Find the first seven
terms of the sequence.

7. an � an�1 � 2n � 1, a1 � 1

an � an � 1

2
ban �

12n 2 !
2nn!

an �
n1n � 1 2

2
an �

1�1 2 n � 1

n3

an � 1�1 2 n 2n

n
an �

n2

n � 1

8. , a1 � 1

9. an � an�1 � 2an�2, a1 � 1, a2 � 3

10.

11–14 ■ The nth term of a sequence is given.

(a) Find the first five terms of the sequence.

(b) Graph the terms you found in part (a).

(c) Determine if the series is arithmetic or geometric. Find the
common difference or the common ratio.

11. an � 2n � 5 12.

13. 14. an � 4 �
n

2
an �

3n

2n�1

an �
5

2n

an � 23an�1, a1 � 13

an �
an�1

n

1. (a) What is a sequence?

(b) What is an arithmetic sequence? Write an expression
for the nth term of an arithmetic sequence.

(c) What is a geometric sequence? Write an expression for
the nth term of a geometric sequence.

2. (a) What is a recursively defined sequence?

(b) What is the Fibonacci sequence?

3. (a) What is meant by the partial sums of a sequence?

(b) If an arithmetic sequence has first term a and common
difference d, write an expression for the sum of its first
n terms.

(c) If a geometric sequence has first term a and common
ratio r, write an expression for the sum of its first 
n terms.

(d) Write an expression for the sum of an infinite geometric
series with first term a and common ratio r. For what
values of r is your formula valid?

4. (a) Write the sum without using �-notation.

(b) Write using �-notation.

5. Write an expression for the amount Af of an annuity consist-
ing of n regular equal payments of size R with interest rate i
per time period.

6. State the Principle of Mathematical Induction.

7. Write the first five rows of Pascal’s triangle. How are the 
entries related to each other?

8. (a) What does the symbol n! mean?

(b) Write an expression for the binomial coefficient 1nr 2.
(c) State the Binomial Theorem.

(d) Write the term that contains ar in the expansion of
.1a � b 2 n

b1 � b2 � b3 � . . . � bn

a
n

k�1
ak

Based on the pattern you have found, find the sum of the 
nth row:

Prove your result by expanding using the Binomial
Theorem.

11 � 1 2 n
an

0
b � an

1
b � an

2
b � . . . � an

n
b

53. Alternating Sums of Binomial Coefficients Find
the sum

by finding a pattern as in Exercise 52. Prove your result by
expanding using the Binomial Theorem.11 � 1 2 n
an

0
b � an

1
b � an

2
b � . . . � 1�1 2 n an

n
b

11 Review

Concept Check

Exercises
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15–22 ■ The first four terms of a sequence are given. Deter-
mine whether they can be the terms of an arithmetic sequence, a
geometric sequence, or neither. If the sequence is arithmetic or
geometric, find the fifth term.

15. 5, 5.5, 6, 6.5, . . . 16.

17. 18.

19. t � 3, t � 2, t � 1, t, . . . 20. t 3, t 2, t, 1, . . .

21. 22.

23. Show that 3, 6i, �12, �24i, . . . is a geometric sequence,
and find the common ratio. (Here .)

24. Find the nth term of the geometric sequence 2, 2 � 2i, 4i,
�4 � 4i, �8, . . . (Here .)

25. The sixth term of an arithmetic sequence is 17, and the
fourth term is 11. Find the second term.

26. The 20th term of an arithmetic sequence is 96, and the com-
mon difference is 5. Find the nth term.

27. The third term of a geometric sequence is 9, and the com-
mon ratio is . Find the fifth term.

28. The second term of a geometric sequence is 10, and the fifth
term is . Find the nth term.

29. A teacher makes $32,000 in his first year at Lakeside
School, and gets a 5% raise each year.

(a) Find a formula for his salary An in his nth year at this
school.

(b) List his salaries for his first 8 years at this school.

30. A colleague of the teacher in Exercise 29, hired at the same
time, makes $35,000 in her first year, and gets a $1200 raise
each year.

(a) What is her salary An in her nth year at this school?

(b) Find her salary in her eighth year at this school, and
compare it to the salary of the teacher in Exercise 29 in
his eighth year.

31. A certain type of bacteria divides every 5 s. If three of these
bacteria are put into a petri dish, how many bacteria are in
the dish at the end of 1 min?

32. If a1, a2, a3, . . . and b1, b2, b3, . . . are arithmetic sequences,
show that a1 � b1, a2 � b2, a3 � b3, . . . is also an arithmetic
sequence.

33. If a1, a2, a3, . . . and b1, b2, b3, . . . are geometric sequences,
show that a1b1, a2b2, a3b3, . . . is also a geometric sequence.

34. (a) If a1, a2, a3, . . . is an arithmetic sequence, is the 
sequence a1 � 2, a2 � 2, a3 � 2, . . . arithmetic?

(b) If a1, a2, a3, . . . is a geometric sequence, is the sequence
5a1, 5a2, 5a3, . . . geometric?

1250
27

3
2

i � 1�1

i � 1�1

a, 1, 
1
a

,
1

a2, . . .
3

4
,

1

2
,

1

3
,

2

9
, . . .

12, 2, 212, 4, . . .12, 212, 312, 412, . . .

1, � 3
2, 2, � 5

2, . . .

35. Find the values of x for which the sequence 6, x, 12, . . . is

(a) arithmetic (b) geometric

36. Find the values of x and y for which the sequence 2, x, y,
17, . . . is

(a) arithmetic (b) geometric

37–40 ■ Find the sum.

37. 38.

39. 40.

41–44 ■ Write the sum without using sigma notation. Do not
evaluate.

41. 42.

43. 44.

45–48 ■ Write the sum using sigma notation. Do not evaluate.

45. 3 � 6 � 9 � 12 � . . . � 99

46. 12 � 22 � 32 � . . . � 1002

47. 1 23 � 2 24 � 3 25 � 4 26 � . . . � 100 2102

48.

49–54 ■ Determine whether the expression is a partial sum of
an arithmetic or geometric sequence. Then find the sum.

49.

50. 3 � 3.7 � 4.4 � . . . � 10

51.

52.

53. 54.

55. The first term of an arithmetic sequence is a � 7, and the
common difference is d � 3. How many terms of this 
sequence must be added to obtain 325?

56. The sum of the first three terms of a geometric series is 52,
and the common ratio is r � 3. Find the first term.

57. A person has two parents, four grandparents, eight great-
grandparents, and so on. What is the total number of a 
person’s ancestors in 15 generations?

a
8

k�0
715 2 k/2

a
6

n�0
31�4 2 n

1
3 � 2

3 � 1 � 4
3 � . . . � 33

15 � 215 � 315 � . . . � 10015

1 � 0.9 � 10.9 2 2 � . . . � 10.9 2 5

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

999 # 1000

#####

a
10

n�1
n22n

a
50

k�1

3k

2k�1

a
100

j�2

1

j � 1a
10

k�1
1k � 1 2 2

a
5

m�1
3m�2

a
6

k�1
1k � 1 22k�1

a
4

i�1

2i

2i � 1a
6

k�3
1k � 1 2 2
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58. Find the amount of an annuity consisting of 16 annual pay-
ments of $1000 each into an account that pays 8% interest
per year, compounded annually.

59. How much money should be invested every quarter at 12%
per year, compounded quarterly, in order to have $10,000 in
one year?

60. What are the monthly payments on a mortgage of $60,000
at 9% interest if the loan is to be repaid in

(a) 30 years? (b) 15 years?

61–64 ■ Find the sum of the infinite geometric series.

61.

62. 0.1 � 0.01 � 0.001 � 0.0001 � . . .

63.

64. a � ab 2 � ab 4 � ab 6 � . . .

65–67 ■ Use mathematical induction to prove that the formula
is true for all natural numbers n.

65.

66.

�
n

2n � 1

1

1 # 3 �
1

3 # 5 �
1

5 # 7 � . . . �
112n � 1 2 12n � 1 2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

1 �
1

31/2
�

1

3
�

1

33/2
� . . .

1 � 2
5 � 4

25 � 8
125 � . . .

67.

68. Show that 7n � 1 is divisible by 6 for all natural numbers n.

69. Let an�1 � 3an � 4 and a1 � 4. Show that an � 2 3n � 2
for all natural numbers n.

70. Prove that the Fibonacci number F4n is divisible by 3 for all
natural numbers n.

71. Find and prove an inequality that relates 2n and n!.

72–75 ■ Evaluate the expression.

72. 73.

74. 75.

76–77 ■ Expand the expression.

76. 77.

78. Find the 20th term in the expansion of .

79. Find the first three terms in the expansion of 
.

80. Find the term containing A 6 in the expansion of .1A � 3B 2 10

1b�2/3 � b1/3 2 20

1a � b 2 22

12x � y 2 411 � x2 2 6
a

8

k�0
a8

k
b a 8

8 � k
ba

5

k�0
a5

k
b

a10

2
b � a10

6
ba5

2
b a5

3
b

#

a1 �
1

1
b a1 �

1

2
b a 1 �

1

3
b . . . a1 �

1
n
b � n � 1



11 Test

1. Find the first four terms and the tenth term of the sequence whose nth term is 
an � n 2 � 1.

2. A sequence is defined recursively by , with a1 � 1 and a2 � 1.
Find a5.

3. An arithmetic sequence begins 2, 5, 8, 11, 14, . . . .

(a) Find the common difference d for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the 35th term of the sequence.

4. A geometric sequence begins 12, 3, 3/4, 3/16, 3/64, . . . .

(a) Find the common ratio r for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the tenth term of the sequence.

5. The first term of a geometric sequence is 25, and the fourth term is .

(a) Find the common ratio r and the fifth term.

(b) Find the partial sum of the first eight terms.

6. The first term of an arithmetic sequence is 10 and the tenth term is 2.

(a) Find the common difference and the 100th term of the sequence.

(b) Find the partial sum of the first ten terms.

7. Let a1, a2, a3, . . . be a geometric sequence with initial term a and common ratio r.
Show that , . . . is also a geometric sequence by finding its common ratio.

8. Write the expression without using sigma notation, and then find the sum.

(a) (b)

9. Find the sum.

(a)

(b)

10. Use mathematical induction to prove that, for all natural numbers n,

11. Expand .

12. Find the term containing x 3 in the binomial expansion of .

13. A puppy weighs 0.85 lb at birth, and each week he gains 24% in weight. Let an be his
weight in pounds at the end of his nth week of life.

(a) Find a formula for an.

(b) How much does the puppy weigh when he is six weeks old?

(c) Is the sequence a1, a2, a3, . . . arithmetic, geometric, or neither?

13x � 2 2 10

12x � y2 2 5
12 � 22 � 32 � . . . � n2 �

n1n � 1 2 12n � 1 2
6

1 �
1

21/2
�

1

2
�

1

23/2
� . . .

1

3
�

2

32 �
22

33 �
23

34 � . . . �
29

310

a
6

n�3
1�1 2 n2n�2

a
5

n�1
11 � n2 2

a2
1, a2

2, a2
3

1
5

an�2 � a2
n � an�1
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Many real-world processes occur in stages. Population growth can be viewed in
stages—each new generation represents a new stage in population growth. Com-
pound interest is paid in stages—each interest payment creates a new account bal-
ance. Many things that change continuously are more easily measured in discrete
stages. For example, we can measure the temperature of a continuously cooling 
object in one-hour intervals. In this Focus we learn how recursive sequences are used
to model such situations. In some cases, we can get an explicit formula for a sequence
from the recursion relation that defines it by finding a pattern in the terms of the 
sequence.

Recursive Sequences as Models

Suppose you deposit some money in an account that pays 6% interest compounded
monthly. The bank has a definite rule for paying interest: At the end of each month
the bank adds to your account % (or 0.005) of the amount in your account at that
time. Let’s express this rule as follows:

� � 0.005 � 

Using the Distributive Property, we can write this as

� 1.005 � 

To model this statement using algebra, let A0 be the amount of the original deposit,
A1 the amount at the end of the first month, A2 the amount at the end of the second
month, and so on. So An is the amount at the end of the nth month. Thus

We recognize this as a recursively defined sequence—it gives us the amount at each
stage in terms of the amount at the preceding stage.

An−1

0.005An−1

A2A1A0

An � 1.005An�1

amount at the end of
last month

amount at the end of
this month

amount at the end of
last month

amount at the end of
last month

amount at the end of
this month

1
2
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To find a formula for An, let’s find the first few terms of the sequence and look for
a pattern.

We see that in general, .

Example 1 Population Growth

A certain animal population grows by 2% each year. The initial population is 5000.

(a) Find a recursive sequence that models the population Pn at the end of the nth
year.

(b) Find the first five terms of the sequence Pn.

(c) Find a formula for Pn.

Solution

(a) We can model the population using the following rule:

� 1.02 �

Algebraically we can write this as the recursion relation

(b) Since the initial population is 5000, we have

(c) We see from the pattern exhibited in part (b) that . (Note that
Pn is a geometric sequence, with common ratio r � 1.02.) ■

Example 2 Daily Drug Dose

A patient is to take a 50-mg pill of a certain drug every morning. It is known that
the body eliminates 40% of the drug every 24 hours.

(a) Find a recursive sequence that models the amount An of the drug in the patient’s
body after each pill is taken.

Pn � 11.02 2 n5000

P4 � 1.02P3 � 11.02 2 45000

P3 � 1.02P2 � 11.02 2 35000

P2 � 1.02P1 � 11.02 2 25000

P1 � 1.02P0 � 11.02 25000

P0 � 5000

Pn � 1.02Pn�1

population at the end of last yearpopulation at the end of this year

An � 11.005 2 nA0

A4 � 1.005A3 � 11.005 2 4A0

A3 � 1.005A2 � 11.005 2 3A0

A2 � 1.005A1 � 11.005 2 2A0

A1 � 1.005A0
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(b) Find the first four terms of the sequence An.

(c) Find a formula for An.

(d) How much of the drug remains in the patient’s body after 5 days? How much
will accumulate in his system after prolonged use?

Solution

(a) Each morning 60% of the drug remains in his system plus he takes an addi-
tional 50 mg (his daily dose).

� 0.6 � � 50 mg

We can express this as a recursion relation

(b) Since the initial dose is 50 mg, we have

(c) From the pattern in part (b), we see that

Sum of a geometric sequence:

Simplify

(d) To find the amount remaining after 5 days, we substitute n � 5 and get
.

To find the amount remaining after prolonged use, we let n become large. As
n gets large, 0.6n approaches 0. That is, 0.6n 0 as n q (see Section 4.1).
So as n q,

Thus, after prolonged use the amount of drug in the patient’s system approaches
125 mg (see Figure 1, where we have used a graphing calculator to graph the
sequence). ■

An � 12511 � 0.6n�1 2 � 12511 � 0 2 � 125

�
��

A5 � 12511 � 0.65�1 2 � 119 mg

� 12511 � 0.6n�1 2 Sn � a a 1 � rn�1

1 � r
b� 50 a 1 � 0.6n�1

1 � 0.6
bAn � 5011 � 0.6 � 0.62 � . . . � 0.6n 2

� 5010.63 � 0.62 � 0.6 � 1 2� 0.63150 2 � 0.62150 2 � 0.6150 2 � 50

A3 � 0.6A2 � 50 � 0.6 30.62150 2 � 0.6150 2 � 50 4 � 50

� 5010.62 � 0.6 � 1 2� 0.62150 2 � 0.6150 2 � 50

A2 � 0.6A1 � 50 � 0.6 30.6150 2 � 50 4 � 50

A1 � 0.6A0 � 50 � 0.6150 2 � 50

A0 � 50

An � 0.6An�1 � 50

amount of drug
yesterday morning

amount of drug this
morning
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Enter sequence

Graph sequence

Plot1 Plot2 Plot3

 Min=0
u( )=125(1-.6^( +1))

150

0 16

Figure 1



Problems

1. Retirement Accounts Many college professors keep retirement savings with TIAA,
the largest annuity program in the world. Interest on these accounts is compounded and
credited daily. Professor Brown has $275,000 on deposit with TIAA at the start of 2006,
and receives 3.65% interest per year on his account.

(a) Find a recursive sequence that models the amount An in his account at the end of the
nth day of 2006.

(b) Find the first eight terms of the sequence An, rounded to the nearest cent.

(c) Find a formula for An.

2. Fitness Program Sheila decides to embark on a swimming program as the best way
to maintain cardiovascular health. She begins by swimming 5 min on the first day, then
adds min every day after that.

(a) Find a recursive formula for the number of minutes Tn that she swims on the nth day
of her program.

(b) Find the first 6 terms of the sequence Tn.

(c) Find a formula for Tn. What kind of sequence is this?

(d) On what day does Sheila attain her goal of swimming at least 65 min a day?

(e) What is the total amount of time she will have swum after 30 days?

3. Monthly Savings Program Alice opens a savings account paying 3% interest per
year, compounded monthly. She begins by depositing $100 at the start of the first month,
and adds $100 at the end of each month, when the interest is credited.

(a) Find a recursive formula for the amount An in her account at the end of 
the nth month. (Include the interest credited for that month and her monthly 
deposit.)

(b) Find the first 5 terms of the sequence An.

(c) Use the pattern you observed in (b) to find a formula for An. [Hint: To find the pat-
tern most easily, it’s best not to simplify the terms too much.]

(d) How much has she saved after 5 years?

4. Stocking a Fish Pond A pond is stocked with 4000 trout, and through reproduction
the population increases by 20% per year. Find a recursive sequence that models the
trout population Pn at the end of the nth year under each of the following circumstances.
Find the trout population at the end of the fifth year in each case.

(a) The trout population changes only because of reproduction.

(b) Each year 600 trout are harvested.

(c) Each year 250 additional trout are introduced into the pond.

(d) Each year 10% of the trout are harvested and 300 additional trout are introduced
into the pond.

5. Pollution A chemical plant discharges 2400 tons of pollutants every year into an 
adjacent lake. Through natural runoff, 70% of the pollutants contained in the lake at the
beginning of the year are expelled by the end of the year.

(a) Explain why the following sequence models the amount An of the pollutant in the
lake at the end of the nth year that the plant is operating.

An � 0.30An�1 � 2400

11
2
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(b) Find the first five terms of the sequence An.

(c) Find a formula for An.

(d) How much of the pollutant remains in the lake after 6 years? How much will remain
after the plant has been operating a long time?

(e) Verify your answer to part (d) by graphing An with a graphing calculator, for n � 1
to n � 20.

6. Annual Savings Program Ursula opens a one-year CD that yields 5% interest per
year. She begins with a deposit of $5000. At the end of each year when the CD matures,
she reinvests at the same 5% interest rate, also adding 10% to the value of the CD from
her other savings. (So for example, after the first year her CD has earned 5% of $5000 in
interest, for a value of $5250 at maturity. She then adds 10%, or $525, bringing the total
value of her renewed CD to $5775.)

(a) Find a recursive formula for the amount Un in her CD when she reinvests at the end
of the nth year.

(b) Find the first 5 terms of the sequence Un. Does this appear to be a geometric sequence?

(c) Use the pattern you observed in (b) to find a formula for Un.

(d) How much has she saved after 10 years?

7. Annual Savings Program Victoria opens a one-year CD with a 5% annual interest
yield at the same time as her friend Ursula in Problem 6. She also starts with an initial
deposit of $5000. However, Victoria decides to add $500 to her CD when she reinvests at
the end of the first year, $1000 at the end of the second, $1500 at the end of the third,
and so on.

(a) Explain why the recursive formula displayed below gives the amount Vn in her CD
when she reinvests at the end of the nth year.

(b) Using the Seq (“sequence”) mode on your graphing calculator, enter the 
sequences Un and Vn as shown in the figure to the left. Then use the 
command to compare the two sequences. For the first few years, Victoria seems to
be accumulating more savings than Ursula. Scroll down in the table to verify that
Ursula eventually pulls ahead of Victoria in the savings race. In what year does 
this occur?

8. Newton’s Law of Cooling A tureen of soup at a temperature of 170 �F is placed on
a table in a dining room in which the thermostat is set at 70 �F. The soup cools according
to the following rule, a special case of Newton’s Law of Cooling: Each minute, the tem-
perature of the soup declines by 3% of the difference between the soup temperature and
the room temperature.

(a) Find a recursive sequence that models the soup temperature Tn at the nth
minute.

(b) Enter the sequence Tn in your graphing calculator, and use the command
to find the temperature at 10-min increments from n � 0 to n � 60. (See
Problem 7(b).)

(c) Graph the sequence Tn. What temperature will the soup be after a long time?

9. Logistic Population Growth Simple exponential models for population growth 
do not take into account the fact that when the population increases, survival becomes
harder for each individual because of greater competition for food and other resources.

TABLE

TABLE

Vn � 1.05Vn�1 � 500n
Entering the sequences

Table of values
of the sequences

   u( )
 0 5000
 1 5750
 2 6612.5
 3 7604.4
 4 8745
 5 10057
 6 11565

5000
5750
7037.5
8889.4
11334
14401
18121

v( )

 =0



We can get a more accurate model by assuming that the birth rate is proportional to the
size of the population, but the death rate is proportional to the square of the population.
Using this idea, researchers find that the number of raccoons Rn on a certain island is
modeled by the following recursive sequence:

Here n represents the number of years since observations began, R 0 is the initial 
population, 0.08 is the annual birth rate, and 0.0004 is a constant related to the 
death rate.

(a) Use the command on a graphing calculator to find the raccoon population
for each year from n � 1 to n � 7.

(b) Graph the sequence Rn. What happens to the raccoon population as n becomes
large?

TABLE

Rn � Rn�1 � 0.08Rn�1 � 0.00041Rn�1 2 2,  R0 � 100
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Chapter Overview

In this chapter we study the central idea underlying calculus—the concept of limit.
Calculus is used in modeling numerous real-life phenomena, particularly situations
that involve change or motion. To understand the basic idea of limits let’s consider
two fundamental examples.

To find the area of a polygonal figure we simply divide it into triangles and add the
areas of the triangles, as in the figure to the left. However, it is much more difficult to
find the area of a region with curved sides. One way is to approximate the area by in-
scribing polygons in the region. The figure illustrates how this is done for a circle.

If we let An be the area of the inscribed regular polygon with n sides, then we see
that as n increases An gets closer and closer to the area of the circle. We say that the
area A of the circle is the limit of the areas An and write

If we can find a pattern for the areas An, then we may be able to determine the limit
A exactly. In this chapter we use a similar idea to find areas of regions bounded by
graphs of functions.

In Chapter 2 we learned how to find the average rate of change of a function. For
example, to find average speed we divide the total distance traveled by the total time.
But how can we find instantaneous speed—that is, the speed at a given instant? We
can’t divide the total distance traveled by the total time, because in an instant the to-
tal distance traveled is zero and the total time spent traveling is zero! But we can find
the average rate of change on smaller and smaller intervals, zooming in on the instant
we want. For example, suppose gives the distance a car has traveled at time t. To
find the speed of the car at exactly 2:00 P.M., we first find the average speed on an in-
terval from 2 to a little after 2, that is, on the interval . We know that the
average speed on this interval is . By finding this average speed3f 12 � h 2 � f 12 2 4 /h

32, 2 � h 4f 1t 2

area � lim
nSq

An

A‹ A› Afi Afl A‡ A⁄¤... ...
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12.1 Finding Limits Numerically and Graphically

12.2 Finding Limits Algebraically

12.3 Tangent Lines and Derivatives

12.4 Limits at Infinity; Limits of Sequences
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for smaller and smaller values of h (letting h go to zero), we zoom in on the instant
we want. We can write

If we find a pattern for the average speed, we can evaluate this limit exactly.
The ideas in this chapter have wide-ranging applications. The concept of “instan-

taneous rate of change” applies to any varying quantity, not just speed. The concept
of “area under the graph of a function” is a very versatile one. Indeed, numerous phe-
nomena, seemingly unrelated to area, can be interpreted as area under the graph of a
function. We explore some of these in Focus on Modeling, page 929.

12.1 Finding Limits Numerically and Graphically

In this section we use tables of values and graphs of functions to answer the question,
What happens to the values of a function f as the variable x approaches the 
number a?

Definition of Limit

We begin by investigating the behavior of the function f defined by

for values of x near 2. The following table gives values of for values of x close
to 2 but not equal to 2.

f 1x 2f 1x 2 � x2 � x � 2

f 1x 2

instantaneous speed � lim
hS0

f 12 � h 2 � f 12 2
h
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x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f 1x 2 x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f 1x 2

From the table and the graph of f (a parabola) shown in Figure 1 we see that when
x is close to 2 (on either side of 2), is close to 4. In fact, it appears that we can
make the values of as close as we like to 4 by taking x sufficiently close to 2. We
express this by saying “the limit of the function as x approaches
2 is equal to 4.” The notation for this is

lim
xS2
1x2 � x � 2 2 � 4

f 1x 2 � x2 � x � 2
f 1x 2 f 1x 2

4

Ï

approaches
4.

2

As x approaches 2,

y=≈- x+2

0

y

x

Figure 1



Roughly speaking, this says that the values of get closer and closer to the num-
ber L as x gets closer and closer to the number a (from either side of a) but x � a.

An alternative notation for is

which is usually read “ approaches L as x approaches a.” This is the notation we
used in Section 3.6 when discussing asymptotes of rational functions.

Notice the phrase “but x � a” in the definition of limit. This means that in finding
the limit of as x approaches a, we never consider x � a. In fact, need not
even be defined when x � a. The only thing that matters is how f is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), is not
defined and in part (b), . But in each case, regardless of what happens at a,

.

Figure 2

in all three cases

Estimating Limits Numerically and Graphically

In Section 12.2 we will develop techniques for finding exact values of limits. For now,
we use tables and graphs to estimate limits of functions.

lim
xSa

f 1x 2 � L

(a)

0

L

a 0

L

a 0

L

a

(b) (c)

y

x x x

y y

limxSa f 1x 2 � L
f 1a 2 � L

f 1a 2f 1x 2f 1x 2
f 1x 2 f 1x 2 � L  as  x � a

limxSa f 1x 2 � L

f 1x 2
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Definition of the Limit of a Function

We write

and say

“the limit of as x approaches a, equals L”

if we can make the values of arbitrarily close to L (as close to L as we
like) by taking x to be sufficiently close to a, but not equal to a.

f 1x 2f 1x 2 ,
lim
xSa

f 1x 2 � L

In general, we use the following notation.



On the basis of the values in the two tables, we make the guess that

As a graphical verification we use a graphing device to produce Figure 3. We 
see that when x is close to 1, y is close to 0.5. If we use the and 
features to get a closer look, as in Figure 4, we notice that as x gets closer and
closer to 1, y becomes closer and closer to 0.5. This reinforces our conclusion. ■

Example 2 Finding a Limit from a Table

Find .

Solution The table in the margin lists values of the function for several values 
of t near 0. As t approaches 0, the values of the function seem to approach
0.1666666 . . . , and so we guess that

■

What would have happened in Example 2 if we had taken even smaller values of
t? The table in the margin shows the results from one calculator; you can see that
something strange seems to be happening.

If you try these calculations on your own calculator, you might get different val-
ues, but eventually you will get the value 0 if you make t sufficiently small. Does this
mean that the answer is really 0 instead of ? No, the value of the limit is , as we will
show in the next section. The problem is that the calculator gave false values because

is very close to 3 when t is small. (In fact, when t is sufficiently small, a cal-
culator’s value for is 3.000 . . . to as many digits as the calculator is capable
of carrying.)

Something similar happens when we try to graph the function of Example 2 on a
graphing device. Parts (a) and (b) of Figure 5 show quite accurate graphs of this func-

2t2 � 9
2t2 � 9

1
6

1
6

lim
tS0

2t2 � 9 � 3

t2 �
1

6

lim
tS0

2t2 � 9 � 3

t2

TRACEZOOM

lim
xS1

x � 1

x2 � 1
� 0.5

Example 1 Estimating a Limit Numerically and Graphically

Guess the value of . Check your work with a graph.

Solution Notice that the function is not defined 
when x � 1, but this doesn’t matter because the definition of says that
we consider values of x that are close to a but not equal to a. The following tables
give values of (correct to six decimal places) for values of x that approach 1
(but are not equal to 1).

f 1x 2 limxSa f 1x 2f 1x 2 � 1x � 1 2 / 1x2 � 1 2lim
xS1

x � 1

x2 � 1
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t

�1.0 0.16228
�0.5 0.16553
�0.1 0.16662
�0.05 0.16666
�0.01 0.16667

2t2 � 9 � 3

t2

t

�0.0005 0.16800
�0.0001 0.20000
�0.00005 0.00000
�0.00001 0.00000

2t2 � 9 � 3

t2

x � 1

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

f 1x 2 x 	 1

1.5 0.4000000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

f 1x 2
1

0 2

(1, 0.5)

0.6

0.9 1.1

(1, 0.5)

0.4

Figure 3

Figure 4



tion, and when we use the feature, we can easily estimate that the limit is
about . But if we zoom in too far, as in parts (c) and (d), then we get inaccurate
graphs, again because of problems with subtraction.

Figure 5

Limits That Fail to Exist

Functions do not necessarily approach a finite value at every point. In other words,
it’s possible for a limit not to exist. The next three examples illustrate ways in which
this can happen.

Example 3 A Limit That Fails to Exist (A Function 

with a Jump)

The Heaviside function H is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925)
and can be used to describe an electric current that is switched on at time t � 0.]
Its graph is shown in Figure 6. Notice the “jump” in the graph at x � 0.

As t approaches 0 from the left, approaches 0. As t approaches 0 from 
the right, approaches 1. There is no single number that approaches as 
t approaches 0. Therefore, does not exist. ■

Example 4 A Limit That Fails to Exist (A Function 

That Oscillates)

Find .

Solution The function is undefined at 0. Evaluating the 
function for some small values of x, we get

Similarly, . On the basis of this information we might be
tempted to guess that

lim
xS0

 sin 
p

x
�
? 0

f 10.001 2 � f 10.0001 2 � 0

f 10.1 2 � sin 10p � 0   f 10.01 2 � sin 100p � 0

f A13B � sin 3p � 0      f A14B � sin 4p � 0

f 11 2 � sin p � 0       f A12B � sin 2p � 0

f 1x 2 � sin1p/x 2lim
xS0

 sin 
p

x

limtS0H1t 2 H1t 2H1t 2 H1t 2
H1t 2 � e0 if t � 0

1 if t � 0

0.1

0.2

(a)  [_5, 5] by [_0.1, 0.3] (b) [_0.1, 0.1] by [_0.1, 0.3]

0.1

0.2

(c) [_10–§, 10–§] by [_0.1, 0.3] (d) [_10–¶, 10–¶] by [_0.1, 0.3]

1
6

TRACE
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1

0

y

x

Figure 6



but this time our guess is wrong. Note that although for any
integer n, it is also true that for infinitely many values of x that approach
0. (See the graph in Figure 7.)

The broken lines indicate that the values of oscillate between 1 and �1
infinitely often as x approaches 0. Since the values of do not approach a fixed
number as x approaches 0,

■

Example 4 illustrates some of the pitfalls in guessing the value of a limit. It is easy
to guess the wrong value if we use inappropriate values of x, but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, some-
times calculators and computers give incorrect values. In the next two sections, how-
ever, we will develop foolproof methods for calculating limits.

Example 5 A Limit That Fails to Exist (A Function 

with a Vertical Asymptote)

Find if it exists.

Solution As x becomes close to 0, x 2 also becomes close to 0, and 1/x 2 becomes
very large. (See the table in the margin.) In fact, it appears from the graph of the
function shown in Figure 8 that the values of can be made 
arbitrarily large by taking x close enough to 0. Thus, the values of do not 
approach a number, so does not exist.

Figure 8 ■

y=
1

≈

0

y

x

limx�0 11/x2 2 f 1x 2f 1x 2f 1x 2 � 1/x2

lim
xS0

1

x2

lim
x�0

 sin 
p

x
 does not exist

f 1x 2sin1p/x 2

y=ß(π/x)
1

1

_1

_1

y

x

f 1x 2 � 1
f 11/n 2 � sin np � 0
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Figure 7

x

�1 1
�0.5 4
�0.2 25
�0.1 100
�0.05 400
�0.01 10,000
�0.001 1,000,000

1

x 2



To indicate the kind of behavior exhibited in Example 5, we use the notation

This does not mean that we are regarding q as a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not exist:
1/x 2 can be made as large as we like by taking x close enough to 0. Notice that the
line x � 0 (the y-axis) is a vertical asymptote in the sense we described in Section 3.6.

One-Sided Limits

We noticed in Example 3 that approaches 0 as t approaches 0 from the left and
approaches 1 as t approaches 0 from the right. We indicate this situation sym-

bolically by writing

The symbol “t � 0�” indicates that we consider only values of t that are less than 0.
Likewise, “t � 0�” indicates that we consider only values of t that are greater than 0.

lim
tS0�

H1t 2 � 0  and  lim
tS0�

H1t 2 � 1

H1t 2 H1t 2

lim
xS0

1

x2 � q

SECTION 12.1 Finding Limits Numerically and Graphically 887

Definition of a One-Sided Limit

We write

and say the “left-hand limit of as x approaches a” [or the “limit of 
as x approaches a from the left”] is equal to L if we can make the values of

arbitrarily close to L by taking x to be sufficiently close to a and x less
than a.
f 1x 2 f 1x 2f 1x 2limxSa�

f 1x 2 � L

Notice that this definition differs from the definition of a two-sided limit only in
that we require x to be less than a. Similarly, if we require that x be greater than a, we
get “the right-hand limit of f(x) as x approaches a is equal to L” and we write

Thus, the symbol “x�a�” means that we consider only x 	 a. These definitions are
illustrated in Figure 9.

x    a_ x    a+

0

L

xa0

Ï
ÏL

x a

(a)  lim  Ï=L (b)  lim  Ï=L

y

xx

y

lim
xSa�

f1x 2 � L

Figure 9



By comparing the definitions of two-sided and one-sided limits, we see that the
following is true.

Thus, if the left-hand and right-hand limits are different, the (two-sided) limit does
not exist. We use this fact in the next two examples.

Example 6 Limits from a Graph

The graph of a function g is shown in Figure 10. Use it to state the values 
(if they exist) of the following:

(a)

(b)

Solution

(a) From the graph we see that the values of approach 3 as x approaches
2 from the left, but they approach 1 as x approaches 2 from the right. 
Therefore

Since the left- and right-hand limits are different, we conclude that 
does not exist.

(b) The graph also shows that

This time the left- and right-hand limits are the same, and so we have

Despite this fact, notice that . ■

Example 7 A Piecewise-Defined Function

Let f be the function defined by

Graph f, and use the graph to find the following:

(a) (b) (c)

Solution The graph of f is shown in Figure 11. From the graph we see that the
values of approach 2 as x approaches 1 from the left, but they approach 3 as x
approaches 1 from the right. Thus, the left- and right-hand limits are not equal. So
we have

(a) (b) (c) does not exist. ■lim
xS1

f 1x 2lim
xS1�

f 1x 2 � 3lim
xS1�

f 1x 2 � 2

f 1x 2
lim
xS1

f 1x 2lim
xS1�

f 1x 2lim
xS1�

f 1x 2
f 1x 2 � e2x2    if x � 1

4 � x if x � 1

g15 2 � 2

lim
xS5

g1x 2 � 2

lim
xS5�

g1x 2 � 2  and  lim
xS5�

g1x 2 � 2

limx�2 g1x 2lim
xS2�

g1x 2 � 3  and  lim
xS2�

g1x 2 � 1

g1x 2
lim

xS5�
g1x 2 , lim

xS5�
g1x 2 , lim

xS5
g1x 2lim

xS2�
g1x 2 , lim

xS2�
g1x 2 , lim

xS2
g1x 2

lim
xSa

f 1x 2 � L  if and only if  lim
xSa�

f 1x 2 � L  and  lim
xSa�

f 1x 2 � L
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0
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1

3

4

y

x

Figure 10

0 1

1

3

2

4

y

x

Figure 11
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1–6 ■ Complete the table of values (to five decimal places) and
use the table to estimate the value of the limit.

1. lim
xS4

2x � 2

x � 4

11. 12.

13. For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

14. For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

15. For the function g whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

(g) (h)

2 4

4

2

y

t

lim
tS4

g1t 2g12 2 lim
tS2

g1t 2lim
tS2�

g1t 2lim
tS2�

g1t 2 lim
tS0

g1t 2lim
tS0�

g1t 2lim
tS0�

g1t 2
0 2 4

4

2

y

x

f 13 2lim
xS3

f 1x 2 lim
xS3�

f 1x 2lim
xS3�

f 1x 2lim
xS0

f 1x 2
0 2 4

4

2

y

x

f 15 2lim
xS5

f 1x 2 lim
xS1

f 1x 2lim
xS1�

f 1x 2lim
xS1�

f 1x 2
lim
xS0

tan 2x

tan 3x
lim
xS1
a 1

ln x
�

1

x � 1
b

12.1 Exercises

x 3.9 3.99 3.999 4.001 4.01 4.1

f 1x 2
2. lim

xS2

x � 2

x2 � x � 6

x 1.9 1.99 1.999 2.001 2.01 2.1

f 1x 2

x 0.9 0.99 0.999 1.001 1.01 1.1

f 1x 2

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f 1x 2

x �1 �0.5 �0.1 �0.05 �0.01

f 1x 2

x 0.1 0.01 0.001 0.0001 0.00001

f 1x 2

3. lim
xS1

x � 1

x3 � 1

4. lim
xS0

ex � 1
x

5. lim
xS0

sin x

x

6. lim
xS0�

x ln x

7–12 ■ Use a table of values to estimate the value of the limit.
Then use a graphing device to confirm your result graphically.

7. 8.

9. 10. lim
xS0

1x � 9 � 3
x

lim
xS0

5x � 3x

x

lim
xS1

x3 � 1

x2 � 1
lim

xS�4

x � 4

x2 � 7x � 12
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16. State the value of the limit, if it exists, from the given graph
of f. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

17–22 ■ Use a graphing device to determine whether the limit
exists. If the limit exists, estimate its value to two decimal
places.

17. 18.

19. 20.

21. 22.

23–26 ■ Graph the piecewise-defined function and use your
graph to find the values of the limits, if they exist.

23.

(a) (b) (c)

24.

(a) (b) (c) lim
xS0

f 1x 2lim
xS0�

f 1x 2lim
xS0�

f 1x 2f 1x 2 � e2 if x � 0

x � 1 if x � 0

lim
xS2

f 1x 2lim
xS2�

f 1x 2lim
xS2�

f 1x 2f 1x 2 � e x2 if x 
 2

6 � x if x 	 2

lim
xS0

1

1 � e1/x
lim
xS0

 cos 
1
x

lim
xS0

x2

cos 5x � cos 4x
lim
xS0

 ln1sin2 x 2
lim
xS2

x3 � 6x2 � 5x � 1

x3 � x2 � 8x � 12
lim
xS1

x3 � x2 � 3x � 5

2x2 � 5x � 3

0 3_2_3 1 2

1

2

_1

_2

y

x

lim
xS2

f 1x 2lim
xS2�

f 1x 2lim
xS2�

f 1x 2 lim
xS�3

f 1x 2lim
xS1

f 1x 2lim
xS3

f 1x 2 25.

(a) (b) (c)

26.

(a) (b) (c)

Discovery • Discussion

27. A Function with Specified Limits Sketch the graph of
an example of a function f that satisfies all of the following
conditions.

How many such functions are there?

28. Graphing Calculator Pitfalls

(a) Evaluate for x � 1, 0.5, 0.1,
0.05, 0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of 
x until you finally reach 0 values for . Are you 
still confident that your guess in part (b) is correct? 
Explain why you eventually obtained 0 values.

(d) Graph the function h in the viewing rectangle 3�1, 14
by 30, 14. Then zoom in toward the point where the
graph crosses the y-axis to estimate the limit of as
x approaches 0. Continue to zoom in until you observe
distortions in the graph of h. Compare with your results
in part (c).

h1x 2
h1x 2h1x 2 lim

xS0

tan x � x

x3

h1x 2 � 1tan x � x 2 /x3

lim
xS2

f 1x 2 � 1   f 10 2 � 2   f 12 2 � 3

lim
xS0�

f 1x 2 � 2   lim
xS0�

f 1x 2 � 0

lim
xS�2

f 1x 2lim
xS�2�

f 1x 2lim
xS�2�

f 1x 2f 1x 2 � e2x � 10 if x 
 �2

�x � 4 if x 	 �2

lim
xS�1

f 1x 2lim
xS�1�

f 1x 2lim
xS�1�

f 1x 2f 1x 2 � e�x � 3 if x � �1

3 if x � �1

12.2 Finding Limits Algebraically

In Section 12.1 we used calculators and graphs to guess the values of limits, but we
saw that such methods don’t always lead to the correct answer. In this section, we use
algebraic methods to find limits exactly.

Limit Laws

We use the following properties of limits, called the Limit Laws, to calculate limits.



These five laws can be stated verbally as follows:

1. The limit of a sum is the sum of the limits.

2. The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the limit of the
function.

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (provided that the limit 
of the denominator is not 0).

It’s easy to believe that these properties are true. For instance, if is close to 
L and is close to M, it is reasonable to conclude that is close to 
L � M. This gives us an intuitive basis for believing that Law 1 is true.

If we use Law 4 (Limit of a Product) repeatedly with , we obtain the
following Law 6 for the limit of a power. A similar law holds for roots.

g1x 2 � f 1x 2f 1x 2 � g1x 2g1x 2 f 1x 2
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Limit Laws

Suppose that c is a constant and that the following limits exist:

Then

1. Limit of a Sum

2. Limit of a Difference

3. Limit of a Constant Multiple

4. Limit of a Product

5. Limit of a Quotientlim
x�a

f 1x 2
g1x 2 �

lim
x�a

f 1x 2
lim
x�a

g1x 2  if lim
x�a

g1x 2 � 0

lim
x�a
3f 1x 2g1x 2 4 � lim

x�a
f 1x 2 # lim

x�a
g1x 2lim

x�a
3cf 1x 2 4 � c lim

x�a
f 1x 2lim

x�a
3f 1x 2 � g1x 2 4 � lim

x�a
f 1x 2 � lim

x�a
g1x 2lim

x�a
3f 1x 2 � g1x 2 4 � lim

x�a
f 1x 2 � lim

x�a
g1x 2

lim
x�a

f 1x 2  and  lim
x�a

g1x 2

Limit Laws

6. where n is a positive integer Limit of a Power

7. where n is a positive integer Limit of a Root

[If n is even, we assume that .]limx�a f 1x 2 	 0

lim
x�a
1n f 1x 2 � 1n lim

x�a
f 1x 2lim

x�a
3f 1x 2 4 n � 3 lim

x�a
f 1x 2 4 n

In words, these laws say:

6. The limit of a power is the power of the limit.

7. The limit of a root is the root of the limit.

Limit of a Sum

Limit of a Difference

Limit of a Constant Multiple

Limit of a Product

Limit of a Quotient

Limit of a Power

Limit of a Root



Example 1 Using the Limit Laws

Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the following
limits, if they exist.

(a) (b)

(c) (d)

Solution

(a) From the graphs of f and g we see that

Therefore, we have

Limit of a Sum

Limit of a Constant Multiple

(b) We see that . But does not exist because the 
left- and right-hand limits are different:

So we can’t use Law 4 (Limit of a Product). The given limit does not exist,
since the left-hand limit is not equal to the right-hand limit.

(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5 (Limit of a Quo-
tient). The given limit does not exist because the denominator approaches 0
while the numerator approaches a nonzero number.

(d) Since , we use Law 6 to get

Limit of a Power

■

Applying the Limit Laws

In applying the Limit Laws, we need to use four special limits.

� 23 � 8

 lim
x�1
3f 1x 2 4 3 � 3 lim

x�1
f 1x 2 4 3limxS1 f 1x 2 � 2

lim
x�2

f 1x 2 � 1.4  and  lim
x�2

g1x 2 � 0

lim
x�1�

g1x 2 � �2   lim
x�1�

g1x 2 � �1

limxS1 g1x 2limxS1 f 1x 2 � 2

� 1 � 51�1 2 � �4

� lim
x��2

f 1x 2 � 5 lim
x��2

g1x 2 lim
x��2
3f 1x 2 � 5g1x 2 4 � lim

x��2
f 1x 2 � lim

x��2
35g1x 2 4

lim
x��2

f 1x 2 � 1  and  lim
x��2

g1x 2 � �1

lim
x�1
3f 1x 2 4 3lim

x�2

f 1x 2
g1x 2

lim
x�1
3f 1x 2g1x 2 4lim

x��2
3f 1x 2 � 5g1x 2 4
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1

y
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Figure 1

Some Special Units

1.

2.

3. where n is a positive integer

4. where n is a positive integer and a 	 0lim
x�a
1n x � 1n a

lim
x�a

xn � an

lim
x�a

x � a

lim
x�a

c � c



Special Limits 1 and 2 are intuitively obvious—looking at the graphs of y � c and
y � x will convince you of their validity. Limits 3 and 4 are special cases of Limit
Laws 6 and 7 (Limits of a Power and of a Root).

Example 2 Using the Limit Laws

Evaluate the following limits and justify each step.

(a) (b)

Solution

(a) Limits of a Difference 
and Sum
Limit of a 
Constant Multiple

Special Limits 3, 2, and 1

(b) We start by using Law 5, but its use is fully justified only at the final stage
when we see that the limits of the numerator and denominator exist and the
limit of the denominator is not 0.

Limit of a Quotient

Special Limits 3, 2, and 1

■

If we let , then . In Example 2(a), we found that
. In other words, we would have gotten the correct answer by sub-

stituting 5 for x. Similarly, direct substitution provides the correct answer in part (b).
The functions in Example 2 are a polynomial and a rational function, respectively,
and similar use of the Limit Laws proves that direct substitution always works for
such functions. We state this fact as follows.

limxS5 f 1x 2 � 39
f 15 2 � 39f 1x 2 � 2x2 � 3x � 4

� �
1

11

�
1�2 2 3 � 21�2 2 2 � 1

5 � 31�2 2
Limits of Sums, Differ-
ences, and Constant
Multiples

�

lim
x��2

x3 � 2 lim
x��2

x2 � lim
x��2

1

lim
x��2

5 � 3 lim
x��2

x

 lim
x��2

x3 � 2x2 � 1

5 � 3x
�

lim
x��2
1x3 � 2x2 � 1 2

lim
x��2
15 � 3x 2

� 39

� 2152 2 � 315 2 � 4

� 2 lim
x�5

x2 � 3 lim
x�5

x � lim
x�5

4

 lim
x�5
12x2 � 3x � 4 2 � lim

x�5
12x2 2 � lim

x�5
13x 2 � lim

x�5
4

lim
x��2

x3 � 2x2 � 1

5 � 3x
lim
x�5
12x2 � 3x � 4 2
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Limits by Direct Substitution

If f is a polynomial or a rational function and a is in the domain of f, then

lim
x�a

f 1x 2 � f 1a 2
Functions with this direct substitution property are called continuous at a. You

will learn more about continuous functions when you study calculus.



Example 3 Finding Limits by Direct Substitution

Evaluate the following limits.

(a) (b)

Solution

(a) The function is a polynomial, so we can find the limit
by direct substitution:

(b) The function is a rational function, and x � �1 is
in its domain (because the denominator is not zero for x � �1). Thus, we can
find the limit by direct substitution:

■

Finding Limits Using Algebra and the Limit Laws

As we saw in Example 3, evaluating limits by direct substitution is easy. But not all
limits can be evaluated this way. In fact, most of the situations in which limits are use-
ful requires us to work harder to evaluate the limit. The next three examples illustrate
how we can use algebra to find limits.

Example 4 Finding a Limit by Canceling a Common Factor

Find .

Solution Let . We can’t find the limit by substituting 
x � 1 because isn’t defined. Nor can we apply Law 5 (Limit of a Quotient) 
because the limit of the denominator is 0. Instead, we need to do some preliminary
algebra. We factor the denominator as a difference of squares:

The numerator and denominator have a common factor of x � 1. When we take the
limit as x approaches 1, we have x � 1 and so x � 1 � 0. Therefore, we can cancel
the common factor and compute the limit as follows:

Factor

Cancel

Let x � 1

This calculation confirms algebraically the answer we got numerically and
graphically in Example 1 in Section 12.1. ■

�
1

1 � 1
�

1

2

� lim
x�1

1

x � 1

 lim
x�1

x � 1

x2 � 1
� lim

x�1

x � 11x � 1 2 1x � 1 2

x � 1

x2 � 1
�

x � 11x � 1 2 1x � 1 2
f 11 2f 1x 2 � 1x � 1 2 / 1x2 � 1 2lim

x�1

x � 1

x2 � 1

lim
x��1

x2 � 5x

x4 � 2
�
1�1 2 2 � 51�1 21�1 2 4 � 2

� �
4

3

f 1x 2 � 1x2 � 5x 2 / 1x4 � 2 2lim
x�3
12x3 � 10x � 12 2 � 213 2 3 � 1013 2 � 8 � 16

f 1x 2 � 2x3 � 10x � 12

lim
x��1

x2 � 5x

x4 � 2
lim
x�3
12x3 � 10x � 8 2
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Sir Isaac Newton (1642–1727) is
universally regarded as one of the
giants of physics and mathematics.
He is well known for discovering
the laws of motion and gravity and
for inventing the calculus, but he
also proved the Binomial Theorem
and the laws of optics, and devel-
oped methods for solving poly-
nomial equations to any desired
accuracy. He was born on Christ-
mas Day, a few months after the
death of his father. After an un-
happy childhood, he entered Cam-
bridge University, where he learned
mathematics by studying the writ-
ings of Euclid and Descartes.

During the plague years of
1665 and 1666, when the univer-
sity was closed, Newton thought
and wrote about ideas that, once
published, instantly revolutionized
the sciences. Imbued with a patho-
logical fear of criticism, he pub-
lished these writings only after
many years of encouragement
from Edmund Halley (who discov-
ered the now-famous comet) and
other colleagues.

Newton’s works brought him
enormous fame and prestige. Even
poets were moved to praise;
Alexander Pope wrote:

Nature and Nature’s Laws
lay hid in Night.

God said, “Let Newton be”
and all was Light.

(continued)
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Example 5 Finding a Limit by Simplifying

Evaluate .

Solution We can’t use direct substitution to evaluate this limit, because the limit
of the denominator is 0. So we first simplify the limit algebraically.

Expand

Simplify

Cancel h

Let h � 0 ■

Example 6 Finding a Limit by Rationalizing

Find .

Solution We can’t apply Law 5 (Limit of a Quotient) immediately, since the
limit of the denominator is 0. Here the preliminary algebra consists of rationalizing
the numerator:

Rationalize numerator

This calculation confirms the guess that we made in Example 2 in Section 12.1. ■

Using Left- and Right-Hand Limits

Some limits are best calculated by first finding the left- and right-hand limits. The 
following theorem is a reminder of what we discovered in Section 12.1. It says that 
a two-sided limit exists if and only if both of the one-sided limits exist and are 
equal.

When computing one-sided limits, we use the fact that the Limit Laws also hold
for one-sided limits.

� lim
t�0

1

2t2 � 9 � 3
�

1

2lim
t�0
1t2 � 9 2 � 3

�
1

3 � 3
�

1

6

� lim
t�0

1t2 � 9 2 � 9

t2A2t2 � 9 � 3B � lim
t�0

t2

t2A2t2 � 9 � 3B
 lim
t�0

2t2 � 9 � 3

t2 � lim
t�0

2t2 � 9 � 3

t2
# 2t2 � 9 � 3

2t2 � 9 � 3

lim
t�0

2t2 � 9 � 3

t2

� 6

� lim
h�0
16 � h 2� lim

h�0

6h � h2

h

 lim
h�0

13 � h 2 2 � 9

h
� lim

h�0

19 � 6h � h2 2 � 9

h

lim
h�0

13 � h 2 2 � 9

h
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lim
x�a

f 1x 2 � L  if and only if  lim
x�a�

f 1x 2 � L � lim
x�a�

f 1x 2

Newton was far more modest
about his accomplishments. He
said, “I seem to have been only like
a boy playing on the seashore . . .
while the great ocean of truth lay
all undiscovered before me.” New-
ton was knighted by Queen Anne
in 1705 and was buried with great
honor in Westminster Abbey.



Example 7 Comparing Right and Left Limits

Show that .

Solution Recall that

Since for x 	 0, we have

For x � 0, we have and so

Therefore

■

Example 8 Comparing Right and Left Limits

Prove that does not exist.

Solution Since for x 	 0 and for x � 0, we have

Since the right-hand and left-hand limits exist and are different, it follows that
does not exist. The graph of the function is shown in

Figure 3 and supports the limits that we found. ■

Example 9 The Limit of a Piecewise-Defined Function

Let

if x 	 4

if x � 4

Determine whether exists.

Solution Since for x 	 4, we have

lim
x�4�

f1x 2 � lim
x�4�
1x � 4 � 14 � 4 � 0

f 1x 2 � 1x � 4

lim
x�4

f 1x 2
f 1x 2 � e2x � 4

8 � 2x

f 1x 2 � 0 x 0 /xlimx�0 0 x 0 /x

 lim
x�0�

0 x 0
x

� lim
x�0�

�x
x

� lim
x�0�

1�1 2 � �1

 lim
x�0�

0 x 0
x

� lim
x�0�

x
x

� lim
x�0�

 1 � 1

0 x 0 � �x0 x 0 � x

lim
x�0

0 x 0
x

lim
x�0
0 x 0 � 0

lim
x�0�

0 x 0 � lim
x�0�

1�x 2 � 0

0 x 0 � �x

lim
x�0�

0 x 0 � lim
x�0�

x � 0

0 x 0 � x

0 x 0 � e x   if x � 0

�x  if x � 0

lim
x�0
0 x 0 � 0
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0

y=|x|

y

x

Figure 2

1

_1

0

y=
|x|

x

y

x

Figure 3

The result of Example 7 looks plausible
from Figure 2.



Since for x � 4, we have

The right- and left-hand limits are equal. Thus, the limit exists and

The graph of f is shown in Figure 4. ■

12.2 Exercises

lim
x�4

f 1x 2 � 0

lim
x�4�

f 1x 2 � lim
x�4�
18 � 2x 2 � 8 � 2 # 4 � 0

f 1x 2 � 8 � 2x

SECTION 12.2 Finding Limits Algebraically 897

40

y

x

Figure 4

1. Suppose that

Find the value of the given limit. If the limit does not exist,
explain why.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. The graphs of f and g are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f)

3–8 ■ Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3. 4.

5. 6.

7. 8. lim
u��2

2u4 � 3u � 6lim
t��2
1t � 1 2 91t2 � 1 2 lim

x�1
a x4 � x2 � 6

x4 � 2x � 3
b 2

lim
x��1

x � 2

x2 � 4x � 3

lim
x�3
1x3 � 2 2 1x2 � 5x 2lim

x�4
15x2 � 2x � 3 2

1

y=Ï

1

0 1

y=˝
1

y

x x

y

lim
x�1
23 � f 1x 2lim

x�2
x 3f 1x 2

lim
x��1

f 1x 2
g1x 2lim

x�0
3f 1x 2g1x 2 4

lim
x�1
3f 1x 2 � g1x 2 4lim

x�2
3f 1x 2 � g1x 2 4

lim
x�a

2f 1x 2
h1x 2 � f 1x 2lim

x�a

f 1x 2
g1x 2

lim
x�a

g1x 2
f 1x 2lim

x�a

f 1x 2
h1x 2

lim
x�a

1

f 1x 2lim
xSa
13 h1x 2

lim
x�a
3f 1x 2 4 2lim

x�a
3f 1x 2 � h1x 2 4

lim
x�a

f 1x 2 � �3   lim
x�a

g1x 2 � 0   lim
x�a

h1x 2 � 8
9–20 ■ Evaluate the limit, if it exists.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ Find the limit and use a graphing device to confirm
your result graphically.

21. 22.

23. 24.

25. (a) Estimate the value of

by graphing the function .

(b) Make a table of values of for x close to 0 and guess
the value of the limit.

(c) Use the Limit Laws to prove that your guess is correct.

26. (a) Use a graph of

to estimate the value of to two decimal
places.

limxS0 f 1x 2f 1x 2 �
23 � x � 13

x

f 1x 2f 1x 2 � x/ A11 � 3x � 1Blim
x�0

x

21 � 3x � 1

lim
x�1

x8 � 1

x5 � x
lim

x��1

x2 � x � 2

x3 � x

lim
x�0

14 � x 2 3 � 64

x
lim
x�1

x2 � 1

1x � 1

lim
t�0
a 1

t
�

1

t2 � t
blim

x��4

1

4
�

1
x

4 � x

lim
h�0

13 � h 2�1 � 3�1

h
lim
x�7

1x � 2 � 3

x � 7

lim
x�2

x4 � 16

x � 2
lim
h�0

12 � h 2 3 � 8

h

lim
h�0

11 � h � 1

h
lim

t��3

t2 � 9

2t2 � 7t � 3

lim
x�1

x3 � 1

x2 � 1
lim
x�2

x2 � x � 6

x � 2

lim
x��4

x2 � 5x � 4

x2 � 3x � 4
lim
x�2

x2 � x � 6

x � 2
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(b) Use a table of values of to estimate the limit to
four decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

27–32 ■ Find the limit, if it exists. If the limit does not exist,
explain why.

27. 28.

29. 30.

31. 32.

33. Let

(a) Find .

(b) Does exist?

(c) Sketch the graph of f.

34. Let

(a) Evaluate each limit, if it exists.

(i) (iv)

(ii) (v)

(iii) (vi)

(b) Sketch the graph of h.

lim
x�2

h1x 2lim
x�1

h1x 2 lim
x�2�

h1x 2lim
x�0

h1x 2 lim
x�2�

h1x 2lim
x�0�

h1x 2
h1x 2 � • x      if x � 0

x2      if 0 � x 
 2

8 � x  if x 	 2

limx�2 f 1x 2limxS2� f 1x 2  and limxS2� f 1x 2
f1x 2 � e x � 1        if x � 2

x2 � 4x � 6  if x � 2

lim
x�0�
a 1

x
�

10 x 0 blim
x�0�
a 1

x
�

10 x 0 b
lim

x�1.5

2x2 � 3x0 2x � 3 0lim
x�2

0 x � 2 0
x � 2

lim
x��4�

0 x � 4 0
x � 4

lim
x��4

0 x � 4 0

f 1x 2 Discovery • Discussion

35. Cancellation and Limits

(a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

36. The Lorentz Contraction In the theory of relativity, the
Lorentz contraction formula

expresses the length L of an object as a function of its 
velocity √ with respect to an observer, where L0 is the
length of the object at rest and c is the speed of light. Find

L and interpret the result. Why is a left-hand limit
necessary?

37. Limits of Sums and Products

(a) Show by means of an example that
may exist even though neither

exists.

(b) Show by means of an example that
may exist even though neither

exists.limx�a f 1x 2  nor limx�a g1x 2limx�a 3f 1x 2g1x 2 4
limx�a f 1x 2  nor limx�a g1x 2limx�a 3f 1x 2 � g1x 2 4

lim√Sc�

L � L021 � √ 2/c2

lim
x�2

x2 � x � 6

x � 2
� lim

x�2
1x � 3 2

x2 � x � 6

x � 2
� x � 3

12.3 Tangent Lines and Derivatives

In this section we see how limits arise when we attempt to find the tangent line to a
curve or the instantaneous rate of change of a function.

The Tangent Problem

A tangent line is a line that just touches a curve. For instance, Figure 1 shows the
parabola y � x 2 and the tangent line t that touches the parabola at the point .
We will be able to find an equation of the tangent line t as soon as we know its slope
m. The difficulty is that we know only one point, P, on t, whereas we need two points
to compute the slope. But observe that we can compute an approximation to m by

P11, 1 20

y=≈

t

P (1, 1)

y

x

Figure 1



choosing a nearby point on the parabola (as in Figure 2) and computing the
slope mPQ of the secant line PQ.

We choose x � 1 so that Q � P. Then

Now we let x approach 1, so Q approaches P along the parabola. Figure 3 shows how
the corresponding secant lines rotate about P and approach the tangent line t.

Figure 3

The slope of the tangent line is the limit of the slopes of the secant lines:

So, using the method of Section 12.2, we have

Now that we know the slope of the tangent line is m � 2, we can use the point-slope
form of the equation of a line to find its equation:

y � 1 � 21x � 1 2  or  y � 2x � 1

� lim
x�1
1x � 1 2 � 1 � 1 � 2

m � lim
x�1

x2 � 1

x � 1
� lim

x�1

1x � 1 2 1x � 1 2
x � 1

m � lim
Q�P

mPQ

Q approaches P from the right

P

0

Q

t

Q approaches P from the left

P

0

Q

t

P

0

Q

t

P

0

Q

t

P

0

Q

t

P

0

Q

t

y

x

y

x

y

x

y

x

y

x

y

x

mPQ �
x2 � 1

x � 1

Q1x, x2 2
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0

y=≈

tQÓx, ≈Ô

P (1, 1)

y

x

Figure 2

The point-slope form for the equation
of a line through the point with
slope m is

(See Section 1.10.)

y � y1 � m1x � x1 2
1x1, y1 2



We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 4 illustrates this procedure for the
curve y � x 2. The more we zoom in, the more the parabola looks like a line. In other
words, the curve becomes almost indistinguishable from its tangent line.

Figure 4

Zooming in toward the point on the parabola y � x 2

If we have a general curve C with equation and we want to find the tan-
gent line to C at the point , then we consider a nearby point ,
where x � a, and compute the slope of the secant line PQ:

Then we let Q approach P along the curve C by letting x approach a. If mPQ

approaches a number m, then we define the tangent t to be the line through P with
slope m. (This amounts to saying that the tangent line is the limiting position of the
secant line PQ as Q approaches P. See Figure 5.)

Figure 5

0

P

t

Q

Q

Q

0 a x

PÓa, f(a)Ô

Ï- f(a)

x-a

QÓx, ÏÔ

y

x

y

x

mPQ �
f 1x 2 � f 1a 2

x � a

Q1x, f 1x 22P1a, f 1a 22 y � f 1x 211, 1 2

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1
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Definition of a Tangent Line

The tangent line to the curve at the point is the line
through P with slope

provided that this limit exists.

m � lim
x�a

f 1x 2 � f 1a 2
x � a

P1a, f 1a 22y � f 1x 2



Example 1 Finding a Tangent Line to a Hyperbola

Find an equation of the tangent line to the hyperbola y � 3/x at the point .

Solution Let . Then the slope of the tangent line at is

Definition of m

Cancel x � 3

Let x � 3

Therefore, an equation of the tangent at the point is

which simplifies to

The hyperbola and its tangent are shown in Figure 6. ■

There is another expression for the slope of a tangent line that is sometimes easier
to use. Let h � x � a. Then x � a � h, so the slope of the secant line PQ is

See Figure 7 where the case h 	 0 is illustrated and Q is to the right of P. If it hap-
pened that h � 0, however, Q would be to the left of P.

Notice that as x approaches a, h approaches 0 (because h � x � a), and so the ex-
pression for the slope of the tangent line becomes

0 a a+h

PÓa, f(a)Ô
f(a+h)-f(a)

h

QÓa+h, f(a+h)Ô

t
y

x

mPQ �
f 1a � h 2 � f 1a 2

h

x � 3y � 6 � 0

y � 1 � � 1
3 1x � 3 213, 1 2� �

1

3

� lim
x�3
a� 1

x
b

Multiply numerator
and denominator by x� lim

x�3

3 � x

x1x � 3 2
f 1x 2 �

3
x� lim

x�3

3
x

� 1

x � 3

m � lim
x�3

f 1x 2 � f 13 2
x � 3

13, 1 2f 1x 2 � 3/x

13, 1 2
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0

(3, 1)

x+3y-6=0 y=
3
x

y

x

Figure 6

Figure 7

m � lim
h�0

f 1a � h 2 � f 1a 2
h



Example 2 Finding a Tangent Line

Find an equation of the tangent line to the curve y � x 3 � 2x � 3 at the 
point .

Solution If , then the slope of the tangent line where 
a � 1 is

Definition of m

Expand numerator

Simplify

Cancel h

Let h � 0

So an equation of the tangent line at is

■

Derivatives

We have seen that the slope of the tangent line to the curve at the point
can be written as

It turns out that this expression arises in many other contexts as well, such as finding
velocities and other rates of change. Because this type of limit occurs so widely, it is
given a special name and notation.

lim
h�0

f 1a � h 2 � f 1a 2
h

1a, f 1a 22 y � f 1x 2

y � 2 � 11x � 1 2  or  y � x � 1

11, 2 2� 1

� lim
h�0
11 � 3h � h2 2� lim

h�0

h � 3h2 � h3

h

� lim
h�0

1 � 3h � 3h2 � h3 � 2 � 2h � 3 � 2

h

f 1x 2 � x3 � 2x � 3� lim
h�0

3 11 � h 2 3 � 211 � h 2 � 3 4 � 313 � 211 2 � 3 4
h

m � lim
h�0

f 11 � h 2 � f 11 2
h

f 1x 2 � x3 � 2x � 3

11, 2 2
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Definition of a Derivative

The derivative of a function f at a number a, denoted by , is

if this limit exists.

f¿ 1a 2 � lim
h�0

f 1a � h 2 � f 1a 2
h

f¿ 1a 2

Newton and Limits

In 1687 Isaac Newton (see page
894) published his masterpiece
Principia Mathematica. In this
work, the greatest scientific treatise
ever written, Newton set forth his
version of calculus and used it to
investigate mechanics, fluid dy-
namics, and wave motion, and to
explain the motion of planets and
comets.

The beginnings of calculus are
found in the calculations of areas
and volumes by ancient Greek
scholars such as Eudoxus and
Archimedes. Although aspects of
the idea of a limit are implicit in
their “method of exhaustion,” Eu-
doxus and Archimedes never ex-
plicitly formulated the concept of 
a limit. Likewise, mathematicians
such as Cavalieri, Ferinat, and Bar-
row, the immediate precursors of
Newton in the development of cal-
culus, did not actually use limits. It
was Isaac Newton who first talked
explicitly about limits. He ex-
plained that the main idea behind
limits is that quantities “approach
nearer than by any given differ-
ence.” Newton stated that the limit
was the basic concept in calculus
but it was left to later mathemati-
cians like Cauchy to clarify these
ideas.



Example 3 Finding a Derivative at a Point

Find the derivative of the function at the number 2.

Solution According to the definition of a derivative, with a � 2, we have

Definition of 

Expand

Simplify

Cancel h

Let h � 0 ■

We see from the definition of a derivative that the number is the same as the
slope of the tangent line to the curve at the point . So the result of
Example 2 shows that the slope of the tangent line to the parabola y � 5x 2 � 3x � 1
at the point is .

Example 4 Finding a Derivative

Let .

(a) Find .

(b) Find .

Solution

(a) We use the definition of the derivative at a:

Definition of derivative

Rationalize numerator

Difference of squares

Simplify numerator� lim
h�0

h

hA1a � h � 1aB
� lim

h�0

1a � h 2 � a

hA1a � h � 1aB
� lim

h�0

1a � h � 1a

h
# 1a � h � 1a

1a � h � 1a

f 1x 2 � 1x� lim
h�0

1a � h � 1a

h

f¿ 1a 2 � lim
h� 0

f 1a � h 2 � f 1a 2
h

f¿ 11 2 , f¿ 14 2 , and f¿ 19 2f¿ 1a 2f 1x 2 � 1x

f¿ 12 2 � 2312, 25 2 1a, f 1a 22y � f 1x 2 f¿ 1a 2
� 23

� lim
h�0
123 � 5h 2� lim

h�0

23h � 5h2

h

� lim
h�0

20 � 20h � 5h2 � 6 � 3h � 1 � 25

h

f 1x 2 � 5x 2 � 3x � 1� lim 
h�0

3512 � h 2 2 � 312 � h 2 � 1 4 � 3512 2 2 � 312 2 � 1 4
h

f ¿ 12 2f¿ 12 2 � lim
h�0

f 12 � h 2 � f 12 2
h

f 1x 2 � 5x2 � 3x � 1
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Cancel h

Let h � 0

(b) Substituting a � 1, a � 4, and a � 9 into the result of part (a), we get

These values of the derivative are the slopes of the tangent lines shown in 
Figure 8.

■

Instantaneous Rates of Change

In Section 2.3 we defined the average rate of change of a function f between the num-
bers a and x as

Suppose we consider the average rate of change over smaller and smaller intervals by
letting x approach a. The limit of these average rates of change is called the instanta-
neous rate of change.

average rate of change �
change in y

change in x
�

f 1x 2 � f 1a 2
x � a

941

1

0

y=œ∑x

y

x

Figure 8

f¿ 11 2 �
1

211
�

1

2
   f¿ 14 2 �

1

214
�

1

4
   f¿ 19 2 �

1

219
�

1

6

�
1

1a � 1a
�

1

21a

� lim
h�0

1

1a � h � 1a
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Instantaneous Rate of Change

If , the instantaneous rate of change of y with respect to x at x �
a is the limit of the average rates of change as x approaches a:

instantaneous rate of change � lim
x�a

f 1x 2 � f 1a 2
x � a

� f¿ 1a 2
y � f 1x 2

Notice that we now have two ways of interpreting the derivative:

■ is the slope of the tangent line to at x � a
■ is the instantaneous rate of change of y with respect to x at x � a

In the special case where x � t � time and s � f 1t2 � displacement 1directed dis-
tance2 at time t of an object traveling in a straight line, the instantaneous rate of
change is called the instantaneous velocity.

f¿ 1a 2 y � f 1x 2f¿ 1a 2



Example 5 Instantaneous Velocity 

of a Falling Object

If an object is dropped from a height of 3000 ft, its distance above the ground (in
feet) after t seconds is given by . Find the object’s instanta-
neous velocity after 4 seconds.

Solution After 4 s have elapsed, the height is ft. The instantaneous
velocity is

Definition of 

Simplify

Factor numerator

Cancel t � 4

/s Let t � 4

The negative sign indicates that the height is decreasing at a rate of 128 ft/s. ■

Example 6 Estimating an Instantaneous 

Rate of Change

Let be the population of the United States at time t. The table in the margin
gives approximate values of this function by providing midyear population esti-
mates from 1996 to 2004. Interpret and estimate the value of .

Solution The derivative means the rate of change of P with respect to t
when t � 2000, that is, the rate of increase of the population in 2000.

According to the definition of a derivative, we have

So we compute and tabulate values of the difference quotient (the average rates of
change) as shown in the table in the margin. We see that P�(2000) lies somewhere
between 3,038,500 and 2,874,500. (Here we are making the reasonable assumption
that the population didn’t fluctuate wildly between 1996 and 2004.) We estimate
that the rate of increase of the U.S. population in 2000 was the average of these two
numbers, namely

/year ■P¿ 12000 2 � 2.96 million people

P¿ 12000 2 � lim
t�2000

P1t 2 � P12000 2
t � 2000

P¿ 12000 2 P¿ 12000 2P1t 2

� �1614 � 4 2 � �128 ft

� lim
t�4

�1614 � t 2� lim
t�4

1614 � t 2 14 � t 2
t � 4

� lim
t�4

256 � 16t2

t � 4

h1t 2 � 3000 � 16t2� lim
t�4

3000 � 16t2 � 2744

t � 4

h¿ 14 2h¿ 14 2 � lim
t�4

h1t 2 � h14 2
t � 4

h14 2 � 2744

h1t 2 � 3000 � 16t2
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h(t)

t

1996 269,667,000
1998 276,115,000
2000 282,192,000
2002 287,941,000
2004 293,655,000

P 1t 2

t

1996 3,131,250
1998 3,038,500
2002 2,874,500
2004 2,865,750

P 1t 2 � P 12000 2
t � 2000

Here we have estimated the derivative
by averaging the slopes of two secant
lines. Another method is to plot the
population function and estimate 
the slope of the tangent line when 
t � 2000.
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1–6 ■ Find the slope of the tangent line to the graph of f at the
given point.

1.

2.

3.

4.

5.

6.

7–12 ■ Find an equation of the tangent line to the curve at the
given point. Graph the curve and the tangent line.

7.

8.

9.

10.

11.

12.

13–18 ■ Find the derivative of the function at the 
given number.

13. at 2

14. at �1

15. at 1

16. at 1

17. at 4

18. at 4

19–22 ■ Find , where a is in the domain of f.

19.

20.

21.

22. f 1x 2 � 1x � 2

f 1x 2 �
x

x � 1

f 1x 2 � �
1

x2

f 1x 2 � x2 � 2x

f¿ 1a 2
G1x 2 � 1 � 21x

F1x 2 �
1

1x

g1x 2 � 2x2 � x3

g1x 2 � x4

f 1x 2 � 2 � 3x � x2

f 1x 2 � 1 � 3x2

y � 11 � 2x at 14, 3 2y � 1x � 3 at 11, 2 2y �
1

x2 at 1�1, 1 2
y �

x

x � 1
 at 12, 2 2y � 2x � x3 at 11, 1 2y � x � x2 at 1�1, 0 2

f 1x 2 �
6

x � 1
 at 12, 2 2f 1x 2 � 2x3 at 12, 16 2f 1x 2 � 1 � 2x � 3x2 at 11, 0 2f 1x 2 � 4x2 � 3x at 1�1, 7 2f 1x 2 � 5 � 2x at 1�3, 11 2f 1x 2 � 3x � 4 at 11, 7 2

23. (a) If , find .

(b) Find equations of the tangent lines to the graph of 
f at the points whose x-coordinates are 0, 1, and 2.

(c) Graph f and the three tangent lines.

24. (a) If , find .

(b) Find equations of the tangent lines to the graph 
of g at the points whose x-coordinates are �1, 0,
and 1.

(c) Graph g and the three tangent lines.

Applications

25. Velocity of a Ball If a ball is thrown into the air 
with a velocity of 40 ft/s, its height (in feet) after t
seconds is given by y � 40t � 16t 2. Find the velocity 
when t � 2.

26. Velocity on the Moon If an arrow is shot upward on the
moon with a velocity of 58 m/s, its height (in meters) after t
seconds is given by H � 58t � 0.83t 2.

(a) Find the velocity of the arrow after one second.

(b) Find the velocity of the arrow when t � a.

(c) At what time t will the arrow hit the moon?

(d) With what velocity will the arrow hit the moon?

27. Velocity of a Particle The displacement s (in meters) of
a particle moving in a straight line is given by the equation
of motion s � 4t 3 � 6t � 2, where t is measured in seconds.
Find the velocity of the particle s at times t � a, t � 1,
t � 2, t � 3.

28. Inflating a Balloon A spherical balloon is being inflated.
Find the rate of change of the surface area with
respect to the radius r when r � 2 ft.

29. Temperature Change A roast turkey is taken from an
oven when its temperature has reached 185�F and is placed
on a table in a room where the temperature is 75�F. The
graph shows how the temperature of the turkey decreases

AS � 4pr 2B

g¿ 1a 2g1x 2 � 1/ 12x � 1 2
f¿ 1a 2f 1x 2 � x3 � 2x � 4

12.3 Exercises
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and eventually approaches room temperature. By measuring
the slope of the tangent, estimate the rate of change of the
temperature after an hour.

30. Heart Rate A cardiac monitor is used to measure the
heart rate of a patient after surgery. It compiles the number
of heartbeats after t minutes. When the data in the table are
graphed, the slope of the tangent line represents the heart
rate in beats per minute.

(a) Find the average heart rates (slopes of the secant lines)
over the time intervals 340, 424 and 342, 444.

(b) Estimate the patient’s heart rate after 42 minutes by 
averaging the slopes of these two secant lines.

31. Water Flow A tank holds 1000 gallons of water, which
drains from the bottom of the tank in half an hour. The 
values in the table show the volume V of water remaining 
in the tank (in gallons) after t minutes.

(a) Find the average rates at which water flows from the
tank (slopes of secant lines) for the time intervals 310, 154 and 315, 204.

(b) The slope of the tangent line at the point 
represents the rate at which water is flowing 
from the tank after 15 minutes. Estimate this rate 
by averaging the slopes of the secant lines in 
part (a).

115, 250 2

T  (°F)

0

P

30 60 90 120 150

100

200

t
(min)

32. World Population Growth The table gives the world’s
population in the 20th century.

Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

Discovery • Discussion

33. Estimating Derivatives from a Graph For the function
g whose graph is given, arrange the following numbers in
increasing order and explain your reasoning.

34. Estimating Velocities from a Graph The graph shows
the position function of a car. Use the shape of the graph to
explain your answers to the following questions.

(a) What was the initial velocity of the car?

(b) Was the car going faster at B or at C?

(c) Was the car slowing down or speeding up at A, B,
and C?

(d) What happened between D and E?

t

s

A

0

B

C

D E

y=˝

1 3 4_1 0 2

1

2

_1

y

x

0  g¿ 1�2 2  g¿ 10 2  g¿ 12 2  g¿ 14 2

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

Population Population
Year (in millions) Year (in millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560



Designing a Roller Coaster

Suppose you are asked to design the first ascent and drop for a new roller
coaster. By studying photographs of your favorite coasters, you decide to make
the slope of the ascent 0.8 and the slope of the drop �1.6. You then connect
these two straight stretches and with part of a parabola

where x and are measured in feet. For the track to be smooth there can’t 
be abrupt changes in direction, so you want the linear segments L1 and L2 to be
tangent to the parabola at the transition points P and Q, as shown in the figure.

1. To simplify the equations, you decide to place the origin at P. As a 
consequence, what is the value of c?

2. Suppose the horizontal distance between P and Q is 100 ft. To ensure that the
track is smooth at the transition points, what should the values of and

be?

3. If , show that .

4. Use the results of problems 2 and 3 to determine the values of a and b. That
is, find a formula for .

5. Plot L1, f, and L2 to verify graphically that the transitions are smooth.

6. Find the difference in elevation between P and Q.

f 1x 2
f¿ 1x 2 � 2ax � bf 1x 2 � ax2 � bx � c

f¿ 1100 2 f¿ 10 2

L¤

L⁄ P
f

Q

f 1x 2 y � f 1x 2 � ax2 � bx � c

y � L21x 2y � L11x 2
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D I S C O V E R Y
P R O J E C T

12.4 Limits at Infinity; Limits of Sequences

In this section we study a special kind of limit called a limit at infinity. We examine
the limit of a function as x becomes large. We also examine the limit of a 
sequence an as n becomes large. Limits of sequences will be used in Section 12.5 to
help us find the area under the graph of a function.

f 1x 2
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Limits at Infinity

Let’s investigate the behavior of the function f defined by

as x becomes large. The table in the margin gives values of this function correct to six
decimal places, and the graph of f has been drawn by a computer in Figure 1.

Figure 1

As x grows larger and larger, you can see that the values of get closer and
closer to 1. In fact, it seems that we can make the values of as close as we like
to 1 by taking x sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of become closer and closer to L as x becomes larger
and larger.

f 1x 2 lim
xSq

f 1x 2 � L

lim
xSq

x2 � 1

x2 � 1
� 1

f 1x 2f 1x 2
10

y=1

y=
≈-1

≈+1

y

x

f 1x 2 �
x2 � 1

x2 � 1

x

0 �1.000000
�1 0.000000
�2 0.600000
�3 0.800000
�4 0.882353
�5 0.923077

�10 0.980198
�50 0.999200

�100 0.999800
�1000 0.999998

f 1x 2

Limit at Infinity

Let f be a function defined on some interval . Then

means that the values of can be made arbitrarily close to L by taking x
sufficiently large.

f 1x 2 lim
xSq

f 1x 2 � L

1a,q 2

Another notation for is

The symbol q does not represent a number. Nevertheless, we often read the expres-
sion as

“the limit of , as x approaches infinity, is L”

or “the limit of , as x becomes infinite, is L”

or “the limit of , as x increases without bound, is L”f 1x 2f 1x 2f 1x 2lim
xSq

f 1x 2 � L

f 1x 2 � L  as  x �q

lim
xSq

f 1x 2 � L

Limits at infinity are also discussed in
Section 3.6.



Geometric illustrations are shown in Figure 2. Notice that there are many ways for
the graph of f to approach the line y � L (which is called a horizontal asymptote) as
we look to the far right.

Figure 2

Examples illustrating 

Referring back to Figure 1, we see that for numerically large negative values of x,
the values of are close to 1. By letting x decrease through negative values with-
out bound, we can make as close as we like to 1. This is expressed by writing

The general definition is as follows.

lim
xS�q

x2 � 1

x2 � 1
� 1

f 1x 2f 1x 2
lim
xSq

f 1x 2 � L

0

y=Ï

y=L

0

y=Ï

y=L

0

y=Ï

y=L

y

x

y

x

y

x
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Limit at Negative Infinity

Let f be a function defined on some interval . Then

means that the values of can be made arbitrarily close to L by taking x
sufficiently large negative.

f 1x 2 lim
xS�q

f 1x 2 � L

1�q, a 2

Again, the symbol �q does not represent a number, but the expression
is often read as

The definition is illustrated in Figure 3. Notice that the graph approaches the line 
y � L as we look to the far left.

“the limit of f 1x 2 , as x approaches negative infinity, is L”

lim
xS�q

f 1x 2 � L

Horizontal Asymptote

The line y � L is called a horizontal asymptote of the curve if 
either

lim
xSq

f 1x 2 � L  or  lim
xS�q

f 1x 2 � L

y � f 1x 2
0

y=Ï

y=L

0

y=Ï

y=L

y

x

x

y

Figure 3

Examples illustrating lim
xS�q

f 1x 2 � L



For instance, the curve illustrated in Figure 1 has the line y � 1 as a horizontal 
asymptote because

As we discovered in Section 7.4, an example of a curve with two horizontal 
asymptotes is y � tan�1 x (see Figure 4). In fact,

so both of the lines y � �p/2 and y � p/2 are horizontal asymptotes. (This 
follows from the fact that the lines x � �p/2 are vertical asymptotes of the graph 
of tan.)

Example 1 Limits at Infinity

Find .

Solution Observe that when x is large, 1/x is small. For instance,

In fact, by taking x large enough, we can make 1/x as close to 0 as we please.
Therefore

Similar reasoning shows that when x is large negative, 1/x is small negative, so we
also have

It follows that the line y � 0 (the x-axis) is a horizontal asymptote of the curve 
y � 1/x. (This is a hyperbola; see Figure 5.) ■

The Limit Laws that we studied in Section 12.2 also hold for limits at infinity. In
particular, if we combine Law 6 (Limit of a Power) with the results of Example 1, we
obtain the following important rule for calculating limits.

lim
xS�q

1
x

� 0

lim
xSq

1
x

� 0

1

100
� 0.01   

1

10,000
� 0.0001   

1

1,000,000
� 0.000001

lim
xSq

1
x

 and lim
xS�q

1
x

lim
xS�q

 tan�1x � �
p

2
  and  lim

xSq
 tan�1x �

p

2

lim
xSq

x2 � 1

x2 � 1
� 1
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0

_
π

2

π

2

x

y

Figure 4

y � tan�1 x

We first investigated horizontal 
asymptotes and limits at infinity for 
rational functions in Section 3.6.

0 x

1
x

y=

y

Figure 5

, lim
xS�q

1
x

� 0lim
xSq

1
x

� 0

If k is any positive integer, then

lim
xSq

1

xk � 0  and  lim
xS�q

1

xk � 0



Example 2 Finding a Limit at Infinity

Evaluate .

Solution To evaluate the limit at infinity of a rational function, we first divide
both the numerator and denominator by the highest power of x that occurs in the
denominator. (We may assume that x � 0 since we are interested only in large val-
ues of x.) In this case, the highest power of x in the denominator is x 2, so we have

Limit of a Quotient

Let x �q

A similar calculation shows that the limit as x �q is also . Figure 6 illustrates
the results of these calculations by showing how the graph of the given rational
function approaches the horizontal asymptote . ■

Example 3 A Limit at Negative Infinity

Use numerical and graphical methods to find .

Solution From the graph of the natural exponential function y � ex in Figure 7
and the corresponding table of values, we see that

It follows that the line y � 0 (the x-axis) is a horizontal asymptote.

lim
xS�q

ex � 0

lim
xS�q

ex

y � 3
5

3
5�

�
3 � 0 � 0

5 � 0 � 0
�

3

5

Limits of Sums and 
Differences

�

lim
xSq

3 � lim
xSq

1
x

� 2 lim
xSq

1

x2

lim
xSq

 5 � 4 lim
xSq

1
x

� lim
xSq

1

x2

�

lim
xSq
a3 �

1
x

�
2

x2 b
lim
xSq
a5 �

4
x

�
1

x2 b

Divide numerator and
denominator by x2

 lim
xSq

3x2 � x � 2

5x2 � 4x � 1
� lim

xSq

3 �
1
x

�
2

x2

5 �
4
x

�
1

x2

lim
xSq

3x2 � x � 2

5x2 � 4x � 1
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1

y=0.6

0

y

x

Figure 6

y=Æ

0

1

1

y

x

Figure 7

x ex

0 1.00000
�1 0.36788
�2 0.13534
�3 0.04979
�5 0.00674
�8 0.00034

�10 0.00005

■



Example 4 A Function with No Limit at Infinity

Evaluate .

Solution From the graph in Figure 8 and the periodic nature of the sine function,
we see that, as x increases, the values of sin x oscillate between 1 and �1 infinitely
often and so they don’t approach any definite number. Therefore,
does not exist. ■

Limits of Sequences

In Section 11.1 we introduced the idea of a sequence of numbers a1, a2, a3, . . . . Here
we are interested in their behavior as n becomes large. For instance, the sequence
defined by

is pictured in Figure 9 by plotting its terms on a number line and in Figure 10 by 
plotting its graph. From Figure 9 or 10 it appears that the terms of the sequence

are approaching 1 as n becomes large. We indicate this by writing

lim
nSq

n

n � 1
� 1

an � n/ 1n � 1 2
an �

n

n � 1

limxSq sin x

lim
xSq

 sin x
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0

y=ß x
y

x

Figure 8

0 11

2

a⁄ a¤ a‹
a›

Figure 9

0 n

an

1

1

2 3 4 5 6 7

7

8
a‡=

Figure 10

Definition of the Limit of a Sequence

A sequence a1, a2, a3, . . . has the limit L and we write

if the nth term an of the sequence can be made arbitrarily close to L by taking
n sufficiently large. If exists, we say the sequence converges (or is
convergent). Otherwise, we say the sequence diverges (or is divergent).

limnSq an

lim
nSq

an � L  or  an � L as n �q

This definition is illustrated by Figure 11.

If we compare the definitions of and , we see that
the only difference is that n is required to be an integer. Thus, the following is true.

limxSq f 1x 2 � LlimnSq an � L

0 n

an

L

1 2 3
0 n

an

L

1 2 3

Figure 11

Graphs of two
sequences with
lim
nSq

an � L

If and when n is an integer, then .lim
nSq

an � Lf 1n 2 � anlim
xSq

f 1x 2 � L



In particular, since we know that when k is a positive integer,
we have

if k is a positive integer

Note that the Limit Laws given in Section 12.2 also hold for limits of sequences.

Example 5 Finding the Limit of a Sequence

Find .

Solution The method is similar to the one we used in Example 2: Divide the 
numerator and denominator by the highest power of n and then use the Limit Laws.

Let n �q

Therefore, the sequence is convergent. ■

Example 6 A Sequence That Diverges

Determine whether the sequence is convergent or divergent.

Solution If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 12. Since the terms oscillate between
1 and �1 infinitely often, an does not approach any number. Thus,
does not exist; that is, the sequence is divergent. ■

Example 7 Finding the Limit of a Sequence

Find the limit of the sequence given by

Solution Before calculating the limit, let’s first simplify the expression for an.
Because n 3 � n # n # n, we place a factor of n beneath each factor in the numerator
that contains an n:

an �
15

6
# n
n
# n � 1

n
# 2n � 1

n
�

5

2
# 1 # a1 �

1
n
b a 2 �

1
n
b

an �
15

n3 c n1n � 1 2 12n � 1 2
6

d

an � 1�1 2 n limnSq 1�1 2 n
�1, 1, �1, 1, �1, 1, �1, . . .

an � 1�1 2 n
an � n/ 1n � 1 2�

1

1 � 0
� 1

Limits of a Quotient 
and a Sum

�

lim
nSq

 1

lim
nSq

 1 � lim
nSq

1
n

Divide numerator and 
denominator by n

 lim
nSq

n

n � 1
� lim

nSq

1

1 �
1
n

lim
nSq

n

n � 1

lim
nSq

1

nk � 0

limxSq 11/xk 2 � 0

914 CHAPTER 12 A Preview of Calculus

This result shows that the guess we
made earlier from Figures 9 and 
10 was correct.

0 n

an

1

1

2 3 4

_1

Figure 12



Now we can compute the limit:

Definition of an

Limit of a Product

Let n �q ■

12.4 Exercises

�
5

2
11 2 12 2 � 5

�
5

2
 lim
nSq
a1 �

1
n
b lim

nSq
a2 �

1
n
b

 lim
nSq

an � lim
nSq

5

2
a1 �

1
n
b a2 �

1
n
b
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1–2 ■ (a) Use the graph of f to find the following limits.

(i)

(ii)

(b) State the equations of the horizontal asymptotes.

1. 2.

3–14 ■ Find the limit.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–18 ■ Use a table of values to estimate the limit. Then use a
graphing device to confirm your result graphically.

15.

16. lim
xSq
A29x2 � x � 3xBlim

xS�q

2x2 � 4x

4x � 1

lim
xSq

 cos xlim
xS�q

a x � 1

x � 1
� 6 b

lim
tSq
a 1

t
�

2t

t � 1
blim

xSq

x4

1 � x2 � x3

lim
rSq

4r 3 � r 21r � 1 2 3lim
tSq

8t3 � t12t � 1 2 12t2 � 1 2
lim

xS�q

x2 � 2

x3 � x � 1
lim

xS�q

4x2 � 1

2 � 3x2

lim
xSq

2 � 3x

4x � 5
lim
xSq

2x � 1

5x � 1

lim
xSq

3

x4lim
xSq

6
x

1

1

y

x1

1

x

y

lim
xSq

f 1x 2lim
xSq

f 1x 2 17. 18.

19–30 ■ If the sequence is convergent, find its limit. If it is 
divergent, explain why.

19. 20.

21. 22.

23. 24.

25.

26. an � cos np

27.

28.

29.

30.

Applications

31. Salt Concentration

(a) A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the
tank at a rate of 25 L/min. Show that the concentration
of salt after t minutes (in grams per liter) is

(b) What happens to the concentration as t q?�

C1t 2 �
30t

200 � t

an �
12

n4 c n1n � 1 2
2

d 2
an �

24

n3 c n1n � 1 2 12n � 1 2
6

d
an �

5
n
an �

4
n
c n1n � 1 2

2
d b

an �
3

n2 c n1n � 1 2
2

d
an � sin1np/2 2 an �

1�1 2 n
n

an �
1

3n

an �
n � 1

n3 � 1
an �

n2

n � 1

an �
5n

n � 5
an �

1 � n

n � n2

lim
xSq
a1 �

2
x
b 3x

lim
xSq

x5

ex
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32. Velocity of a Raindrop The downward velocity of a
falling raindrop at time t is modeled by the function

(a) Find the terminal velocity of the raindrop by evaluating
. (Use the result of Example 3.)

(b) Graph , and use the graph to estimate how long it
takes for the velocity of the raindrop to reach 99% 
of its terminal velocity.

�(t)=1.2(1-e–8.2t)

√1t 2limtSq √1t 2
√1t 2 � 1.211 � e�8.2t 2 Discovery • Discussion

33. The Limit of a Recursive Sequence

(a) A sequence is defined recursively by a1 � 0 and

Find the first ten terms of this sequence correct to 
eight decimal places. Does this sequence appear to be
convergent? If so, guess the value of the limit.

(b) Assuming the sequence in part (a) is convergent, let
. Explain why also,

and therefore

Solve this equation to find the exact value of L.

L � 12 � L

limnSq an�1 � LlimnSq an � L

an�1 � 22 � an

12.5 Areas

We have seen that limits are needed to compute the slope of a tangent line or an in-
stantaneous rate of change. Here we will see that they are also needed to find the area
of a region with a curved boundary. The problem of finding such areas has conse-
quences far beyond simply finding area. (See Focus on Modeling, page 929.)

The Area Problem

One of the central problems in calculus is the area problem: Find the area of the re-
gion S that lies under the curve from a to b. This means that S, illustrated in
Figure 1, is bounded by the graph of a function f (where ), the vertical lines
x � a and x � b, and the x-axis.

Figure 1

In trying to solve the area problem, we have to ask ourselves: What is the mean-
ing of the word area? This question is easy to answer for regions with straight sides.

0 a b

y=Ï

S

x=a

x=b

y

x

f 1x 2 � 0
y � f 1x 2



For a rectangle, the area is defined as the product of the length and the width. The area
of a triangle is half the base times the height. The area of a polygon is found by di-
viding it into triangles (as in Figure 2) and adding the areas of the triangles.

However, it is not so easy to find the area of a region with curved sides. We all have
an intuitive idea of what the area of a region is. But part of the area problem is to make
this intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line
by slopes of secant lines and then we took the limit of these approximations. We pur-
sue a similar idea for areas. We first approximate the region S by rectangles, and then
we take the limit of the areas of these rectangles as we increase the number of rec-
tangles. The following example illustrates the procedure.

Example 1 Estimating an Area Using Rectangles

Use rectangles to estimate the area under the parabola y � x 2 from 0 to 1 (the para-
bolic region S illustrated in Figure 3).

Solution We first notice that the area of S must be somewhere between 0 and 1
because S is contained in a square with side length 1, but we can certainly do better
than that. Suppose we divide S into four strips S1, S2, S3, and S4 by drawing the ver-
tical lines as in Figure 4(a). We can approximate each strip
by a rectangle whose base is the same as the strip and whose height is the same as
the right edge of the strip (see Figure 4(b)). In other words, the heights of these 
rectangles are the values of the function at the right endpoints of the
subintervals .30, 1

4 4 , 3 14, 1
2 4 , 3 12, 3

4 4 , and 3 34, 1 4f 1x 2 � x2

x � 1
4, x � 1

2, and x � 3
4

A⁄

A¤ A‹

A›

A=A⁄+A¤+A‹+A›

h

b

A=
   

bh
1

2
A=l„

l

„
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Figure 2

0 1

(1, 1)

y=≈

S

y

x

Figure 3

(a)

0 1

(1, 1)

y=≈

3
4

1
2

1
4

S›

S‹
S¤

S⁄

y

x

Figure 4 (b)

0 13
4

1
2

1
4

(1, 1)

y=≈

y

x



Each rectangle has width and the heights are . If we let R4

be the sum of the areas of these approximating rectangles, we get

From Figure 4(b) we see that the area A of S is less than R4, so

Instead of using the rectangles in Figure 4(b), we could use the smaller rectan-
gles in Figure 5 whose heights are the values of f at the left endpoints of the 
subintervals. (The leftmost rectangle has collapsed because its height is 0.) The 
sum of the areas of these approximating rectangles is

We see that the area of S is larger than L4, so we have lower and upper estimates for A:

We can repeat this procedure with a larger number of strips. Figure 6 shows
what happens when we divide the region S into eight strips of equal width. By com-
puting the sum of the areas of the smaller rectangles and the sum of the areas
of the larger rectangles , we obtain better lower and upper estimates for A:

So one possible answer to the question is to say that the true area of S lies some-
where between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table 
in the margin shows the results of similar calculations (with a computer) using n
rectangles whose heights are found with left endpoints 1Ln2 or right endpoints 1Rn2.
In particular, we see by using 50 strips that the area lies between 0.3234 and
0.3434. With 1000 strips we narrow it down even more: A lies between 0.3328335
and 0.3338335. A good estimate is obtained by averaging these numbers:
A � 0.3333335. ■

From the values in the table it looks as if Rn is approaching as n increases. We
confirm this in the next example.

1
3

(a) Using left endpoints (b)  Using right endpoints

0 11

8

y=≈

(1, 1)

0 11

8

(1, 1)

y=≈

y

x

y

x

0.2734375 � A � 0.3984375

1R8 2 1L8 2
0.21875 � A � 0.46875

L4 � 1
4
# 02

� 1
4
# A14B2 � 1

4
# A12B2 � 1

4
# A34B2 � 7

32 � 0.21875

A � 0.46875

R4 � 1
4
# A14B2 � 1

4
# A12B2 � 1

4
# A34B2 � 1

4
# 12

� 15
32 � 0.46875

A14B2, A12B2, A34B2, and 121
4
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0 1

(1, 1)

3

4

1

2

1

4

y=≈

y

x

Figure 5

Figure 6

Approximating S with eight rectangles

n Ln Rn

10 0.2850000 0.3850000
20 0.3087500 0.3587500
30 0.3168519 0.3501852
50 0.3234000 0.3434000

100 0.3283500 0.3383500
1000 0.3328335 0.3338335



Example 2 The Limit of Approximating Sums

For the region S in Example 1, show that the sum of the areas of the upper 
approximating rectangles approaches , that is,

Solution Rn is the sum of the areas of the n rectangles shown in Figure 7. Each
rectangle has width 1/n, and the heights are the values of the function 
at the points 1/n, 2/n, 3/n, . . . , n/n. That is, the heights are 

. Thus

Here we need the formula for the sum of the squares of the first n positive 
integers:

Putting the preceding formula into our expression for Rn, we get

Thus, we have

■

It can be shown that the lower approximating sums also approach , that is,

lim
n�q

Ln � 1
3

1
3

� 1
6
# 1 # 2 � 1

3

� lim
n�q

1

6
a1 �

1
n
b a 2 �

1
n
b

� lim
n�q

1

6
a n � 1

n
b a 2n � 1

n
b

 lim
n�q

Rn � lim
n�q

1n � 1 2 12n � 1 2
6n2

Rn �
1

n3
# n1n � 1 2 12n � 1 2

6
�
1n � 1 2 12n � 1 2

6n2

12 � 22 � 32 � . . . � n2 �
n1n � 1 2 12n � 1 2

6

�
1

n3 112 � 22 � 32 � . . . � n2 2
�

1
n
# 1
n2 112 � 22 � 32 � . . . � n2 2

Rn �
1
n
a 1

n
b 2

�
1
n
a 2

n
b 2

�
1
n
a 3

n
b 2

� . . . �
1
n
a n

n
b 2

13/n 2 2, . . . , 1n/n 2 2 11/n 2 2, 12/n 2 2,f 1x 2 � x2

lim
n�q

Rn � 1
3

1
3
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1

n

0 1

(1, 1)

y=≈

y

x

Figure 7

This formula was discussed in 
Section 11.5.



From Figures 8 and 9 it appears that, as n increases, both Rn and Ln become better and
better approximations to the area of S. Therefore, we define the area A to be the limit
of the sums of the areas of the approximating rectangles, that is,

Figure 8

Figure 9

Definition of Area

Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We
start by subdividing S into n strips S1, S2, . . . , Sn of equal width as in Figure 10.

Figure 10
0 a bx⁄ x¤ x‹ xi-1 xi xn-1.  .  ..  .  .

y=Ï

S⁄ S¤ S‹ Si Sn

y

x

10

n=10    L⁄‚=0.285

10

n=30    L‹‚Å0.3169

10

n=50    Lfi‚=0.3234

y

x

y

x

y

x

10

n=50    Rfi‚=0.3434

10

n=30    R‹‚Å0.3502

10

n=10    R⁄‚=0.385

y

x

y

x

y

x

A � lim
n�q

Rn � lim
n�q

Ln � 1
3
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The width of the interval is b � a, so the width of each of the n strips is

These strips divide the interval into n subintervals

where x0 � a and xn � b. The right endpoints of the subintervals are

Let’s approximate the kth strip Sk by a rectangle with width x and height ,
which is the value of f at the right endpoint (see Figure 11). Then the area of the kth
rectangle is . What we think of intuitively as the area of S is approximated by
the sum of the areas of these rectangles, which is

Figure 12 shows this approximation for n � 2, 4, 8, and 12.

Figure 11

Figure 12

Notice that this approximation appears to become better and better as the number
of strips increases, that is, as n q. Therefore, we define the area A of the region S
in the following way.

�

(a) n=2 (b) n=4 (c) n=8 (d) n=12

0 a bx⁄ 0 a bx⁄ x¤ x‹ 0 a b 0 a b

y

x

y

x

y

x

y

x

0 a bx⁄ x¤ x‹ xk-1 xk

Îx

f(xk)

y

x

Rn � f 1x1 2¢x � f 1x2 2¢x � . . . � f 1xn 2¢x

f 1xk 2¢x

f 1xk 2x1 � a � ¢x, x2 � a � 2 ¢x, x3 � a � 3 ¢x, . . . , xk � a � k ¢x, . . .

3x0, x1 4 , 3x1, x2 4 , 3x2, x3 4 ,  . . . ,  3xn�1, xn 43a, b 4¢x �
b � a

n

3a, b 4
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In using this formula for area, remember that x is the width of an approximating
rectangle, xk is the right endpoint of the kth rectangle, and is its height. So

When working with sums, we will need the following properties from Section 11.1:

We will also need the following formulas for the sums of the powers of the first n
natural numbers from Section 11.5.

Example 3 Finding the Area under a Curve

Find the area of the region that lies under the parabola y � x 2, 0 
 x 
 5.

Solution The region is graphed in Figure 13. To find the area, we first find the
dimensions of the approximating rectangles at the nth stage.

Height:      f 1xk 2 � f a 5k
n
b � a 5k

n
b 2

�
25k2

n2

 Right endpoint:    xk � a � k ¢x � 0 � k a 5
n
b �

5k
n

Width:       ¢x �
b � a

n
�

5 � 0
n

�
5
n

a
n

k�1
k2 �

n1n � 1 2 12n � 1 2
6

      a
n

k�1
k3 �

n21n � 1 2 2
4

a
n

k�1
c � nc                  a

n

k�1
k �

n1n � 1 2
2

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk  a

n

k�1
cak � ca

n

k�1
ak

Height:      f 1xk 2 � f 1a � k ¢x 2 Right endpoint:   xk � a � k ¢x

Width:       ¢x �
b � a

n

f 1xk 2
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Definition of Area

The area A of the region S that lies under the graph of the continuous func-
tion f is the limit of the sum of the areas of approximating rectangles:

Using sigma notation, we write this as follows:

A � lim
n�q a

n

k�1
f 1xk 2¢x

A � lim
n�q

Rn � lim
n�q
3f 1x1 2¢x � f 1x2 2¢x � . . . � f 1xn 2¢x 4

1 5

5

25

0

y=≈

y

x

Figure 13



Now we substitute these values into the definition of area:

Definition of area

Simplify

Factor 

Sum of squares formula

Cancel n and expand numerator

Divide numerator and denominator by n2

Let n �q

Thus, the area of the region is . ■

Example 4 Finding the Area under a Curve

Find the area of the region that lies under the parabola y � 4x � x 2, 1 
 x 
 3.

Solution We start by finding the dimensions of the approximating rectangles at
the nth stage.

Thus, according to the definition of area, we get

� lim
n�q
a an

k�1
3 �

4
na

n

k�1
k �

4

n2 a
n

k�1
k2 b a 2

n
b

A � lim
n�q a

n

k�1
f 1xk 2¢x � lim

n�q a
n

k�1
a3 �

4k
n

�
4k2

n2 b a 2
n
b

� 3 �
4k
n

�
4k2

n2

� 4 �
8k
n

� 1 �
4k
n

�
4k2

n2

Height:       f 1xk 2 � f a1 �
2k
n
b � 4 a1 �

2k
n
b � a1 �

2k
n
b 2

 Right endpoint:   xk � a � k¢x � 1 � k a 2
n
b � 1 �

2k
n

Width:        ¢x �
b � a

n
�

3 � 1
n

�
2
n

125
3 � 41.7

�
125

6
12 � 0 � 0 2 �

125

3

� lim
n�q

125

6
a2 �

3
n

�
1

n2 b
� lim

n�q

12512n2 � 3n � 1 2
6n2

� lim
n�q

125

n3
# n1n � 1 2 12n � 1 2

6

125
n3� lim

n�q

125

n3 a
n

k�1
k2

� lim
n�qa

n

k�1

125k2

n3

f 1xk 2 �
25k 2

n2 , ¢x �
5
n

� lim
n�q a

n

k�1

25k2

n2
# 5
n

A � lim
n�q a

n

k�1
f 1xk 2¢x
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We can also calculate the limit by 
writing

as in Example 2.

�
125

6
a n

n
b a n � 1

n
b a 2n � 1

n
b

125

n3
# n1n � 1 2 12n � 1 2

6

1 40

y=4x-≈

3

y

x

Figure 14

Figure 14 shows the region whose area
is computed in Example 4.



■

12.5 Exercises

� 6 � 4 # 1 �
4

3
# 1 # 2 �

22

3

� lim
n�q
c6 � 4 a1 �

1
n
b �

4

3
a1 �

1
n
b a 2 �

1
n
b d

� lim
n�q
a6 � 4 # n

n
# n � 1

n
�

4

3
# n
n
# n � 1

n
# 2n � 1

n
b

� lim
n�q
a 2

n
13n 2 �

8

n2 c n1n � 1 2
2

d �
8

n3 c n1n � 1 2 12n � 1 2
6

d b
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n�q
a 2

na
n

k�1
3 �

8

n2 a
n

k�1
k �

8

n3 a
n

k�1
k2 b
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1. (a) By reading values from the given graph of f, use five
rectangles to find a lower estimate and an upper estimate
for the area under the given graph of f from x � 0 to
x � 10. In each case, sketch the rectangles that you use.

(b) Find new estimates using ten rectangles in each case.

2. (a) Use six rectangles to find estimates of each type for the
area under the given graph of f from x � 0 to x � 12.

(i) L6 (using left endpoints)

(ii) R6 (using right endpoints)

(b) Is L6 an underestimate or an overestimate of the true
area?

(c) Is R6 an underestimate or an overestimate of the true
area?

0 4

4

8

y=Ï

8 12

y

x

0 5

5
y=Ï

10

y

x

3–6 ■ Approximate the area of the shaded region under the
graph of the given function by using the indicated rectangles.
(The rectangles have equal width.)

3. 4.

5. 6.

7. (a) Estimate the area under the graph of 
from x � 1 to x � 5 using four approximating rectan-
gles and right endpoints. Sketch the graph and the 
rectangles. Is your estimate an underestimate or an
overestimate?

(b) Repeat part (a) using left endpoints.

f 1x 2 � 1/x

2

5

1

10

0

y

x
1

1

70

4

y

x

f 1x 2 � 9x � x3f 1x 2 �
4
x

1

1

_1 0

y

x1

1

20

y

x

f 1x 2 � 4 � x2f 1x 2 � 1
2 x � 2
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8. (a) Estimate the area under the graph of
from x � 0 to x � 5 using five approximating rectangles
and right endpoints. Sketch the graph and the rectangles.
Is your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

9. (a) Estimate the area under the graph of from
x � �1 to x � 2 using three rectangles and right end-
points. Then improve your estimate by using six rectan-
gles. Sketch the curve and the approximating rectangles.

(b) Repeat part (a) using left endpoints.

10. (a) Estimate the area under the graph of ,
0 
 x 
 4, using four approximating rectangles and
taking the sample points to be

(i) right endpoints

(ii) left endpoints

In each case, sketch the curve and the rectangles.

(b) Improve your estimates in part (a) by using eight 
rectangles.

11–12 ■ Use the definition of area as a limit to find the area 
of the region that lies under the curve. Check your answer by
sketching the region and using geometry.

11. y � 3x, 0 
 x 
 5 12. y � 2x � 1, 1 
 x 
 3

13–18 ■ Find the area of the region that lies under the graph of
f over the given interval.

13. , 0 
 x 
 2

14. , 0 
 x 
 1

15. , 0 
 x 
 5

16. , 2 
 x 
 5

17. , 1 
 x 
 4

18. , 2 
 x 
 3

Discovery • Discussion

19. Approximating Area with a Calculator When we 
approximate areas using rectangles as in Example 1, then
the more rectangles we use the more accurate the answer.

f 1x 2 � 20 � 2x2

f 1x 2 � x � 6x2

f 1x 2 � 4x3

f 1x 2 � x3 � 2

f 1x 2 � x � x2

f 1x 2 � 3x2

f 1x 2 � e�x

f 1x 2 � 1 � x2

f 1x 2 � 25 � x2 The following TI-83 program finds the approximate area 
under the graph of f on the interval [a, b] using n rectangles.
To use the program, first store the function f in Y1. The 
program prompts you to enter N, the number of rectangles,
and A and B, the endpoints of the interval.

(a) Approximate the area under the graph of
on 31, 34 using 10, 20,

and 100 rectangles.

(b) Approximate the area under the graph of f on the given
interval using 100 rectangles.

(i) , on 30, p4
(ii) , on 3�1, 14

PROGRAM:AREA

:Prompt N

:Prompt A

:Prompt B

:(B-A)/N�D

:0�S

:A�X

:For (K,1,N)

:X+D�X

:S+Y1�S

:End

:D*S�S

:Disp "AREA IS"

:Disp S

20. Regions with Straight Versus Curved Boundaries

Write a short essay that explains how you would find the area
of a polygon, that is, a region bounded by straight line seg-
ments. Then explain how you would find the area of a region
whose boundary is curved, as we did in this section. What is
the fundamental difference between these two processes?

f 1x 2 � e�x2

f 1x 2 � sin x

f 1x 2 � x5 � 2x � 3

12 Review

Concept Check

1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

f 12 2 � 3

lim
x�2

f 1x 2 � 5

2. Explain what it means to say that

In this situation is it possible that exists? 
Explain.

limx�1f 1x 2
lim

x�1�
f 1x 2 � 3 and lim

x�1�
f 1x 2 � 7
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3. Describe several ways in which a limit can fail to exist. 
Illustrate with sketches.

4. State the following Limit Laws.

(a) Sum Law

(b) Difference Law

(c) Constant Multiple Law

(d) Product Law

(e) Quotient Law

(f ) Power Law

(g) Root Law

5. Write an expression for the slope of the tangent line to the
curve at the point .

6. Define the derivative . Discuss two ways of interpret-
ing this number.

7. If , write expressions for the following.

(a) The average rate of change of y with respect to x
between the numbers a and x.

(b) The instantaneous rate of change of y with respect to 
x at x � a.

y � f 1x 2
f¿ 1a 2 1a, f 1a 22y � f 1x 2

8. Explain the meaning of the equation

Draw sketches to illustrate the various possibilities.

9. (a) What does it mean to say that the line y � L is a hori-
zontal asymptote of the curve ? Draw curves 
to illustrate the various possibilities.

(b) Which of the following curves have horizontal 
asymptotes?

(i) y � x2 (iv) y � tan�1 x

(ii) y � 1/x (v) y � ex

(iii) y � sin x (vi) y � ln x

10. (a) What is a convergent sequence?

(b) What does mean?

11. Suppose S is the region that lies under the graph of
.

(a) Explain how this area is approximated using rectangles.

(b) Write an expression for the area of S as a limit 
of sums.

y � f 1x 2 , a 
 x 
 b

limn�q an � 3

y � f 1x 2
lim
x�q

f 1x 2 � 2

Exercises

1–6 ■ Use a table of values to estimate the value of the 
limit. Then use a graphing device to confirm your result 
graphically.

1.

2.

3.

4.

5.

6.

7. The graph of f is shown in the figure. Find each limit or 
explain why it does not exist.

(a) (b)

(c) (d) lim
x��3

f 1x 2lim
x��3�

f 1x 2 lim
x��3�

f 1x 2lim
x�2�

f 1x 2
lim

x�0�

tan x0 x 0
lim

x�1�
ln1x � 1

lim
x�0

sin 2x

x

lim
x�0

2x � 1
x

lim
t��1

t � 1

t3 � t

lim
x�2

x � 2

x2 � 3x � 2

(e) (f)

(g) (h)

8. Let

Find each limit or explain why it does not exist.

(a) (b)

(c) (d) lim
x�2�

f 1x 2lim
x��1

f 1x 2 lim
x��1�

f 1x 2lim
x��1�

f 1x 2
f 1x 2 � •2      if x � �1

x2     if �1 
 x 
 2

x � 2  if x 	 2

1

1

y

x

lim
x�0

f 1x 2lim
x��q

f 1x 2 lim
x�q

f 1x 2lim
x�4

f 1x 2
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(e) (f)

(g) (h)

9–20 ■ Use the Limit Laws to evaluate the limit, if it exists.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ Find the derivative of the function at the given number.

21. 22.

23. 24.

25–28 ■ (a) Find . (b) Find and .

25. 26.

27. 28.

29–30 ■ Find an equation of the tangent line shown in the
figure.

29. 30.

31–34 ■ Find an equation of the line tangent to the graph of f at
the given point.

31. 32.

33. 34. f 1x 2 � 1x � 1, at 13, 2 2f 1x 2 �
1
x

, at a2,
1

2
b f 1x 2 � x2 � 3, at 12, 1 2f 1x 2 � 2x, at 13, 6 2

1 40

y=œ∑x

1
(1, 1)

y

x10

y=4x-≈

2

1

(1, 3)

4

y

x

f 1x 2 �
4
x

f 1x 2 � 1x � 6

f 1x 2 � x2 � 3xf 1x 2 � 6 � 2x

f¿ 1�2 2f¿ 12 2f¿ 1a 2
f1x 2 �

x

x � 1
, at 1f 1x 2 � 1x, at 16

g1x 2 � 2x2 � 1, at �1f 1x 2 � 3x � 5, at 4

lim
t��q

t4

t3 � 1
lim
x�q

cos2x

lim
x�q

x2 � 1

x4 � 3x � 6
lim
x�q

2x

x � 4

lim
x�0
a 1

x
�

2

x2 � 2x
blim

x�3�

x � 30 x � 3 0
lim
z�9

1z � 3

z � 9
lim
u�0

1u � 1 2 2 � 1

u

lim
x��2

x2 � 4

x2 � x � 2
lim
x�3

x2 � x � 12

x � 3

lim
t�1
1t3 � 3t � 6 2lim

x�2

x � 1

x � 3

lim
x�3
1f 1x 22 2lim

x�0
f 1x 2 lim

x�2
f 1x 2lim

x�2�
f 1x 2 35. A stone is dropped from the roof of a building 640 ft above

the ground. Its height (in feet) after t seconds is given by
.

(a) Find the velocity of the stone when t � 2.

(b) Find the velocity of the stone when t � a.

(c) At what time t will the stone hit the ground?

(d) With what velocity will the stone hit the ground?

36. If a gas is confined in a fixed volume, then according 
to Boyle’s Law the product of the pressure P and the 
temperature T is a constant. For a certain gas, PT � 100,
where P is measured in lb/in2 and T is measured in 
kelvins (K).

(a) Express P as a function of T.

(b) Find the instantaneous rate of change of P with respect
to T when T � 300 K.

37–42 ■ If the sequence is convergent, find its limit. If it is 
divergent, explain why.

37. 38.

39. 40.

41. 42.

43–44 ■ Approximate the area of the shaded region under the
graph of the given function by using the indicated rectangles.
(The rectangles have equal width.)

43. 44.

45–48 ■ Use the limit definition of area to find the area of the
region that lies under the graph of f over the given interval.

45.

46.

47.

48. f 1x 2 � x3, 1 
 x 
 2

f 1x 2 � x2 � x, 1 
 x 
 2

f 1x 2 � x2 � 1, 0 
 x 
 3

f 1x 2 � 2x � 3, 0 
 x 
 2

10 3

1

4

y

x
1 30

1

y

x

f 1x 2 � 4x � x2f 1x 2 � 1x

an �
10

3nan � cos a np

2
b

an �
n3

2n � 6
an �

n1n � 1 2
2n2

an �
n3

n3 � 1
an �

n

5n � 1

h1t 2 � 640 � 16t2



12 Test

1. (a) Use a table of values to estimate the limit

(b) Use a graphing calculator to confirm your answer graphically.

2. For the piecewise-defined function f whose graph is shown, find:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

3. Evaluate the limit, if it exists.

(a) (b) (c)

(d) (e) (f)

4. Let . Find:

(a) (b)

5. Find the equation of the line tangent to the graph of at the point where 
x � 9.

6. Find the limit of the sequence.

(a) (b)

7. The region sketched in the figure in the margin lies under the graph of ,
above the interval 0 
 x 
 1.

(a) Approximate the area of the region with five rectangles, equally spaced along the 
x-axis, using right endpoints to determine the heights of the rectangles.

(b) Use the limit definition of area to find the exact value of the area of the region.

f 1x 2 � 4 � x2

an � sec npan �
n

n2 � 4

f 1x 2 � 1x

f¿ 1�1 2 , f¿ 11 2 , f¿ 12 2f¿ 1x 2f 1x 2 � x2 � 2x

lim
x�q

2x2 � 4

x2 � x
lim
x�4

1x � 2

x � 4
lim
x�2

x � 20 x � 2 0
lim
x�2

1

x � 2
lim
x�2

x2 � 2x � 8

x � 2
lim
x�2

x2 � 2x � 8

x � 2

10 2

1

4

y

x

f 1x 2 � µ 1

0

x2

4 � x

lim
x�2

f 1x 2lim
x�2�

f 1x 2lim
x�2�

f 1x 2 lim
x�0

f 1x 2lim
x�0�

f 1x 2lim
x�0�

f 1x 2 lim
x��1

f 1x 2lim
x��1�

f 1x 2lim
x��1�

f 1x 2
lim
x�0

x

sin 2x
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The area under the graph of a function is used to model many quantities in physics,
economics, engineering, and other fields. That is why the area problem is so impor-
tant. Here we will show how the concept of work (Section 8.5) is modeled by area.
Several other applications are explored in the problems.

Recall that the work W done in moving an object is the product of the force F
applied to the object and the distance d that the object moves:

This formula is used if the force is constant. For example, suppose you are pushing a
crate across a floor, moving along the positive x-axis from x � a to x � b, and you
apply a constant force F � k. The graph of F as a function of the distance x is shown
in Figure 1(a). Notice that the work done is , which is the area
under the graph of F (see Figure 1(b)).

But what if the force is not constant? For example, suppose the force you apply 
to the crate varies with distance (you push harder at certain places than you do at 
others). More precisely, suppose that you push the crate along the x-axis in the posi-
tive direction, from x � a to x � b, and at each point x between a and b you apply 
a force to the crate. Figure 2 shows a graph of the force f as a function of the 
distance x.

How much work was done? We can’t apply the formula for work directly because
the force is not constant. So let’s divide the interval 3a, b4 into n subintervals with end-
points x0, x1, . . . , xn and equal width x as shown in Figure 3(a) on the next page.
The force at the right endpoint of the interval 3xk�1, xk4 is . If n is large, then x
is small, so the values of f don’t change very much over the interval 3xk�1, xk4. In other

f 1xk 2

y

(force)

0 x
(distance)

a b

f

Figure 2

A variable force

f 1x 2

F

0 a b

k

(a) (b)

F

0 a b

k

work=area

xx

W � Fd � k1b � a 2
W � Fd   work � force � distance
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words f is almost constant on the interval, and so the work Wk that is done in moving
the crate from xk�1 to xk is approximately

Thus, we can approximate the work done in moving the crate from x � a to x � b by

It seems that this approximation becomes better as we make n larger (and so make
the interval 3xk�1, xk4 smaller). Therefore, we define the work done in moving an ob-
ject from a to b as the limit of this quantity as n �q:

Notice that this is precisely the area under the graph of f between x � a and x � b as
defined in Section 12.5. See Figure 3(b).

Example The Work Done by a Variable Force

A man pushes a crate along a straight path a distance of 18 ft. At a distance x from
his starting point, he applies a force given by . Find the work done
by the man.

Solution The graph of f between x � 0 and x � 18 is shown in Figure 4. Notice
how the force the man applies varies—he starts by pushing with a force of 340 lb,
but steadily applies less force. The work done is the area under the graph of f on

Figure 4

(force)

0
(distance)

xk_1

xk

Îx

50

350

5

y

x

f 1x 2 � 340 � x2

(force)

0
(distance)

x‚ xnx⁄
xk_1 xk

Îx

… …

(force)

0
(distance)

work=area under
graph of f

(a) (b)

y

x

y

x

W � lim
n�qa

n

k�1
f 1xk 2¢x

W � a
n

k�1
f 1xk 2¢x

Wk � f 1xk 2¢x
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the interval 30, 184. To find this area, we start by finding the dimensions of the 
approximating rectangles at the nth stage.

Width:

Right endpoint:

Height:

Thus, according to the definition of work we get

So the work done by the man in moving the crate is 4176 ft-lb. ■

Problems

1. Work Done by a Winch A motorized winch is being used to pull a felled tree to 
a logging truck. The motor exerts a force of lb on the 
tree at the instant when the tree has moved x ft. The tree must be moved a distance 
of 40 ft, from x � 0 to x � 40. How much work is done by the winch in moving 
the tree?

2. Work Done by a Spring Hooke’s law states that when a spring is stretched, it 
pulls back with a force proportional to the amount of the stretch. The constant of 
proportionality is a characteristic of the spring known as the spring constant. Thus,
a spring with spring constant k exerts a force when it is stretched a 
distance x.

A certain spring has spring constant k � 20 lb/ft. Find the work done when the 
spring is pulled so that the amount by which it is stretched increases from x � 0 to 
x � 2 ft.

3. Force of Water As any diver knows, an object submerged in water experiences pres-
sure, and as depth increases, so does the water pressure. At a depth of x ft, the water
pressure is lb/ft2. To find the force exerted by the water on a surface,
we multiply the pressure by the area of the surface:

force � pressure � area

p1x 2 � 62.5x

f 1x 2 � kx

f 1x 2 � 1500 � 10x � 1
2x2

� 6120 � 972 # 1 # 1 # 2 � 4176

� lim
n�q
a6120 � 972 # n

n
# n � 1

n
# 2n � 1

n
b

� lim
n�q
a 18

n
340n �

5832

n3 c n1n � 1 2 12n � 1 2
6

d b
� lim

n�q
a 18

n a
n

k�1
340 �

118 2 1324 2
n3 a

n

k�1
k2 b

W � lim
n�qa

n

k�1
f 1xk 2¢x � lim

n�qa
n

k�1
a340 �

324k2

n2 b a 18
n
b

� 340 �
324k2

n2

f 1xk 2 � f a 18k
n
b � 340 � a 18k

n
b 2

xk � a � k ¢x � 0 � k a 18
n
b �

18k
n

¢x �
b � a

n
�

18 � 0
n

�
18
n
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Suppose an aquarium that is 3 ft wide, 6 ft long, and 4 ft high is full of water. The 
bottom of the aquarium has area 3 � 6 � 18 ft2, and it experiences water pressure of

lb/ft2. Thus, the total force exerted by the water on the bottom
is 250 � 18 � 4500 lb.

The water also exerts a force on the sides of the aquarium, but this is not as easy to
calculate because the pressure increases from top to bottom. To calculate the force on
one of the 4 ft by 6 ft sides, we divide its area into n thin horizontal strips of width ¢x,
as shown in the figure. The area of each strip is

If the bottom of the kth strip is at the depth xk, then it experiences water pressure 
of approximately lb/ft2—the thinner the strip, the more accurate the 
approximation. Thus, on each strip the water exerts a force of

(a) Explain why the total force exerted by the water on the 4 ft by 6 ft sides of the 
aquarium is

where ¢x � 4/n and xk � 4k/n.

(b) What area does the limit in part (a) represent?

(c) Evaluate the limit in part (a) to find the force exerted by the water on one of the 4 ft
by 6 ft sides of the aquarium.

(d) Use the same technique to find the force exerted by the water on one of the 4 ft by 
3 ft sides of the aquarium.

NOTE Engineers use the technique outlined in this problem to find the total force 
exerted on a dam by the water in the reservoir behind the dam.

4. Distance Traveled by a Car Since distance � speed � time, it is easy to see 
that a car moving, say, at 70 mi/h for 5 h will travel a distance of 350 mi. But what if 
the speed varies, as it usually does in practice?

(a) Suppose the speed of a moving object at time t is . Explain why the distance
traveled by the object between times t � a and t � b is the area under the graph 
of √ between t � a and t � b.

(b) The speed of a car t seconds after it starts moving is given by the function
ft/s. Find the distance traveled by the car from t � 0 to 

t � 5 s.

5. Heating Capacity If the outdoor temperature reaches a maximum of 90 �F one day 
and only 80 �F the next, then we would probably say that the first day was hotter than 
the second. Suppose, however, that on the first day the temperature was below 60 �F
for most of the day, reaching the high only briefly, whereas on the second day the 
temperature stayed above 75 �F all the time. Now which day is the hotter one? To better
measure how hot a particular day is, scientists use the concept of heating degree-hour.
If the temperature is a constant D degrees for t hours, then the “heating capacity”
generated over this period is Dt heating degree-hours:

If the temperature is not constant, then the number of heating degree-hours equals the

heating degree-hours � temperature � time

√1t 2 � 6t � 0.1t3

√1t 2

lim
n�qa

n

k�1
375xk ¢x

pressure � area � 62.5xk � 6 ¢x � 375xk ¢x lb

p1xk 2 � 62.5xk

length � width � 6 ¢x

p14 2 � 62.5 � 4 � 250
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area under the graph of the temperature function over the time period in question.

(a) On a particular day, the temperature (in �F) was modeled by the function
, where t was measured in hours since midnight. How many

heating degree-hours were experienced on this day, from t � 0 to t � 24?

(b) What was the maximum temperature on the day described in part (a)?

(c) On another day, the temperature (in �F) was modeled by the function
. How many heating degree-hours were experienced on 

this day?

(d) What was the maximum temperature on the day described in part (c)?

(e) Which day was “hotter”?

E1t 2 � 50 � 5t � 1
4t2

D1t 2 � 61 � 6
5t � 1

25t2
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To get the most out of your precalculus course, you should periodically review what
you have studied over the past several chapters of the textbook. Each new topic
builds on the ideas you have learned before, so it is important that you clearly
understand everything you have studied since the beginning of the course. In the
pages that follow you will find study checklists and multichapter tests that will help
you organize your cumulative review and help you monitor your progress toward
mastery of precalculus mathematics.

Cumulative Review for Chapters 2, 3, and 4

Summary

In Chapter 2 we studied the concept of a function, one of the most fundamental
ideas in mathematics. Functions are important because scientists use them to model
real-life relationships. In Chapters 3 and 4 we learned about several special types of
functions: polynomial, rational, exponential, and logarithmic functions. Many basic
natural processes, such as population growth and radioactive decay, can be modeled
using exponential functions.

Make sure you are thoroughly familiar with the following concepts before at-
tempting the test.

Functions

• Independent and dependent variables, domain and range, function notation

• Graph of a function, Vertical Line Test

• Piecewise-defined functions

• Increasing and decreasing functions, average rate of change

• Vertical and horizontal shifting; vertical and horizontal stretching, shrinking,
and reflecting

• Quadratic functions, maximum and minimum values of a function

• Composition of functions

• One-to-one functions, Horizontal Line Test, inverse of a function

Cumulative Review

CR1



CR2 Cumulative Review

Polynomial Functions

• Zero of a polynomial, multiplicity of a zero, graph of a polynomial, end 
behavior

• Synthetic division, Rational Zeros Theorem, factoring a polynomial

• Complex numbers, Fundamental Theorem of Algebra

Rational Functions

• Vertical and horizontal asymptotes

• Graph of a rational function

Exponential and Logarithmic Functions

• Graph of an exponential function, horizontal asymptote

• Graph of a logarithmic function, vertical asymptote

• Laws of Logarithms, combining and expanding logarithmic expressions

• Solving exponential and logarithmic equations

• Exponential and logarithmic models

Cumulative Review Test

1. Let f 1x 2 � x 2 � 4x and g 1x 2 � . Find each of the following:

(a) The domain of f

(b) The domain of g

(c) f 1�22, f 102, f 142, g 102, g 182, g 1�62
(d) f 1x � 22, g 1x � 22, f 12 � h2
(e) The average rate of change of g between x � 5 and x � 21

(f) f � g, g � f, f 1g 11222, g 1f 11222
(g) The inverse of g

2. Let f 1x 2 �
(a) Evaluate f 102, f 112, f 122, f 132, and f 142.
(b) Sketch the graph of f.

3. Let f be the quadratic function f 1x 2 � �2x2 � 8x � 5.

(a) Express f in standard form.

(b) Find the maximum or minimum value of f.

(c) Sketch the graph of f.

(d) Find the interval on which f is increasing and the interval on which f is decreasing.

(e) How is the graph of g 1x 2 � �2x 2 � 8x � 10 obtained from the graph of f?

(f) How is the graph of h 1x 2 � �21x � 32 2 � 81x � 32 � 5 obtained from the graph
of f?

4. Without using a graphing calculator, match each of the following functions to the
graphs at the top of the facing page. Give reasons for your choices.

f 1x 2 � x3 � 8x g 1x 2 � �x 4 � 8x 2

h 1x 2 � 2x � 5 k 1x 2 � 2�x � 3s 1x 2 �
2x � 3

x2 � 9

r 1x 2 �
2x � 3

x2 � 9

e4 if x 
 2

x � 3 if x 	 2

1x � 4



5. Let P 1x 2 � 2x 3 � 11x 2 � 10x � 8.

(a) List all possible rational zeros of P.

(b) Determine which of the numbers you listed in part (a) actually are zeros of P.

(c) Factor P completely.

(d) Sketch a graph of P.

6. Let Q 1x 2 � x 5 � 3x 4 � 3x 3 � x 2 � 4x � 2.

(a) Find all zeros of Q, real and complex, and state their multiplicities.

(b) Factor Q completely.

(c) Factor Q into linear and irreducible quadratic factors.

7. Let r 1x 2 � . Find the x- and y-intercepts and the horizontal and vertical

asymptotes. Then sketch the graph of r.

8. Sketch graphs of the following functions on the same coordinate plane.

(a) f 1x 2 � 2 � ex (b) g 1x 2 � ln 1x � 12
9. (a) Find the exact value of log3 16 � 2 log3 36.

(b) Use the Laws of Logarithms to expand the expression

10. Solve the equations.

(a) log2 x � log2 1x � 22 � 3

(b) 2e 3x � 11e 2x � 10ex � 8 � 0 [Hint: Compare to the polynomial in problem 5.]

11. A sum of $25,000 is deposited into an account paying 5.4% interest per year, com-
pounded daily.

(a) What will the amount in the account be after 3 years?

(b) When will the account have grown to $35,000?

(c) How long will it take for the initial deposit to double?

12. After a shipwreck, 120 rats manage to swim from the wreckage to a deserted island.
The rat population on the island grows exponentially, and after 15 months there are 
280 rats on the island.

(a) Find a function that models the population t months after the arrival of the rats.

(b) What will the population be 3 years after the shipwreck?

(c) When will the population reach 2000?

log a x52x � 1

2x � 3
b

3x2 � 6x

x2 � x � 2

Cumulative Review CR3
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Cumulative Review for Chapters 5, 6, 7, and 8

Summary

In Chapters 5, 6, 7, and 8 we studied trigonometric functions. Trigonometric func-
tions are used in the physical, life, and social sciences to model periodic phenomena,
such as the pulsation of variable stars or the increase and decrease of predator/prey
populations. Right triangle trigonometry is used in surveying and astronomy to cal-
culate distances and angles and in physics to calculate vectors and trajectories. In
Chapters 7 and 8 we studied trigonometric identities and equations, as well as polar
coordinates and other applications of trigonometry to mathematical analysis. You
will need a clear understanding of these topics when you study calculus.

Make sure you are thoroughly familiar with the following concepts before at-
tempting the test.

Trigonometric Functions of Real Numbers

• Unit circle, terminal point, reference number

• Definitions of the six trigonometric functions

• Pythagorean identities, reciprocal identities

• Graphs of the trigonometric functions

• Sine and cosine curves; period, frequency, amplitude, phase shift

• Harmonic motion

Trigonometric Functions of Angles

• Angle measure, degrees, radians, reference angle

• Definitions of the six trigonometric ratios

• Solving for the sides and angles of right triangles

• The Law of Sines, the Law of Cosines

• Solving a triangle: SAS, ASA, SSA, SSS cases; the ambiguous case

Trigonometric Identities

• Basic identities, proving identities

• Addition and subtraction formulas for sine, cosine, and tangent

• Double- and half-angle formulas for sine, cosine, and tangent

• Product-to-sum and sum-to-product identities for sine and cosine

Inverse Trigonometric Functions

• Definitions of the six inverse trigonometric functions

• Using inverse trigonometric functions to solve trigonometric equations

Polar Coordinates

• Definition of polar coordinates 1r, 2
• Relationship between polar and rectangular coordinates

• Graphing polar curves

u

CR4 Cumulative Review



Cumulative Review CR5

Polar Form of Complex Numbers

• Definition of polar form:

• Multiplying and dividing complex numbers in polar form

• DeMoivre’s Theorem

• nth roots of a complex number

Vectors

• Sums, differences, scalar multiples of vectors

• Using vectors to model displacement, velocity, acceleration, and force

• Dot product of vectors, length of a vector, angle between vectors

• Using the dot product to calculate work

Cumulative Review Test

1. The point P1x, y 2 shown in the figure has y-coordinate . Find:

(a) sin t (b) cos t (c) tan t (d) csc t

15/3

z � r 1cos u � i sin u 2

0 1

P t

y

x

3

7

2. For the angle u shown in the figure, find:

(a) sin u (b) sec u (c) cot u

3. Find the exact value:

(a) cos (b) tan 135� (c) csc 240� (d) sin

4. Suppose that and tan t � 0. Find the values of sin t, tan t, cot t, sec t,

and csc t.

cos t �
7

25

a�9p

2
b7p

6



5.

(a) Find the amplitude, period, and phase shift of f.

(b) Sketch the graph of one complete period of f.

6. One period of a function of the form y � a cos k 1x � b2 is shown in the figure. 
Determine the function.

Let f 1x 2 � �2 sin a2x �
p

2
b .

CR6 Cumulative Review

7. The figure below shows a model ferris wheel that a child has constructed using a toy
building kit. The wheel has a radius of 40 cm, and the center of the wheel is 45 cm
above the floor. An electric motor turns the wheel at 4 rotations per minute.

(a) Let h 1 t 2 be the vertical distance between the point P and the floor at time t.
Express the function h in the form h 1 t 2 � a � b cos kt. (Assume that at t � 0 the
point P is at the lowest point of its travel.)

(b) The support struts AB and AC are each 50 cm long. Find the distance between B
and C.

8. Find the side or angle labeled x:

x

y

_3

3

0 π

3

7π

3

13π

3

P

CB

A

(a)

70* 65*

5.6

x

(b)

20.5

15.213.0

x



9. Verify each identity:

(a) (b) 8 sin2 u cos2 u � 1 � cos 4u

10. Write cos 3x � cos 4x as a product of trigonometric functions.

11. (a) What are the domain and range of the function f 1x 2 � cos�1 x? Sketch a graph of
this function.

(b) Find the exact value of cos�1 1cos 17p/6 2 2.
(c) Express tan 1cos�1 x2 as an algebraic function of x.

12. Find all solutions of the equation cos 2x � sin x � 0 in the interval 30, 2p2.
13. Find two polar coordinate representations of the point 18, �82, one with r 	 0 and one

with r � 0, and both with 0 
 u � 2p.

14. The graph of the equation r � 2 sin 2u is called a four-leafed rose.

(a) Sketch a graph of this equation.

(b) Convert the equation to rectangular coordinates.

15. Let z � and let 

(a) Write z in polar form.

(b) Find z„ and z/„.

(c) Find z10.

(d) Find the three cubic roots of z.

16. Let u � �8, 6� and v � 5i � 10j.

(a) Graph u and v in the coordinate plane, with initial point (0, 0).

(b) Find u � v, 2u � v, the angle between u and v, and projvu.

(c) Assuming u is a force vector, calculate the work done by u when a particle moves
under its influence along the line segment from (2, 0) to (10, 3).

Cumulative Review for Chapters 9 and 10

Summary

In Chapter 9 we studied systems of equations and inequalities, and in Chapter 10
we studied conic sections. Systems of linear equations are used in all fields where
complex relationships involving many variables are modeled. Solving such systems
involves using matrices. Conic sections appear in numerous fields, from the study
of the planetary orbits to the calculation of rocket trajectories to determining the
optimal shapes of bridges and buildings.

Make sure you are thoroughly familiar with the following concepts before at-
tempting the test.

Systems of Equations

• Linear and nonlinear systems of equations

• Substitution, elimination, and graphical methods for solving systems of 
equations

„ � 6 a cos
5p

12
� i sin 

5p

12
b .13 � i

sec u � 1

tan u
�

tan u

sec u � 1

Cumulative Review CR7



Systems of Linear Equations

• Gaussian elimination, elementary row operations

• Matrices, augmented matrix of a system

• Systems with one solution, no solution, and infinitely many solutions

Matrices

• Addition, subtraction, and multiplication of matrices

• Inverse of a matrix, solving systems of equations using matrix inverses

• Row echelon form, reduced row echelon form

• Determinant of a matrix, Cramer’s Rule

Partial Fractions

• Partial fraction decomposition of a rational function

• The four cases: linear factors, quadratic factors, repeated linear, and quadratic
factors

Systems of Inequalities

• Graphing an inequality in two variables

• Using graphs to solve systems of inequalities

Conic Sections

• Parabolas, vertex, focus, directrix

• Ellipses, vertices, foci, major and minor axes

• Hyperbolas, vertices, foci, central box, asymptotes

• Shifted conics

• Rotation of axes, conics with rotated axes

• Conic sections in polar coordinates, focus, and directrix

Parametric Equations

• Parametric equations for a curve

• Eliminating the parameter

Cumulative Review Test

1. Consider the following system of equations.

(a) Is the system linear or nonlinear? Explain.

(b) Find all solutions of the system.

(c) The graph of each equation is a conic section. Name the type of conic section in
each case.

(d) Graph both equations on the same set of axes.

(e) On your graph, shade the region that corresponds to the solution of the system of
inequalities. e x2 �  y2 
 4y

x2 � 2y2 
 0

e x2 �  y2 � 4y

x2 � 2y2 � 0

CR8 Cumulative Review



2. Find the complete solution of each linear system, or show that no solution exists.

(a) (b)

3. Xavier, Yolanda, and Zachary go fishing. Yolanda catches as many fish as Xavier and
Zachary put together. Zachary catches 2 more fish than Xavier. The total catch for all
three people is 20 fish. How many did each person catch?

4. and

(a) Calculate each of the following, or explain why the calculation can’t be done.

A � B, C � D, AB, CB, BD, det 1B 2, det 1C 2, det 1D 2
(b) Based on the values you calculated for det 1C 2 and det 1D 2, which matrix, C or D,

has an inverse? Find the inverse of the invertible one.

5. Consider the following system of equations.

(a) Write a matrix equation of the form AX � B that is equivalent to this system.

(b) Find A�1, the inverse of the coefficient matrix.

(c) Solve the matrix equation by multiplying each side by A�1.

(d) Now solve the system using Cramer’s Rule. Did you get the same solution as in
part (b)?

6. Find the partial fraction decomposition of the rational function 

7. Sketch the graph of each conic section, and find the coordinates of its foci. What type
of conic section does each equation represent?

(a) 9x 2 � 4y 2 � 24y (b)

8. Find an equation for the conic whose graph is shown.

r �
6

1 � 2 cos u

r 1x 2 �
4x � 8

x4 � 4x2.

e5x � 3y � 5

6x � 4y � 0

D � £1 4 3

1 6 5

0 1 1

§ .C � £ 1 0 1

0 2 1

�1 0 0

§ ,B � c�2 1 0

�1
2 0 1

d ,Let A � c1 5

2 0
d ,

•  x �  y �  z � 2

 x � 2y � 3z � 3

3x � 5y � 8z � 7

•  x �  y �  z � 2

2x � 3y �  z � 5

3x � 5y � 2z � 11

Cumulative Review CR9

x

y

0

F¤(10, 0)

F1(0, 0)

2 5 8

1

4

9. Use rotation of axes to graph the equation 

10. (a) Sketch the graph of the parametric curve

x � 2 � sin2 t y � cos t

(b) Eliminate the parameter to obtain an equation for this curve in rectangular coordi-
nates. What type of curve is this?

7x2 � 613xy � 13y2 � 16.



CR10 Cumulative Review

Cumulative Review for Chapters 11 and 12

Summary

Chapters 11 and 12 introduced topics that you will study in greater depth when you
take calculus. Chapter 11 is devoted to sequences and series. A sequence is an infi-
nite list of numbers, and a series is the sum or partial sum of a sequence. Chap-
ter 12 introduces the idea of a limit, the fundamental tool of calculus.

Make sure you are thoroughly familiar with the following concepts before at-
tempting the test.

Sequences

• Formula for a sequence, recursive sequences

• Arithmetic sequences, initial term, common difference, partial sum

• Geometric sequences, initial term, common ratio, partial sum

• Sum of an infinite geometric sequence

Financial Mathematics

• Amount of an annuity

• Present value of an annuity

• Calculating the payment on a loan

Induction

• Principle of Mathematical Induction

• Induction hypothesis, induction step

Binomial Theorem

• Pascal’s Triangle, binomial coefficients

• The Binomial Theorem

Limits

• Definition of a limit

• Estimating limits using a table, estimating limits graphically

• Calculating limits using algebra

• Definition of derivative

• Using the derivative to find tangent lines

Areas

• Using rectangles to estimate area under a curve

• Definition of area under a curve using limits

Cumulative Review Test

1. For each sequence, find the 7th term, the 20th term, and the limit of the sequence 
(if it exists).

(a) . . .

(b) an �
2n2 � 1

n3 � n � 4

1
3,

2
5,

3
7,

4
9,

5
11,
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(c) The arithmetic sequence with initial term and common difference d � 3.

(d) The geometric sequence with initial term a � 12 and common ratio 

(e) The sequence defined recursively by a1 � 0.01 and an � �2an�1.

2. Calculate the sum.

(a)

(b) 3 � 9 � 27 � 81 � . . . � 310

(c)

(d)

3. Mary and Kevin buy a vacation home for $350,000. They pay $35,000 down and take
out a 15-year mortgage for the remainder. If their annual interest rate is 6%, how much
will their monthly mortgage payment be?

4. A sequence is defined inductively by a1 � 1 and an � an�1 � 2n � 1. Use mathemati-
cal induction to prove that an � n2.

5. (a) Use the Binomial Theorem to expand the expression 

(b) Find the term containing x 4 in the binomial expansion of 

6. Let f 1x 2 �
(a) Sketch a graph of f.

(b) Evaluate: (i) f 102 (ii) (iii) (iv) (v)

7. Use a table of values to estimate the limit 

8. Evaluate the limit, if it exists.

(a) (b) (c)

9. Let g 1x 2 � x 3. Find:

(a) The derivative of g

(b) g�1�32, g�102, and g�1a 2
(c) The equation of the line tangent to the graph of g at the point (2, 8)

10. (a) Sketch the graph of the region in the coordinate plane that lies under the graph of
f 1x 2 � 1 � x 2 and above the x-axis, between x � 0 and x � 1.

(b) If A is the area of this region, explain why 1 � A � 1.5.

(c) Approximate the area of the region with four rectangles, equally spaced on the 
x-axis, using left-hand endpoints to determine the heights of the rectangles.

(d) Use the limit definition of area to find the exact area of the region.

lim
x�2

x2 � 4

x � 2
lim

x��3

x2 � 4x � 21

x � 3
lim
x�3

x2 � 4x � 21

x � 3

lim
x�0

1 � cos x

x2 .

lim
x�2�

f1x 2lim
x�2�

f1x 2lim
x�1

f1x 2lim
x�0

f1x 2
µ 3 if x � 0

2 if x � 0

3 � x if 0 � x � 2

x if x � 2

A2x � 1
2B12.

A2x � 1
2B5.

6 � 2 � 2
3 � 2

9 � 2
27 � 2

81 � . . .

a
9

n�0

5

2n

3
5 � 4

5 � 1 � 6
5 � 7

5 � 8
5 � . . . � 19

5 � 4

r � 5
6.

a � 1
2
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Chapter 1

Section 1.1 ■ page 10

1. (a) 50 (b) 0, �10, 50 (c) 0, �10, 50, , 0.538,
(d) 3. Commutative Property for addition

5. Associative Property for addition 7. Distributive Property
9. Commutative Property for multiplication
11. 3 � x 13. 4A � 4B 15. 3x � 3y 17. 8m
19. �5x � 10y 21. (a) (b) 23. (a) 3 (b)
25. (a) (b) 6 27. (a) � (b) 	 (c) � 29. (a) False
(b) True 31. (a) False (b) True 33. (a) x 	 0
(b) t � 4 (c) a � p (d) �5 � x � (e)
35. (a) {1, 2, 3, 4, 5, 6, 7, 8} (b) {2, 4, 6}
37. (a) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (b) {7}
39. (a) (b)

41. �3 � x � 0 43. 2 
 x � 8

45. x � 2

47.

49.

51.

53. (a) (b)
55. 57.

59.

61. (a) 100 (b) 73 63. (a) 2 (b) �1 65. (a) 12
(b) 5 67. 5 69. (a) 15 (b) 24 (c) 71. (a)
(b) (c) 73. Distributive Property
75. (a) Yes, no (b) 6 ft

Section 1.2 ■ page 21

1. 5�1/2 3. 5. 53/5 7. 9. (a) �9 (b) 9
(c) 1 11. (a) 4 (b) (c) 16 13. (a) 4 (b) 2 (c) 1

2
1

81

25 a223 42

19
33

13
45

7
9

67
40

−4 4

0 6−2 1

1�3, 5 43�3, 5 4 −11�1,q 2 −2 11�2, 1 4 11�q, 1 4 2

82−3 0

5x 0 �1 � x � 465x 0 x 
 56
0 p � 3 0 
 51

3

8
3

25
72

9
20

17
30

17, 13 2� 1
3

1.23,22
7

15. (a) (b) (c) 17. (a) (b) 4 (c) �4
19. 5 21. 14 23. 25. 27. a 4 29. 6x 7y 5

31. 16x 10 33. 4/b 2 35. 64r 7s 37. 648y 7 39.

41. 43. 45. 47. 2x 2 49.

51. 53. x 13/15 55. 57. 16b 9/10 59.

61. y 1/2 63. 65. 67. 69.

71. (a) 6.93 � 107 (b) 7.2 � 1012 (c) 2.8536 � 10�5

(d) 1.213 � 10�4 73. (a) 319,000 (b) 272,100,000
(c) 0.00000002670 (d) 0.000000009999
75. (a) 5.9 � 1012 mi (b) 4 � 10�13 cm (c) 3.3 � 1019

molecules 77. 1.3 � 10�20 79. 1.429 � 1019

81. 7.4 � 10�14 83. (a) (b) (c)

85. (a) (b) (c)

87. (a) Negative (b) Positive (c) Negative (d) Negative
(e) Positive (f ) Negative 89. 2.5 � 1013 mi
91. 1.3 � 1021 L 93. 4.03 � 1027 molecules
95. (a) 28 mi/h (b) 167 ft 97. (a) 17.707 ft/s
(b) 1328.0 ft3/s

Section 1.3 ■ page 31

1. Trinomial; x 2, �3x, 7; 2 3. Monomial; �8; 0
5. Four terms; �x 4, x 3, �x 2, x; 4 7. 7x � 5
9. 5x 2 � 2x � 4 11. x 3 � 3x 2 � 6x � 11 13. 9x � 103
15. �t 4 � t 3 � t 2 � 10t � 5 17. x 3/2 � x
19. 21t 2 � 29t � 10 21. 3x 2 � 5xy � 2y 2

23. 1 � 4y � 4y 2 25. 4x 4 � 12x 2y 2 � 9y 4

27. 2x 3 � 7x 2 � 7x � 5 29. x 4 � a 4 31. a � 1/b 2

33. 1 � 3a 3 � 3a 6 � a 9 35. 2x 4 � x 3 � x 2 � 3x � 2
37. 1 � x 2/3 � x 4/3 � x 2 39. 3x 4y 4 � 7x 3y 5 � 6x 2y 3 � 14xy 4

xy3/5

y

14 y

y

223 x2

x

13x

3

12x

x

110

10

3t25/6

s1/2

4a2

3b1/3

x15

y15/2

32x12

y16/15

1

c2/3d

�1

9a5/4
2 0 x 0

0 ab3 00 x 0s3

q7r 6

y2z9

x5

x3

y

315 3712

3
2� 1

2� 1
4

2
3

Answers to Odd-Numbered
Exercises and Chapter Tests

A1



A2 Answers to Odd-Numbered Exercises and Chapter Tests

41. x 2 � y 2 � 2yz � z 2 43.
45. 47.
49. 51.
53. 55.
57. 59.
61. 63.
65. 67.
69. 71.
73. 75.
77. 79.
81. 83. 4ab
85.
87.
89.
91. 93.
95. 97.
99.
101.

103.
105. (d)

Section 1.4 ■ page 41

1. � 3. x � 4 5. x � �3 7.

9. 11. 13. 15.

17. 19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. �xy 53.

55. 57. 59. 1 61.

63. 65.

67. 69. 71.

73. 75. 77.

79. 81. 83.
1

2x2 � 1 � x

r � 2

511r � 12 2�4

311 � 15 2
y13 � y1y

3 � y

2117 � 12 2
5

2 � 13

2x � 31x � 1 2 4/3

x � 21x � 1 2 3/2

1x � 2 2 21x � 13 21x � 3 2 3
1

21 � x2

�312 � x 2 12 � x � h 2
�1

a1a � h 2y � x

xy

3x � 7

x2 � 2x � 1

c

c � 2

�51x � 1 2 1x � 2 2 1x � 3 2
5x � 6

x1x � 1 2x � 21x � 3 2 1x � 3 22x � 71x � 3 2 1x � 4 2
2x � 1

x21x � 1 2u2 � 3u � 1

u � 1

3x � 21x � 1 2 2
11x � 1 2 1x � 2 23x � 71x � 3 2 1x � 5 231x � 2 2

x � 3

x

yz
x21x � 1 212x � 1 2 12x � 1 21x � 5 2 2

x � 4

x � 1

1

t2 � 9

x � 3

3 � x

1

41x � 2 2
x12x � 3 2

2x � 3

y

y � 1

x � 2

x � 1

1

x � 2

x � 2

21x � 1 2
1a � b � c 2 1a � b � c 2 1a � b � c 2 1b � a � c 21x2 � 3 2�4/3A13 x2 � 3B21x2 � 4 2 41x � 2 2 317x2 � 10x � 8 21a � 2 2 1a � 2 2 1a � 1 2 1a � 1 231x � 1 2 1x � 2 212x2 � 1 2 1x � 2 21y � 2 2 1y � 2 2 1y � 3 2x1x � 1 2 21x2 � 2y 2 1x4 � 2x2y � 4y2 212x � 5 2 14x2 � 10x � 25 21x � 3 2 1x � 3 2 1x � 1 2 1x � 1 212x � 5 2 12x � 5 2 15s � t 2213x � 2 2 12x � 3 2 12x � 3 2 1x � 1 21x � 4 2 1x � 2 2 6x12x2 � 3 21x2 � 3 2 1x2 � 1 2�1/2

x1/21x � 1 2 1x � 1 21x � 1 2 1x2 � 1 2 12x � 1 2 1x2 � 3 21x � 4 2 1x2 � 1 2 1x � 6 2 213x � y 2 19x2 � 3xy � y2 213a � 4 2 13a � 4 213x � 4 2 13x � 8 2 12x � 5 2 14x � 3 21x � 1 2 1x � 3 2 xy12x � 6y � 3 21y � 6 2 1y � 9 2 2x1�x2 � 8 2 85. True 87. False 89. False 91. True

93. (a) (b)

Section 1.5 ■ page 55

1. (a) No (b) Yes 3. (a) Yes (b) No 5. 12 7. 18
9. �3 11. 12 13. 15. 30 17. 19. 21. �2

23. 25. 27.

29. 31.

33. 35.

37. �4, 3 39. 3, 4 41. , 43. 45.

47. , 49. 51. 0, 53. �3, 5

55. 57. , 1 59. 61. ,

63. 65. , 67.

69. 2 71. 1 73. No real solution
75. 77. �50, 100 79. �4 81. 4 83. 3

85. 87. No real solution

89. 91. �1, 0, 3 93. 27, 729 95.
97. 3.99, 4.01 99. 4.24 s 101. (a) After 1 s and s
(b) Never (c) 25 ft (d) After s (e) After s
103. (a) 0.00055, 12.018 m (b) 234.375 kg/m3

105. (a) After 17 yr, on Jan. 1, 2019 (b) After 18.621 yr, on
Aug. 12, 2020 107. 50 109. 132.6 ft

Section 1.6 ■ page 68

1. 3n � 3 3. 5. 0.025x

7. A � 3„2 9. 11. 13. 51, 52, 53

15. 19 and 36 17. $9000 at % and $3000 at 4%
19. 7.5% 21. $7400 23. $45,000 25. Plumber, 70 h;
assistant, 35 h 27. 40 years old 29. 9 pennies, 9 nickels,
9 dimes 31. 6.4 ft from the fulcrum 33. (a) 9 cm
(b) 5 in. 35. 45 ft 37. 120 ft by 120 ft 39. 25 ft by 35 ft
41. 60 ft by 40 ft 43. 120 ft 45. 4 in. 47. 18 ft 49. 5 m
51. 4 53. 18 g 55. 0.6 L 57. 35% 59. 37 min 20 s
61. 3 h 63. Irene 3 h, Henry 65. 4 h 67. 500 mi/h
69. 50 mi/h (or 240 mi/h) 71. 6 km/h 73. 2 ft by
6 ft by 15 ft 75. 13 in. by 13 in. 77. 2.88 ft 79. 16 mi; no
81. 7.52 ft 83. 18 ft 85. 4.55 ft

Section 1.7 ■ page 84

1. 3. {4} 5. {�2, �1, 2, 4}
7. 9.

24

1�q, 2 414,q 2512, 2, 46

41
2 h

41
2

25

x � 3
d � 3

4 s

160 � s

3

21
211

4

11
2

� 3
2 , 3

2�313, �212

�212, �15

� 7
5 , 2

� 7
5

16

6
�
16

2

�5 � 113

2

1
2� 9

2

1 � 15

4
� 3

2

�3 � 15

2

1
4�2 �

114

2
1
2� 7

2

�1 � 16�2, 1
3

5
2� 3

2

t �
�V0 � 2V 2

0 � 2gh

g
b � �2c2 � a2

r � � B
3V

ph
x �

1 � a

a2 � a � 1

x �
2d � b

a � 2c
R1 �

RR2

R2 � R
R �

PV

nT

13
3� 1

3� 3
4

20
3 � 6.7 ohms

R1R2

R1 � R2



Answers to Section 1.8 A3

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33. 3�3, 6 4
35. 37.

39. 41.

43. 45.

47. 49.

51. 53.

55. 57.

59. 61.

63. 3�4, 4 4 65.

67. 32, 84 69. 31.3, 1.7 4
71. 73.

75. 77.

79. 81. 83.

85. 87. 89. x � �2 or x 	 7�
4

3

 x 


4

3
0 x � 1 0 
 3

0 x 0 	 30 x 0 
 20 x � 7 0 � 5

− 1
2

3
2

0 x 0 � 33� 1
2,

3
2 4 −5.999−6.0018−4

1�6.001, �5.999 21�4, 8 2 1.71.382

− 7
2

7
2

4−4

A�q, � 7
2B � A72,q B1−1− 1

2
2−3

1�q, �1 2 � 11,q 2A�3, � 1
2B � 12,q 2 310−210−1−2

3�2, 0 2 � 11, 3 43�2, �1 2 � 10, 1 4 20−2165

1�2, 0 2 � 12,q 21�q, 5 2 � 316,q 2 3
2

−3−1

A�q, � 3
2B1�q, �1 2 � 33,q 2 20−20

1�2, 0 2 � 12,q 21�q,q 2 2−2−3 6

1�2, 2 21�q, �3 2 � 16,q 2 4−11
2

−1

1�1, 4 2A�q, �1 4 � 3 12,q B 6−30− 7
2

1�q, � 7
2 4 � 30,q 2 −2 321

2
15
2

1�2, 3 2A15
2 , 21

2 4 9
2

562

3 92, 5B12, 6 2 −1−3−1 0

3�3, �1 21�q, �1 4 −1816
3

1�q, �18 2A16
3 ,q B 11

2
−

31,q 2A�q, � 1
2B 91. (a) (b)

93. 68 
 F 
 86 95. More than 200 mi
97. Between 12,000 mi and 14,000 mi 99. Distances between
20,000 km and 100,000 km 101. Between 0 and 60 mi/h

103. (a) (b) From 20 �C down to �30�C

105. 24 107. (a)
(b) 0.017 
 x 
 0.023

Section 1.8 ■ page 97

1.

3. (a) (b) 5. (a) 10 (b)
7. (a) 9. (a)

(b) 10 (c) (b) 25 (c)
11. (a) 13. 24

(b) (c)

15. Trapezoid, area � 9 17.
y

0 x1

1

y

0 x3

5

_3

_5

D C

A B

10, 0 24110

y

0 x3

5

_3

_5

A(1, 3) B(5, 3)

C(1, _3) D(5, _3)

y

0 x_4 4

_4

4

(6, _2)

(_6, 2)

A12, 6B13, 12 2
6

(−3, −6)

(4, 18)

−6

6

y

0 x8

(0, 8)

(6, 16)

−8

8

y

0 x

11, 0 2A32, 1B113

5

(−4, 5)

(−4, −5) (4, −5)

(−2, 3) (2, 3)

(4, 5)

−5

−5

5

y

0 x

0 x � 0.020 0 
 0.003

T � 20 �
h

100

a � c

b

 x �

2a � c

b
x �

c

a
�

c

b



A4 Answers to Odd-Numbered Exercises and Chapter Tests

19. 21.

23. 25.

27. 29.
33. (b) 10 37.
39.

41. (a) (b)

43. No, yes, yes 45. Yes, no, yes
47. x-intercepts 0, 4; y-intercept 0
49. x-intercepts �2, 2; y-intercepts �4, 4
51. x-intercept 4, 53. x-intercept 3,

y-intercept 4, y-intercept �6,
no symmetry no symmetry 

4−4

2

−4

y

0 x2

2

y

0 x

A52, 3B, A52, 3By

0 x_4 4

_4

4

A

B

C

D

y

0 x5

2

_5

R(4, 2)
Q(1, 1)

P(_1, _4)

(2, _3)

12, �3 2 10, �4 2Q1�1, 3 2A16, 7 2

y

0 x5

5

_5

_5

2−2

2

−2

y

0 x

y

0 x5

5

_5

_5

y

0 x1

1

55. x-intercepts �1, 57. x-intercept 0,
y-intercept 1, y-intercept 0,
symmetry about y-axis symmetry about y-axis

59. x-intercepts �3, 61. No intercepts,
y-intercept �9, symmetry about origin 
symmetry about y-axis

63. x-intercepts �2, 65. x-intercept 4,
y-intercept 2, y-intercepts �2, 2,
symmetry about y-axis symmetry about x-axis

67. x-intercepts �2, 69. x-intercepts �4,
y-intercept 16, y-intercept 4,
symmetry about y-axis symmetry about y-axis

71. Symmetry about y-axis 73. Symmetry about origin
y-axis, and origin 75. Symmetry about origin

y

0 x

5

5

_5

_2

10

5

y

x

5−5 0

3

−3

y

x

y

0 x5

3

_5

y

0

x

_4

4

_4

4

y

0 x6_6
_2

2

y

0 x5

5

_5

y

0 x5_5

_5

1



Answers to Section 1.10 A5

77. 79.

81. 83. x 2 � y 2 � 65

85. 87.

89. 91. 93.

95. 97. 12p

99. (a) 5 (b) 31; 25 (c) Points P and Q must either be on
the same street or the same avenue. 101. (a) 2 Mm, 8 Mm
(b) �1.33, 7.33; 2.40 Mm, 7.60 Mm

Section 1.9 ■ page 109

1. (c) 3. (c) 5. (c)
7. 9.

11. 13.

15. 17.

−1

5

−3 5

−50

100

−4 6

−2000

2000

−50 150

−1

5

−20 20

−10

20

−4 10

−10

400

−2 2

y

0 x2

2

_2

_2

A34, 0B, 3
4A14, � 1

4B, 1
212, �5 2 , 4 1x � 2 2 2 � 1y � 2 2 2 � 41x � 7 2 2 � 1y � 3 2 2 � 9

1x � 2 2 2 � 1y � 1 2 2 � 9

y

0 x4_4

1
2

_
1
2

y

0 x4_4

_1

1

19. 21.

23. No 25. Yes, 2 27. �4 29. 31.

33. 2.5, �2.5 35.

37. 3.00, 4.00 39. 1.00, 2.00, 3.00 41. 1.62
43. �1.00, 0.00, 1.00 45. 2.55 47. �2.05, 0, 1.05
49. 3�2.00, 5.00 4 51.

53. 55. 57. 0, 0.01
59. (a) (b) 67 mi

Section 1.10 ■ page 120

1. 3. 5. 7. 9.
11. x � y � 4 � 0 13. 3x � 2y � 6 � 0
15. x � y � 1 � 0 17. 2x � 3y � 19 � 0
19. 5x � y � 11 � 0 21. 3x � y � 2 � 0
23. 3x � y � 3 � 0 25. y � 5 27. x � 2y � 11 � 0
29. x � �1 31. 5x � 2y � 1 � 0
33. x � y � 6 � 0
35. (a) (b) 3x � 2y � 8 � 0

37. They all have the 39. They all have the
same slope. same x-intercept.

−5

5

−2 8

m = 1.5

m = −1.5

m = 0.75

m = 0.25
m = 0

m = −0.25

m = −0.75

−8

8

−5 5

b = −6 b = −1
b = −3

b = 0
b = 1
b = 3

b = 6

(−2, 1)

1

−3

5

y

0 x

�2, 1
2,3,� 1

4� 9
2� 1

2
1
6

1
2

0

20

100

1�q, 0 21�1.00, 0 2 � 11.00,q 21�q, 1.00 4 � 32.00, 3.00 4
5 � 214 5 � 7.99, 5 � 214 5 � 2.01

�412 � �5.75
14

−0.8

0.8

−1.2 1.2

−4

4

−6 6



A6 Answers to Odd-Numbered Exercises and Chapter Tests

41. �1, 3 43.

45. 47. 0, 4 

49. 51. ,

57. x � y � 3 � 0 59. (b) 4x � 3y � 24 � 0
61. 16,667 ft 63. (a) 8.34; the slope represents the increase
in dosage for a one-year increase in age. (b) 8.34 mg

65. (a) (b) The slope 
represents production
cost per toaster; the 
y-intercept represents
monthly fixed cost.

67. (a) (b) 76 �F
69. (a) P � 0.434d � 15, where P is pressure in lb/in2 and d is
depth in feet

(b) (c) The slope is the rate
of increase in water pres-
sure, and the y-intercept
is the air pressure at the
surface. (d) 196 ft

50

5

y

x

t � 5
24 n � 45

0 500 1000 1500

3000

6000

9000

12000

y

x

2−2
−1

1

0

y

x

5−5

−3

1

y

0 x

1
4� 3

4
3
4,�3

5−5

5

y

0 x2

−2

1

y

0 x

3
2,3

5−5

−2

2

y

0 x

5

5

_2

y

0 x

� 1
3,0 71. (a)

(b) $635
(c) The slope represents 
cost per mile.
(d) The y-intercept represents
monthly fixed cost.

Section 1.11 ■ page 127

1. T � kx 3. √ � k/z 5. y � ks/t 7.

9. V � kl„h 11. 13. y � 7x 15. M � 15x/y

17. W � 360/r 2 19. C � 16l„h 21.
23. (a) F � kx (b) 8 (c) 32 N
25. (a) C � kpm (b) 0.125 (c) $57,500 27. (a) P � ks 3

(b) 0.012 (c) 324 29. 0.7 dB 31. 4 33. 5.3 mi/h
35. (a) R � kL/d 2 (b) (c) R � 137 �
37. (a) 160,000 (b) 1,930,670,340 39. 36 lb
41. (a) f � k/L (b) Halves it

Chapter 1 Review ■ page 131

1. Commutative Property for addition
3. Distributive Property
5. �2 
 x � 6

7.

9. 6 11. 13. 15. 11 17. 4 19. 16x 3 21. 12xy 8

23. x 2y 2 25. 3x 3/2y 2 27. 29. 7.825 � 1010

31. 1.65 � 10�32 33.
35. 37.
39.
41.
43. 45.

47. 49. 6x 2 � 21x � 3
51. �7 � x 53. 2x 3 � 6x 2 � 4x

55. 57. 59.

61. 63. 65. 5 67. No solution

69. 2, 7 71. �1, 73. 0, 75.

77. �5 79. 3, 11 81. 20 lb raisins, 30 lb nuts
83. mi/h 85. 1 h 50 min
87. 89.

91. 93. 32, 84
8242−2

1�q, �2 2 � 12, 4 4 −6 2−3

1�q, �6 2 � 12,q 21�3,q 21
4 11329 � 3 2 � 3.78

�2 � 17

3
� 5

2
1
2

312 � 213�
1

2x

1

x � 1

x � 1

x � 4

31x � 3 2
x � 4

2x2 � 21x2 � x � 2 2 21x � 2 2 14x2 � 3 2x�1/21x � 1 2 21x � 1 2 1x2 � x � 1 2 1x � 1 2 1x2 � x � 1 215 � 4t 2 15 � 4t 2 14t � 3 2 1t � 4 21x � 2 2 1x � 5 2 3xy214xy2 � y3 � 3x2 2
4r 5/2

s7

1
6

1
72

535,q 2 −2 6

0.002916

s � 500/1t

R � k
i

Pt

z � k1y

500 10000

500

1000

y

x

C � 1
4 d � 260



Answers to Chapter 1 Test A7

95. �1, 7 97. 31, 34
99. (a)

(b) (c)
(d) (e)

101.

103. B 105.
107. Circle, center , radius 1 109. No graph
111. No symmetry 113. No symmetry

115. Symmetry about y-axis 117. No symmetry
y

0 x2

2

0 x3_3

_4

y

4

y

0 x7

_7

7

y

0 x_2 2

_2

2

1�1, 3 21x � 5 2 2 � 1y � 1 2 2 � 26

y

0 x5

3

y

0 x8

8

_8

_8

(2, 0)

y

0 x

4

_4

_4

8

12(_5, 12)

24

7

2

1x � 2 2 2 � y2 � 193y � � 12
7 x � 24

7

A� 3
2, 6B1193

y

0 x4

4

_4

_4

8

12
Q (_5, 12)

P (2, 0)

119. 121.

123. 2x � 3y � 16 � 0 125. 3x � y � 12 � 0
127. x � 5y � 0 129. x2 � y 2 � 169, 5x � 12y � 169 � 0
131. (a) The slope represents the amount the spring 
lengthens for a one-pound increase in weight. The S-intercept
represents the unstretched length of the spring. (b) 4 in.
133. M � 8z 135. (a) I � k/d2 (b) 64,000
(c) 160 candles 137. 11.0 mi/h

Chapter 1 Test ■ page 135

1. (a)

(b) (c) 16 2. (a) 81 (b) �81 (c)

(d) 25 (e) (f) 3. (a) 1.86 � 1011 (b) 3.965 � 10�7

4. (a) (b) 48a 5b 7 (c) (d) (e)

(f) 5. 6. (a) 11x � 2
(b) 4x 2 � 7x � 15 (c) a � b (d) 4x 2 � 12x � 9
(e) x 3 � 6x 2 � 12x � 8 7. (a)

(b) (c)

(d) (e)

(f) 8. (a) 6 (b) 1 (c) �3, 4

(d) (e) No real solution (f )

(g) 9. 120 mi 10. 50 ft by 120 ft

11. (a)

(b)

(c)

(d)

12. Between 41�F and 50 �F 13. 0 
 x 
 6
14. (a) �2.94, �0.11, 3.05 (b) 3�1, 34
15. (a) (b) 18y

0 x1

1

Q

P

S

R

S13, 6 2
_1 4

1�1, 4 4 1 7
11, 7 2 _2 0 1
1�2, 0 2 � 11,q 2 _4 3
3�4, 3 22

3,
22
3

�1, �12�1 �
12

2

xy1x � 2 2 1x � 2 2 3x�1/21x � 1 2 1x � 2 2x1x � 3 2 1x2 � 3x � 9 21x � 3 2 1x � 2 2 1x � 2 212x � 3 2 1x � 4 2 12x � 5 2 12x � 5 2512 � 2110�1x � y 2
1

x � 2

x � 2

x � 2

x

9y7612

1
8

9
4

1
811�q, 3 4 , 3�1, 4 2

_5 3

2

6_3

10

_25

8_2

10

_10



A8 Answers to Odd-Numbered Exercises and Chapter Tests

16. (a) (b) x-intercepts �2, 2 
y-intercept �4

(c) Symmetric about 
y-axis

17. (a)

(b) (c) (d) (e)

(f)

18. (a)

(b)

(c)

19.

slope ; y-intercept �52
3

2

20

y

x

y � 2
3 x � 5

(−3, 1)

−5 0

3

y

x

1�3, 1 2 , 2
(2, −1)

0 4

2

y

x

12, �1 2 , 3

(0, 0)

−2
−2

2

2

y

x

10, 0 2 , 51x � 1 2 2 � A y � 7
2B2 � 89

4

y � � 8
5 x � 51

10
5
8A1, 7

2B189

Q(5, 6)

P(−3, 1)

1

1

0

y

x

y

0 x1

_4

20. (a) 3x � y � 3 � 0
(b) 2x � 3y � 12 � 0
21. (a) 4 �C (b)

(c) The slope is the rate of change in temperature, the 
x-intercept is the depth at which the temperature is 0�C,
and the T-intercept is the temperature at ground level.
22. (a) M � k„h2/L (b) 400 (c) 12,000 lb

Focus on Problem Solving ■ page 141

1. 37.5 mi/h 3. 150 mi 5. 427, 3n � 1
7. 75 s 9. The same amount
11. 2p 13. 8.49 15. 7
19. The North Pole is one such point. There are 
infinitely many others near the South Pole.
21. p 23. 13 � 123 � 93 � 103 � 1729
27. Infinitely far
29.

Chapter 2

Section 2.1 ■ page 155

1.
3.
5. Subtract 4, then divide by 3
7. Square, then add 2

9.

1 0

2 1

25

subtract 1,
take square root

subtract 1,
take square root

subtract 1,
take square root

(input) (output)

f 1x 2 � 1x � 5 2 2f 1x 2 � 21x � 3 2

y

0 x_1

_1

1

1

1

100100

T

x



Answers to Section 2.2 A9

11.

13. 3, �3, 2, 2a � 1, �2a � 1, 2a � 2b � 1

15. , undefined

17. �4, 10, �2, , 2x 2 � 7x � 1, 2x 2 � 3x � 4

19. 6, 2, 1, 2, , 21. 4, 1, 1, 2, 3
23. 8, , �1, 0, �1 25. x 2 � 4x � 5, x 2 � 6
27. x 2 � 4, x 2 � 8x � 16 29. 3a � 2, , 3

31. 5, 5, 0 33.

35. 3 � 5a � 4a 2, 3 � 5a � 5h � 4a 2 � 8ah � 4h 2,
�5 � 8a � 4h
37. 39. [�1, 5] 41.
43. 45. 47. 49.
51. 53. 55.
57. 59. (a)
(b) The cost of producing 10 yd and 100 yd
(c)
61. (a) (b) 41.3 mi
(c) 235.6 mi 63. (a)
(b) Flow is faster near central axis.
(c)

65. (a) 8.66 m, 6.61 m, 4.36 m
(b) It will appear to get shorter.
67. (a) $90, $105, $100, $105 (b) Total cost of an order,
including shipping

69. (a)

(b) $150, $0, $150 (c) Fines for violating the speed limits
71.
T

t0

F1x 2 � •15140 � x 2 if 0 � x � 40
0 if 40 
 x 
 65
151x � 65 2 if x 	 65

√10.1 2 � 4440, √10.4 2 � 1665
D10.1 2 � 28.1, D10.2 2 � 39.8

C10 2 � 1500

C110 2 � 1532.1, C1100 2 � 2100A12,q B 14,q 21�q, 0 4 � 36,q 23�2, 3 2 � 13,q 2 3 52,q B1�q,q 235,q 25x 0 x � �16 5x 0 x � 361�q,q 2
a

a � 1
,

a � h

a � h � 1
,

11a � h � 1 2 1a � 1 2
31a � h 2 � 2

� 3
4

21x2 � 1 22 0 x 0312

�
1

3
, �3,

1

3
,

1 � a

1 � a
,

2 � a

a

73.

Section 2.2 ■ page 167

1. 3.

5. 7.

9. 11.

5−5 0

−3

5

x

yy

0 x4_4
_4

4

y

2

_5

0

x5_5

y

x20

2

_2

_2

y

x40

4

_4

_4

y

x40

4

−4

−2

Years

19901985 20001995

Population
(× 1000)

700

750

800

850

900

t

P
x

�1 8
0 2
1 0
2 2
3 8

f 1x 2

r

0 4625
0.1 4440
0.2 3885
0.3 2960
0.5 0

√1r 2



A10 Answers to Odd-Numbered Exercises and Chapter Tests

13. 15.

17. 19.

21.

23. (a) 1, �1, 3, 4 (b) Domain 3�3, 4 4, range 3�1, 4 4
25. (a) (b) (c) �2, 2
27. (a)

(b) Domain , range 
29. (a)

(b) Domain , range {4}
31. (a)

(b) Domain , range 1�q, 4 41�q,q 2−12

5

−4 4

1�q,q 2−6

6

−6 6

1�q,q 21�q,q 2−3

3

−3 3

g1�3 2f 10 2

y

0 x

2

1

y

0 x5

5

_5

y

0 x5

5

_5

_5

y

0 x5

5

_5

_2

y

0

x4

4

_4

_4

33. (a)

(b) Domain 3�4, 4 4, range 30, 4 4
35. (a)

(b) Domain , range 
37. 39.

41. 43.

45. 47.

49. 51.
7

7_7

_7

y

0 x1

1

y

0 x5

5

_5

y

0 x5

5

_5

y

0 x

3

3

_3

_2

y

0 x3

3

_3

_3

y

0 x5

4

_5

y

0 x5

2

_5

_2

30,q 231,q 2−1

3

−1 9

−0.8

4.8

−4.75



Answers to Section 2.4 A11

53.

55. (a) Yes (b) No (c) Yes (d) No
57. Function, domain 3�3, 2 4, range 3�2, 2 4
59. Not a function 61. Yes 63. No 65. No
67. Yes 69. Yes 71. Yes
73. (a) (b)

(c) If c 	 0, then the graph of is the same as the
graph of y � x 2 shifted upward c units. If c � 0, then the graph
of is the same as the graph of y � x 2 shifted
downward c units.
75. (a) (b)

(c) If c 	 0, then the graph of is the same as
the graph of y � x 3 shifted right c units. If c � 0, then the
graph of is the same as the graph of y � x 3

shifted left c units.
77. (a) (b)

(c) Graphs of even roots are similar to ; graphs of odd roots
are similar to . As c increases, the graph of y �1c x� becomes
steeper near 0 and flatter when x 	 1.
79. , �2 
 x 
 4

81. , �3 
 x 
 3

83. This person’s weight increases as he grows, then continues
to increase; the person then goes on a crash diet (possibly) at
age 30, then gains weight again, the weight gain eventually 
leveling off.

f 1x 2 � 29 � x2

f 1x 2 � � 7
6 x � 4

3

13 x
1x

2

�2

�3 3

c=
1

5

c=
1

3

c=1

�1

3

�1 4

c=
1

2

c=
1

4

c=
1

6

f 1x 2 � 1x � c 2 3 f 1x 2 � 1x � c 2 3

10

10_10

_10

c=0c=_2

c=_4

c=_6

10

10_10

_10

c=0 c=2

c=4

c=6

f 1x 2 � x2 � c

f 1x 2 � x2 � c

10

5_5

_10

c=0 c=_2
c=_4

c=_610

5_5

_10

c=6 c=4
c=2

c=0

f 1x 2 � •�2 if x � �2
x if �2 
 x 
 2
2 if x 	 2

85. A won the race. All runners finished. Runner B fell, but got
up again to finish second. 87. (a) 5 s (b) 30 s (c) 17 s
89.

Section 2.3 ■ page 179

1. (a) 3�1, 1 4, 32, 4 4 (b) 31, 2 4 3. (a) 3�2, �1 4, 31, 2 4
(b) 3�3, �2 4, 3�1, 1 4, 32, 3 4
5. (a) 7. (a)

(b) Increasing on ; (b) Increasing on ; 
decreasing on decreasing on 
9. (a) 11. (a)

(b) Increasing on , (b) Increasing on 
; decreasing on 3�1, 2 4 , ; 

decreasing on 3�1.55, 0.22 4
13. 15. 17. 3 19. 5 21. 60 23. 12 � 3h

25. 27. 29. (a)

31. (a) Increasing on 30, 150 4, 3300, 365 4; decreasing on
[150, 300] (b) �0.25 ft/day 33. (a) 245 persons/yr
(b) �328.5 persons/yr (c) 1997–2001 (d) 2001–2006
35. (a) 7.2 units/yr (b) 8 units/yr (c) �55 units/yr
(d) 2000–2001, 2001–2002

Section 2.4 ■ page 190

1. (a) Shift downward 5 units (b) Shift right 5 units
3. (a) Shift left unit (b) Shift up unit 5. (a) Reflect in
the x-axis and stretch vertically by a factor of 2 (b) Reflect in
the x-axis and shrink vertically by a factor of 7. (a) Shift
right 4 units and upward unit (b) Shift left 4 units and
downward unit 9. (a) Shrink horizontally by a factor of 1

4
3
4

3
4

1
2

1
2

1
2

1
2

�2

a1a � h 2�
1
a

� 4
5

2
3

30.22,q 21�q, �1.55 432,q 2 1�q, �1 4

3

_3

5_5

20

_25

5_3

1�q, 2.5 41�q, 0 4 32.5,q 230,q 2

10

_10

7_2

5

_5

10_10

y

0 x2

2

3

4

1

C1x 2 � e 2   0 � x 
 1
2.2   1 � x 
 1.1
2.4   1.1 � x 
 1.2
 o
4.0   1.9 � x � 2.0



A12 Answers to Odd-Numbered Exercises and Chapter Tests

(b) Stretch horizontally by a factor of 4 11.
13. 15.
17. (a) 3 (b) 1 (c) 2 (d) 4
19. (a) (b)

(c) (d)

(e) (f)

21. (a)

(b) (ii) y

0

x4

4

_4

_4

y

0

(i)

x

5

5

_5

_5

y

0 x3

3

_3

_3

y

0 x5

5

_5

_5

y

0 x5

5

_5

_5

y

0

x5

5

_5

_5

y

0 x5

5

_5

y

0 x5

5

_5

_5

y

0 x5

5

_5

_5

g1x 2 � �1x � 2g1x 2 � 0 x � 1 0 � 2
g1x 2 � 1x � 2 2 2

23. (a) Shift left 2 units (b) Shift up 2 units
25. (a) Stretch vertically by a factor of 2
(b) Shift right 2 units, then shrink vertically by a factor of 
27. 29.
31.
33. 35.

37. 39.

41. 43.

45. 47.
y

0 x5

5

_5

y

0

x5

5

_5

y

0 x2

10

_4

(_3, 5)

y

0 x2

1

_5

_3

y

0 x5

5

_5

y

0 x5

5

_5

y

0 x5_5

_5

y

0 x5

5

_5

g1x 2 � 0.1 0 x � 1
2 0 � 2

g1x 2 � �51x � 3g1x 2 � 1x � 2 2 2 � 3

1
2

(iv) y

0 x5

3

_2

_2

(iii)

0 x4

6

_4

_6



Answers to Section 2.5 A13

49. For part (b) shift the graph
in (a) left 5 units; for part
(c) shift the graph in (a) left
5 units and stretch verti-
cally by a factor of 2; for
part (d) shift the graph in
(a) left 5 units, stretch verti-
cally by a factor of 2, and
then shift upward 4 units.

51. For part (b) shrink the
graph in (a) vertically by 
a factor of ; for part (c)
shrink the graph in (a) ver-
tically by a factor of and
reflect in the x-axis; for part
(d) shift the graph in (a)
right 4 units, shrink verti-
cally by a factor of , and
then reflect in the x-axis.

53. (a) (b)

55. (a) (b)

57. 59.

61. Even 63. Neither
y

0 x5

5

_5

4

5_5

_4

1 2 4

(b) (a) (c)

y

0 x3

3

_3

_3

y

x2−2

2

0

y

x2−2

3

−2

0

y

0 x6

2

y

0 x6

2

1
3

1
3

1
3

4

6_4

_4

(a) (b)

(c) (d)

8

8_8

_2

(a)

(b)

(c)

(d)

65. Odd

67. Neither
69. To obtain the graph of g, reflect in the x-axis the part of the
graph of f that is below the x-axis.
71. (a) (b)

73. (a) Shift up 4 units, shrink vertically by a factor of 0.01
(b) Shift right 10 units; 

Section 2.5 ■ page 200

1. (a) (b) 4 3. (a) (b) �3
5. (a) 7. (a)
(b) Vertex (b) Vertex 
x-intercepts 0, 6 x-intercepts 0, �3,
y-intercept 0 y-intercept 0
(c) (c)

9. (a) (b) Vertex 
x-intercepts �1, �3, y-intercept 3
(c)

20−2

2

x

y

1�2, �1 2f 1x 2 � 1x � 2 2 2 � 1

2−2

2

x

y

0

30−3

−3

3

x

y

A� 3
2, � 9

2B13, �9 2 f 1x 2 � 2Ax � 3
2B2 � 9

2f 1x 2 � 1x � 3 2 2 � 9
11, �3 213, 4 2

g1t 2 � 4 � 0.011t � 10 2 2
_5

y

0 x5

5

y

0 x5

5

_5

_3

y

0 x5

3

_5

_3



A14 Answers to Odd-Numbered Exercises and Chapter Tests

11. (a) (b) Vertex ;
x-intercepts ; y-intercept 4
(c)

13. (a) (b) Vertex ; 
no x-intercept; y-intercept 3
(c)

15. (a) (b) Vertex ; 
no x-intercept; y-intercept 57
(c)

17. (a) (b) Vertex ; 
x-intercepts ; y-intercept 3
(c)

19. (a) 21. (a)
(b) (b)

(c) Maximum (c) Minimum f 1�1 2 � �2f 11 2 � 1

y

0 x2

3

_3

_2
(_1, _2)

y

0

x1

1

_1

_1

(1, 1)

f 1x 2 � 1x � 1 2 2 � 2f 1x 2 � �1x � 1 2 2 � 1

y

0 x1

5

_2

�2 � 1
2119

1�2, 19 2f 1x 2 � �41x � 2 2 2 � 19

y

0 x5

7

_2

15, 7 2f 1x 2 � 21x � 5 2 2 � 7

y

0 x3

3

_3

1�1, 1 2f 1x 2 � 21x � 1 2 2 � 1

2−2

6

x

y

3 � 113
13, 13 2f 1x 2 � �1x � 3 2 2 � 13 23. (a)

(b)

(c) Maximum

25. (a)
(b)

(c) Minimum

27. (a)
(b)

(c) Maximum

29. Minimum

31. Maximum

33. Minimum

35. Minimum

37. Maximum 39.

41. , 43. ,
45. (a) �4.01 (b) �4.011025
47. Local maximum 2; local minimums �1, 0
49. Local maximums 0, 1; local minimums �2, �1
51. Local maximum � 0.38 when x � �0.58;
local minimum � �0.38 when x � 0.58
53. Local maximum � 0 when x � 0;
local minimum � �13.61 when x � �1.71;
local minimum � �73.32 when x � 3.21
55. Local maximum � 5.66 when x � 4.00
57. Local maximum � 0.38 when x � �1.73;

A� 23
2 ,q B1�q,q 21�q, 1 41�q,q 2 f 1x 2 � 2x2 � 4xf 1�1 2 � 7

2

h1�2 2 � �8

f 10.6 2 � 15.64

f 1�3.5 2 � 185.75

f A� 1
2B � 3

4

hA� 1
2B � 5

4

y

0 x2

2

_4

_2

!_   ,    @
1

2

5

4

h1x 2 � �Ax � 1
2B2 � 5

4

g12 2 � 1

y

0 x6

10

(2, 1)

g1x 2 � 31x � 2 2 2 � 1

f A�3
2B � 21

4

y

0 x3

3

_3

_2

!_   ,      @
3

2

21

4

f 1x 2 � �Ax � 3
2B2 � 21

4



Answers to Section 2.7 A15

local minimum � �0.38 when x � 1.73 59. 25 ft
61. $4,000, 100 units 63. 30 times 65. 50 trees per acre
67. 20 mi/h 69. r � 0.67 cm

Section 2.6 ■ page 210

1. 3.

5.

7. 9.

11. 13.

15.

17.

19. (b) (c) 9.5, 9.5 21. �12, �12
23. (b) (c) 600 ft by 1200 ft
25. (a) (b) Width along road is 30 ft,
length is 40 ft (c) 15 ft to 60 ft
27. (a) (b) $19 (c) $9.50

29. (a) (b) Width � 8.40 ft,

height of rectangular part � 4.20 ft
31. (a) (b) Height � 1.44 ft,
width � 2.88 ft 33. (a)
(b) 10 m by 10 m
35. (a)
(b) To point C, 5.1 mi from point B

Section 2.7 ■ page 219

1. ;

;

;

3. ;

;

;

5. ;

;

;

7. [0, 1] 9. 13,q 2a f

g
b 1x 2 �

x � 4

2x
, x � �4, x � 0

1fg 2 1x 2 �
8

x2 � 4x
, x � �4, x � 0

1f � g 2 1x 2 �
�2x � 8

x2 � 4x
, x � �4, x � 0

1f � g 2 1x 2 �
6x � 8

x2 � 4x
, x � �4, x � 0

a f

g
b 1x 2 � B

4 � x2

1 � x
, 1�1, 2 41fg 2 1x 2 � 2�x3 � x2 � 4x � 4, 3�1, 2 41f � g 2 1x 2 � 24 � x2 � 21 � x, 3�1, 2 41f � g 2 1x 2 � 24 � x2 � 21 � x, 3�1, 2 4a f

g
b 1x 2 �

x � 3

x2 , 1�q, 0 2 � 10,q 21fg 2 1x 2 � x3 � 3x2, 1�q,q 21f � g 2 1x 2 � �x2 � x � 3, 1�q,q 21f � g 2 1x 2 � x2 � x � 3, 1�q,q 2
E1x 2 � 14225 � x2 � 10112 � x 2A1x 2 � 2x � 200/x
A1x 2 � x2 � 48/x

A1x 2 � 15x � ap � 4

8
b x2

R1p 2 � �3000p2 � 57,000p

f 1„ 2 � 8„ � 7200/„

A1x 2 � x12400 � 2x 2p1x 2 � x119 � x 2A1h 2 � 2h2100 � h2, 0 � h � 10

A1b 2 � b14 � b, 0 � b � 4

D1t 2 � 25t, t � 0S1x 2 � 2x2 � 240/x, x 	 0

r1A 2 � 2A/p, A 	 0A1x 2 � 113/4 2x2, x 	 0

A1x 2 � 10x � x2, 0 � x � 10

V1„ 2 � 1
2 „3, „ 	 0A1„ 2 � 3„2, „ 	 0

11. 13.

15.

17. (a) 1 (b) �23 19. (a) �11 (b) �119
21. (a) �3x2 � 1 (b) �9x 2 � 30x � 23
23. 4 25. 5 27. 4
29. ;

;
;

31. ;
; ; 

33. ;

,
35. ;

; ;

37. ;

;

;

39. 212 �x, ; 212 �x, ; 

; 216 �x,

41.

43.

45.

47.

49.

51.

53.

55. R1x 2 � 0.15x � 0.000002x2

h1x 2 � 13 x, g1x 2 � 4 � x, f 1x 2 � x9

h1x 2 � x2, g1x 2 � x � 1, f 1x 2 � 1/x

g1x 2 � 1 � x3, f 1x 2 � 0 x 0g1x 2 � x2, f 1x 2 � x/ 1x � 4 2g1x 2 � x � 9, f 1x 2 � x5

1f � g � h 2 1x 2 � 11x � 5 2 4 � 1

1f � g � h 2 1x 2 � 2x � 1 � 1

30,q 21g � g 2 1x 2 �1f � f 2 1x 2 � 19 x, 1�q,q 2 30,q 21g � f 2 1x 2 �30,q 21f � g 2 1x 2 �

1g � g 2 1x 2 � 4x � 3, 1�q,q 21f � f 2 1x 2 �
x

2x � 1
, x � �1, x � � 1

2

1g � f 2 1x 2 �
2x

x � 1
� 1, x � �1

1f � g 2 1x 2 �
2x � 1

2x
, x � 0

1g � g 2 1x 2 � 4x � 9, 1�q,q 2 1f � f 2 1x 2 � 0 x 0 , 1�q,q 21g � f 2 1x 2 � 2 0 x 0 � 3, 1�q,q 21f � g 2 1x 2 � 0 2x � 3 0 , 1�q,q 21g � g 2 1x 2 � 4x � 12, 1�q,q 21f � f 2 1x 2 � x, x � 0

1g � f 2 1x 2 �
2
x

� 4, x � 01f � g 2 1x 2 �
1

2x � 4
, x � �2;

1g � g 2 1x 2 � x � 2, 1�q,q 2 1f � f 2 1x 2 � x4, 1�q,q 21g � f 2 1x 2 � x2 � 1, 1�q,q 21f � g 2 1x 2 � 1x � 1 2 2, 1�q,q 21g � g 2 1x 2 � 16x � 5, 1�q,q 21f � f 2 1x 2 � 4x � 9, 1�q,q 21g � f 2 1x 2 � 8x � 11, 1�q,q 21f � g 2 1x 2 � 8x � 1, 1�q,q 2

3

3_3

_2

f

g

f+g

3

3_3

_1

fg

f+g

1_1

y

x

f

g

f+g
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57. (a) (b)
(c) 59.
61. (a) (b)
(c) : first
rebate, then discount, g � f: first discount, then rebate, g � f is
the better deal

Section 2.8 ■ page 230

1. No 3. Yes 5. No 7. Yes 9. Yes 11. No
13. No 15. No 17. (a) 2 (b) 3 19. 1
31. 33.
35. 37.

39.

41.

43. 45.

47. 49.
51. (a) (b)

(c)
53. (a) (b)

(c)
55. Not one-to-one 57. One-to-one

20

16_4

_20

3

2_2

_3

f �11x 2 � x2 � 1, x � 0

y

0 x2

2

_2

_1

f–¡

y

0 x2

2

_2

_1

f

f �11x 2 � 1
3 1x � 6 2

y

0 x3

5

_5

_2

f–¡

y

0 x5

2

_5

_5

f

f �11x 2 � 14 xf �11x 2 � x2 � 2x, x � 1

f �11x 2 � 1x � 4 2 3f �11x 2 � 14 � x, x 
 4

f �11x 2 � 1
5 1x2 � 2 2 , x � 0

f �11x 2 � 15x � 1 2 / 12x � 3 2f �11x 2 � 11/x 2 � 2f �11x 2 � 2x
f �11x 2 � 1

4 1x � 7 2f �11x 2 � 1
2 1x � 1 2

f � g1x 2 � 0.9x � 90, g � f 1x 2 � 0.9x � 100, f � g

g1x 2 � x � 100f 1x 2 � 0.9x
A1t 2 � 16pt21f � g 2 1t 2 � 3600pt2

f 1r 2 � pr 2g1t 2 � 60t 59. Not one-to-one

61. (a)
(b)

63. (a)
(b)

65.

67.
69.

71. (a) (b) , the
number of hours worked as a function of the fee (c) 9; if he
charges $1220, he worked 9 h

73. (a) (b) 0.498; at a 

distance 0.498 from the central axis, the velocity is 30
75. (a) ; the Celsius temperature when the
Fahrenheit temperature is x (b) ; when the 
temperature is 86�F, it is 30�C

77. (a)

(b)

If you pay x euros in taxes, your income is .

(c) 79. A pizza
costing x dollars has toppings.f �11x 2 f �11x 2 � 1

2 1x � 7 2 .f �1110,000 2 � 60,000

f �11x 2f �11x 2 � e10x if 0 
 x 
 2000
10,000 � 5x if x 	 2000

f 1x 2 � e0.1x if 0 
 x 
 20,000
2000 � 0.21x � 20,000 2 if x 	 20,000

F �1186 2 � 30
F �11x 2 � 5

9 1x � 32 2
√�11t 2 � B0.25 �

t

18,500

f �11x 2 � 1
80 1x � 500 2f1x 2 � 500 � 80x

y

x1

1

0

x � �2, h�11x 2 � 1x � 2

x � 0, f �11x 2 � 24 � x

4

4_4

_4

g

g
−1

g�11x 2 � x2 � 3, x � 0

4

4_4

_4

f

f −1

f �11x 2 � x � 2

10

15_5

_10



Answers to Chapter 2 Review A17

Chapter 2 Review ■ page 234

1. 6, 2, 18, a 2 � 4a � 6, a 2 � 4a � 6, x 2 � 2x � 3,
4x 2 � 8x � 6, 2x 2 � 8x � 10 3. (a) �1, 2 (b) 3�4, 5 4
(c) 3�4, 4 4 (d) Increasing on 3�4, �2 4 and 3�1, 4 4; decreas-
ing on 3�2, �14 and 34, 5 4 (e) No 5. Domain ,
range 7. 9.
11. 13.
15. 17.

19. 21.

23. 25.

27. 29.

31. 33. (iii)
y

0 x1

3

_5

y

0 x5

5

_5

y

0 x3

1

_3

y

0 x3

2

_3

_2

y

0 x5

3

_5

_3

y

0 x1_1 5

1

y

0 x5

5

_5

_5

(3, _3)

y

0 5

2

_5

_5

t

y

0 x5

3

_5

_3

1�q, �1 4 � 31, 4 45x 0 x � �2,�1,06 3�4,q 21�q,q 230,q 2 3�3,q 2
35. 37.

39. 41. 5 43.

45. Increasing on ,
; decreasing on 30, 2.67 4

47. (a) Shift upward 8 units (b) Shift left 8 units
(c) Stretch vertically by a factor of 2, then shift upward 
1 unit (d) Shift right 2 units and downward 2 units
(e) Reflect in y-axis (f ) Reflect in y-axis, then in x-axis
(g) Reflect in x-axis (h) Reflect in line y � x
49. (a) Neither (b) Odd (c) Even (d) Neither
51. 53. 55. 68 ft
57. Local maximum � 3.79 when x � 0.46; local 
minimum � 2.81 when x � �0.46

59.

61. (a) (b) 5 cm by cm

63. (a)

(b)

(c)

(d)

(e)

(f)

65. , ; 

, ; 

, ; 

,

67.
69. Yes 71. No 73. No

75. 77. f �11x 2 � 13 x � 1f �11x 2 �
x � 2

3

1f � g � h 2 1x 2 � 1 � 1x

1�q,q 21g � g 2 1x 2 � �x4 � 4x3 � 6x2 � 4x

1�q,q 21f � f 2 1x 2 � 9x � 4

1�q,q 21g � f 2 1x 2 � �9x2 � 12x � 3

1�q,q 21f � g 2 1x 2 � �3x2 � 6x � 1

1g � f 2 1x 2 � �3x2 � 9x � 2

1f � g 2 1x 2 � 9x2 � 15x � 6

1f/g 2 1x 2 � 1x2 � 3x � 2 2 / 14 � 3x 21fg 2 1x 2 � �3x3 � 13x2 � 18x � 8

1f � g 2 1x 2 � x2 � 2

1f � g 2 1x 2 � x2 � 6x � 6

513

2
A1x 2 � 513x �

13

2
x2

A/C
sales

MonthJan. Apr. Jul. Oct.

g1�1 2 � �7f 1x 2 � 1x � 2 2 2 � 3

32.67,q 2 1�q, 0 410

6_2

_10

�1

313 � h 23�2.1, 0.2 4 � 31.9,q 2

2

10_10

_2

250

5_30

_20



A18 Answers to Odd-Numbered Exercises and Chapter Tests

79. (a), (b)

(c)

Chapter 2 Test ■ page 237

1. (a) and (b) are graphs of functions, (a) is one-to-one
2. (a) 2/3, , (b)
3. 5
4. (a) (b)

5. (a) Shift right 3 units, then shift upward 2 units
(b) Reflect in y-axis
6. (a)
(b) (c)

7. (a) �3, 3 (b)

8. (a) (b) 150 ft
9. (a) (b)
(c) 2 (d) 2 (e)
10. (a) f �11x 2 � 3 � x2, x � 0

1g � g � g 2 1x 2 � x � 9
1g � f 2 1x 2 � x2 � 21f � g 2 1x 2 � 1x � 3 2 2 � 1

A1x 2 � �3x2 � 900x

y

0 x5

2

_5

_2

f 12 2 � 5y

0 x5

9

_5

(2, 5)

f 1x 2 � 21x � 2 2 2 � 5

y

0 x5

3

_5

_3

y

0

x5

3

_5

_3

3�1, 0 2 � 10,q 21a/ 1a � 1 216/5

f �11x 2 � 1x � 4

y

0 x5

3

_5

_3

f

f –¡

(b)

11. (a) Domain 30, 6 4, range 31, 7 4
(b)

(c)
12. (a) (b) No

(c) Local minimum � �27.18 when x � �1.61;
local maximum � �2.55 when x � 0.18;
local minimum � �11.93 when x � 1.43
(d) (e) Increasing on

; decreasing on

Focus on Modeling ■ page 243

1. (a)

(b) y � 1.8807x � 82.65 (c) 191.7 cm
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Answers to Section 3.1 A19

3. (a)

(b) y � 6.451x � 0.1523 (c) 116 years

5. (a)

(b) y � 4.857x � 220.97 (c) 265 chirps/min

7. (a)

(b) y � �0.168x � 19.89 (c) 8.13%

9. (a)

(b) y � 0.2708x � 462.9 (c) 78.2 years

1920 1940 1960 1980 2000

L
if

e 
ex

pe
ct

an
cy

 (
ye

ar
s)

55

60

65

70

80

75

y

0 x

10 20 30 80 9060 7040 50 100

Flow rate (%)

M
os

qu
ito

 p
os

iti
ve

 r
at

e 
(%

)

15

20

5

10

25

Regression line

y

0 x

50 60 70 80 90

Temperature (°F)

C
hi

rp
in

g 
ra

te
 (

ch
ir

ps
/m

in
)

50

100

150

200

y

x0

Regression line

y

0 x

Regression line

Diameter (in.)

A
ge

 (
yr

)

100

80

60

40

20

161412108642

11. (a) y � �0.1729x � 64.717, y � �0.269x � 78.667
(b) 2039

Chapter 3

Section 3.1 ■ page 262

1. (a) (b)

(c) (d)

3. (a) (b)

(c) (d)
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A20 Answers to Odd-Numbered Exercises and Chapter Tests

5. III 7. V 9. VI
11. 13.

15. 17.

19. 21.

23. 25.

27. 29.
y

0 x1

1

_1

_1

y

0 x1 2

1

_1

_1

P1x 2 � 1x � 1 2 21x � 1 2P1x 2 � x21x � 1 2 1x � 2 2

y

0 x1

4

10

_1
_3

_10

y

0 x4

3

4

_4

_2
_4

P1x 2 � �x1x � 3 2 1x � 4 2P1x 2 � x1x � 2 2 1x � 3 2

y

0 x1

10

_1

_30

3

y

0 x4

4

3

_4

y

0 x1 3

1

_1

_3

y

0 x2
_2 2

3

3

20

12

_1

_15

y

0 x

10

2 3−2

y

0 x

1

1−2

31.

33.

35.

37. y � q as x � q, y � �q as x � �q
39. y � q as x � �q
41. y � q as x � q, y � �q as x � �q
43. (a) x-intercepts 0, 4; y-intercept 0 (b)
45. (a) x-intercepts �2, 1; y-intercept �1
(b)
47. local maximum 

49. 51.

local maximum , local minimum 
local minimum 12, �7 2 1�3, �27 21�2, 25 2

30

5_5

_30

30

5_5

_30

14, 16 230

12_4

_50

1�1, �2 2 , 11, 0 2 12, 4 2

0 x1
2

2

_1
_2

_4

_2

y

P1x 2 � 1x2 � 1 2 1x � 2 2 1x � 2 2

y

0 x2

5

16

_2

P1x 2 � 1x � 2 2 21x2 � 2x � 4 2

y

0 x2

1
2

3

9
10

_2

_3

_20

P1x 2 � 12x � 1 2 1x � 3 2 1x � 3 2



Answers to Section 3.3 A21

53.
local maximum ,
local minimum 

55. One local maximum, no local minimum
57. One local maximum, one local minimum
59. One local maximum, two local minima
61. No local extrema
63. One local maximum, two local minima
65.

Increasing the value of c
stretches the graph vertically.

67.
Increasing the value of c
moves the graph up.

69.
Increasing the value of c
causes a deeper dip in the 
graph in the fourth quadrant and
moves the positive x-intercept to
the right.

71. (a)

(b) Three (c) 10, 2 2 , 13, 8 2 , 1�2, �12 2

y

0 x3

10

_3

_10

10

4_2

_40

c=0

c=1

c=8

c=27

5

1.5_1.5

_3

c=2
c=1
c=0
c=_1

5

1_1

_5

c=5

c=2

c=
1

2

c=1

11, 1 21�1, 5 210

3_3

_5

73. (d) , where 
and
75. (a) Two local extrema 

77. (a) 26 blenders (b) No; $3276.22
79. (a) (b) 0 � x � 10
(c) Maximum volume � 1539.6 cm3

Section 3.2 ■ page 270

1. 3.

5.

7.

9. 11.

In answers 13–36, the first polynomial given is the 
quotient and the second is the remainder.
13. x � 2, �16 15. 2x 2 � 1, �2 17. x � 2, 8x � 1
19. 3x � 1, 7x � 5 21. x 4 � 1, 0 23. x � 2, �2
25. 3x � 23, 138 27. x 2 � 2, �3 29. x 2 � 3x � 1, �1
31. x 4 � x 3 � 4x 2 � 4x � 4, �2 33. 2x 2 � 4x, 1
35. x 2 � 3x � 9, 0 37. �3 39. 12 41. �7 43. �483
45. 2159 47. 49. �8.279 55.
57. x 3 � 3x 2 � x � 3 59. x 4 � 8x 3 � 14x 2 � 8x � 15
61. 63.
65.

Section 3.3 ■ page 279

1. �1, �3 3. �1, �2, �4, �8,

5. �1, �7, , , , 7. (a) �1, (b) �1, 1,

9. (a) �1, �3, , (b) , 1, 3 11. �2, 1
13. �1, 2 15. 2 17. �1, 2, 3 19. �1 21. �1, �2
23. 1, �1, �2, �4 25. �2, 27. �2 29. �1, ,

31. , , 1 33. , �1, 35. �1, , 2 37. �3, �2, 1, 3

39. �1, , 2, 5 41. �2,

43. �1, 4, 45. 3, 47. ,
1 � 13

2
1
2

1 � 15

2

3 � 213

2

�1 � 12� 1
3

1
2

3
2� 5

2
1
2� 3

2

1
2� 1

2� 3
2

� 1
2� 3

2� 1
2

1
5� 1

5� 7
4� 1

4� 7
2� 1

2

� 1
2

1x � 2 2 21x � 1 2 2 1x � 1 2 1x � 1 2 1x � 2 2� 3
2 x3 � 3x2 � 15

2 x � 9

�1 � 167
3

2x2 � x � 1 �
4x � 4

x2 � 4
2x � 1

2 �
� 15

2

2x � 1

x � 1 �
�11

x � 3

1x2 � 3 2 1x2 � x � 3 2 � 17x � 11 212x � 3 2 1x2 � 1 2 � 31x � 3 2 13x � 4 2 � 8

1600

100
0

V1x 2 � 4x3 � 120x2 � 800x

10

61

−12

PE1x 2 � �x2 � 5
PO1x 2 � x5 � 6x3 � 2xP1x 2 � PO1x 2 � PE1x 2



A22 Answers to Odd-Numbered Exercises and Chapter Tests

49. �1, ,
51. (a) �2, 2, 3 (b)

53. (a) , 2 (b)

55. (a) �1, 2 (b)

57. (a) �1, 2 (b)

59. 1 positive, 2 or 0 negative; 3 or 1 real
61. 1 positive, 1 negative; 2 real 63. 2 or 0 positive, 0 nega-
tive; 3 or 1 real (since 0 is a zero but is neither positive nor neg-
ative) 69. 3, �2 71. 3, �1 73. �2, , �1 75. ,
77. �2, 1, 3, 4 83. �2, 2, 3 85. , �1, 1, 4
87. �1.28, 1.53 89. �1.50 93. 11.3 ft 95. (a) It began
to snow again. (b) No (c) Just before midnight on Saturday
night 97. 2.76 m 99. 88 in. (or 3.21 in.)

Section 3.4 ■ page 289

1. Real part 5, imaginary part �7 3. Real part , imaginary
part 5. Real part 3, imaginary part 0 7. Real part 0,
imaginary part 9. Real part , imaginary part 2
11. 5 � i 13. 3 � 5i 15. 6 � i 17. 2 � 2i
19. �19 � 4i 21. 23. �4 � 8i 25. 30 � 10i
27. �33 � 56i 29. 27 � 8i 31. �i 33.

35. �5 � 12i 37. �4 � 2i 39. 41. �i

43. �i 45. 1 47. 5i 49. �6

2 � 4
3 i

8
5 � 1

5 i
� 1

4 � 1
2 i

13� 2
3

� 5
3

� 2
3

� 3
2

�15� 1
2

1
2

y

0 x1

5

_1

_5

y

0 x2

5

_1

_5

y

0 x2

20

_20

� 1
2

y

0 x1

5

_1

�3 � 110� 1
2 51. 53. 2 55. 57. �3i

59. 2 � i 61. 63. 65.

67. 69. 1 � 3i

Section 3.5 ■ page 298

1. (a) 0, �2i (b)

3. (a) 0, 1 � i (b)

5. (a) �i (b)

7. (a) �2, �2i (b)

9. (a)

(b)

11. (a)

(b) �

In answers 13–30, the factored form is given first, then the 
zeros are listed with the multiplicity of each in parentheses.
13.

15.

17.

19.

21.

23.

25.

27.

29.

31. 33.

35.

37.

39.

41. �2, �2i 43. 45.

47. 49. �2, 1, �3i 51.

53. 3 (multiplicity 2), �2i 55.

57. 1 (multiplicity 3), �3i 59. (a)
(b)

61. (a)

(b)

63. (a) 1x � 2 2 1x � 2 2 1x2 � 2x � 4 2 1x2 � 2x � 4 21x � 1 2 1x � 1 2 1x � 3i 2 1x � 3i 21x � 1 2 1x � 1 2 1x2 � 9 21x � 5 2 1x � 2i 2 1x � 2i 2 1x � 5 2 1x2 � 4 2� 1
2 1multiplicity 2 2 , �i

1, �2i, �i13� 3
2, �1 � i12

2,
1 � i13

2
1,

1 � i13

2

T1x 2 � 6x4 � 12x3 � 18x2 � 12x � 12

R1x 2 � x4 � 4x3 � 10x2 � 12x � 5

P1x 2 � x3 � 2x2 � x � 2

Q1x 2 � x3 � 3x2 � 4x � 12P1x 2 � x2 � 2x � 2

xAx � i13B2Ax � i13B2; 0 11 2 , i13 12 2 , �i13 12 22i 11 2 , �2i 11 21x � 1 2 1x � 1 2 1x � 2i 2 1x � 2i 2 ; 1 11 2 , �1 11 2 ,1x � i 221x � i 2 2; i 12 2 , �i 12 21x � 1 2 1x � 3i 2 1x � 3i 2 ; �1 11 2 , 3i 11 2 , �3i 11 23
2 11 2 , � 3

2 11 2 , 3
2 i 11 2 , � 3

2 i 11 216Ax � 3
2B Ax � 3

2B Ax � 3
2 iB Ax � 3

2 iB;1x � 1 2 1x � 1 2 1x � i 2 1x � i 2 ; 1 11 2 , �1 11 2 , i 11 2 , �i 11 2x1x � 2i 2 1x � 2i 2 ; 0 11 2 , 2i 11 2 , �2i 11 23x � 1�1 � i 2 4 3x � 1�1 � i 2 4 ; �1 � i 11 2 , �1 � i 11 21x � 5i 2 1x � 5i 2 ; �5i 11 2
Ax � 1

2 � 1
2 i13BAx � 1

2 � 1
2 i13B Ax � 1

2 � 1
2 i13B1x � 1 2 1x � 1 2 Ax � 1

2 � 1
2 i13B�1, 1

2 � 1
2 i13, � 1

2 � 1
2 i13

1x � 2 2 Ax � 1 � i13B Ax � 1 � i13B�2, 1 � i13

1x � 2 2 1x � 2 2 1x � 2i 2 1x � 2i 21x � i 2 21x � i 2 2x1x � 1 � i 2 1x � 1 � i 2x21x � 2i 2 1x � 2i 2
�6 � 16 i

6

�
3

2
�
13

2
i1

2 � 1
2 i�

1

2
�
13

2
i

�i12A3 � 15B � A3 � 15Bi



Answers to Section 3.6 A23

(b) �

65. (a) 4 real (b) 2 real, 2 imaginary (c) 4 imaginary

Section 3.6 ■ page 312

1. (a) �3, �19, �199, �1999; 5, 21, 201, 2001; 1.2500,
1.0417, 1.0204, 1.0020; 0.8333, 0.9615, 0.9804, 0.9980
(b)
(c) Horizontal asymptote y � 1
3. (a) �22, �430, �40,300, �4,003,000;
�10, �370, �39,700, �3,997,000;
0.3125, 0.0608, 0.0302, 0.0030; 
�0.2778, �0.0592, �0.0298, �0.0030
(b)
(c) Horizontal asymptote y � 0
5. x-intercept 1, y-intercept 7. x-intercepts �1, 2; 
y-intercept 9. x-intercepts �3, 3; no y-intercept
11. x-intercept 3, y-intercept 3, vertical x � 2;
horizontal y � 2 13. x-intercepts �1, 1; y-intercept ; 
vertical x � �2, x � 2; horizontal y � 1
15. Vertical x � �2; horizontal y � 0 17. Vertical x � 3,
x � �2; horizontal y � 1 19. Horizontal y � 0
21. Vertical x � �6, x � 1; horizontal y � 0
23. Vertical x � 1
25. 27.

29. 31.

33. x-intercept 1
y-intercept �2
vertical x � �2
horizontal y � 4

y

0

x4

5

_4
_5

y

0 x2

−2

2

−3

y

0 x2

5

y

0 x_1

5

y

0 x1

1

1
4

1
3

� 1
4

r1x 2 � �q as x � 2�r1x 2 � �q as x � 2�;

r1x 2 � �q as x � 2�; r1x 2 �q as x � 2�

3x � A1 � i13B 4 3x � A1 � i13B 41x � 2 2 1x � 2 2 3x � A1 � i13B 4 3x � A1 � i13B 4 35. x-intercept

y-intercept

vertical x � �7
horizontal y � �3

37. y-intercept 2
vertical x � 3
horizontal y � 0

39. x-intercept 2
y-intercept 2
vertical x � �1, x � 4
horizontal y � 0

41. y-intercept �1
vertical x � �1, x � 6
horizontal y � 0

43. x-intercept �2

y-intercept
vertical x � �4, x � 2
horizontal y � 0

45. x-intercepts �2, 1
y-intercept
vertical x � �1, x � 3
horizontal y � 1

2
3

y

0 x6

6

_6

_6

� 3
4

y

0

x3

2

y

0 x

2

2

y

0 x1

5

y

0 x3

10

4
7

4
3y

0 x

5

5

_10

_5



A24 Answers to Odd-Numbered Exercises and Chapter Tests

47. x-intercept 1
y-intercept 1
vertical x � �1
horizontal y � 1

49. x-intercepts �6, 1
y-intercept 2
vertical x � �3, x � 2
horizontal y � 2

51. x-intercepts �2, 3
vertical x � �3, x � 0
horizontal y � 1

53. y-intercept �2
vertical x � �1, x � 3
horizontal y � 3

55. x-intercept 1
vertical x � 0, x � 3
horizontal y � 0

57. slant y � x � 2
vertical x � 2

y

0 x6

10

_6

_10

y

0 x

2
1

y

0 x6

10

_6

y

0 x6

6

_6

_6

y

0 x6

6

_6

_6

y

0 x6

6

_6

59. slant y � x � 2
vertical x � 0

61. slant y � x � 8
vertical x � 3

63. slant y � x � 1,
vertical x � 2, x � �2

65. vertical x � �3

67. vertical x � 2

69. vertical x � �1.5
x-intercepts 0, 2.5
y-intercept 0, local 
maximum
local minimum 
end behavior: y � x � 4

10.9, �0.6 21�3.9, �10.4 2
10

10_10

_20

60

10_10

_30

30

10_10

_30

y

0 x6

30

_6

y

0 x10

30

_10

_30
_4 _1

y

0 x6

10

_6

_10



Answers to Chapter 3 Review A25

71. vertical x � 1
x-intercept 0 
y-intercept 0 
local minimum 
end behavior: y � x 2

73. vertical x � 3
x-intercepts 1.6, 2.7
y-intercept �2
local maxima 

, ,
local minima 

,
end behavior y � x 3

75. (a) (b) It levels off at 3000.

77. (a) 2.50 mg/L (b) It decreases to 0. (c) 16.61 h

79. If the speed of the train
approaches the speed of 
sound, then the pitch increases
indefinitely (a sonic boom).

Chapter 3 Review ■ page 316

1.

3. y

x1

_30(_1, _32)

200

_3

_200

y

0 x4

64

300

_4

_300

5000

4000

4000

300

13.4, 54.3 210.6, �2.3 2 12.4, 3.8 21�0.4, �1.8 2
100

5_5

_100

11.4, 3.1 2
10

3_3

_5

5.

7. x-intercepts �2.1, 0.3, 1.9
y-intercept 1 
local maximum 
local minimum 
y � q as x � q
y � �q as x � �q

9. x-intercepts �0.1, 2.1
y-intercept �1
local minimum 
y � q as x � q
y � q as x � �q

11. (a) (b) 0 
 x 
 10
(c) (d) 5.8 in.

In answers 13–20, the first polynomial given is the 
quotient and the second is the remainder.
13. x � 1, 3 15. x2 � 3x � 23, 94
17. x 3 � 5x 2 � 17x � 83, 422
19. 2x � 3, 12
21. 3 25. 8
27. (a) �1, �2, �3, �6, �9, �18
(b) 2 or 0 positive, 3 or 1 negative
29. (a) �4, 0, 4
(b) y

x4

30

_4 _30

0

6000

10
0

S � 13.8x1100 � x2 2

11.4, �14.5 2
30

_20

3_2

11.2, �2.1 21�1.2, 4.1 210

_10

3_3

y

x1_1

100

31

_100

0



A26 Answers to Odd-Numbered Exercises and Chapter Tests

31. (a) �2, 0 (multiplicity 2), 1 (b)

33. (a) �2, �1, 2, 3 (b)

35. (a) , 1 (b)

37. 3 � i 39. 8 � i 41. 43. i 45. 2
47. 4x3 � 18x 2 � 14x � 12 49. No; since the complex 
conjugates of imaginary zeros will also be zeros, the 
polynomial would have 8 zeros, contradicting the requirement
that it have degree 4. 51. �3, 1, 5 53. �1 � 2i, �2
(multiplicity 2) 55. �2, 1 (multiplicity 3)
57. �2,

59. 1, 3, 61. x � �0.5, 3 63. x � �0.24, 4.24

65. 67.

69. y

0 x
5

3
_5

_3

_9

2

y

0 x6

6

0.25

_6

_6

y

0 x5

4

3
10

_5

_20

_12

�1 � i17

2

�1 � i13

6
5 � 8

5 i

y

x1

10

_1

_10

� 1
2

y

x2

20

_2
_10

0

y

x1

4

_2

_4

0

71. x-intercept 3
y-intercept �0.5
vertical x � �3
horizontal y � 0.5
no local extrema

73. x-intercept �2
y-intercept �4
vertical x � �1, x � 2
slant y � x � 1
local maximum

local minimum

75. , , ,

Chapter 3 Test ■ page 319

1.

2. (a) x 3 � 2x 2 � 2, 9 (b) ,
3. (a) �1, �3, , (b)
(c) �1, , 3
(d)

4. (a) 7 � i (b) �1 � 5i (c) 18 � i (d)
(e) 1 (f) 6 � 2i 5. 3, �1 � i
6. 7. x 4 � 2x 3 � 10x 2 � 18x � 9
8. (a) 4, 2, or 0 positive; 0 negative
(c) 0.17, 3.93 

(d) Local minimum 9. (a) r, u (b) s (c) s12.8, �70.3 2

80

_80

5_3

1x � 1 2 21x � 2i 2 1x � 2i 2
6

25 � 17
25 i

y

0 x

10

1

1
2

21x � 3 2 Ax � 1
2B 1x � 1 2� 3

2� 1
2

15
2x3 � 2x2 � 1

2

y

x1

1940

_2

_40

0

15, 770 212, 68 211, 26 21�2, �28 2 14.216, 7.175 210.425, �3.599 2
30

6_6

_30

20

10_10

_20



Answers to Section 4.1 A27

(d) (e) x 2 � 2x � 5

Focus on Modeling ■ page 323

1. (a) y � �0.275428x 2 � 19.7485x � 273.5523
(b)

(c) 35.85 lb/in2 3. (a) y � 0.00203708x 3 �
0.104521x 2 � 1.966206x � 1.45576
(b)

(c) 43 vegetables (d) 2.0 s 5. (a) Degree 2
(b) y � �16.0x 2 � 51.8429x � 4.20714

(c) 0.3 s and 2.9 s (d) 46.2 ft

Chapter 4

Section 4.1 ■ page 336

1. 2.000, 7.103, 77.880, 1.587 3. 0.885, 0.606, 0.117, 1.837
5. 7.

y

0 x_2 2

3

(_2, 9)

1

y

0 x

1

_2 2

2

(2, 4)

48

3.10

0

22

300
0

82

4625
48

60

10_10

_60

y

0 x6

2

6

25

6

_6

_3

_6

9. 11.

13.

15. 17. 19. III 21. I 23. II
25. 27.

29. 31.

33. 35.
y

0 x_1 2

1

(_1, 1.72)

y

0 x_2 1
_1

(1, _2.72)

�, 1�1,q 2 , y � �1�, 1�q, 0 2 , y � 0

y

0 x_2 2

(_3, 1)

1000

y

0 x5

1

_5

(_1, 6)

�, 10,q 2 , y � 0�, 14,q 2 , y � 4

y

0 x5

3

_5

_5

(1, _1)

y

0 x_2 2
_1

(1, _3)

�, 1�3,q 2 , y � �3�, 1�q, 0 2 , y � 0
f 1x 2 � A14Bxf 1x 2 � 3x

y

0 x_2 2

1

2

y=7˛
y=4˛

y

0 x2

1

−2

y=2
x

y=2
_x

y

0 x_2 2

3

(2, 22.17)



A28 Answers to Odd-Numbered Exercises and Chapter Tests

37. 39.

41. (a) 45.

(b) The graph of g is steeper 
than that of f.
51. (a)

The graph of f ultimately increases much more quickly than g.
(b) 1.2, 22.4
53.

The larger the value of c, the
more rapidly the graph
increases.

5

3_3

_1

c=4 c=2

c=1

c=0.25

c=0.5

10(iii) •

50
0

˝=x∞

Ï=2˛

10¶

25
0

˝=x∞

Ï=2˛

(ii)20

5
0

˝=x∞ Ï=2˛

(i)

y

0 x2

5

_2

y

0 x_2 2

2

˝=3(2˛)

Ï=2˛

y

0 x1

1 (2, 1)

y � 312x 2�, 10,q 2 , y � 0 55. 57. (a)

(b) The larger the value of a,
the wider the graph.

59.
vertical asymptote x � 0
horizontal asymptote y � 0,
left side only

61. Local minimum � 63. (a) Increasing on
, decreasing on (b)

65. (a) 13 kg (b) 6.6 kg
67. (a) 0 (b) 50.6 ft/s, 69.2 ft/s
(c) (d) 80 ft/s

69. (a) 100 (b) 482, 999, 1168 (c) 1200 71. 1.6 ft
73. $5203.71, $5415.71, $5636.36, $5865.99, $6104.98,
$6353.71 75. (a) $16,288.95 (b) $26,532.98
(c) $43,219.42 77. (a) $4,615.87 (b) $4,658.91
(c) $4,697.04 (d) $4,703.11 (e) $4,704.68 (f) $4,704.93
(g) $4,704.94 79. (i) 81. (a) $7,678.96 (b) $67,121.04

Section 4.2 ■ page 349

1. Logarithmic form Exponential form

log8 8 � 1 81 � 8

log8 64 � 2 82 � 64

82/3 � 4

log8 512 � 3 83 � 512

8�2 � 1
64log8

1
64 � �2

8�1 � 1
8log8

1
8 � �1

log84 � 2
3

100

100
0

1�q, 0.37 431.00,q 21�q, 1.00 4 10.27, 1.75 2

20

5_5

_20

5

3_3

_1

a=2

a=1

a=1.5

a=0.54

400

e



Answers to Section 4.3 A29

3. (a) 52 � 25 (b) 50 � 1 5. (a) 81/3 � 2 (b)
7. (a) ex � 5 (b) e5 � y 9. (a) log5 125 � 3
(b) log10 0.0001 � �4 11. (a)
(b) 13. (a) ln 2 � x (b) ln y � 3
15. (a) 1 (b) 0 (c) 2 17. (a) 2 (b) 2 (c) 10
19. (a) �3 (b) (c) �1 21. (a) 37 (b) 8 (c)
23. (a) (b) 4 (c) �1 25. (a) 32 (b) 4
27. (a) 5 (b) 27 29. (a) 100 (b) 25 31. (a) 2 (b) 4
33. (a) 0.3010 (b) 1.5465 (c) �0.1761 35. (a) 1.6094
(b) 3.2308 (c) 1.0051 37. y � log5 x 39. y � log9 x
41. II 43. III 45. VI
47. 49.

51. 53.

55. 57.

59. 61. 63.

65. domain
vertical asymptotes x � 1,
x � �1
local maximum 10, 0 2

1�1, 1 21

2_2

_2

10, 2 21�q, �1 2 � 11,q 21�3,q 2

y

0 x1

1

y

0 x2

1
(1, 1)

10,q 2 , 30,q 2 , x � 010,q 2 ,�, x � 0

y

0 x1

1

(1, 2)

y

0 x1

1

10,q 2 ,�, x � 01�q, 0 2 ,�, x � 0

y

0 x1

_1

1

y

0 x5_2

_2

5
y=4˛

y=ø› x

14,q 2 , �, x � 4

� 2
3

151
2

log2
1
8 � �3

log8
1
8 � �1

2�3 � 1
8

67. domain
vertical asymptote x � 0
no maximum or minimum

69. domain
vertical asymptote x � 0
horizontal asymptote y � 0
local maximum �

71. The graph of f grows more slowly than g.
73. (a) (b) The graph of

is
the graph of

shifted upward 
log c units.

75. (a) (b)

77. (a) (b)

79. 2602 yr 81. 11.5 yr, 9.9 yr, 8.7 yr 83. 5.32, 4.32

Section 4.3 ■ page 356

1. 3. 2 5. 3 7. 3 9. 200 11. 4 13. 1 � log2 x

15. 17. 10 log 6 19. log2 A � 2 log2 B

21. 23. 25.

27. 3 log x � 4 log y � 6 log z

29.

31. 33.

35.

37. 39. log3 160

41. 43. 45.

47.

49. 2.321928 51. 2.523719 53. 0.493008 55. 3.482892
57.

63. (a) P � c/Wk (b) 1866, 64
65. (a) M � �2.5 log B � 2.5 log B0

2

4_1

_3

log a13 2x � 1 21x � 4 2 / 1x4 � x2 � 1 2 b
ln15x21x2 � 5 2 3 2log a x41x � 1 2 2

23 x2 � 1
blog21AB/C2 23 ln x � 1

2 ln1x � 1 2 � ln13x � 4 21
2 3 log1x2 � 4 2 � log1x2 � 1 2 � 2 log1x3 � 7 2 41

4 log1x2 � y2 2ln x � 1
2 1ln y � ln z 2log2x � log21x2 � 1 2 � 1

2 log21x2 � 1 2
1
2 1ln a � ln b 21

3 log51x2 � 1 2log3x � 1
2 log3y

log2x � log21x � 1 23
2

10, 1 2f �11x 2 � log2 a x

1 � x
bf�11x 2 � 102x11,q 2

f 1x 2 � log1x 2f 1x 2 � log1cx 22.6

100_10

_1

c=4

c=3

c=2

c=1

12.72, 0.37 2
10,q 21

20_1

_3

10,q 23

3_1

_6



A30 Answers to Odd-Numbered Exercises and Chapter Tests

Section 4.4 ■ page 366

1. 1.3979 3. �0.9730 5. �0.5850 7. 1.2040
9. 0.0767 11. 0.2524 13. 1.9349 15. �43.0677
17. 2.1492 19. 6.2126 21. �2.9469 23. �2.4423
25. 14.0055 27. �1 29. 31. ln 2 � 0.6931, 0
33. 35. e10 � 22026 37. 0.01
39. 41. 3 � e2 � �4.3891 43. 5 45. 5
47. 49. 6 51. 53. 55. 2.21
57. 0.00, 1.14 59. �0.57 61. 0.36
63. 2 � x � 4 or 7 � x � 9 65. log 2 � x � log 5
67. (a) $6435.09 (b) 8.24 yr 69. 6.33 yr 71. 8.15 yr
73. 8.30% 75. 13 days 77. (a) 7337 (b) 1.73 yr
79. (a) P � P0e

�kh (b) 56.47 kPa
81. (a) (b) 0.218 s

Section 4.5 ■ page 379

1. (a) 500 (b) 45% (c) 1929 (d) 6.66 h
3. (a) (b) 34,137

(c)

5. (a) (b) About 142,000
(c) 2008 7. (a) 20,000 (b)
(c) About 48,000 (d) 2010 9. (a)
(b) About 11,600 (c) 4.6 h 11. (a) 2029
(b) 2049 13. 22.85 h 15. (a)
(b) 1.6 g (c) 70 yr 17. 18 yr 19. 149 h
21. 3560 yr 23. (a) 210 �F (b) 153 �F
(c) 28 min 25. (a) 137 �F (b) 116 min 27. (a) 2.3
(b) 3.5 (c) 8.3 29. (a) 10�3 M (b) 3.2 � 10�7 M
31. 4.8 
 pH 
 6.4 33. log 20 � 1.3
35. Twice as intense 37. 8.2 39. 6.3 � 10�3 W/m2

41. (b) 106 dB

Chapter 4 Review ■ page 383

1. 3.

y

0 x3

4

−3

y

0 x3

2

−3

�, 13,q 2 , y � 3�, 10,q 2 , y � 0

n1t 2 � 10e�0.0231t

n1t 2 � 8600e0.1508t
n1t 2 � 20,000e0.1096t

n1t 2 � 112,000e0.04t

n(t)

t2002

20,000

2004 2006 2008

40,000

60,000

n1t 2 � 18,000e0.08t

t � � 5
13 ln11 � 13

60I 2

1/15 � 0.44723
2

13
12

95
3

1
2 ln 3 � 0.5493

0, 4
3

5. 7.

9. 11.

13. 15. 17. 210 � 1024
19. 10y � x 21. log2 64 � 6 23. log 74 � x 25. 7
27. 45 29. 6 31. �3 33. 35. 2 37. 92
39. 41. log A � 2 log B � 3 log C
43.

45.

47. log 96 49. 51.

53. �15 55. 57.

59. 3 61. �4, 2 63. 0.430618 65. 2.303600

67. vertical asymptote 
x � �2

horizontal asymptote 
y � 2.72

no maximum or minimum

69. vertical asymptotes 
x � �1, x � 0, x � 1

local maximum 
�

71. 2.42 73. 0.16 � x � 3.15 75. Increasing on
and , decreasing on 77. 1.953445
79. log4 258 81. (a) $16,081.15 (b) $16,178.18
(c) $16,197.64 (d) $16,198.31 83. (a)
(b) 55 (c) 19 yr 85. (a) 9.97 mg (b) 1.39 � 105 yr

n1t 2 � 30e0.15t

30, 1.10 431.10,q 2 1�q, 0 4
1�0.58,�0.41 2

1.5

2.5_1.5

_1.5

10

20_20

_1

4
3 ln 10 � 3.071

3 15 � log5 26 2 � 0.99

log a x2 � 4

2x2 � 4
blog2 a 1x � y 2 3/21x2 � y2 2 2 b

2 log5 x � 3
2 log511 � 5x 2 � 1

2 log51x3 � x 21
2 3 ln1x2 � 1 2 � ln1x2 � 1 2 42
3

1
2

1�q, �2 2 � 12,q 2A�q, 1
2B

y

0 x5

1

y

0

x1

1

10,q 2 , �, x � 0�, 1�1,q 2 , y � �1

y

0 x1

1

(1, 2)

y

0 x5

1

_1

10,q 2 , �, x � 011,q 2 , �, x � 1



Answers to Focus on Modeling A31

87. (a) (b) 97.0 mg (c) 2520 yr
89. (a) (b) 7940 91. 7.9, basic 93. 8.0

Chapter 4 Test ■ page 385

1. 2. , x � �1

3. (a) (b) 3 (c) (d) 2
4.

5. 6. (a) 4.32 (b) 0.77 (c) 5.39 (d) 2

7. (a) (b) 22,627 (c) 1.3 h
(d)

8. (a)

(b) $14,195.06 (c) 9.249 yr
9. (a) (b) x � 0, y � 0

(c) Local minimum �

(d)
(e) �0.85, 0.96, 9.92

Focus on Modeling ■ page 393

1. (a)

(b) y � abt, where a � 1.180609 � 10�15, b � 1.0204139, and
y is the population in millions in the year t (c) 515.9 million
(d) 207.8 million (e) No

290

0
20201780

1�q, 0 2 � 30.74,q 213.00, 0.74 25

10_5

_5

A1t 2 � 12,000 a 1 �
0.056

12
b 12t

y

0 x

10,000

1 2

n1t 2 � 1000e2.07944t

ln a x23 � x41x2 � 1 2 2 b
1
3 3 log1x � 2 2 � 4 log x � log1x2 � 4 2 42

3
3
2

y

0 x1

2

−2

y

0 x5_2

_2

5
y=2˛

y=ø¤ x

1�1,q 2 , �

n1t 2 � 1500e0.1515t
n1t 2 � 150e�0.0004359t 3. (a) Yes (b) Yes, the scatter plot appears linear.

(c) ln E � 4.494411 � 0.0970921464t, where t is years since
1970 and E is expenditure in billions of dollars
(d) E � 89.51543173eat, where a � 0.0970921464
(e) 3948.2 billion dollars
5. (a) I0 � 22.7586444, k � 0.1062398

(b) (c) 47.3 ft

7. (a) y � abt, where a � 301.813054, b � 0.819745, and t is
the number of years since 1970
(b) y � at 4 � bt 3 � ct 2 � dt � e, where a � �0.002430,
b � 0.135159, c � �2.014322, d � �4.055294,
e � 199.092227, and t is the number of years since 1970
(c) From the graphs we see that the fourth-degree 
polynomial is a better model.

(d) 202.8, 27.8; 184.0, 43.5

9. (a)

(b)

(c) Exponential function
(d) y � abx where a � 0.057697 and b � 1.200236

11. (a) , where a � 49.10976596,

b � 0.4981144989, and c � 500.855793 (b) 10.58 days

y �
c

1 � ae�bx

−3

.5

0 18

−3

.5

0 3

1.2

0
17

300

0
25

14

0
45

7.5

4
−1 32



A32 Answers to Odd-Numbered Exercises and Chapter Tests

Chapter 5

Section 5.1 ■ page 406

7. 9. 11. 13.

15. 17.

19. ; ; 

; ; 
; ; 

;
21. 23. 25.
27. 29.

31. (a) (b) (c) (d)
33. (a) p/4 (b) p/3 (c) p/3 (d) p/6
35. (a) 2p/7 (b) 2p/9 (c) p � 3 � 0.14
(d) 2p � 5 � 1.28 37. (a) p/3 (b)

39. (a) p/4 (b)
41. (a) p/3 (b)
43. (a) p/4 (b)

45. (a) p/6 (b)

47. (a) p/3 (b) 49. (a) p/3
(b) 51. 53.

Section 5.2 ■ page 416

1. t � p/4, ; t � p/2, sin t � 1,
cos t � 0; t � 3p/4, ;
t � p, sin t � 0, cos t � � 1; t � 5p/4,

; t � 3p/2, sin t � �1,
cos t � 0; t � 7p/4, ;
t � 2p, sin t � 0, cos t � 1 3. (a) (b) �1/2
(c) 5. (a) �1/2 (b) �1/2 (c) �1/2
7. (a) (b) (c)
9. (a) (b) (c)
11. (a) �1 (b) 0 (c) 0 13. (a) 2 (b) (c) 2
15. (a) (b) /3 (c)
17. (a) (b) (c) �1
19. (a) �1 (b) 1 (c) �1 21. (a) 0 (b) 1 (c) 0
23. sin 0 � 0, cos 0 � 1, tan 0 � 0, sec 0 � 1,
others undefined 25. sin p � 0, cos p � �1, tan p � 0,
sec p � �1, others undefined 27.
29. 31.

33. 35. 37. (a) 0.8 (b) 0.84147
39. (a) 0.9 (b) 0.93204 41. (a) 1 (b) 1.02964
43. (a) �0.6 (b) �0.57482 45. Negative
47. Negative 49. II 51. II 53.

55. 57.

59. 61.
63.

65.
csc t � �3

412, cot t � �12/4
sin t � �212/3, cos t � 1

3, tan t � �212,

cos t � � 4
5, tan t � � 3

4, csc t � 5
3, sec t � � 5

4, cot t � � 4
3

tan2t � 1sin2t 2 / 11 � sin2t 2tan t � 2sec2t � 1

sec t � �21 � tan2ttan t � 1sin t 2 /21 � sin2t

sin t � 21 � cos2t

21
29, �20

29, �21
20�12

13, � 5
13,

12
5

113/7, �6/7, �113/6�111/4, 15/4, �155/5

4
5,

3
5,

4
3

�1212/2
�13/313�13/3

�213/3
13/3213/313/2
12/2�12/2�12/2

�13
13/2

sin t � �12/2, cos t � 12/2
sin t � �12/2, cos t � �12/2

sin t � 12/2, cos t � �12/2
sin t � 12/2, cos t � 12/2

10.5, �0.9 210.5, 0.8 2A� 1
2, �13/2B A12, 13/2BA�13/2, � 1

2BA�12/2, �12/2BA� 1
2, �13/2BA�12/2, 12/2B A� 1

2, 13/2B
A35, 4

5BA� 3
5, � 4

5BA35, � 4
5BA� 3

5,
4
5B A�12/2, �12/2BA� 1

2, 13/2B A12, �13/2BA�13/2, 1
2B10, 1 2 t � 2p, 11, 0 2t � 7p/4, A12/2, �12/2B t � 3p/2, 10, �1 2t � 5p/4, A�12/2, �12/2Bt � p, 1�1, 0 2t � 3p/4, A�12/2, 12/2B t � p/2, 10, 1 2t � p/4, A12/2, 12/2BPA�12/3, �17/3BPA�15/3, 2

3B P A45, 3
5B315/7�212/3� 4

5

67.

69.

71. Odd 73. Odd 75. Even 77. Neither
79.

81. (a) 0.49870 amp (b) �0.17117 amp

Section 5.3 ■ page 429

1. 3.

5. 7.

9. 11.

13. 15.

17. 3, 2p/3 19. 10, 4p
y

0

x

_10

10

π
2

y

0 x

−3

3

π

6

π

2

y

0 x

−1

−
π

1

2

1

2

π

2

y

0 x

1

2

−π π

y

0 x

3

−π π

y

0 x

−1

1

−π π

y

0 x

−3

3

−π π

y

0 x−π π

−2

y

0 x

−1

1

π

y

0 x

1

−π π

y10.75 2 � 2.828, y11.00 2 � �4, y11.25 2 � 2.828
y10 2 � 4, y10.25 2 � �2.828, y10.50 2 � 0,

sec t � �4115/15, cot t � 115
cos t � �115/4, tan t � 115/15, csc t � �4,

sin t � � 3
5, cos t � 4

5, csc t � � 5
3, sec t � 5

4, cot t � � 4
3



Answers to Section 5.3 A33

21.

23. 2, 1 25.

27. 1, 2p, p/2 29. 2, 2p, p/6

31. 4, p, �p/2 33. 5, 2p/3, p/12

35. , p, p/6 37.

3

2

y

0 x

3

_3

1

2
_

7π

6

y

0

1

xπ

6

3, 2, � 1
2

1
2

3π

4

y

0 x

5

π

12

_5

y

0

xπ

4

π

4

_4

_

4

13π

6

y

0 x

2

π

6

_2

5π

2

y

0 x

1

π

2

_1

y

0 1 2 x

1
2

y

0 x

_2

2

1
4

1
2, 2

y

0 x

_1

1

3π 6π

1
3

1
3, 6p 39. 1, 2p/3, �p/3

41. (a) 4, 2p, 0 (b) y � 4 sin x
43. (a) (b)
45. (a) (b)
47. (a) (b)
49. 51.

53. 55.

57.

59. y � x2 sin x is a sine curve
that lies between the graphs
of y � x2 and y � �x2

225

15_15

_225

7

6.28_6.28

_7

1.2

0.5_0.5

_0.2

3

0.2_0.2

_3

1.5

250_250

_1.5

1.5

0.1_0.1

_1.5

y � 4 sin 4p3 1x � 1
2 24, 3

2, � 1
2

y � � 1
2 cos 21x � p/3 21

2, p, �p
3

y � 3
2 cos 3x3

2,
2p
3 , 0

π

3

y

0 x

1

_1

π

3
_



A34 Answers to Odd-Numbered Exercises and Chapter Tests

61. is a sine
curve that lies between the
graphs of and

63. y � cos 3px cos 21px is a
cosine curve that lies
between the graphs of 
y � cos 3px and
y � �cos 3px

65. Maximum value 1.76 when x � 0.94, minimum value
�1.76 when x � �0.94 (The same maximum and minimum
values occur at infinitely many other values of x.)
67. Maximum value 3.00 when x �1.57, minimum value
�1.00 when x � �1.57 (The same maximum and minimum
values occur at infinitely many other values of x.)
69. 1.16 71. 0.34, 2.80
73. (a) Odd (b) 0, �2p, �4p, �6p, . . .
(c) (d) approaches 0

(e) approaches 0

75. (a) 20 s (b) 6 ft
77. (a) min (b) 80
(c) (d) ; it is higher than 

normal

Section 5.4 ■ page 441

1. II 3. VI 5. IV
7. p 9. p

y

0 xπ

_5

_π

5

y

0 xπ

_5

_π

5

140
90y

0 x

140

1

80

115

90

1
80

f 1x 2f 1x 21

20_20

_1

1.5

0.5_0.5

_1.5

y � �1x
y � 1x

y � 1x sin 5px2.8

7.5_0.5

_2.8

11. p 13. 2p

15. 2p 17. p

19. 2p 21. p

23. 2p 25. p/2

27. 4 29. p
y

0 x

1

π

2
_

π

2

_1

y

0 x4

1

_4

y

0 x

1

π

2
_

π

2 _1

y

0 xπ

6

0.5 7π

6

5π

6
_

y

0 x

_
π

4

π

4

5

5π

4

1

_5

y

0 x_π

1

π

y

0 x
_

π

2

π

2

2

y

0 x_π

3

π

y

0 x_π

2

π

2

y

0 x

_5

_
π

2

π

2

5



Answers to Section 5.5 A35

31. p 33.

35. 37. p/2

39. p/2 41. p/2

43. 2 45. 2p/3

47. 3p/2 49. 2
y

0 x

3

0.5

_3

y

0 x

1

π

4

7π

4
_

5π

4

y

0 x

5

π

6
_

π

3

y

x

2

5

6

11

6
_

1

6

y

0 x

4

_
π

2

_4

π

2

y

0 x

4

_
π

2

_4

π

2

y

0 x

4

_
π

2

_4

π

2

y

0 x

5

1

3

1

3
_

4
3

y

0 x

5

_
1 1

3

_5
3

y

0 x

1

π

4

1
3 51. p/2

55. (a) 1.53 mi, 3.00 mi, 18.94 mi
(b)

(c) approaches q

Section 5.5 ■ page 451

1. (a) 2, 2p/3, (b)

3. (a) 1, 20p/3, (b)

5. (a) , 4p/3, (b)

14π

9

y

0.25

2π

9

_0.25

0 t

3/ 14p 21
4

10π

3

y

1

_1

20π

3

0 t

3/ 120p 2

y

2

π

6

_2

0 t

3/ 12p 2
d1t 2

y

0 x
2

5

1

y

0 x

4

π

6

2π

3
_

π

3



A36 Answers to Odd-Numbered Exercises and Chapter Tests

7. (a) 5, 3p, (b)

9. 11.

13. 15.
17. (a) y � 2e�1.5t cos 6pt (b)

19. (a)

(b)

21. (a) y � 7e�10t sin 12t (b)

23. (a) y � 0.3e�0.2t sin(40pt)
(b) y

0 t

0.3

_0.3

0.6

y

3

_3

π

6

π

3

0 t

y

100

_100

8 16
0 t

y � 100e�0.05t cos 
p

2
t

y

2

_2

1 20 t

y � 2.4 cos11500pt 2y � 60 cos14pt 2 y � 6 sin110t 2y � 10 sin a 2p

3
t b

y

0

t

9

8
_

5

_5

9

8
3π-

1/ 13p 2 25. (a) 10 cycles per minute
(b) (c) 0.4 m

27. (a) 8900 (b) about 3.14 yr 29.

31.

33. 35.

37.

39. , 219.2 V
41. (a) 45 V (b) 40 (c) 40 (d)

43. 45.

Chapter 5 Review ■ page 455

1. (b) 3. (a) p/3 (b)
(c)

5. (a) p/4
(b) (c)

7. (a) (b) 9. (a) 0.89121 (b) 0.45360
11. (a) 0 (b) Undefined 13. (a) Undefined (b) 0
15. (a) (b) 17.

19.
21.
23.

25. 27. 3
29. (a) 10, 4p, 0 31. (a) 1, 4p, 0
(b) (b) y

0 x

1

_1

_4π _π 4ππ

y

0 x

10

_10

_2π 2π 4π

116 � 117 2 /4tan t � �2, sec t � �15
t � �15/5,sin t � 215/5, cos

tan t � � 5
12, csc t � 13

5 , sec t � � 13
12, cot t � � 12

5

1sin t 2 /21 � sin2t

1sin t 2 / 11 � sin2t 2�13�13/3

�12/212/2
tan t � 1, csc t � �12, sec t � �12, cot t � 1

sin t � �12/2, cos t � �12/2,1�12/2,�12/2 2 sec t � �2, cot t � �13/3
sin t � 13/2, cos t � � 1

2, tan t � �13, csc t � 213/3,
A� 1

2,13/2B1
2, �13/2, �13/3

e �
1

3
 ln 4 � 0.46f1t 2 � e�0.9t sin pt

E1t 2 � 45 cos180pt 2E1t 2 � 310 cos1200pt 2y � 3.8 � 0.2 sin ap
5

t b
y � 11 � 10 sin a pt

10
by � 5 cos12pt 2

y (feet)

0 t
(hours)

21

3

12

_21

6 9

y � 21 sin ap
6

t b d1t 2 � 5 sin15pt 2

y

0 t

7.8

8

8.2

10
1



Answers to Chapter 5 Test A37

33. (a) 3, p, 1 35. (a) 1, 4,
(b) (b)

37. y � 5 sin 4x 39.
41. p 43. p

45. p 47. 2p

49. (a) 51. (a)

(b) Period p (b) Not periodic
(c) Even (c) Neither
53. (a) 55.

(b) Not periodic y � x sin x is a sine function 
(c) Even whose graph lies between 

those of y � x and y � �x

15

15_15

_15

5

5_5

_5

1.5

50_50

_1.5

1.5

6.28_6.28

_0.5

y

x

1

π

4

5π

4

y

0 x

4

π

4

π

4
_

3π

4

_4

y

0 x

2

π

2

y

0 x

5

_π π

y � 1
2 sin 2pAx � 1

3B

y

0

x

1

_1

_
3
13

3
11

_
3
1

y

0 x

3

_3

1-π

1+π

1

� 1
3

57. The graphs are related by
graphical addition.

59. 1.76, �1.76 61. 0.30, 2.84
63. (a) Odd (b) 0, �p, �2p, . . .
(c) (d) approaches 0

(e) approaches 0

65. 67.

Chapter 5 Test ■ page 458

1. 2. (a) (b) (c) (d)
3. (a) (b) (c) (d) �1

4. 5.
6. (a) 5, p/2, 0 7. (a) 2, 4p, p/3
(b) (b)

8. p 9. p/2

10.
11. (a) (b) Even

(c) Minimum value �0.11
when x � �2.54, maximum 
value 1 when x � 0

1.2

9.42_9.42

_0.4

y � 2 sin 21x � p/3 2

y

0 x

1

π

4_1

y

x

1 π

4

_1

3π

4

0

13π

3

y

0 x

2

π

3

_2

y

0 x

5

_5

π

2

π

4

� 2
15tan t � �1sin t 2 /21 � sin2t

13�12/2� 1
2

� 5
3� 4

3� 3
5

4
5y � � 5

6

y � 4 cos 1p6 t 2y � 50 cos116pt 2

f 1x 2f 1x 21

20_20

_1

3.5

3.1_3.14

_3.5



A38 Answers to Odd-Numbered Exercises and Chapter Tests

12.
13. y � 16e�0.1t cos 24pt

Focus on Modeling ■ page 463

1. (a) and (c)

(b)
(d)
(e) The formula of (d) reduces to

.
Same as (b), correct to one decimal.
3. (a) and (c)

(b)
(d)
(e) The formula of (d) reduces to

.
Close, but not identical, to (b).
5. (a) and (c)

(b) ,
where y is temperature (�F) and t is months (January � 0)
(d) y � 23.4 sin10.48t � 1.36 2 � 62.2

y � 22.9 cos10.521t � 6 22 � 62.9

80

y

0 t

50

40

60

70

1 11

y=22.9 cos(0.52(t-6))+62.9

y � 11.72 cos15.051t � 0.26 22 � 12.96

y � 11.72 sin15.05t � 0.24 2 � 12.96
y � 12.05 cos15.21t � 0.3 22 � 13.05

25

y

0 t

5

0.1 1.0 1.5

y=12.05 cos(5.2(t-0.3))+13.05

y � 2.05 cos10.50t � 0.02 2 � 0.01

y � 2.05 sin10.50t � 1.55 2 � 0.01
y � 2.1 cos10.52t 2

2

y

0 t

_2

1 14

y=2.1 cos(0.52t)

18

10

_18

y � 5 sin14pt 2 7. (a) and (c)

(b) where y is the owl population in
year t (d)
9. (a) and (c)

(b) , where y is the average
daily sunspot count, and t is the years since 1975
(d)

Chapter 6

Section 6.1 ■ page 474

1. 2p/5 � 1.257 rad 3. �p/4 � �0.785 rad
5. �5p/12 � �1.309 rad 7. 6p � 18.850 rad
9. 8p/15 � 1.676 rad 11. p/24 � 0.131 rad
13. 210� 15. �225� 17. 540/p � 171.9�
19. �216/p � 68.8� 21. 18� 23. �24�
25. 410�, 770�, �310�, �670�
27. 11p/4, 19p/4, �5p/4, �13p/4
29. 7p/4, 15p/4, �9p/4, �17p/4 31. Yes 33. Yes
35. Yes 37. 13� 39. 30� 41. 280� 43. 5p/6
45. p 47. p/4 49. 55p/9 � 19.2 51. 4 53. 4 mi
55. 2 rad � 114.6� 57. 36/p � 11.459 m
59. (a) 35.45 (b) 25 61. 50 m2 63. 4 m
65. 6 cm2 67. 13.9 mi 69. 330p mi � 1037 mi
71. 1.6 million mi 73. 1.15 mi 75. 360p in2 � 1130.97 in2

77. 32p/15 ft/s � 6.7 ft/s 79. (a) 2000p rad/min
(b) 50p/3 ft/s � 52.4 ft/s 81. 39.3 mi/h 83. 2.1 m/s
85. (a) 10p cm � 31.4 cm (b) 5 cm (c) 3.32 cm
(d) 86.8 cm3

Section 6.2 ■ page 484

1.

3.
cot u � 9

40

sin u � 40
41, cos u � 9

41, tan u � 40
9 , csc u � 41

40, sec u � 41
9 ,

tan u � 4
3, csc u � 5

4, sec u � 5
3, cot u � 3

4

sin u � 4
5, cos u � 3

5,

y � 67.65 sin10.62t � 1.65 2 � 74.5

y � 74.5 cos10.571t � 4.5 22 � 83.5

y

t

100

10

0 105 20

Years since 1975
15

y=74.5 cos(0.57(t-4.5))+83.5

2925

y � 25.8 sin10.52t � 0.02 2 � 50.6
y � 30 sin10.52t 2 � 50

80

y

0 t

20

1 12

y=30 sin(0.52t)+50



Answers to Section 6.4 A39

5.

7. (a) (b) (c)
9. 11. 13. 16.51658
15. x � 28 cos u, y � 28 sin u
17.

19.

21.

23. 25. 1 27.
29. 31.

33. 35.

37. sin u � 0.45, cos u � 0.89, tan u � 0.50, csc u � 2.24,
sec u � 1.12, cot u � 2.00 39. 230.9 41. 63.7
43. x � 10 tan u sin u 45. 1026 ft 47. (a) 2100 mi
(b) No 49. 19 ft 51. 38.7� 53. 345 ft 55. 415 ft, 152 ft
57. 2570 ft 59. 5808 ft 61. 91.7 million mi
63. 3960 mi 65. 0.723 AU

Section 6.3 ■ page 495

1. (a) 30� (b) 30� (c) 30� 3. (a) 45� (b) 90� (c) 75�
5. (a) p/4 (b) p/6 (c) p/3 7. (a) 2p/7 (b) 0.4p

106
180.34

145.90

3π

10

π

5

30.95 33.5

12.82

3π

8

π

8

52*

38*

56.85
44.79

35

45*

45*

16œ∑2Å22.63

16

16

1
211 � 13 2 /2

¨ 2
7

csc u � 715/15, cot u � 215/15
sin u � 315/7, cos u � 2

7, tan u � 315/2,

¨

1

1

csc u � 12, sec u � 12
sin u � 12/2, cos u � 12/2, tan u � 1,

¨

5
3

cos u � 4
5, tan u � 3

4, csc u � 5
3, sec u � 5

4, cot u � 4
3

1313/225
2

134/5, 134/53
5,

3
53134/34, 3134/34

csc u � 113/2, sec u � 113/3, cot u � 3
2

sin u � 2113/13, cos u � 3113/13, tan u � 2
3, (c) 1.4 9. 11. 13. 15. 1 17.

19. 21. 23. �1 25. 27. 2 29. �1
31. Undefined 33. III 35. IV

37. 39.

41.
43.

45.
47.

49.

51. (a) (b) (c)
53. 19.1 55. 66.1� 57.
61. (b)

63. (a) A(u) � 400 sin u cos u
(b)

(c) width � depth � 14.14 in.
65. (a)
(b) 23.982 ft, 3.462 ft
67. (a) (b) 0.946 rad or 54�

69. 42�

Section 6.4 ■ page 506

1. 318.8 3. 24.8 5. 44� 7. �C � 114�, a � 51, b � 24
9. �A � 44�, �B � 68�, a � 8.99
11. �C � 62�, a � 200, b � 242

50*

230
A B

68*

C

10

0
3

913/4 ft � 3.897 ft, 96 ft � 0.5625 ft

300

1.57
0

14p/3 2 � 13 � 2.46

3
4, 0.889671

2, 13/413/2, 13
sec u � � 7

2, cot u � �215/15
sin u � 315/7, tan u � �315/2, csc u � 715/15,

sec u � 213/3, cot u � 13
sin u � 1

2, cos u � 13/2, tan u � 13/3,
sec u � 5

4, cot u � � 4
3sin u � � 3

5, cos u � 4
5, csc u � � 5

3,
cot u � � 4

3

cos u � � 4
5, tan u � � 3

4, csc u � 5
3, sec u � � 5

4,
sec u � �21 � tan2u

cos u � 21 � sin2utan u � �21 � cos2u/cos u

1
213/213/3

�13/2�13�12/21
2

u 20� 60� 80� 85�

h 1922 9145 29,944 60,351



A40 Answers to Odd-Numbered Exercises and Chapter Tests

13. �B � 85�, a � 5, c � 9

15. �A � 100�, a � 89, c � 71

17. �B � 30�, �C � 40�, c � 19 19. No solution
21. �A1 � 125�, �C1 � 30�, a1 � 49;
�A2 � 5�, �C2 � 150�, a2 � 5.6
23. No solution 25. �A1 � 57.2�, �B1 � 93.8�, b1 � 30.9;
�A2 � 122.8�, �B2 � 28.2�, b2 � 14.6
27. (a) 91.146� (b) 14.427� 31. (a) 1018 mi
(b) 1017 mi 33. 219 ft 35. 55.9 m 37. 175 ft
39. 192 m 41. 0.427 AU, 1.119 AU

Section 6.5 ■ page 513

1. 28.9 3. 47 5. 29.89� 7. 15
9. �A � 39.4�, �B � 20.6�, c � 24.6
11. �A � 48�, �B � 79�, c � 3.2
13. �A � 50�, �B � 73�, �C � 57�
15. �A1 � 83.6�, �C1 � 56.4�, a1 � 193;
�A2 � 16.4�, �C2 � 123.6, a2 � 54.9
17. No such triangle 19. 2 21. 25.4 23. 89.2�
25. 24.3 27. 54 29. 26.83 31. 5.33 33. 40.77
35. 3.85 cm2 37. 2.30 mi 39. 23.1 mi 41. 2179 mi
43. (a) 62.6 mi (b) S 18.2� E 45. 96� 47. 211 ft
49. 3835 ft 51. $165,554

Chapter 6 Review ■ page 516

1. (a) p/3 (b) 11p/6 (c) �3p/4 (d) �p/2
3. (a) 450� (b) �30� (c) 405� (d) (558/p)� � 177.6�
5. 8 m 7. 82 ft 9. 0.619 rad � 35.4� 11. 18,151 ft2

13. 300p rad/min � 942.5 rad/min, 7539.8 in./min �
628.3 ft/min 15.

17. x � 3.83, y � 3.21 19. x � 2.92, y � 3.11
21.

23. a � cot u, b � csc u 25. 48 m 27. 1076 mi
29. 31. 1 33. 35.
37. 39.
41.

43. 60�csc u � 13
12, sec u � � 13

5 , cot u � � 5
12

sin u � 12
13, cos u � � 5

13, tan u � � 12
5 ,

�13213/3
�12/2�13/3�12/2

20*

2.819

70*
1.026

3

csc u � 174/5, sec u � 174/7, cot u � 7
5

sin u � 5/174, cos u � 7/174, tan u � 5
7,

29*

44

A B

51*

C

30*

10

A B

65*

C 45.
47.
49.
51.

53. 55. 1 57. 5.32 59. 148.07 61. 77.82
63. 77.3 mi 65. 3.9 mi 67. 32.12

Chapter 6 Test ■ page 520

1. 11p/6, �3p/4 2. 240�, �74.5�
3. (a) 240p rad/min � 753.98 rad/min
(b) 12,063.7 ft/min � 137 mi/h 4. (a)
(b) (c) 2 (d) 1 5.
6. a � 24 sin u, b � 24 cos u 7.

8. 9. 10. 19.6 ft
11. 9.1 12. 250.5 13. 8.4 14. 19.5 15. (a) 15.3 m2

(b) 24.3 m 16. (a) 129.9� (b) 44.9 17. 554 ft

Focus on Modeling ■ page 523

1. 1.41 mi 3. 14.3 m 5. (c) 2349.8 ft
7.

Chapter 7

Section 7.1 ■ page 533

1. sin t 3. tan u 5. �1 7. csc u 9. tan u 11. 1
13. cos y 15. sin2x 17. sec x 19. 2 sec u

21. cos2x 23. cos u 25.

27.

29.

31.

33.

35.

�
1

cos u sin u
� RHS

 LHS �
sin u

cos u
�

cos u

sin u
�

sin2u � cos2u

cos u sin u

�
�1

sin a
� RHS

 LHS � �
cos a

sin a
cos a � sin a �

�cos2a � sin2a

sin a

�
sin2B � cos2B

sin B
�

1

sin B
� RHS

 LHS � sin B � cos B
cos B

sin B

LHS �
sin y

cos y
sin y �

1 � cos2y

cos y
� sec y � cos y � RHS

LHS � cos u
1

cos u
cot u � RHS

LHS � sin u
cos u

sin u
� RHS

150 ft

84.0 ft

91.9 ft

120.2 ft

149.5 ft

151.7 ft

128.0 ft

173.2 ft 19
5.0

 ft

tan u � �2sec2u � 1� 13
12

A4 � 312B/4A26 � 6113B/3913/3
12/2

�15/5
sec u � � 5

4, cot u � � 4
3

cos u � � 4
5, tan u � � 3

4, csc u � 5
3,

sin u � 17/4, cos u � 3
4, csc u � 417/7, cot u � 317/7

tan2u � sin2u/ 11 � sin2u 2tan u � �21 � cos2u/cos u



Answers to Section 7.1 A41

37.

39.

41.

43.

45.

47.

49.

51.

53.

55.

57.

59.

61.

63.

65.

� 1sin x � cos x 2 cos x sin x

sin x � cos x
� RHS

 LHS �
sin x � cos x

1
cos x � 1

sin x

�
sin x � cos x

sin x � cos x
cos x sin x

�
sec2√ � tan2√

sec √ � tan √
� RHS

LHS � 1sec √ � tan √ 2 # sec √ � tan √

sec √ � tan √

�
sec x1sec x � tan x 2

sec2x � tan2x
� RHS

 LHS �
sec x

sec x � tan x
# sec x � tan x

sec x � tan x

LHS �
1 � sin2u

cos2u

1 � sin2u
cos2u

# cos2u

cos2u
�

cos2u � sin2u

cos2u � sin2u
� RHS

� RHS

�
sin2t � cos2t

sin t cos t
�

2 sin t cos t

sin t cos t
�

1

sin t cos t
� 2

 LHS �
sin2t � 2 sin t cos t � cos2t

sin t cos t

LHS �
sin x � 1

sin x � 1
# sin x � 1

sin x � 1
�

sin2x � 11sin x � 1 2 2 � RHS

�
sin2u11 � cos2u 2

cos2u
�

sin2u sin2u

cos2u
� RHS

LHS �
sin2u

cos2u
�

sin2u cos2u

cos2u

�
1 � cos2a

sin a11 � cos a 2 �
sin2a

sin a11 � cos a 2 � RHS

LHS �
1 � cos a

sin a
# 1 � cos a

1 � cos a

LHS � 211 � sin2x 2 � 1 � 2 � 2 sin2x � 1 � RHS

LHS � sin2x a1 �
cos2x

sin2x
b � sin2x � cos2x � RHS

�
�sin2x

sin x
� RHS

�
cos2x

sin x
�

cos x

sin x
�

cos x

sin x
�

1

sin x
�

cos2x � 1

sin x

 LHS � cot x cos x � cot x � csc x cos x � csc x

LHS �
1

cos2y
� sec2y � RHS

LHS �
1

cos t � cos t
1

cos t

# cos t

cos t
�

1 � cos2t

1
� RHS

�
1sin x � cos x 2 1sin x � cos x 21sin x � cos x 2 1sin x � cos x 2 � RHS

 LHS �
1sin x � cos x 221sin x � cos x 2 1sin x � cos x 2 �

sin x � cos x

sin x � cos x

LHS � 1 � cos2b � sin2b � RHS
67.

69.

71.

73.

75.

77.

79.

81.

83.

85.

87.

89. tan u 91. tan u 93. 3 cos u
95. Yes

97. No3

6.28_6.28

_1

1.5

6.28_6.28

_1.5

� a 1

sin x cos x
b 4

� RHS

 LHS � a sin x

cos x
�

cos x

sin x
b 4

� a sin2x � cos2x

sin x cos x
b 4

�
11 � sin x 2 2

cos2x
� a 1 � sin x

cos x
b 2

� RHS

 LHS �
1 � sin x

1 � sin x
# 1 � sin x

1 � sin x
�
11 � sin x 2 2
1 � sin2x

� sin2x � sin x cos x � cos2x � RHS

 LHS �
1sin x � cos x 2 1sin2x � sin x cos x � cos2x 2

sin x � cos x

LHS �

1
cos u � 1

1
cos u � 1

# cos u

cos u
� RHS

� 1tan2x � 1 2 � 1cot2x � 1 2 � RHS

 LHS � tan2x � 2 tan x cot x � cot2x � tan2x � 2 � cot2x

�
2 sec x

sec2x � tan2x
� RHS

 LHS �
sec x � tan x � sec x � tan x1sec x � tan x 2 1sec x � tan x 2

� �1 � sec2t � RHS

 LHS �
�sin2t � tan2t

sin2t
� �1 �

sin2t

cos2t
# 1

sin2t

�
cos2u

cos u1sin u � 1 2 � LHS

 RHS �
sin u � 1

sin u

cos u � cos u
sin u

�

sin2u � 1
sin u

cos u sin u � cos u
sin u

LHS � 1sec2x � tan2x 2 1sec2x � tan2x 2 � RHS

LHS �
sin2u

cos2u
�

sin2u cos2u

cos2u
�

sin2u

cos2u
11 � cos2u 2 � RHS

�
cos x

sin x
� RHS

 LHS �

1
sin x � cos x

sin x

1
cos x � 1

# sin x cos x

sin x cos x
�

cos x11 � cos x 2
sin x11 � cos x 2



A42 Answers to Odd-Numbered Exercises and Chapter Tests

Section 7.2 ■ page 539

1. 3.

5. 7.

9. 11.

13. 15. 17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45. (a) f 1x 2 � 12 sin a x �
p

4
b

512 sin a2x �
7p

4
b

2 sin a x �
5p

6
b� sin z 3cos x cos y � sin x sin y 4 � RHS

� cos z 3sin x cos y � cos x sin y 4� sin1x � y 2  cos z � cos1x � y 2  sin z

 LHS � sin11x � y 2 � z 2�
2 cos x sin y

2 cos x cos y
� RHS

sin x cos y � cos x sin y � 1sin x cos y � cos x sin y 2
cos x cos y � sin x sin y � cos x cos y � sin x sin y

 LHS �

LHS �
sin x

cos x
�

sin y

cos y
�

sin x cos y � cos x sin y

cos x cos y
� RHS

�
1 � 1

cot x
1

cot y
1

cot x � 1
cot y

# cot x cot y

cot x cot y
� RHS

 LHS �
1

tan1x � y 2 �
1 � tan x tan y

tan x � tan y

� 1sin x cos y � cos x sin y 2 � RHS

 LHS � sin x cos y � cos x sin y

� 13
2  cos x � 1

2 sin x � 1
2 sin x � 13

2  cos x �  RHS

 LHS � cos x cos p6 � sin x sin p6 � sin x cos p3 � cos x sin p3

LHS �
tan x � tan p

1 � tan x tan p
� RHS

LHS � sin x cos p � cos x sin p � RHS

LHS � sin x cos p2 � cos x sin p2 � RHS

�
1

sin u
� RHS

 LHS �
1

cosAp2 � uB �
1

cos p2  cos u � sin p2  sin u

�
cos u

sin u
� RHS

 LHS �
sinAp2 � uB
cosAp2 � uB �

sin p2  cos u � cos p2  sin u

cos p2 cos u � sin p2  sin u

131
212/2

�
16 � 12

4
13 � 2

�
16 � 12

4
2 � 13

12 � 16

4

16 � 12

4

(b)

49.
51. (a)

53. p/2
55. (b)

Section 7.3 ■ page 548

1. 3. 5.

7. 9.

11.

13. 15. 17.

19. 21. 23.

25. 27. (a) (b)
29. (a) (b) 31. (a) (b)
35.

37.

39. 41.

43. 45.

47. 2 sin 4x cos x 49. 2 sin 5x sin x 51.

53. 55. 57.

59.

61.

63.

65.

� 2 sin x cos x � RHS

�
2

sin x
cos x � cos x

sin x

# sin x cos x

sin x cos x
�

2 sin x cos x

sin2x � cos2x

 LHS �
21tan x � cot x 21tan x � cot x 2 1tan x � cot x 2 �

2

tan x � cot x

 LHS �
2 sin 2x cos 2x

sin x
�

212 sin x cos x 2 1cos 2x 2
sin x

� RHS

� 1 � 2 sin x cos x � RHS
 LHS � sin2x � 2 sin x cos x � cos2x

LHS � cos12 # 5x 2 � RHS

12/21
4A12 � 1BA12 � 13B/2 �2 cos 92 x sin 52 x

3
2 1cos 11x � cos 3x 21

2 1sin 5x � sin 3x 2 1
2 1sin 5x � sin x 216/6, �130/6, �15/5

2A3 � 212B/6, 2A3 � 212B/6, 3 � 212

110/10, 3110/10, 1
3

tan 2utan 4°cos 10ucos 68°
sin 6usin 36°� 1

222 � 12

1
222 � 1312 � 1� 1

222 � 13

12 � 11
222 � 131

32A34 � cos 4x � 1
4 cos 8xB1

16 11 � cos 2x � cos 4x � cos 2x cos 4x 21
2A34 � cos 2x � 1

4 cos 4xB� 3
5,

4
5, � 3

4

24
25,

7
25,

24
7� 24

25,
7
25, � 24

7
120
169,

119
169,

120
119

k � 1013, f � p/6

sin2 a x �
p

4
b � sin2 a x �

p

4
b � 1

3

6.28_6.28

_3

tan g � 17
6

y

0 x

1

π

4



Answers to Section 7.5 A43

67.

69.

71.

73.

75.

81.

83. (a)

85. (a)

(c) The graph of 
lies between the two
other graphs.

87. (a) (b)
93. (a) and (c) 2.5

π_π

_2.5

Q1t 2 � 16t5 � 20t3 � 5tP1t 2 � 8t4 � 8t2 � 1

y � f1x 22.5

9.42_9.42

_2.5

2.5

9.42_9.42

_2.5

sin 3x

sin x
�

cos 3x

cos x
� 2

5

6.28_6.28

_5

�
sin 3x12 cos 2x � 2 cos x � 1 2
cos 3x12 cos 2x � 2 cos x � 1 2 � RHS

�
2 sin 3x cos 2x � 2 sin 3x cos x � sin 3x

2 cos 3x cos 2x � 2 cos 3x cos x � cos 3x

 LHS �
1sin x � sin 5x 2 � 1sin 2x � sin 4x 2 � sin 3x1cos x � cos 5x 2 � 1cos 2x � cos 4x 2 � cos 3x

�
sinAx � y

2 B
cosAx � y

2 B � RHS LHS �
2 sinAx � y

2 B cosAx � y
2 B

2 cosAx � y
2 B cosAx � y

2 B
LHS �

2 sin 5x cos 5x

2 sin 5x cos 4x
� RHS

LHS �
2 sin 3x cos 2x

2 cos 3x cos 2x
�

sin 3x

cos 3x
� RHS

� cos2x � sin2x � RHS
 LHS � 1cos2x � sin2x 2 1cos2x � sin2x 2�

2 tan x � tan x11 � tan2x 2
1 � tan2x � 2 tan x tan x

� RHS

�
2 tan x

1 � tan2x � tan x

1 � 2 tan x
1 � tan2x tan x

LHS � tan12x � x 2 �
tan 2x � tan x

1 � tan 2x tan x
The graph of f lies between the graphs of y � 2 cos t and
y � �2 cos t. Thus, the loudness of the sound varies between 
y � �2 cos t.

Section 7.4 ■ page 557

1. (a) p/6 (b) p/3 (c) Not defined
3. (a) p/4 (b) p/4 (c) �p/4
5. (a) p/2 (b) 0 (c) p 7. (a) p/6
(b) �p/6 (c) Not defined
9. (a) 0.13889 (b) 2.75876
11. (a) 0.88998 (b) Not defined 13. 15. 5
17. p/3 19. �p/6 21. �p/3 23. 25.
27. p/3 29. 31. 33. 35. 37. 39. 1

41. 43. 45. 47. 0

49. (a)

Conjecture: y � p/2 for �1 
 x 
 1

51. (a) 0.28 (b)
53. (a) h � 2 tan u (b)
55. (a) (b) u � 0.826 rad
57. (a) 54.1� (b) 48.3�, 32.2�, 24.5�. The function sin�1 is
undefined for values outside the interval 3�1, 14.
Section 7.5 ■ page 568

1. 3. 5.

7. 9.

11. 13.

15. 17. 19.

21. 23. No solution

25.

27.

29. 31. 4kp 33. 35.

37.

39. 41.
p

9
,

5p

9
,

7p

9
,

11p

9
,

13p

9
,

17p

9

p

8
�

kp

2
,

3p

8
�

kp

2

p

6
� 2kp,

2p

3
� 2kp,

5p

6
� 2kp,

4p

3
� 2kp

kp

3
4 a 2p

3
� kp b1

2
ap

6
� kp b

1

4
ap

3
� 2kp b ,

1

4
a�
p

3
� 2kp b

7p

18
�

2kp

3
,

11p

18
�

2kp

3

3p

2
� 2kp

p

3
� 2kp,

5p

3
� 2kp

p

2
� kp�

p

3
� kp

p

2
� kp,

7p

6
� 2kp,

11p

6
� 2kp

p

3
� kp,

2p

3
� kp

12k � 1 2p
4

p

3
� kp,

2p

3
� kp

5p

6
� kp

p

6
� 2kp,

5p

6
� 2kp12k � 1 2p

u � sin�11h/680 2 u � tan�11h/2 2A�3 � 117B/4

3

3.14_3.14

_3

1 � x2

1 � x2x/21 � x221 � x2

24
2515/513

5
12
13

4
5

1
213/3

1
4



A44 Answers to Odd-Numbered Exercises and Chapter Tests

43. 45. 47.

49. (a) 1.15928 � 2kp, 5.12391 � 2kp
(b) 1.15928, 5.12391
51. (a) 1.36944 � 2kp, 4.91375 � 2kp
(b) 1.36944, 4.91375
53. (a) 0.46365 � kp, 2.67795 � kp
(b) 0.46365, 2.67795, 3.60524, 5.81954
55. (a) 0.33984 � 2kp, 2.80176 � 2kp
(b) 0.33984, 2.80176

57. 59.

61.

63. 65. 67. 0

69. 71.

73. 0, �0.95 75. 1.92
77. �0.71 79. 0.94721� or 89.05279� 81. 44.95�
83. (a) 34th day (February 3rd), 308th day (November 4th)
(b) 275 days 85. (b) 1.047 � 60�

Chapter 7 Review ■ page 571

1.

3.

5.

7.

9.

11. LHS �
2 sin x cos x

1 � 2 cos2x � 1
�

2 sin x cos x

2 cos2x
�

2 sin x

2 cos x
� RHS

LHS � sin2x
cos2x

sin2x
� cos2x

sin2x

cos2x
� cos2x � sin2x � RHS

LHS �
cos x

1
cos x 11 � sin x 2 �

cos x
1

cos x � sin x
cos x

� RHS

LHS �
cos2x

sin2x
�

tan2x

sin2x
� cot2x �

1

cos2x
� RHS

� �sin2x
1

sin x
� RHS

� csc x � sin2x csc x � csc x

 LHS � 11 � sin2x 2  csc x � csc x

�
cos2u � sin2u

cos u
� RHS

 LHS � sin u a cos u

sin u
�

sin u

cos u
b � cos u �

sin2u

cos u

p

9
�

2kp

3
,
p

2
� kp,

5p

9
�

2kp

3

kp

2

p

2
,

7p

6
,

3p

2
,

11p

6

p

9
,

2p

9
,

7p

9
,

8p

9
,

13p

9
,

14p

9

p

8
,

3p

8
,

5p

8
,

7p

8
,

9p

8
,

11p

8
,

13p

8
,

15p

8

y

0 x

5

_5

π

2

y

x

1

π

ap
3

� kp, 13 b112k � 1 2p, �2 2

0,
2p

3
,

4p

3

p

3
,

2p

3
,

4p

3
,

5p

3

p

6
,

3p

4
,

5p

6
,

7p

4
13.

15.

17.

19.

21.

23.

25. (a) (b) Yes

27. (a) (b) No

29. (a) 2 sin2 3x � cos 6x � 1

31. 0, p 33. 35. 37.

39. 41. 43.

45. 1.18 47. (a) 63.4� (b) No (c) 90� 49.

51. 53. 55. 57.

59. 61. 63. 2A3 � 212B/62
3 A12 � 15B2

110 � 1

9

12 � 13

4
12/212/212 � 1

1
222 � 13

p

6

p

6
,
p

2
,
5p

6
,
7p

6
,
3p

2
,
11p

6

p

3
,
2p

3
,
3p

4
,
4p

3
,
5p

3
,
7p

4

2p

3
,
4p

3

p

3
,
5p

3

p

6
,
5p

6

1.5

3.14_3.14

_1.5

4

6.28_6.28

_4

1.5

3.14_3.14

_1.5

LHS �
tan x � tan p4

1 � tan x tan p4
� RHS

� 2 cos x � 2 cos x �
1

cos x
� RHS

 LHS �
2 sin x cos x

sin x
�

2 cos2x � 1

cos x

� 1 � sinA2 # x2B � RHS

LHS � cos2 x
2 � 2 sin x

2 cos x
2 � sin2 x

2

� 1 �
1

cos x
� 1 � RHS

 LHS � 1 �
sin x

cos x
# 1 � cos x

sin x
� 1 �

1 � cos x

cos x

� 1
2 12 sin2x � 2 sin2y 2 � RHS

� 1
2 31 � 2 sin2y � 11 � 2 sin2x 2 4� 1
2 1cos 2y � cos 2x 2� cos11x � y 2 � 1x � y 22 4 LHS � 1
2 3cos11x � y 2 � 1x � y 22LHS �
1 � cos x

sin x
�

1

sin x
�

cos x

sin x
� RHS



Answers to Section 8.1 A45

65. p/3 67. 69. 71. 73.

75. 77. (a) (b) 286.4 ft

Chapter 7 Test ■ page 574

1. (a)

(b)

(c)

2. tan u 3. (a) (b) (c)

4. 5. (a)
(b) 6. �2
7.

8. (a) (b)

9. (a) (b)

10. 0.57964, 2.56195, 3.72123, 5.70355 11.

Focus on Modeling ■ page 578

1. (a) (b)

(c) √ � p/4 Yes, it is a traveling wave.

3.
5.
7. (a) 1, 2, 3, 4

y1x, t 2 � 0.6 sin1px 2  cos140pt 2y1x, t 2 � 2.7 sin10.68x � 4.10t 2

7

y

5

1

_5

0 x

y � �5 sin ap
2

t b
40
41

p

6
,
p

2
,
5p

6
,
3p

2

2p

3
,
4p

3

u � cos�1 3
x

u � tan�1 x

4

Domain 3�1,1 4Domain �

y

0 x

1

_1

π

2

π

2
_

y

0 x
1

π

2

_1

π

2
_

�2 cos 72 x sin 32 x

1
2 1sin 8x � sin 2x 2A10 � 215B/15

1
222 � 13

12 � 16

4
1
2

LHS �
2 tan x

sec2x
�

2 sin x

cos x
# cos2x � 2 sin x cos x � RHS

�
sin x
cos x 11 � cos x 2

sin2x
�

1

sin x
# 1 � cos x

cos x
� RHS

 LHS �
tan x

1 � cos x
# 1 � cos x

1 � cos x
�

tan x11 � cos x 2
1 � cos2x

LHS �
sin u

cos u
 sin u � cos u �

sin2u � cos2u

cos u
� RHS

u � tan�1 a 10
x
bu � cos�1 a x

3
b x/21 � x27

92/1211
2

(b) 5:

(c) 880p
(d) ;

;
;

Chapter 8

Section 8.1 ■ page 586

1. 3.

5. 7.

9.

11.

13. Q 15. Q 17. P 19. P

21. 23. 25.

27. 29. 31.

33. 35. 37.

39. 41. u � p/4 43. r � tan u sec u16,p 2 A5, tan�1 4
3B14,p/4 2A12, 3p/4B A316, �312B1�5, 0 211, �1 2 A213, 2Ba�

5

2
, �

513

2
bA312, 3p/4B

1�5, 2p 2 , 15,p 2
O

(_5, 0)

a�1, �
5p

6
b , a1,

p

6
b!_1,      @

7π

67π

6

O

a�3,
3p

2
b , a3,

5p

2
b

!3,    @
π

2

π

2

O

!_2,      @
4π

3

4π

3

O

!6, _     @
7π

6

7π

6

O

_

!4, @
π

4

π

4

O

y1x, t 2 � sin14t 2  cos1880pt 2y1x, t 2 � sin13t 2  cos1880pt 2y1x, t 2 � sin12t 2  cos1880pt 2y1x, t 2 � sin t cos1880pt 2

6:



A46 Answers to Odd-Numbered Exercises and Chapter Tests

45. r � 4 sec u 47. x 2 � y 2 � 49 49. x � 6

51. 53. y � x � 1

55. 57. x � 2

59.

Section 8.2 ■ page 594

1. VI 3. II 5. I
7. Symmetric about u � p/2
9. Symmetric about the polar axis
11. Symmetric about u � p/2
13. All three types of symmetry
15. 17.

19. 21.

23. 25.

27. 29.

O 1O 10

(π, π)

O 1

(_3, π)(_3, 0)

!_6,    @
π

2

O 1

(4, π)

!2,    @
π

2

!2,      @
3π

2

O 1

(_2, 0)

O 1

!6,    @
π

2

O 1
O 1 (2, 0)

!2,    @
π

2

!2,      @
3π

2

(2, π)

y � �13x

x2 � y2 � 1x2 � y2 � x 2 2x2 � y2 �
y

x

31. 33.

35. 37. 0 
 u 
 4p

39. 0 
 u 
 4p

41. The graph of r � 1 � sin nu has n loops.
43. IV 45. III
47. 49.

51.

53. (a) Elliptical

(b) p; 540 mi

7000

12000_9000

_7000

a a

2
,
b

2
b ,
2a2 � b2

2

1

1

O 1

1

3

1.5_3.5

_3

1

1.25_1.25

_1

O 1

(3, 0)

O 1 (2, 0)(2, π)

!3,    @
π

2

!1,      @
3π

2

1O



Answers to Section 8.3 A47

Section 8.3 ■ page 603

1. 4 3. 2

5. 7. 2

9. 1 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31. 3 a cos
3p

2
� i sin 

3p

2
b4 a cos

11p

6
� i sin 

11p

6
b

2 a cos
7p

4
� i sin 

7p

4
b12 a cos

p

4
� i sin 

p

4
b

Im

0 Re1

i

Im

0 Re1

i

Im

0 Re1

i

Im

0 Re1

i

_1

Im

0 Re1

i
z⁄=2+i

z¤=2-i

4

z⁄+z¤=4

z⁄ z¤=5

Im

0 Re2

i

8+2i

8-2i

8

Im

0 Re1

i

_1

0.5+0.5i

1+i

2+2i

_1-i

Im

0 Re1

i

0.6+0.8i

Im

0 Re1

i œ∑3+i

Im

0 Re1

i
5+2i

129

Im

0 Re

i

_2

Im

0 Re1

i

_1

4i

33. 35.

37. 39.

41. 43.

45.

47.

49.

51.

53.

55.

57.

59.

61.

1
z1

�
12

10
a cos

p

4
� i sin 

p

4
b

z1

z2
�

512

4
a cos

p

4
� i sin 

p

4
b

z1z2 � 2012 a cos
p

4
� i sin 

p

4
bz2 � 41cos 0 � i sin 0 2z1 � 512 a cos

p

4
� i sin 

p

4
b

1
z1

�
1

4
a cos

11p

6
� i sin 

11p

6
b

z1

z2
� 212 a cos

13p

12
� i sin 

13p

12
b

z1z2 � 412 a cos
7p

12
� i sin 

7p

12
b

z2 � 12 a cos
3p

4
� i sin 

3p

4
b

z1 � 4 a cos
11p

6
� i sin 

11p

6
b

1
z1

�
1

2
a cos

p

6
� i sin 

p

6
b

z1

z2
� cos

p

6
� i sin 

p

6

z1z2 � 4 a cos
p

2
� i sin 

p

2
b

z2 � 2 a cos
p

3
� i sin 

p

3
b

z1 � 2 a cos
p

6
� i sin 

p

6
bz1/z2 � 4

25 1cos 50° � i sin 50° 2z1z2 � 1001cos 350° � i sin 350° 2z1/z2 � 21cos 90° � i sin 90° 2z1z2 � 81cos 150° � i sin 150° 2
z1

z2
�

3

5
a cos

7p

6
� i sin 

7p

6
b

z1z2 � 15 a cos
3p

2
� i sin 

3p

2
b

z1z2 � cos
4p

3
� i sin 

4p

3
  

z1

z2
� cos

2p

3
� i sin 

2p

3

2 a cos
p

4
� i sin 

p

4
b15 3cosAtan�1 1

2B � i sinAtan�1 1
2B 4

8 a cos
p

6
� i sin 

p

6
b312 a cos

3p

4
� i sin 

3p

4
b5 3cosAtan�1 4

3B � i sinAtan�1 4
3B 4201cos p � i sin p 2 8 a cos

11p

6
� i sin 

11p

6
b512 a cos

p

4
� i sin 

p

4
b



A48 Answers to Odd-Numbered Exercises and Chapter Tests

63.

65. �1024 67.

69. �1 71. 4096

73. 75.

77. ,

79. ,

,

,

81.

83.

„‚

i

1

Im

0 Re

„¤

„⁄

13

2
�

1

2
i, �
13

2
�

1

2
i, �i

„‚

i

1

Im

0 Re

„¤

„⁄„‹

„›

„fi

„fl

„‡

�1, �i, �
12

2
�
12

2
i

3 a cos
15p

8
� i sin 

15p

8
b

3 a cos
11p

8
� i sin 

11p

8
b

3 a cos
7p

8
� i sin 

7p

8
b

„‚

i

1

Im

0 Re

„¤

„⁄

„‹

3 a cos
3p

8
� i sin 

3p

8
b

212 a cos
13p

12
� i sin 

13p

12
b i

1

Im

0 Re

„⁄

„¤

212 a cos
p

12
� i sin 

p

12
b

1
2048 A�13 � iB81�1 � i 2

5121�13 � i 2
1
z1

� 1
20 1cos p � i sin p 2

z1

z2
� 10 a cos

5p

6
� i sin 

5p

6
b

z1z2 � 40 a cos
7p

6
� i sin 

7p

6
b

z2 � 2 a cos
p

6
� i sin 

p

6
bz1 � 201cos p � i sin p 2

85.

87.

89. , ,

91. , ,

Section 8.4 ■ page 615

1. 3.

5.

7. �3, 3� 9. �3, �1� 11. �5, 7�
13. ��4, �3� 15. �0, 2�
17. �4, 14�, ��9, �3�, �5, 8�, ��6, 17�
19. �0, �2�, �6, 0�, ��2, �1�, �8, �3�
21. 4i, �9i � 6 j, 5i � 2 j, �6i � 8 j
23.

25.

27. 29.

31. 4 cos 10� i � 4 sin 10� j � 3.94i � 0.69 j

�
12

2
i �
12

2
j2013i � 20 j

1101, 212, 21101, 12, 173, 1145, 1101 � 212

15, 113, 215, 1
2113, 126, 110, 15 � 113

_2

7

y

0 x

v-2u

7

1

y

0 x

u+v

2

_2

y

0 x

2u

21/6 a cos
21p

12
� i sin 

21p

12
b
21/6 a cos

13p

12
� i sin 

13p

12
b21/6 a cos

5p

12
� i sin 

5p

12
b

2 a cos
25p

18
� i sin 

25p

18
b

2 a cos
13p

18
� i sin 

13p

18
b2 a cos

p

18
� i sin 

p

18
b

�
12

2
�
12

2
i

„‚

i

1

Im

0 Re

„¤

„⁄

„‹

�
12

2
�
12

2
i



Answers to Chapter 8 Review A49

33. 5, 53.13� 35. 13, 157.38� 37. 2, 60�
39. 41. 2i � 3 j 43. (a) 40 j
(b) 425i (c) 425i � 40 j (d) 427 mi/h, N 84.6� E
45. 794 mi/h, N 26.6� W 47. (a) 10i (b) 10i � 17.32 j
(c) 20i � 17.32 j (d) 26.5 mi/h, N 49.1� E
49. (a) 22.8i � 7.4 j (b) 7.4 mi/h, 22.8 mi/h
51. (a) �5, �3� (b) ��5, 3�
53. (a) �4 j (b) 4 j 55. (a) ��7.57, 10.61�
(b) �7.57, �10.61�
57. T1 � �56.5i � 67.4 j, T2 � 56.5i � 32.6 j

Section 8.5 ■ page 624

1. (a) 2 (b) 45� 3. (a) 13 (b) 56�
5. (a) �1 (b) 97� 7. (a) (b) 30�
9. Yes 11. No 13. Yes 15. 9 17. �5 19.
21. �24 23. (a) �1, 1� (b) u1 � �1, 1�, u2 � ��3, 3�
25. (a) (b)
27. (a) (b)
29. �28 31. 25 39. 16 ft-lb 41. 8660 ft-lb
43. 1164 lb 45. 23.6�

Chapter 8 Review ■ page 627

1. (a) 3. (a)

(b) (b)

5. (a) 7. (a)

(b) (b)

(c)

9. (a) (b)

(c) a�12,
p

4
b

a12,
5p

4
by

0 x_8

_8
Ó_6œ∑ 2Ô2, _6œ∑

a�812,
5p

4
b

a812,
p

4
bA213, 6B

y

0 x8

8 (8, 8)
!4 @

_    
5π

3

_    
5π

3

O

œ∑3,

a�312

2
,

312

2
bA613, 6B

!_3,  @

7π

4

7π

4

O

!12,    @
π

6

π

6

O

u1 � 8� 18
5 , 24

5 9, u2 � 828
5 , 21

5 98� 18
5 , 24

5 9 u1 � 8� 1
2,

3
2 9, u2 � 832, 1

2 98� 1
2,

3
2 9

� 12
5

513

1513, �15
11. (a)

(b)

(c)

13. (a)

(b)

15. (a)

(b)

17. (a)

(b)

19. (a)

(b) 1x2 � y2 2 3 � 16x2y2

O 2

1x2 � y2 � 3x 2 2 � 91x2 � y2 2
1

(6, 0)

!3,    @
π

2

!3,      @
3π

2

O

y

0 x

2

2

r � 41cos u � sin u 2

y

0 x

4

4

r �
4

cos u � sin u

a�213, �
p

6
b

a213,
5p

6
by

0 x3

1

_3

Ó_3, œ∑3Ô



A50 Answers to Odd-Numbered Exercises and Chapter Tests

21. (a)

(b) x 2 � y 2 � 1
23. (a)

(b) x 2 � y 2 � x � y
25. 0 
 u 
 6p 27. 0 
 u 
 6p

29. (a)

(b) (c)

31. (a)

(b) (c) 134 3cosAtan�1 3
5B � i sinAtan�1 3

5B 4134, tan�1A35B

Im

0 Re1

i

5+3i

412 a cos
p

4
� i sin 

p

4
b412,

p

4

Im

0 Re1

i

4+4i

5

6_4

_5

1

1.25_0.75

_1

O (1, 0)

!1,    @
π

2

O

(1, 0)(1, π)

33. (a)

(b) (c)

35. 37.

39. 41.

43. , �6, 4�, ��10, 2�, ��4, 6�, ��22, 7�
45. 3i � 4 j 47. 49. (a)
(b) 4.8 � 104 lb, N 85.2� E 51. 5, 25, 60
53. , 8, 0 55. Yes 57. No, 45� 59. (a)
(b) (c) 61. �6

Chapter 8 Test ■ page 629

1. (a) (b)

2. (a) circle

(b)

3. (a)

(b) (c) �512 4. �8,

5. �3i,

6. (a) �6i � 10 j (b) 2134

„‚

3

Im

0 Re

„¤

„⁄

_3i

3 a�
13

2
�

1

2
i b

13 � i2 a cos
p

3
� i sin 

p

3
b

Im

0 Re1

i

1+œ∑3i

1x � 4 2 2 � y2 � 16

O
8

A413, 5p/6B, A�413, 11p/6BA�412, �412B
u1 � 8102

37 , � 17
37 9, u2 � 8 937,

54
37 98102

37 , � 17
37 9 17137/37212

14.8i � 0.4 j 2 � 104110, �2 2113

�1, �1
2 �
13

2
i�21211 � i 2 � 1

32A1 � i13B8A�1 � i13B12 a cos
3p

4
� i sin 

3p

4
b12,

3p

4

Im

0 Re1

i

_1

_1+i



Answers to Section 9.4 A51

7. (a) �19, �3� (b) (c) 0 (d) Yes
8. (a)

(b) 8, 9. (a) (b) 17.4 mi/h, N 53.4� E

10. (a) 45� (b) (c) 11. 90

Focus on Modeling ■ page 632

1. (a) R � 18/p � 5.73 (b) 691.2 mi
3. (a) x � �12.23, y � 6.27 (b) x � 3.76, y � 8.43
(c) x � 15.12, y � �3.85 (d) x � �4.31, y � �2.42
5. (a) 1.14 (b) 1.73 (c) 36.81 7. (a) 1.48
(b) 1.21 (c) 1.007

Chapter 9

Section 9.1 ■ page 642

1. 3. 5.

7. 9. 11.

13.

15. 17.

19. 21. 23.

25. 27. 29. No solution

31.

33. 35. 37.

39. 41.

43.

45. 47. 12 cm by 15 cm

49. 15, 20 51. , 447.77 m 53.

Section 9.2 ■ page 649

1. 3. No solution
y

0 x

5

5

_5

_5

y

0 x1

1

12, 2 2
112, 8 21400.50, 200.25 21�2.30, �0.70 2 , 10.48, �1.19 211.23, 3.87 2 , 1�0.35, �4.21 2 1�4.51, 2.17 2 , 14.91, �0.97 212.00, 20.00 2 , 1�8.00, 0 2 1�0.33, 5.33 2A15, 1

3BA3, � 1
2B, A�3, � 1

2BA15, 2B, A15, �2B, A�15, 2B, A�15, �2B16, 2 2 , 1�2, �6 21�2, �2 2 14, 0 210, 0 2 , 11, �1 2 , 1�2, �4 212, 4 2 , A� 5
2,

7
4B 1�2, 3 2A�1, 12B, A�1, �12B, A12,27

2B, A12, �27
2B1�2, �1 2 , 1�2, 1 2 , 12, �1 2 , 12, 1 2 1�3, 4 2 , 13, 4 211, 2 21�25, 5 2 , 1�25, �5 2 12, �2 2 , 1�2, 2 214, 16 2 , 1�3, 9 213, 1 2

5
2 i � 1

2 j126/2

14i � 613 j
5p

6

y

0 1

1

x

u

512 5. Infinitely many solutions

7. 9. 11. 13. 15.
17. 19. No solution 21. No solution
23. 25. 27.
29. 31. 33. No solution

35. 37. 39.

41. 43. 22, 12 45. 5 dimes, 9 quarters

47. Plane’s speed 120 mi/h, wind speed 30 mi/h
49. Run 5 mi/h, cycle 20 mi/h 51. 200 g of A, 40 g of B
53. 25%, 10% 55. $16,000 at 10%, $32,000 at 6% 57. 25

Section 9.3 ■ page 657

1. Linear 3. Nonlinear 5.
7. 9.

11. 13.

15. 17. 19. 21.
23. No solution 25. No solution 27.
29. 31.
33. $30,000 in short-term bonds, $30,000 in intermediate-term
bonds, $40,000 in long-term bonds 35. Impossible
37. 250 acres corn, 500 acres wheat, 450 acres soybeans

Section 9.4 ■ page 673

1. 3 � 2 3. 2 � 1 5. 1 � 3

7. (a) Yes (b) Yes (c)

9. (a) Yes (b) No (c)

11. (a) No (b) No (c)

13. (a) Yes (b) Yes (c) dx � 3y �  „ � 0

z � 2„ � 0

0 � 1

0 � 0

• x    � 0

0 � 0

y � 5z � 1

• x � 2y � 8z � 0

y � 3z � 2

0 � 0

e x � �3

y � 5

11, �1, 1, 2 2A2 � 2t, � 2
3 � 4

3 t, tB 13 � t, �3 � 2t, t 211 � 3t, 2t, t 210, 1, 2 215, 0, 1 211, 2, 1 2
•2x �  y � 3z �  2

x � 2y �  z �  4

 3y � 7z � 14

• x � 2y � z � 4

�y � 4z � 4

2x � y � z � 0

A5, 2, � 1
2B14, 0, 3 2 11, 3, 2 2

a 1

a � b
,

1

a � b
b

a�
1

a � 1
,

1

a � 1
b161.00, 20.00 213.87, 2.74 2 15, 10 2Ax, 5 � 5

6 xB 1�3, �7 2Ax, 3 � 3
2 xBAx, 1

3 x � 5
3B110, �9 2 11, 3 213, 5 212, 1 213, �1 212, 2 2

y

0 x2

2



A52 Answers to Odd-Numbered Exercises and Chapter Tests

15. 17. 19. 21.

23. 25. No solution 27.

29. No solution 31.

33. 35.

37. 39. 41.

43.

45.
47. 2 VitaMax, 1 Vitron, 2 VitaPlus 49. 5-mile run,
2-mile swim, 30-mile cycle 51. Impossible

Section 9.5 ■ page 684

1. No 3. 5. 7. Impossible

9. 11. 13. No solution

15. 17. 19.

21. 23.

25. Impossible 27. 29.

31. 33. 35. Impossible

37. Impossible 39. x � 2, y � �1

41. x � 1, y � �2 43.

45.

47. Only ACB is defined. ACB �

49. (a) (b) Total revenue in Santa
Monica, Long Beach, and Anaheim, respectively.
51. (a) (b) The first entry is the total
amount (in ounces) of tomato sauce produced, and the second
entry is the total amount (in ounces) of tomato paste produced.
53.

(a) F1 0 1 0 1 1

0 3 0 1 2 1

1 2 0 0 3 0

1 3 2 3 2 0

0 3 0 0 2 1

1 2 0 1 3 1

V
3105,000 58,000 434,690 1,690 13,210 4 c

�3 �21 27 �6

�2 �14 18 �4
d

£3 2 �1 1

1 0 �1 0

0 3 1 �1

§ ≥ x1

x2

x3

x4

¥ � £05
4

§
c2 �5

3 2
d c x

y
d � c7

4
d

c8 �335

0 343
d£�1

8

�1

§
328 21 28 4c3 1

2 5

1 �1 3
d

c�14 �8 �30

�6 10 �24
dc 13 � 7

2 15

3 1 3
d

c�1 �3 �5

�1 3 �6
dc5 �2 5

1 1 0
d£ 0 �5

�25 �20

�10 10

§
c�1 �1

2

1 2
dc 5 2 1

7 10 �7
d

£ 3 6

12 �3

3 0

§c1 3

1 5
d

x � 1
3 s � 2

3 t, y � 1
3 s � 1

3 t, z � s, „ � t

A74 � 7
4 t, � 7

4 � 3
4 t, 9

4 � 3
4 t, tB 1�1, 0, 0, 1 210, �3, 0, �3 21�9, 2, 0 2 1�2, 1, 3 2x � � 1

2 s � t � 6, y � s, z � t

1�2t � 5, t � 2, t 212 � 3t, 3 � 5t, t 2110, 3, �2 2 1�1, 5, 0 21�1, 0, 1 211, 0, 1 211, 1, 2 2
(b)

(c)

(d)

(e) The letter E

Section 9.6 ■ page 697

5. 7. 9.

11. No inverse 13. 15.

17. No inverse 19.

21. 23. x � 8, y � �12

25. x � 126, y � �50 27. x � �38, y � 9, z � 47
29. x � �20, y � 10, z � 16 31. x � 3, y � 2, z � 1
33. x � 3, y � �2, z � 2 35. x � 8, y � 1, z � 0, „ � 3

37. 39.

41. ; inverse does not exist for x � 0

43. ; inverse exists for all x1
2 £ 1 e�x 0

e�x �e�2x 0

0 0 1

§
≥ 1 �

1
x

�
1
x

2

x2

¥
1

2a
c 1 1

�1 1
dc 7 2 3

10 3 5
d

≥ 0 0 �2 1

�1 0 1 1

0 1 �1 0

1 0 0 �1

¥
£� 9

2 �1 4

3 1 �3
7
2 1 �3

§
£�4 �4 5

1 1 �1

5 4 �6

§c 1 2

� 1
2

2
3

d
c 13 5

�5 �2
dc 2 �3

�3 5
dc 1 �2

� 3
2

7
2

d

F3 3 3 3 3 3

3 0 3 3 0 3

3 0 3 3 0 3

3 0 0 0 0 3

3 0 3 3 0 3

3 0 3 3 0 3

V
F2 3 2 3 2 2

3 0 3 2 1 2

2 1 3 3 0 3

2 0 1 0 1 3

3 0 3 3 1 2

2 1 3 2 0 2

V
F2 1 2 1 2 2

1 3 1 2 3 2

2 3 1 1 3 1

2 3 3 3 3 1

1 3 1 1 3 2

2 3 1 2 3 2

V



Answers to Section 9.9 A53

45. ; inverse exists for all x

47. (a) (b) 1 oz A, 1 oz B, 2 oz C

(c) 2 oz A, 0 oz B, 1 oz C (d) No

49. (a)

(b) (c)

He earns $125 on a standard set, $150 or a deluxe set, and $200
on a leather-bound set.

Section 9.7 ■ page 713

1. 6 3. �4 5. Does not exist 7. 9. 20, 20
11. �12, 12 13. 0, 0 15. 4, has an inverse
17. �6, has an inverse 19. 5000, has an inverse
21. �4, has an inverse 23. �18 25. 120 27. (a) �2
(b) �2 (c) Yes 29. 31.
33. 35. 37. 39.
41. 43. 45. abcde
47. 0, 1, 2 49. 1, �1

51. 21 53. 57. (a)

(b) y � �0.05x 2 � 3x

Section 9.8 ■ page 720

1. 3.

5. 7.

9.

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31.
4

x � 2
�

4

x � 1
�

21x � 1 2 2 �
11x � 1 2 3

2
x

�
1

x3 �
2

x � 2

1

2x � 3
�

312x � 3 2 2
2

x � 1
�

1
x

�
1

x2

2

x � 2
�

3

x � 2
�

1

2x � 1

� 1
2

2x � 1
�

3
2

4x � 3

3

x � 4
�

2

x � 2

1

x � 2
�

1

x � 2

2

x � 3
�

2

x � 3

1

x � 1
�

1

x � 4

1

x � 1
�

1

x � 1

�
Ex � F

x2 � 2x � 5
�

Gx � H1x2 � 2x � 5 2 2
A

x
�

B

2x � 5
�

C12x � 5 2 2 �
D12x � 5 2 3

Ax � B

x2 � 1
�

Cx � D

x2 � 2

A

x � 3
�

Bx � C

x2 � 4

A

x � 2
�

B1x � 2 2 2 �
C

x � 4

A

x � 1
�

B

x � 2

• 100a � 10b � c � 25

225a � 15b � c � 333
4

1600a � 40b � c � 40

63
2

A12, 1
4,

1
4, �1BA189

29 , � 108
29 , 88

29B 10, �1, 1 211, 3, 2 214, 2, �1 214, �1 2 10.6, �0.4 21�2, 5 2
1
8

A�1 � £� 1
4

3
4 � 1

4

� 1
4 � 1

4
3
4

3
4 � 1

4 � 1
4

§£1 1 2

2 1 1

1 2 1

§ £ xy
z

§ � £675

600

625

§
• x �  y � 2z � 675

2x �  y �  z � 600

x � 2y �  z � 625

£ 0 1 �1

�2 3
2 0

1 � 3
2 1

§
c cos x �sin x

sin x cos x
d 33. 35.

37. 39.

41. 43.

Section 9.9 ■ page 726

1. 3.

5. 7.

9. 11.

13.

15. 17. x 2 � y 2 	 4y 
 1
2 x � 1

y

0 x2

2

x2 + y2 = 25

y

0 x1

1

y = x2 + 1

y

0 x1

1

4x + 5y = 20

y

0 x1

1

2x − y = 8

y

0 x1

1

y = 2x + 2

y

0 x1

1

y = x

y

0 x1

1

x = 3

A �
a � b

2
, B �

a � b

2
x2 �

3

x � 2
�

x � 1

x2 � 1

1

x2 � 1
�

x � 21x2 � 1 2 2 �
1
x

2x � 5

x2 � x � 2
�

5

x2 � 1

x � 1

x2 � 3
�

1
x

3

x � 2
�

11x � 2 2 2 �
11x � 3 2 2



A54 Answers to Odd-Numbered Exercises and Chapter Tests

19. 21.

not bounded not bounded
23. 25.

bounded bounded
27. 29.

bounded bounded
31. 33.

not bounded bounded
35. 37.

bounded bounded

y

0 x1

1

(2, 2)

x2 + y2 = 8
x = 2

(2   2, 0)

y

0 x3

3

x + 1 = 0

x + 2y = 12

y = x + 1

10
3

13
3,( )

13
2−1,( )

y

0 x1

1

x + y = 7

x = 5

(5, 2)

y

x2

2

x − y = 2

3x − y = 0

x + 2y = 14
(6, 4)

(−1, −3)

y

0 x1

5
x2 − y = 0

2x2 + y = 12

(2, 4)(−2, 4)

y

0 x1

1

(−   2, −   2)

x2 + y2 = 4

x − y = 0

(   2,    2)

y

0 x1

1

y = 9 − x2

y = x + 3

(2, 5)

(−3, 0)

y

0 x1

1
3x + 5y = 15

, 2

3x + 2y = 9

( )5
3

y

0 x3

(4, 3)
1

4

3

y =

y = 2x − 5

x + 2

y

0 x3

3

x + y = 4

y = x

(2, 2)

39. 41.

bounded

43.

45. x � number of fiction books
y � number of nonfiction

books

47. x � number of standard 
packages

y � number of deluxe 
packages

Chapter 9 Review ■ page 728

1. 3.
5. 7. x � any number 

y

0 x5

5

_5

_5

y

0 x1

1

y � 2
7 x � 4

12, 1 2 A� 1
2,

7
4B, 12, �2 212, 1 2

• 1
4 x � 5

8 y 
 80
3
4 x � 3

8 y 
 90

x � 0, y � 0

y

0 x50

(70, 100)
(0, 128)

(120, 0)

50

• x � y 
 100

20 
 y, x � y

x � 0, y � 0

y

x50

50

0

(50, 50)

(80, 20)
(20, 20)

10

−6

10−4

(0.6, 3.4)

(6.4, −2.4)

10

−4

13−5

(11, 8)

(−1, 8)

y

0 x2

2

(0, 3)

,( )−3   2
2

3   2
2

x + y = 0

x2 + y2 = 9



Answers to Chapter 9 Test A55

9. No solution 

11. 13. 15.
17. 19. (a) 2 � 3

(b) Yes (c) No (d)

21. (a) 3 � 4 (b) Yes (c) Yes (d)

23. (a) 3 � 4 (b) No (c) No (d)

25. 27. No solution 29.
31. No solution 33.
35. x � �4t � 1, y � �t � 1, z � t
37.

39. 41.

43. No solution 45.
47. $3000 at 6%, $6000 at 7% 49. $11,250 in bank A,
$22,500 in bank B, $26,250 in bank C 51. Impossible

53. 55. 57.

59. 61.

65. 67. 69.

71. 73. 0, no inverse

75. 77.

79. 81.

83. 85.

87. 11 89. 91.

93. 95. x � y 2 
 4
�1
x

�
x � 2

x2 � 1

�4
x

�
4

x � 1
�

�21x � 1 2 22

x � 5
�

1

x � 3

A� 87
26,

21
26,

3
2BA15, 9

5B A� 1
12,

1
12,

1
12B165, 154 2

24, ≥ 1 0 0 � 1
4

0 1
2 0 � 1

4

0 0 1
3 � 1

4

0 0 0 1
4

¥�1, £ 3 2 �3

2 1 �2

�8 �6 9

§
1, c 9 �4

�2 1
d

c 2 �2 6

�4 5 �9
dc 7

2 �2

0 8
d1

3 c�1 �3

�5 2
d

£� 1
2

11
2

15
4 � 3

2

� 1
2 1

§c 30 22 2

�9 1 �4
d

c� 7
2 10

1 � 9
2

d310 0 �5 4£4 18

4 0

2 2

§
11, t � 1, t, 0 21s � 1, 2s � t � 1, s, t 21� 4

3 t � 4
3,

5
3 t � 2

3, t 2x � 6 � 5t, y � 1
2 17 � 3t 2 , z � t

11, 0, 1, �2 2 1�8, �7, 10 211, 1, 2 2
• y � 3z � 4

x � y � 7

x � 2y � z � 2

• x � 8z �  0

y � 5z � �1

0 � 0

e x � 2y � �5

y �  3

111.94, �1.39 2 , 112.07, 1.44 2 121.41, �15.93 2A 16
7 , � 14

3 B1�3, 3 2 , 12, 8 2

y

0 x1

1

97. 99.

101. 103.

105. 107.

bounded bounded

109. 111. 2, 3

Chapter 9 Test ■ page 733

1. (a) Linear (b)
2. (a) Nonlinear (b)
3.
4. Wind 60 km/h, airplane 300 km/h 5. (a) Row-echelon 
form (b) Reduced row-echelon form (c) Neither
6. (a) (b) No solution 7.
8. Coffee $1.50, juice $1.75, donut $0.75
9. (a) Incompatible dimensions (b) Incompatible dimensions

(c) (d) (e)

(f) B is not square (g) B is not square (h) �3

10. (a) (b)

11. 0 A 0 � 0, 0 B 0 � 2, B�1 � £1 �2 0

0 1
2 0

3 �6 1

§
170, 90 2c4 �3

3 �2
d c x

y
d � c10

30
d

c 2 � 3
2

�1 1
d£36 58

0 �3

18 28

§£ 6 10

3 �2

�3 9

§
A� 3

5 � 2
5 t, 1

5 � 1
5 t, tBA52, 5

2, 0B
1�0.55, �0.78 2 , 10.43, �0.29 2 , 12.12, 0.56 211, �2 2 , A53, 0B1�2, 3 2

x �
b � c

2
, y �

a � c

2
, z �

a � b

2

y

0 x4

4

,( )4
3

16
3

x + 2y = 12

y = x + 4

y

0 x2

2,( )−3   2
2

3   2
2

,( )−3   2
2

3   2
2

x2 + y2 = 9

x + y = 0

y

0 x1

1

y

0 x1

1

y

0 x1

1

x2 + y2 = 9

y

0 x1

1

3x + y = 6



A56 Answers to Odd-Numbered Exercises and Chapter Tests

12.

13. (a) (b)

14. (a) (b)

Focus on Modeling ■ page 739

1. 198, 195
3. maximum 161

minimum 135

5. 3 tables, 34 chairs
7. 30 grapefruit crates, 30 orange crates
9. 15 Pasadena to Santa Monica, 3 Pasadena to El Toro, 0 Long
Beach to Santa Monica, 16 Long Beach to El Toro
11. 90 standard, 40 deluxe
13. $7500 in municipal bonds, $2500 in bank certificates,
$2000 in high-risk bonds
15. 4 games, 32 educational, 0 utility

Chapter 10

Section 10.1 ■ page 751

1. III 3. II 5. VI

Order of answers: focus; directrix; focal diameter
7. 9.

y

0 x2

1

_2

y

0 x1

2

_2

FA0, 9
4B; y � � 9

4; 9F11, 0 2 ; x � �1; 4

y

0 x3

3

2x + y = 10

2x + 4y = 28

y

0 x1

1(_2, 1)

y = 2x + 5

x2 + y = 5

y

0 x1

1

(2, 4)

2x + y = 8

x − y = −2

x + 2y = 4

�
1
x

�
x � 2

x2 � 3

1

x � 1
�

11x � 1 2 2 �
1

x � 2

15, �5, �4 2 11. 13.

15. 17.

19. 21.

23.

25. x 2 � 8y 27. y 2 � �32x
29. y 2 � �8x 31. x 2 � 40y
33. y 2 � 4x 35. x 2 � 20y
37. x 2 � 8y 39. y 2 � �16x
41. y 2 � �3x 43. x � y 2

45.
47. (a) , 1, 4, and 8
(b) The closer the directrix to the 
vertex, the steeper the parabola.

49. (a) y 2 � 12x (b) 51. x 2 � 600y8115 � 31 cm

0
3_3

_1

p=8

p=4

p=1 p=
1

2

x2 � �4py, p � 1
2

x2 � �412y

4

_4

1_2

1

_1

1_3

1

_0.5

3_3

y

x

2

_1

_2

0

y

0 x3_3
_1

FA� 5
12, 0B; x � 5

12;
5
3FA0, � 3

2B; y � 3
2; 6

y

0 x

1

_10

_1

y

0 x1

4

_1

FA� 1
32, 0B; x � 1

32;
1
8FA0, 1

20B; y � � 1
20;

1
5



Answers to Section 10.3 A57

Section 10.2 ■ page 759

1. II 3. I

Order of answers: vertices; foci; eccentricity; major axis and
minor axis
5. 7.

9. 11.

13. 15.

17.

19. 21.

23.
x2

256
�

y2

48
� 1

x2

4
�

y2

8
� 1

x2

25
�

y2

16
� 1

y

0 x1

1

_1

_1

1/12; 2, 12V10, �1 2 ; FA0, �1/12B;

y

0 1

2

_ 1

_2

y

0 x1

1

_1

_1

13/2; 212, 1213/2; 2, 1
VA0, �12B; FA0, �13/2B;V1�1, 0 2 ; FA�13/2, 0B;

y

0 x2

2

_2

_2

y

0 x4

2

_4

_2

1/12; 213, 1613/2; 8, 4
VA0, �13B; FA0, �13/2B;V1�4, 0 2 ; FA�213, 0B;

y

0 x2

2

_2

_2

y

0 x5

3

_5

_3

15/3; 6, 44
5; 10, 6

V10, �3 2 ; FA0, �15B;V1�5, 0 2 ; F1�4, 0 2 ;
25. 27.

29. 31.

33. 35.

37. 39.

41. 43.

45. (a) (b) Common major
axes and vertices;
eccentricity increases
as k increases.

47.

49. 51.

Section 10.3 ■ page 768

1. III 3. II

Order of answers: vertices; foci; asymptotes
5. 7.

y

x5

2

_5

_2

y

0 x3

3

_3

_3

y � � 1
5 xy � �2x

V10, �1 2 ; FA0, �126B;V1�2, 0 2 ; FA�215, 0B;

5139/2 � 15.6 in.
x2

1,455,642
�

y2

1,451,610
� 1

x2

2.2500 � 1016 �
y2

2.2491 � 1016 � 1

6

_1

12_12

k=4

k=10

k=25

k=50

y

0 x1

1

_1

y

0 x3

2

_3

_2

1�1, 0 210, �2 2
64x2

225
�

64y2

81
� 1

x2

25
�

y2

5
� 1

x2

100
�

y2

91
� 1

x2

9
�

y2

13
� 1

x2 �
y2

4
� 1

x2

25
�

y2

9
� 1

7

7_7

_7

5

6_6

_5



A58 Answers to Odd-Numbered Exercises and Chapter Tests

9. 11.

13. 15.

17. 19.

21.

23. 25.

27. 29.

31. 33.

35. 37.

39. (b) x 2 � y 2 � c 2/2
43. (b)

As k increases, the
asymptotes get
steeper.

45. x 2 � y 2 � 2.3 � 1019

10

5_5
0

k=12

k=8

k=4

k=1

x2

9
�

y2

16
� 1

x2

16
�

y2

16
� 1

5y2

64
�

5x2

256
� 1x2 �

y2

25
� 1

y2 �
x2

3
� 1

x2

9
�

y2

16
� 1

8

_8

8_8

8

_8

8_8

x2

9
�

4y2

9
� 1

y2

16
�

x2

16
� 1

x2

4
�

y2

12
� 1

y

x3

2

_3

_2

y

x5

5

_5

_5

y � � 1
2 xy � � 1

2 x

VA0, � 1
2B; FA0, �15/2B;VA�212, 0B; FA�110, 0B;

y

x
5_5

_5

5

y

x3

3

_3

_3

y � � 3
5 xy � �x

V10, �3 2 ; FA0, �134B;V1�1, 0 2 ; FA�12, 0B; Section 10.4 ■ page 781

1. Center ; 3. Center ; 
foci ; foci ; 
vertices ; vertices ;
major axis 6, minor axis 4 major axis 10, minor axis 6

5. Vertex ; 7. Vertex ; 
focus ; focus ; 
directrix y � �3 directrix 

9. Center ; foci 11. Center ; 
; vertices foci ;
; asymptotes vertices ; 

asymptotes

13. 15.

17.
19. Ellipse; 21. Hyperbola;

;
major axis 6, ; asymptotes 
minor axis 4 

y

0 x4

4

y

0 x1

1

y � � 1
2 1x � 1 2 � 2

VA1 � 15, 2BC11, 2 2 ; F1A� 3
2, 2B, F2A72, 2B;V12, �3 2FA2, �15B; C12, 0 2 ;1y � 1 2 2 � x2 � 1

1x � 5 2 2
25

�
y2

16
� 1x2 � � 1

4 1y � 4 2

y

x2

2

y

0 x1

1

y � � 1
2 1x � 1 2y � � 4

3 1x � 1 2 � 3
V1�1, �1 2V11�4, 3 2 , V212, 3 2 FA�1, �15BF11�6, 3 2 , F214, 3 2 C1�1, 0 2C1�1, 3 2

y

0 x1_1

_2

y

0 x

3

3

_2

_3

y � 1
16

FA� 1
2, � 1

16BF13, 1 2 VA� 1
2, 0BV13, �1 2

y

0 x3_3

_5

y

0

x5

3

_1

V110, 0 2 , V210, �10 2V11�1, 1 2 , V215, 1 2 F110, �1 2 , F210, �9 2FA2 � 15, 1B C10, �5 2C12, 1 2



Answers to Section 10.5 A59

23. Ellipse; 25. Hyperbola;
;

; asymptotes 
major axis 10, minor axis 4 

27. Degenerate conic 29. Point
(pair of lines),

31. 33.

35. (a) F � 17 (b) F � 17 (c) F 	 17
37. (a)

(c) The parabolas become narrower.

39.

Section 10.5 ■ page 790

1. 3. 5.

7.

9. 7Y 2 � 48XY � 7X 2 � 40X � 30Y � 0 11. X 2 � Y 2 � 2

X 2 � 13XY � 2 � 0

11.6383, 1.1472 2A0, �213BA12, 0B
1x � 150 2 2
18,062,500

�
y2

18,040,000
� 1

6

6_6

_6

p=1

p=

p=2

p=-2

p=-

p=-1

1

2
p=

3

2

1

2

3

2

p=-

8

_12

6_2

3

4_2

_9

y

0 x1

1

(1, 3 )

y

0 x

4

4

y � � 1
2 1x � 4 2 11, 3 2

y

0 x

1

1

y

0 x3

_5

y � � 4
3 1x � 3 2V11�2, �5 2 , V118, �5 2 V13, �4 2F13, �5 2 ;FA3 � 121, �5B; C13, 0 2 ;C13, �5 2 ; 13. (a) Hyberbola 15. (a) Parabola

(b) X 2 � Y 2 � 16 (b)
(c) f � 45� (c) f � 45�

17. (a) Hyberbola 19. (a) Hyberbola
(b) Y 2 � X 2 � 1

(b)
(c) f � 30�

(c) f � 53�

21. (a) Hyberbola 23. (a) Hyberbola
(b) (b)
(c) f � 30� (c) f � 60�

25. (a) Ellipse 27. (a) Parabola

(b)
(b)

(c) f � 53�

6

_4

6_2

y

x

Y

X

1

1

X 2 �
1Y � 1 2 2

4
� 1

y

x

Y

X

6

6

_6

_6

y

x

Y

X

6

6

_6

_6

1X � 1 2 2 � 3Y 2 � 13X 2 � Y 2 � 213

y

x

Y

X

4

4

_4

_4

y

0 x

Y

X

5

5

_5

_5

X 2

4
� Y 2 � 1

y

x

Y
X

6

6

_6

y

Y

0 x

X

6

6

_6

_6

Y � 12 X 2



A60 Answers to Odd-Numbered Exercises and Chapter Tests

29. (a) Hyperbola
(b)

31. (a)
(b) XY-coordinates: ;

xy-coordinates:

(c)
33. X � x cos f � y sin f; Y � �x sin f � y cos f

Section 10.6 ■ page 799

1. 3.

5. 7.
9. II 11. VI 13. IV
15. (a) 3, hyperbola 17. (a) 1, parabola
(b) (b)

19. (a) , ellipse 21. (a) , hyperbola
(b) (b)

23. (a) , directrix 

(b) 1

_0.5

_0.5 1

r �
1

4 � 3 cos a u �
p

3
b

x � � 1
3e � 3

4

O

7

3
!_   ,    @

π

2

!1,      @
3π

2

(3, 0)

O

!2,    @
π

 2

!6,      @
3π

 2

5
2

1
2

O

(1,π)

!2, @
3π

2

!2, @
π

2

O

(_2,π)(1,0)

r � 10/ 11 � sin u 2r � 20/ 11 � 4 cos u 2 r � 2/ 11 � sin u 2r � 6/ 13 � 2 cos u 2
Y � �1X � 5 2 ; 7x � y � 25 � 0, x � 7y � 25 � 0

� 3
512B, F2A4 � 4

512, 3 � 3
512BF1A4 � 4

512, 3

C14, 3 2 ; V1A24
5 , 18

5 B, V2A16
5 , 12

5 B;C15, 0 2 ; V116, 0 2 , V214, 0 2 ; FA5 � 12, 0B1X � 5 2 2 � Y 2 � 1

10

_15

15_10

25. The ellipse is nearly circular 
when e is close to 0 and becomes 
more elongated as e � 1�. At e � 1,
the curve becomes a parabola. 

27. (b) 29. 0.25

Section 10.7 ■ page 807

1. (a) 3. (a)

(b) x � 2y � 12 � 0 (b)
5. (a) 7. (a)

(b) (b)

9. (a) 11. (a)

(b) x 3 � y 2 (b) x 2 � y 2 � 4, x � 0
13. (a) 15. (a)

(b) y � x 2, 0 
 x 
 1 (b) y � 2x 2 � 1, �1 
 x 
 1

y

0 x1

1

y

0 x1

1

y

0 x1

1

_1

_1

y

0 x3

3

_3

_3

y �
1
x

� 1x � 11 � y

y

0 x3

3

_3

_3

y

0 x3

1

_3

x � 1y � 2 2 2

y

0 x4

1

16

y

0 x6

6

_6

r � 11.49 � 108 2 / 11 � 0.017 cos u 2

e=0.4
e=1.0

e=0.8
e=0.6
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17. (a) 19. (a)

(b) x 2 � y 2 � 1, x � 1, y � 0 (b) xy � 1, x � 0
21. (a)

(b) x � y � 1, 0 
 x 
 1 23.
25. x � 6 � t, y � 7 � t 27. x � a cos t, y � a sin t
31. 33.

37. 39.

41.

43. (a) x � 2t/12 cos t, y � 2t/12 sin t
(b) 2.5

2.5_2.5

_2.5

1.2

1_1

_1.2

6

3.5_3.5

_6

2.5

1.25_1.25

_2.5

y

0 x3

3

_3

_3

y

0 x2

3

_2

_3

x � 4 � t, y � �1 � 1
2 t

y

0 x1

1

y

0 x1

1

y

0 x1

1

45. (a)

(b)

47. III 49. II
51. 53. (b) x 2/3 � y 2/3 � a 2/3

55.
57. (a) x � a sec u, y � b sin u
(b)

59.

61. (b)

Chapter 10 Review ■ page 810

1. 3.
y

0 x

2

2

_2

_2

y

0 x1

2

_2

V10, 0 2 ; F10, �2 2 ; y � 2V10, 0 2 ; F11, 0 2 ; x � �1

15

23_23

_15

y � a � a cos a x � 22ay � y2

a
b

3

10_10

_3

x � a1sin u cos u � cot u 2 , y � a11 � sin2u 2

y

0 xa

a

20_20

_1

6

3

5_2

_3

x �
4 cos t

2 � cos t
, y �

4 sin t

2 � cos t
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5. 7.

9. 11.

13. 15.

17. 19.

y

0 x3

3

_3

_3

y

x2

2

y � �
1

12
xy � � 4

3 x

FA�216, 0B; asymptotesF10, �5 2 ; asymptotes 
C10, 0 2 ; V1�4, 0 2 ;C10, 0 2 ; V10, �4 2 ;

3_3

y

0 x

1

y

x1

_4

4

FA�15, 2B; axes 6, 4FA3, �17B; axes 8, 6
C10, 2 2 ; V1�3, 2 2 ;C13, 0 2 ; V13, �4 2 ;

y

0 x4

1

_4

y

0 x2_2

_2

2

FA�213, 0B; axes 8, 4axes 10, 6
C10, 0 2 ; V1�4, 0 2 ;C10, 0 2 ; V10, �5 2 ; F10, �4 2 ;

y

0 x_1

2

_2

y

0 x2

2

_2

_2

y � �4x � � 9
4

V1�2, �3 2 ; F1�2, �2 2 ;V1�2, 2 2 ; FA� 7
4, 2B; 21. 23.

25. y 2 � 8x 27.

29.

31. Parabola; 33. Hyperbola;

35. Ellipse; 37. Parabola; 

39. Ellipse;
V113, �4 2 , V213, �2 2 y

0 x3

_3

FA3, �3 � 1/12B;

y

0 x

5

_60

_5

y

0 x3_3

3

FA� 255
4 , 8B; V1�64, 8 2VA1, 4 � 215BFA1, 4 � 115B;

y

0
x18

18

_18

_18

y

0 x3

3

_3

_3

FA0, �1212B; V10, �12 2F10, �2 2 ; V10, 1 2
1x � 4 2 2

16
�
1y � 2 2 2

4
� 1

y2

16
�

x2

9
� 1

y

0 x3

2

_3

_2

y

0 x1

1

4

_4

y � � 1
3 x � 2

asymptotes y � 1
3 x,

FA�3, �1 � 215B;asymptotes y � �1x � 4 2 VA�3, �1 � 12B;V210, 0 2 ; FA�4 � 412, 0B; C1�3, �1 2 ;C1�4, 0 2 ; V11�8, 0 2 ,
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41. Has no graph 43. x 2 � 4y

45. 47.

49.

51. (a) 91,419,000 mi (b) 94,581,000 mi
53. (a) 55. (a) Hyperbola

(b) 3X 2 � Y 2 � 1
(c) f � 45�

57. (a) Ellipse 59. Ellipse
(b)
(c) f � 30�

61. Parabola 63. (a) e � 1, parabola
(b)

65. (a) e � 2, hyperbola 67. (a)

(b) x � 2y � y2

y

0 x

_2

2

_2

O 1

!_4,      @
3π

2

!   ,    @
π

2

4

3

O

!   , π@
1

2

1

20

15_15

_10

_5

5

5_5

y

x1

1 X
Y

1X � 1 2 2 � 4Y 2 � 1

y

x

2

2

_2

_2

XY
10

10_10

_10

k=8

k=4

k=1

k=2

41x � 7 2 2
225

�
1y � 2 2 2

100
� 1

1x � 1 2 2
3

�
1y � 2 2 2

4
� 1

y2

4
�

x2

16
� 1

69. (a) 71.

(b) , 1 
 x 
 2, 0 
 y 
 1
73.

Chapter 10 Test ■ page 814

1. 2.

3.

4. y 2 � �x 5. 6.

7. 8.

y

0 x_2

4

y

0 x6

3

_3

1x � 2 2 2
8

�
1y � 4 2 2

9
� 1

1x � 3 2 2
9

�
Ay � 1

2B2
4

� 1

1x � 2 2 2 �
y2

3
� 1

x2

16
�
1y � 3 2 2

9
� 1

y

0
x8

8

_8

_8

V10, �3 2 ; F10, �5 2 ; y � � 3
4 x

y

0 x4

2

_4

_2

y

0 x4

2

_4

_2

V1�4, 0 2 ; FA�213, 0B; 8, 4F10, �3 2 , y � 3

x � 1
2 11 � cos u 2 , y � 1

2 1sin u � tan u 21x � 1 2 2 � 1y � 1 2 2 � 1

1.25

1.25_1.25

_1.25

y

0 x1

1



A64 Answers to Odd-Numbered Exercises and Chapter Tests

9.

10. 11. x 2 � 4x � 8y � 20 � 0

12. 13. (a) Ellipse (b)

(c) f � 27�

(d)

14. (a) (b) Ellipse

15. (a) (b)

Focus on Modeling ■ page 818

1.

3. (a) 5.45 s (b) 118.7 ft (c) 5426.5 ft

y � � a g

2√2
0 cos2u

b x2 � 1tan u 2x

y

0 x2

2

_2

1x � 3 2 2
9

�
y2

4
� 1, x � 3

1

1

r �
1

1 � 0.5 cos u

A�322/5, 622/5B, A322/5, �622/5B

y

x2

2

_2

_2

X

Y

X 2

3
�

Y 2

18
� 13

4 in.

y2

9
�

x2

16
� 1

y

0 x4

2

_4

_4

1y � 4 2 2 � �21x � 4 2 (d)

5. 7. No, u � 23�

Chapter 11

Section 11.1 ■ page 830

1. 2, 3, 4, 5; 101 3. 5.
7. 0, 2, 0, 2; 2 9. 1, 4, 27, 256; 100100

11. 3, 2, 0, �4, �12 13. 1, 3, 7, 15, 31 15. 1, 2, 3, 5, 8
17. (a) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43
(b)

19. (a)
(b)

21. (a)
(b)

23. 2n 25. 3n � 2 27. 29.
31. 1, 4, 9, 16, 25, 36 33.

35.

37.
39. 10 41. 43. 8 45. 31 47. 385 49. 46,438
51. 22 53.
55.

57. x 3 � x 4 � . . . � x 100 59. 61. a
10

k�1
k2

a
100

k�1
k

14 � 15 � 16 � 17 � 18 � 19 � 110
11 � 12 � 13 � 14 � 15

11
6

1 � 12, 1 � 13, �1, 1 � 15; Sn � 1 � 1n � 1

2
3,

8
9,

26
27,

80
81; Sn � 1 �

1

3n

1
3,

4
9,

13
27,

40
81,

121
243,

364
729

1 � 1�1 2 n12n � 1 2 /n2

3

110

2, 1
2, 2, 12, 2, 12, 2, 12, 2, 12

14

110

12, 6, 4, 3, 12
5 , 2, 12

7 , 3
2,

4
3,

6
5

45

110

�1, 1
4, � 1

9,
1
16;

1
10,000

1
2,

1
3,

1
4,

1
5;

1
101

√2
0 sin2u

2g

y

(feet)

x

(feet)
1000

100

0
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63. 65. 67.

69. (a) 2004.00, 2008.01, 2012.02, 2016.05, 2020.08, 2024.12
(b) $2149.16 71. (a) 35,700, 36,414, 37,142, 37,885, 38,643
(b) 42,665 73. (b) 6898 75. (a)
(b) $38,000

Section 11.2 ■ page 837

1. (a) 5, 7, 9, 11, 13 (b) 2
(c)

3. (a) (b) �1
(c)

5.
7. 9. Arithmetic, 3
11. Not arithmetic 13. Arithmetic,
15. Arithmetic, 1.7 17. 11, 18, 25, 32, 39; 7; 

19. ; not arithmetic
21. �4, 2, 8, 14, 20; 6; 
23.
25.
27.
29.
31.
33. 35. �100, �98, �96 37. 30th 39. 100 41. 460
43. 1090 45. 20,301 47. 832.3 49. 46.75 53. Yes
55. 50 57. $1250 59. $403,500 61. 20 63. 78

Section 11.3 ■ page 844

1. (a) 5, 10, 20, 40, 80 (b) 2
(c)

1

40

60

20

n

an

0

80

1
2

s, a5 � 2 � 4s, an � 2 � 1n � 1 2s, a100 � 2 � 99s
1.5, a5 � 31, an � 25 � 1.51n � 1 2 , a100 � 173.5
4, a5 � 4, an � �12 � 41n � 1 2 , a100 � 384
5, a5 � 24, an � 4 � 51n � 1 2 , a100 � 499
3, a5 � 14, an � 2 � 31n � 1 2 , a100 � 299

an � �4 � 61n � 1 21
3,

1
5,

1
7,

1
9,

1
11an � 11 � 71n � 1 2 � 3

2

an � 5
2 � 1

2 1n � 1 2 , a10 � �2
an � 3 � 51n � 1 2 , a10 � 48

1

1

n

an

0

_1

5
2,

3
2,

1
2,�

1
2, � 3

2

1

10

15

5

n

an

0

Sn � Sn�1 � 2000

212n�12/2n

a
100

k�0
xk

a
999

k�1

1

k1k � 1 2 3. (a) (b)
(c)

5. an � 3 
 5n�1, a4 � 375 7.
9. Geometric, 2 11. Geometric, 13. Not geometric
15. Geometric, 1.1 17. 6, 18, 54, 162, 486; geometric,
common ratio 3; an � 6 
 3n�1 19. ; geometric,
common ratio 21. 0, ln 5, 2 ln 5, 3 ln 5, 4 ln 5; 
not geometric 23. 3, a5 � 162, an � 2 
 3n�1

25.
27.

29.

31.

33. 35. 37. 11th 39. 315 41. 441 43. 3280

45. 47. 49. 51. 53. 55.

57. 59. 61. 10, 20, 40
63. (a) (b) 4th year
65. 19 ft, 67. 69. (a) ft
(b) 71. 2801 73. 3 m 75. (a) 2
(b) 77. 1

Section 11.4 ■ page 853

1. $13,180.79 3. $360,262.21 5. $5,591.79 7. $245.66
9. $2,601.59 11. $307.24 13. $733.76, $264,153.60
15. (a) $859.15 (b) $309,294.00
(c) $1,841,519.29 17. $341.24 19. 18.16% 21. 11.68%

Section 11.5 ■ page 859

1. Let denote the statement
.

Step 1 is true since .
Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of
Mathematical Induction, holds for all n.

3. Let denote the statement

.5 � 8 � . . . � 13n � 2 2 �
n13n � 7 2

2

P1n 2 P1n 2P1k 2P1k � 1 2� 1k � 1 2 1k � 2 2 Induction
hypothesis

� k1k � 1 2 � 21k � 1 22 � 4 � . . . � 2k � 21k � 1 2P1k 2 2 � 111 � 1 2P11 22 � 4 � . . . � 2n � n1n � 1 2P1n 2

8 � 412
18 � A13Bn�3

178
9

64
25,

1024
625 , 5 A45Bn80 A34BnVn � 160,00010.80 2 n�1

112
999

1
33

7
9� 1000

117
1

648
3
4

3
2

6141
1024

25
4

1
2

s2/7, a5 � s8/7, an � s21n�12/732/3, a5 � 311/3, an � 312n�12/3� 1
12, a5 � 1

144, an � 144 A� 1
12Bn�1

�0.3, a5 � 0.00243, an � 10.3 2 1�0.3 2 n�1

1
4; an � 1

4 A14Bn�1

1
4,

1
16,

1
64,

1
256,

1
1024

1
2

an � 5
2 A� 1

2Bn�1, a4 � � 5
16

1

1

n

an

0

_1

� 1
2

5
2, � 5

4,
5
8, � 5

16,
5

32
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Step 1 is true since 

Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

5. Let denote the statement

.

Step 1 is true since .

Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

7. Let denote the statement

.

Step 1 is true since .

Step 2 Suppose is true. Then

�
1k � 1 2 21k � 2 2 2

4

�
1k � 1 2 2 3k2 � 41k � 1 2 4

4

Induction
hypothesis�

k21k � 1 2 2
4

� 1k � 1 2 3
13 � 23 � . . . � k3 � 1k � 1 2 3P1k 2 13 �

12 # 11 � 1 2 2
4

P11 2
13 � 23 � . . . � n3 �

n21n � 1 2 2
4

P1n 2 P1n 2P1k 2P1k � 1 2
�
1k � 1 2 1k � 2 2 1k � 3 2

3

Induction
hypothesis�

k1k � 1 2 1k � 2 2
3

� 1k � 1 2 1k � 2 2
1 # 2 � 2 # 3 � . . . � k1k � 1 2 � 1k � 1 2 1k � 2 2P1k 2 1 # 2 �

1 # 11 � 1 2 # 11 � 2 2
3

P11 2
1 # 2 � 2 # 3 � . . . � n1n � 1 2 �

n1n � 1 2 1n � 2 2
3

P1n 2 P1n 2P1k 2P1k � 1 2
�
1k � 1 2 331k � 1 2 � 7 4

2

�
3k2 � 13k � 10

2

Induction
hypothesis�

k13k � 7 2
2

� 13k � 5 25 � 8 � . . . � 13k � 2 2 � 331k � 1 2 � 2 4P1k 2 5 �
113 # 1 � 7 2

2
P11 2 So follows from . Thus, by the Principle of 

Mathematical Induction, holds for all n.

9. Let denote the statement

.

Step 1 is true since .
Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

11. Let denote the statement

.

Step 1 is true since .
Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

13. Let denote the statement n 2 � n is divisible by 2.

Step 1 is true since 12 � 1 is divisible by 2.
Step 2 Suppose is true. Now

But k 2 � k is divisible by 2 (by the induction hypothesis) and
is clearly divisible by 2, so is

divisible by 2. So follows from . Thus, by the
Principle of Mathematical Induction, holds for all n.

15. Let denote the statement n 2 � n � 41 is odd.

Step 1 is true since 12 � 1 � 41 is odd.
Step 2 Suppose is true. Now

But k 2 � k � 41 is odd (by the induction hypothesis) and 2k is
clearly even, so their sum is odd. So follows from

. Thus, by the Principle of Mathematical Induction,
holds for all n.

17. Let denote the statement 8n � 3n is divisible by 5.

Step 1 is true since 81 � 31 is divisible by 5.P11 2P1n 2
P1n 2P1k 2 P1k � 1 2

1k � 1 22 � 1k � 1 2 � 41 � 1k2 � k � 41 2 � 2k

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2 1k � 1 22 � 1k � 1 221k � 1 2
� 1k2 � k 2 � 21k � 1 21k � 1 2 2 � 1k � 1 2 � k2 � 2k � 1 � k � 1

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2� 2 � 2k2k�1 � 211 � k2k�1 2� 2 � 1k � 1 22k�1 � 1k � 1 2 # 2k�1

Induction
hypothesis� 2 31 � 1k � 1 22k 4 � 1k � 1 2 # 2k�1

1 # 2 � 2 # 22 � . . . � k # 2k � 1k � 1 2 # 2k�1

P1k 2 1 # 2 � 2 31 � 0 4P11 21 # 2 � 2 # 22 � . . . � n # 2n � 2 31 � 1n � 1 22n 4P1n 2 P1n 2P1k 2P1k � 1 2� 21k � 1 2 21k � 2 2 2� 1k � 1 2 212k2 � 8k � 8 2 Induction hypothesis� 2k21k � 1 2 2 � 321k � 1 2 4 323 � 43 � . . . � 12k 2 3 � 321k � 1 2 4 3P1k 2 23 � 2 # 1211 � 1 2 2P11 223 � 43 � . . . � 12n 2 3 � 2n21n � 1 2 2P1n 2 P1n 2P1k 2P1k � 1 2
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Step 2 Suppose is true. Now

which is divisible by 5 because 8k � 3k is divisible by 5 (by the
induction hypothesis) and 5 
 3k is clearly divisible by 5. So

follows from . Thus, by the Principle of Mathe-
matical Induction, holds for all n.

19. Let denote the statement n � 2n.

Step 1 is true since 1 � 21.
Step 2 Suppose is true. Then

Induction hypothesis

Because 1 � 2k

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

21. Let denote the statement for
x 	 �1.

Step 1 is true since .
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

23. Let denote the statement an � 5 
 3n�1.

Step 1 is true since a1 � 5 
 30 � 5.
Step 2 Suppose is true. Then

Definition of ak�1

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

25. Let denote the statement x � y is a factor of xn � yn.

Step 1 is true since x � y is a factor of x 1 � y 1.
Step 2 Suppose is true. Now

But is clearly divisible by x � y and is
divisible by x � y (by the induction hypothesis), so their sum is
divisible by x � y. So follows from . Thus, by the
Principle of Mathematical Induction, holds for all n.P1n 2 P1k 2P1k � 1 2 1xk � yk 2yxk1x � y 2 � xk1x � y 2 � 1xk � yk 2yxk�1 � yk�1 � xk�1 � xky � xky � yk�1

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2 � 5 # 3k

� 3 # 5 # 3k�1

ak�1 � 3 # ak

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2 � 1 � 1k � 1 2x� 1 � 1k � 1 2x � kx2

� 11 � x 2 11 � kx 211 � x 2 k�1 � 11 � x 2 11 � x 2 kP1k 2 11 � x 2 1 � 1 � 1 # xP11 2
11 � x 2 n � 1 � nxP1n 2 P1n 2P1k 2P1k � 1 2 � 2 # 2k � 2k�1

� 2k � 2k

k � 1 � 2k � 1

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2
� 8 # 8k � 18 � 5 2 # 3k � 8 # 18k � 3k 2 � 5 # 3k

 8k�1 � 3k�1 � 8 # 8k � 3 # 3k

P1k 2 27. Let denote the statement F3n is even.

Step 1 is true since F3
1 � 2, which is even.
Step 2 Suppose is true. Now, by the definition of the
Fibonacci sequence

But F3k is even (by the induction hypothesis) and 2 
 F3k�1 is
clearly even, so is even. So follows from .
Thus, by the Principle of Mathematical Induction, holds
for all n.

29. Let denote the statement
.

Step 1 is true since F 2
1 � F1 
 F2 (because F1 � F2 � 1).

Step 2 Suppose is true. Then

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

31. Let denote the statement .

Step 1 is true since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n � 2.

33. Let denote the statement Fn � n.

Step 1 is true since F5 � 5 (because F5 � 5).
Step 2 Suppose is true. Now

Definition of the Fibonacci sequence

Induction hypothesis

Because Fk�1 � 1

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n � 5.P1n 2P1k 2P1k � 1 2� k � 1

� k � Fk�1

Fk�1 � Fk � Fk�1

P1k 2P15 2P1n 2 P1n 2P1k 2P1k � 1 2
Definition of the
Fibonacci sequence� cFk�2 Fk�1

Fk�1 Fk

d
� cFk�1 � Fk Fk�1

Fk � Fk�1 Fk

d
� cFk�1 Fk

Fk Fk�1
d c 1 1

1 0
d

c1 1

1 0
d k�1

� c1 1

1 0
d k c1 1

1 0
dP1k 2 c1 1

1 0
d 2 � c2 1

1 1
d � cF3 F2

F2 F1
dP12 2

c1 1

1 0
d n � cFn�1 Fn

Fn Fn�1
dP1n 2 P1n 2P1k 2P1k � 1 2� Fk�1

# Fk�2

Definition of the
Fibonacci sequence

� Fk�11Fk � Fk�1 2 Induction hypothesis� Fk
# Fk�1 � F 2

k�1

F 2
1 � F 2

2 � . . . � F 2
k � F 2

k�1

P1k 2P11 2F 2
1 � F 2

2 � . . . � F 2
n � Fn
# Fn�1

P1n 2
P1n 2 P1k 2P1k � 1 2F31k�12

� F3k � 2 # F3k�1

� F3k�1 � F3k � F3k�1

F31k�12 � F3k�3 � F3k�2 � F3k�1

P1k 2P11 2P1n 2



A68 Answers to Odd-Numbered Exercises and Chapter Tests

Section 11.6 ■ page 868

1. x 6 � 6x 5y � 15x 4y 2 � 20x 3y 3 � 15x 2y 4 � 6xy 5 � y 6

3.

5. x 5 � 5x 4 � 10x 3 � 10x 2 � 5x � 1
7. x 10y 5 � 5x 8y 4 � 10x 6y 3 � 10x 4y 2 � 5x 2y � 1
9. 8x 3 � 36x 2y � 54xy 2 � 27y 3

11.

13. 15 15. 4950 17. 18
19. 32 21. x 4 � 8x 3y � 24x 2y 2 � 32xy 3 � 16y 4

23.

25. x 20 � 40x 19y � 760x 18y 2 27. 25a 26/3 � a 25/3

29. 48,620x 18 31. 300a 2b 23 33. 100y 99

35. 13,440x 4y 6 37. 495a 8b 8 39.
41. 43. 3x 2 � 3xh � h 2

Chapter 11 Review ■ page 870

1. 3.
5. 1, 3, 15, 105; 654,729,075
7. 1, 4, 9, 16, 25, 36, 49 9. 1, 3, 5, 11, 21, 43, 85
11. (a) 7, 9, 11, 13, 15
(b) (c) Arithmetic, common 

difference 2

13. (a)
(b) (c) Geometric, common 

ratio

15. Arithmetic, 7 17. Arithmetic,
19. Arithmetic, t � 1 21. Geometric,
23. 2i 25. 5 27. 29. (a)
(b) $32,000, $33,600, $35,280, $37,044, $38,896.20,
$40,841.01, $42,883.06, $45,027.21 31. 12,288
35. (a) 9 (b) 37. 126 39. 384
41. 02 � 12 � 22 � . . . � 92

43. 45. 47.

49. Geometric; 4.68559 51. Arithmetic, 505015

a
100

k�1
k2k�2

a
33

k�1
3k

3

22 �
32

23 �
33

24 � . . . �
350

251

�612

An � 32,00011.05 2 n�181
4

4
27

512

3
2

1

2

3

1

n

an

0

4

3
4,

9
8,

27
16,

81
32,

243
64

1

10

15

5

n

an

0

0, 1
4, 0, 1

32,
1

500
1
2,

4
3,

9
4,

16
5 , 100

11

12a � b 2 3 1x � y 2 4
1 �

6
x

�
15

x2 �
20

x3 �
15

x4 �
6

x5 �
1

x6

1

x5 �
5

x7/2
�

10

x2 �
10

x1/2
� 5x � x5/2

x4 � 4x2 � 6 �
4

x2 �
1

x4

53. Geometric, 9831 55. 13
57. 65,534 59. $2390.27
61. 63.
65. Let denote the statement

.

Step 1 is true since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

67. Let denote the statement

.

Step 1 is true since .
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

69. Let denote the statement an � 2 
 3n � 2.

Step 1 is true since a1 � 2 
 31 � 2 � 4.
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

71. Let denote the statement n! 	 2n for n � 4.

Step 1 is true since 4! 	 24.P14 2P1n 2 P1n 2P1k 2P1k � 1 2� 2 # 3k�1 � 2

� 312 # 3k � 2 2 � 4

ak�1 � 3ak � 4

P1k 2P11 2P1n 2 P1n 2P1k 2P1k � 1 2� 1k � 1 2 � 1

� 1k � 1 2 a1 �
1

k � 1
b

a1 �
1

1
b a1 �

1

2
b . . . a1 �

1

k
b a 1 �

1

k � 1
bP1k 2 A1 � 1

1B � 1 � 1P11 2A1 � 1
1B A1 � 1

2B . . . A1 � 1
nB � n � 1

P1n 2 P1n 2P1k 2P1k � 1 2�
1k � 1 2 331k � 1 2 � 1 4

2

�
1k � 1 2 13k � 2 2

2

�
3k2 � k � 6k � 2

2

�
k13k � 1 2

2
� 33k � 1 4

1 � 4 � 7 � . . . � 13k � 2 2 � 331k � 1 2 � 2 4P1k 2 1 �
113 # 1 � 1 2

2
P11 2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

P1n 212A3 � 13B5
7



Answers to Section 12.1 A69

Step 2 Suppose is true. Then

Induction hypothesis

Because k � 1 	 2

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n � 4.
73. 255 75. 12,870
77. 16x 4 � 32x 3y � 24x 2y 2 � 8xy 3 � y 4

79. b�40/3 � 20b�37/3 � 190b�34/3

Chapter 11 Test ■ page 873

1. 0, 3, 8, 15; 99 2. �1 3. (a) 3
(b) (c) 104
4. (a) (b) (c) 3/48

5. (a) (b) 6. (a) (b) 60

8. (a)

(b)
9. (a) (b)
10. Let denote the statement

.

Step 1 is true since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus, by the Principle of 
Mathematical Induction, holds for all n.

11. 32x 5 � 80x 4y 2 � 80x 3y 4 � 40x 2y 6 � 10xy 8 � y 10

12.

13. (a)
(b) 3.09 lb (c) Geometric

an � 10.85 2 11.24 2 n13x 2 31�2 2 7 � �414,720x3a10

3
b

P1n 2P1k 2P1k � 1 2
�
1k � 1 2 3 1k � 1 2 � 1 4 321k � 1 2 � 1 4

6

�
1k � 1 2 12k2 � 7k � 6 2

6

�
1k � 1 2 3k12k � 1 2 � 61k � 1 2 4

6

�
k1k � 1 2 12k � 1 2 � 61k � 1 2 2

6

�
k1k � 1 2 12k � 1 2

6
� 1k � 1 2 212 � 22 � . . . � k2 � 1k � 1 2 2P1k 2 12 �

111 � 1 2 12 # 1 � 1 2
6

P11 2
12 � 22 � . . . � n2 �

n1n � 1 2 12n � 1 2
6

P1n 2 2 � 1258,025
59,049

1�1 2 321 � 1�1 2 422 � 1�1 2 523 � 1�1 2 624 � 10
11 � 52 2 � �50

11 � 12 2 � 11 � 22 2 � 11 � 32 2 � 11 � 42 2 �

� 8
9, �78

58 � 1

12,500
1
5,

1
25

an � 12A14Bn�11
4

an � 2 � 1n � 1 23

P1n 2P1k 2P1k � 1 2 	 2k�1

	 2k1k � 1 21k � 1 2 ! � k!1k � 1 2P1k 2 Focus on Modeling ■ page 877

1. (a) An � 1.0001An�1, A0 � 275,000 (b) A0 � 275,000,
A1 � 275,027.50, A2 � 275,055.00, A3 � 275,082.51,
A4 � 275,110.02, A5 � 275,137.53, A6 � 275,165.04,
A7 � 275,192.56 (c)
3. (a) An � 1.0025An�1 � 100, A0 � 100 (b) A0 � 100,
A1 � 200.25, A2 � 300.75, A3 � 401.50, A4 � 502.51
(c) (d) $603.76
5. (b) A0 � 2400, A1 � 3120, A2 � 3336, A3 � 3400.8,
A4 � 3420.2 (c)
(d) 3427.8 tons, 3428.6 tons
(e)

7. (b) In the 35th year
9. (a) R1 � 104, R2 � 108, R3 � 112, R4 � 116, R5 � 120,
R6 � 124, R7 � 127
(b) It approaches 200.

Chapter 12

Section 12.1 ■ page 889

1. 3. 5. 1 7. �1 9. 0.51 11. 13. (a) 2
(b) 3 (c) Does not exist (d) 4 (e) Not defined
15. (a) �1 (b) �2 (c) Does not exist (d) 2 (e) 0
(f ) Does not exist (g) 1 (h) 3 17. �8 19. Does not
exist 21. Does not exist
23. (a) 4 (b) 4 (c) 4

25. (a) 4 (b) 3 (c) Does not exist 

1

1

x

y

0

4

2

1

1

x

y

0

4

2

1
2

1
3

1
4

250

50
0

3600

200

An � 3428.611 � 0.3n�1 2An � 100 3 11.0025n�1 � 1 2 /0.0025 4
An � 1.0001n1275,000 2



A70 Answers to Odd-Numbered Exercises and Chapter Tests

Section 12.2 ■ page 897

1. (a) 5 (b) 9 (c) 2 (d) (e) (f) 0
(g) Does not exist (h) 3. 75 5. 7. �3 9. 5
11. 2 13. 15. 12 17. 19.

21. 4 23.

25. (a) 0.667

(b) 0.667

(c)
27. 0 29. Does not exist 31. Does not exist
33. (a) 1, 2 (b) Does not exist
(c)

Section 12.3 ■ page 906

1. 3 3. �11 5. 24
7. y � �x � 1 9. y � �x � 4

2

2

0 x

y

y =

y = −x + 4

x
x-1

2

2

x

y

0

y = x + x2

y = −x − 1

1

1

x

y

0

2
3

1

_1

1_1

1

_3

1_3

5

_1

2_1

� 3
2

� 1
16

1
6

6
5

1
2� 6

11

� 3
8� 1

3

11.

13. 15. 17.

19. 21.

23. (a)
(b) y � �2x � 4, y � x � 2, y � 10x � 12
(c)

25. �24 ft/s 27. 12a2 � 6 m/s, 18 m/s, 54 m/s, 114 m/s
29. 0.75�/min
31. (a) �38.3 gal/min, �27.8 gal/min (b) �33.3 gal/min

Section 12.4 ■ page 915

1. (a) �1, 2 (b) y � �1, y � 2 3. 0 5. 7. 9. 2
11. Does not exist 13. 7 15. 17. 0 19. 0
21. Divergent 23. 0 25. Divergent 27. 29. 8
31. (b) 30 g/L

Section 12.5 ■ page 924

1. (a) 40, 52 

(b) 43.2, 49.2
3. 5.25 5.
7. (a) , underestimate (b) , overestimate

0.5

1.0

1.5

2 3 4

y

x0
1 5

0.5

1.0

1.5

2 3 4

y

x0
1 5

25
12

77
60

223
35

y

x0
5

5

y=Ï

10

y

x0
5

5

y=Ï

10

3
2

� 1
4

4
3

2
5

20

_20

3_3

f¿ 1a 2 � 3a2 � 2

f¿ 1a 2 �
11a � 1 2 2f¿ 1a 2 � 2a � 2

F¿ 14 2 � � 1
16g¿ 11 2 � 4f¿ 12 2 � �12

2

1

0 x

y y = x +

y =

1
4

7
4

x + 2

y � 1
4 x � 7

4

x

0.1 0.71339
0.01 0.67163
0.001 0.66717
0.0001 0.66672

f1x 2 x

�0.1 0.61222
�0.01 0.66163
�0.001 0.66617
�0.0001 0.66662

f1x 2



Answers to Cumulative Review A71

9. (a) 8, 6.875 (b) 5, 5.375 

11. 37.5 13. 8 15. 166.25 17. 133.5

Chapter 12 Review ■ page 925

1. 1 3. 0.69 5. Does not exist 7. (a) Does not exist
(b) 2.4 (c) 2.4 (d) 2.4 (e) 0.5 (f ) 1 (g) 2 (h) 0
9. �3 11. 7 13. 2 15. �1 17. 2 19. Does not exist
21. 23. 25. (a)

(b) �2, �2 27. (a)
(b) 29. y � 2x � 1 31. y � 2x
33. 35. (a) �64 ft/s (b) �32a ft/s
(c) (d) �202.4 ft/s 37. 39.
41. Divergent 43. 3.83 45. 10 47.

Chapter 12 Test ■ page 928

1. (a) (b)

2. (a) 1 (b) 1 (c) 1 (d) 0 (e) 0 (f) 0 (g) 4 (h) 2
(i) Does not exist 3. (a) 6 (b) �2 (c) Does not exist
(d) Does not exist (e) (f) 2 4. (a)
(b) �4, 0, 2 5. 6. (a) 0 (b) Does not exist
7. (a) (b)

Focus on Modeling ■ page 931

1. 3. (b) Area under the graph of 
between x � 0 and x � 4 (c) 3000 lb

(d) 1500 lb 5. (a) 1625.28 heating-degree hours
(b) 70�F (c) 1488 heating-degree hours (d) 75�F
(e) The day in part (a)

Cumulative Review

Cumulative Review Test for Chapters 2, 3, and 4

■ page CR2

1. (a) 1�q, q2 (b) 3�4, q2 (c) 12, 0, 0, 2, , undefined
(d) x 2 � 4, , �4 � h2 (e)
(f) f � g � x � 4 � , g � f � , f 1g11222 � 0,
g 1f 11222 � 10 (g) g�11x 2 � x 2 � 4, x � 0

0 x � 2 01x � 4

1
21x � 6

213

p1x 2 � 375x
57,3331

3 ft-lb

11
3

89
25

y � 1
6 x � 3

2

f¿ 1x 2 � 2x � 21
4

2

_1

1.5_1.5

1
2

5
6

1
2

1
5140 � 6.32 s

y � � 1
4 x � 1

1/ A412B, 1/4
f¿ 1a 2 � 1/ A21a � 6Bf¿ 1a 2 � �2f¿ 116 2 � 1

8f¿ 14 2 � 3

y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

2. (a) 4, 4, 4, 0, 1 (b)

3. (a) f 1x 2 � �21x � 22 2 � 13 (b) Maximum 13
(c) (d) Increasing on 1�q, 24;

(d) decreasing on 32, q2
(e) Shift upward 5 units
(f) Shift to the left 3 units

4. f, D; g, C; r, A; s, F; h, B; k, E
5. (a) �1, �2, �4, �8, � (b) 2, 4,
(c) (d)

6. (a) 1 1multiplicity 22; �1, 1 � i, 1 � i 1multiplicity 12
(b) Q 1x 2 � 1x � 1221x � 12 1x � 1 � i 2 1x � 1 � i 2
(c) Q 1x 2 � 1x � 1221x � 12 1x 2 � 2x � 22
7. x-intercepts 0, �2; y-intercept 0; 
horizontal asymptote y � 3; vertical asymptotes x � 2
and x � �1 8.

9. (a) �4 (b)
10. (a) 4 (b) ln 2, ln 4 11. (a) $29,396.15
(b) After 6.23 years (c) 12.837 years
12. (a) P 1 t 2 � 120e0.0565t (b) 917 (c) After 49.8 months

Cumulative Review Test for Chapters 5, 6, 7, and 8

■ page CR5

1. (a) (b) �2/3 (c) (d)
2. (a) (b) 7/3 (c)
3. (a) (b) �1 (c) (d) �1
4. sin t � �24/25, tan t � �24/7, cot t � �7/24, sec t � 25/7,
csc t � �25/24 5. (a) 2, p, p/4 (b)
6.
7. (a) h(t) � 45 � 40 cos 8pt
(b)
8. (a) 7.2 (b) 92.9�

9. (a)

(b) RHS � 1 � 11 � 2 sin2 2u 2 � 2 sin2 2u � 212 sin u cos u22
� LHS

�
sec2 u � 1

tan u 1sec u � 1 2 �
tan2 u

tan u 1sec u � 1 2 � RHS

 LHS �
1sec u � 1 2 1sec u � 1 2

 tan u 1sec u � 1 2
2119 � 8.7 cm

y � 3 cos 12 Ax � p
3 B y

x

2

_2

π
4

5π
4

0

213/3�13/2
3110/202110/7

313/5�15/215/3

5 log x � 1
2 log1x � 1 2 �  log12x � 3 2

y

x

g

f
2

10

y

x

5

10

y

0 x

5

_5

1

P1x 2 � 21x � 2 2 1x � 4 2 Ax � 1
2 B �1

2
1
2

y

x

10

10

1

1

x

y

0 5



A72 Answers to Odd-Numbered Exercises and Chapter Tests

10. 11. (a) Domain 3�1, 14 , range 30, p4
(b) 5p/6 (c)
12. p/6, 5p/6, 3p/2
13.

14. (a) (b) 1x 2 � y 2 2 3/2 � 4xy

15. (a)

(b)

(c)

(d)

16. (a) (b) u � v � �3, �4 �,
(b) 2u � v � �11, 2 �,
(b) u � 100.3�,
(b)
(c) 82

Cumulative Review Test for Chapters 9 and 10

■ page CR8

1. (a) Nonlinear (b) 10, 02, 12, 22, 1�2, 22
(c) Circle, parabola (d), (e)

2. (a) 13, 0, 12 (b) x � t � 1, y � t � 2, z � t
3. Xavier 4, Yolanda 10, Zachary 6
4. (a) A � B impossible; C � D �

; AB � c d ; CB impossible;

BD � c d ; det(B) impossible; det(C) � 2;
det(D) � 0

�1 �2 �1

�1
2 �1 �1

2

�9
2 1 5

�4 2 0
C 0 �4 �2

�1 �4 �4

�1 �1 �1

S
y

x

2

2_2 0

projvu � ��4
5,

8
5�

y

0 x

2

2

v

u

23 2 acos
35p

18
� i sin

35p

18
b

23 2 acos
11p

18
� i sin

11p

18
b , 23 2 acos

23p

18
� i sin

23p

18
b ,

z10 � 1024 acos
p

3
� i sin

p

3
b � 512 � 51213i

z/„ �
1

3
acos

3p

2
� i sin

3p

2
b � �

1

3
i

z„ � 12 acos
p

4
� i sin

p

4
b � 612 � 612i,

z � 2 acos
11p

6
� i sin

11p

6
b

¨=0
¨=π

3π

4

2

¨=

π

2
¨=

¨=
π

4

1812, 7p/4 2 , 1�812, 3p/4 221 � x2/x

1

y=cos–¡x

π

_1

π

2

y

x0

2 cos
7x

2
 cos

x

2 (b) 5. (a) c d c d � c d
(b) c d (c) X � c d (d) x � 10, y � 15

6. 7. (a)

,
ellipse

(b) F110, 02,
F2 18, p2,
hyperbola

8.

9. 10. (a)

(b) x � y2 � 1, parabola

Cumulative Review Test for Chapters 11 and 12

■ page CR10

1. (a) (b) (c)

(d) (e) 0.64, �5242.88, no limit
2. (a) 41.4 (b) 88,572 (c) 5115/512 (d) 9
3. $2644.92 4. Hint: Induction step is 
an�1 � an � 21n � 12 � 1 � n2 � 2n � 1 � 1n � 12 2.
5. (a) (b)
6. (a) (b) (i) 2 (ii) 3 (iii) 2

(iv) 1 (v) 2
7. 8. (a) 10 (b) 4
(c) Does not exist
9. (a) 3x 2 (b) 27, 0, 3a 2

(c) y � 12x � 16

10. (a) (b) A lies between the 1 � 1
square in the first quadrant,
with corner at the origin, which
has area 1, and the trapezoid
with corners (0, 0), (1, 0),
(1, 2), and (0, 1), which has
area .
(c) 78/64 (d) 4/3

3
2

1

1

2

x

y

0

1
2

1

1

x

y

0

495
16 x432x5 � 40x 4 � 20x3 � 5x2 � 5

8 x � 1
32

12A 56 B6, 12A 56 B19, 0

37
2 , 115

2 , no limit99
340,

81
7984, 0

7
15,

20
41,

1
2

y

x

1

_1

30

y

x

1

1

Y

X

30�

1x � 5 2 2
16

�
y2

9
� 1

y

x

2

2_4_8 0

F210, 3 � 15 2F110, 3 � 15 2 ,y

0 x

3

2_2

1
x

�
2

x2 �
x � 2

x2 � 4

10

15

2 �3
2

3 �5
2

5

0

x

y

5 �3

6 �4
C�1 � C 0 0 �1

�1
2

1
2 �1

2

1 0 1

S



Abel, Niels Henrik, 282
Absolute value, 8–10

of complex numbers, 597–598
equations, 54, 91
properties of, 9

Absolute value function, 162, 166
Absolute value inequalities, 81–82
Addition

of complex numbers, 286
graphical, 215
of inequalities, 76
of matrices, 676–678
of polynomials, 25
of rational expressions, 37–38
of vectors, 608, 610, 611

Addition and subtraction formulas,
535–541

Additive identity, 4
Adleman, Leonard, 308
Agnesi, Maria Gaetana, 802
Ahmes (Rhind papyrus scribe), 716
Airplane design, 245
Algebraic errors, avoiding, 40–41
Algebraic expressions, 24–33, 35
AM (amplitude modulation) radio, 428
Ambiguous case, of solving triangles,

503–505, 508
Amortization schedule, 854
Amplitude, 421

decaying, 428
harmonic motion and, 443
period and, 423–425
variable, 427–428

Amplitude modulation (AM) radio, 428
Analogy, used in problem solving,

138–139
Ancillary circle of ellipse, 760
Angle measure, 468–478
Angles. see also Trigonometric functions,

of angles

angle of depression, 482
angle of elevation, 482
angle of incidence, 570
angle of inclination, 482
angle of refraction, 570
defined, 468
quadrantal, 490
reference, 491–492
standard position of, 470–471
supplement of, 504

Angular speed, 473–474
Annual percentage yield, 366, 367
Annuities

calculating amount of, 848–850
in perpetuity, 853–854
present value of, 850–851

Aphelion, 760, 801
Apolune, 761
Approval voting, 682
Arccosine function, 553
Archimedes, 69, 414, 748–749, 902
Architecture, conics in, 771–775
Arcsine function, 551
Arctangent function, 555
Area

of circular sector, 472–473
of a triangle, 494–495, 512–513,

711–712, 714–715
Area problem, calculus, 916–925

approximating area with calculator, 925
under a curve, 922–924
defined, 920–922
estimating using rectangles, 917–918
under graphs, 929–931
limit of approximating sums, 919–920

Areas, formulas for, inside front cover
Argument of complex number, 598
Aristarchus of Samos, 480
Aristotle, 54
Arithmetic mean, 838

Arithmetic sequences, 833–838
defined, 833
partial sums, 834–836

Arrow, Kenneth, 682
Arrow diagram, of functions, 150
Assets, division of, 834–835
Associative Property, 3
Astroid, 808
Asymptotes, 300–302

defined, 301
horizontal, 301, 304–306, 307, 308,

910–911
of hyperbolas, 763–764, 767
of rational functions, 303–306, 307,

308
slant, 309–310
vertical, 301, 303–308, 434–436,

886–887
Atmospheric pressure formula, 368
Augmented matrix, 635, 662–663
Automotive design, 256
Average rate of change, 174–178, 904
Avogadro’s number, 23
Axes. see also Rotation of axes

of a conic, 797
of ellipses, 754, 755
of hyperbolas, 762
of parabolas, 745–748
polar axis, 582
real and imaginary, 596

Axis of symmetry, parabolas, 744

Back-substitution, solving linear 
equations, 652, 653

Base, change of, 355–356
Base 10 logarithm, 346–347
Bearing, 511
Beer-Lambert Law, 364, 394
Bell, E.T., 678
Bernoulli, Johann, 805
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Best fit
exact fit vs., 660–661
finding, 240–242, 320–323
measuring, 242–243
polynomials of, 320–323

Bhaskara, 75, 144
Binomial coefficients, 863–865
Binomial expansion, 861–863, 865–867
Binomials, 24, 860
Binomial Theorem, 865–868
Bits, changing words/sounds/pictures to,

30
Bounded regions, of planes, 725
Boyle’s Law, 125, 128
Brahe, Tycho, 780
Brams, 834

CAD (computer-aided design), 256
Calculators

evaluating trigonometric functions, 413,
436

graphing calculators, 102–104,
884–885, 890, 925

as graphing device, 425
Calculus

addition and subtraction formulas in,
537

preview of. see Limits
Cardano, Gerolamo, 282, 296
Cardioid, 590
Carrier signals, radio, 428
Carrying capacity, 393
Cartesian plane, 87–88, 112. see also

Coordinate plane
CAT (Computer Aided Tomography) scan,

746
Catenary, 331
Cayley, Arthur, 692
Center

of ellipse, 754
of hyperbola, 762

Central box, of hyperbolas, 763, 764
Chang Ch’iu-Chien, 75
Change of Base Formula, 356
Chaos, 224
Chevalier, Auguste, 273
Chu Shikie, 862
Circadian rhythms, 453, 464
Circles, 92–95

ancillary, of ellipse, 760
area of, 154
equations of, 93, 94–95
graphing, 93, 103–104
involute of a, 810

as polar graph, 594
Circular arc, length of, 471–472
Circular function. see Trigonometric

functions
Circular motion, 473–474
Circular sector, area of, 472–473
Closed curves, 806
Codes, unbreakable, 308–309
Coefficient matrix, 694
Coefficients

binomial, 863–865
correlation, 242
of polynomials, 250, 253

Cofunction identities, 528, 537
Collinear points, 123, 715
Column transformations, of determinants,

707–708
Comets, paths of, 766
Common (base 10) logarithms, 346–347
Common difference of sequence, 833
Commutative Property, 3
Complete Factorization Theorem, 291–293
Completing the square, 48–49
Complex conjugates, 287, 289

Conjugate Zeros Theorem, 296, 299
Complex numbers, 285–290

arithmetic operations on, 286–287
complex roots of quadratic equations,

288–289, 290
defined, 285
DeMoivre’s Theorem, 600–601
fractals and iterating functions of,

605–607
graphing, 596–598
multiplication and division of, 599–600
polar (trigonometric) form of, 598–600
roots of, 601–603
square roots of negative numbers,

287–288
Complex plane, 596
Complex roots, of quadratic equations,

288–289, 290
Complex zeros, 291–299
Composite function, 216–219
Compound fractions, 38–39
Compound interest, 334–336, 340, 367

annuities and, 849–850
continuously compounded, 336
formula for, 335
using logarithmic equations for,

365–366, 367
Computer-aided design (CAD), 256
Computer Aided Tomography (CAT) scan,

746

Computer graphics
applying matrices to generation of,

683–684, 700–703
rotating an image, 792–794

Computers
applications of, 178
as graphing device, 425

Confocal conics
family of, 783
hyperbolas, 769–770
parabolas, 782

Conics. see also by type
in architecture, 771–775
basic shapes of, 743–744
confocal, 769–770, 782, 783
degenerate, 780–781
equivalent description of, 795
graphing rotated, 787–789
identifying by discriminant, 789–790
polar equations of, 795–801
shifted, 775–783
simplifying general equation for,

785–787
Conjecture, mathematical induction and,

854–855
Conjugate hyperbolas, 769
Conjugate Zeros Theorem, 296, 299
Constant(s)

growth, 223
of proportionality, 124
spring, 127, 452, 931

Constant coefficient, 250
Constant function, 158, 159
Constant rate of change, 178
Constant term, 250
Constraints, 725, 736, 737
Continuous functions, 893
Continuously compounded interest, 336
Contradiction, proof by, 133
Cooling, Newton’s Law of, 375–376, 381,

878
Coordinate geometry, 87–101

circles, 92–95
coordinate plane, 87–88
graphing equations, 90–91
intercepts, 92
symmetry, 95–96

Coordinate line (real number line), 7, 9–10
Coordinate plane, 1, 87–88
Coordinates. see Homogenous coordinates;

Polar coordinates; Rectangular
coordinates

Correlation, 242–243
Correlation coefficient, 242
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Cosecant function, 408
cosecant curves, 439–440
formula for, 488
graphing, 435–436, 439–440
inverse, 556
special values of, 410
trigonometric ratios, 478

Cosine function, 408
addition and subtraction formulas for,

535–536
cosine curves, 422, 427–428, 459–461
double-angle formula for, 542, 786
formula for, 488
graphing, 418–420
graphing transformations of, 420–425
half-angle formula for, 544
inverse cosine, 553–554
Law of Cosines, 508–516, 561
periodic properties of, 419
product-sum formula for, 546
shifted curves, 423–425
special values of, 410
sum of sines and cosines, 538–539
sum-to-product formula for, 547
trigonometric ratios, 478

Cost function, 163
Cotangent function, 408

cotangent curves, 437, 438–439
formula for, 488
graphing, 435, 436–439
inverse cotangent, 556, 557
special values of, 410
trigonometric ratios, 478

Coterminal angles, 470–471
Cramer’s Rule, 708–711
Cubic formula, 282
Cubic splines, 249, 252
Cumulative voting, 682–683
Curtate cycloid (trochoid), 808
Curve

area under, 922–924
slope of a, 900

Cycles, of vibration, 443
Cycloid

curtate (trochoid), 808
parametric equations, 804–805
prolate, 808

Cylindrical projection, 630–631, 632

Damped harmonic motion, 449–451, 569
Damping constant, 449
Data, linearizing, 389–390
Data matrices, 701
Daylight, modeling hours of, 447–448

Decibel scale, 378
Degenerate conics, 780–781
Degrees

as angle measure, 468
compared with radians, 469

Demand equation, 247
Demand function, 232
DeMoivre’s Theorem, 600–601
Denominators, 5

of partial fractions, 716–719
rationalizing, 20–21, 40

Dependent systems, linear equations, 644,
645–646, 654, 655–656, 668–672

Dependent variables, 150
Depressed cubic, 282
Depression, angle of, 482
Derivatives, 902–904

defined, 902
estimating from graphs, 907
finding at a point, 903

Descartes, René, 87, 112, 140, 275
Descartes’ Rule of Signs, 275, 297
Determinants, 691, 704–715

areas of triangles, 711–712, 714–715
collinear points and, 715
invertibility criterion, 707
row and column transformations,

707–708
zero, matrices with, 715

Difference
of cubes, 29
of functions, 214
of matrices, 767
of squares, 29

Difference quotients, 151, 177
Digital images, 683–684, 687
Digital numbers, 30
Diophantus, 20, 75
Directed quantities. see Vectors
Directrix, 744, 795, 796
Direct substitution, finding limits using,

893–894
Direct variation, 123–125
Discriminant

identifying conics by, 789–790
invariant under rotation, 789, 791
of quadratic formula, 50–51

Distance, between points on the real line,
9–10

Distance formula, 88–89, 587
Distributive Property

combining algebraic expressions, 25
factoring with, 27–28
real numbers and, 1, 3–4

Dividends, 266
Division

of complex numbers, 287, 599–600
long, 265–267, 720
overview of, 5
of polynomials, 265–272
of rational expressions, 36–37
synthetic, 267–268

Division Algorithm, 266
Divisors, 5, 266
Domains

of algebraic expression, 35
of combined functions, 214–215
finding, from graphs, 161
of functions, 150, 153
of an inverse function, 227
of rational function, 300
of relation, 171
of trigonometric functions, 411

Doppler effect, 315, 454
Dot product, 617–625

calculating work, 623–624
component of u along v, 620–622
defined, 618
projection of u onto v, 622–623
properties of, 618
of vectors, 617–620

Dot Product Theorem, 618–619
Double-angle formulas, 541–543, 550, 786

Earthquakes, magnitude of, 377–378
Ebbinghaus, Hermann, 354–355, 357, 395
Eccentricity

of a conic, 795, 796
of an ellipse, 757–758
of planetary orbits, 758

Ecology, mathematical study of, 696–697
Economics, use of mathematics in, 850
Einstein, Albert, 104, 141, 710, 816
Elementary row operations, 663–664
Elements, of sets, 6
Elevation, angle of, 482
Elimination method, 638–640
Ellipses, 476, 743, 753–761

ancillary circle of, 760
with center at origin, 754, 755
constructing, 775
eccentricity of, 757–758
equation of, 757, 758–759
foci of, 758
geometric definition of, 753
graphing shifted, 776–777
latus rectum of, 761
orbits of planets as, 758
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Ellipses (continued)
rotating, 799
sketching, 755–756
vertices of, 754, 755

Elongation, 487, 508
Empty set �, 7
Encryption, 308–309
End behavior

of polynomials, 252–254, 255
of rational functions, 309–311

e (number), 332–333, 347–348
Envelope of lines, parabola as, 703
Epicycloid, 808
Equality

of matrices, 767
properties of, 44
of vectors, 608, 610

Equations, 1, 44–58. see also Systems
of equations; Systems of linear
equations

absolute value, 54, 91
of circles, 93, 94–95
demand, 247
equivalent, 44
exponential, 358–361
false, 654
family of, 57
of functions, 164–165
graphic solutions for, 104–108
graph of, 90–91
of horizontal lines, 115
of a hyperbola, 762
involving fractional expressions, 52–53
involving fractional powers, 54
involving radicals, 53
linear, 45–46, 115–116, 118–120
of lines, 113–116
logarithmic, 361–364
matrix, 694–697
modeling with. see Mathematical

models
nonlinear, 45
of a parabola, 194
polynomial, 277–279
Properties of Equality and, 44
quadratic, 46–52
of quadratic type, 53–54
roots of, 254
of a shifted conic, 780–781
solving for unknown functions, 222, 233
solving using analogy strategy, 138–139
two-intercept form of, 121
in two variables, 90–91
of vertical lines, 115

Equations, trigonometric, 527, 561–570
with functions of multiple angles,

566–567
solving, 561–565, 567–568

Equivalent equations, 44
Equivalent inequalities, 76
Equivalent systems, 652
Eratosthenes, 476, 825
Error-correcting codes, 38–39
Euclid, 532
Eudoxus, 902
Euler, Leonhard, 138, 288, 332, 708
Even function, 188–189, 193, 222
Even-odd identities, 528
Even-odd properties, 413–414
Everest, Sir George, 505
Existence theorem, 283
Exponential data, linearizing, 389–390
Exponential equations, 358–361
Exponential form, 342–343
Exponential function, 327, 328–341

compared with power function, 332
compound interest, 334–336
family of, 330
graphs of, 329–332
natural, 332–334
transformations of, 331, 333

Exponential growth, 341
Exponential modeling, 369–376, 386–387,

390–392
Exponential notation, 13, 16–17
Exponents

fractional, 19, 31, 54
integer, 12–16
integer, exponential notation, 13
integer, zero and negative exponents, 13,

16
Laws of, 14–16, 19, 328
rational, 19–20

Extraneous solutions, 53
Extreme values, 193–203

of quadratic functions, 194–198
using graphing devices for, 198–200

Factoring
common factors, 27–28
complex solutions and, 295
differences and sums of cubes, 29–30
differences of squares, 29
expressions with fractional exponents,

31
Finding limit by canceling common

factors, 894
by grouping, 31

inequalities, 79–81
polynomials, 291–293, 294
quadratics, 28
solving trigonometric equations by,

563–565
by trial and error, 28

Factoring formulas, 29
Factor Theorem, 269–270, 272
Falling objects, instantaneous velocity of,

905
False equations, 654
Family

of equations, 57
of exponential functions, 330
of lines, graphing, 118
of logarithmic functions, 344
of polynomials, 261
of power functions, 160

Fechner, Gustav, 347
Fermat, Pierre de, 20, 87, 288
Ferrari, 282
Fibonacci, Leonardo, 825
Fibonacci numbers, 678, 825–826, 829,

832
Fitt’s Law, 352
FM (frequency modulation) radio, 428
Focal diameter, of parabolas, 748, 749
Focal length, 752
Focus

of a conic, 795
of an ellipse, 753, 755, 756–757
of a hyperbola, 762, 766–767
of a parabola, 744, 752
prime, 752

FOIL method, 26
Force, modeling, 614–615
Forgetting, Law of (Forgetting Curve),

355, 357, 395
Fourier, Jean Baptiste Joseph, 427, 536
Fourier analysis, 30
Four-leaved rose, 591, 594
Fractal image compression, 600
Fractals, 600, 605–607
Fractional exponents, 19, 31, 54
Fractional expressions, 35. see also

Rational expressions
compound fractions, 38–39
solving equations involving, 52–53

Fractions
compound, 38–39
LCD and adding, 5–6
partial, 715–721
properties of, 5

Frequency, harmonic motion and, 443
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Frequency modulation (FM) radio, 428
Functions, 146–247

algebra of, 214–215
average rate of change and, 174–178
combining, 214–222
common examples of, 148–149
composition of, 216–219
defined, 149–150
demand, 232
domain of, 153
equations of, 164–165
evaluating, 151–152
even, 188–189, 193, 222
extreme values, 193–203
graphing, 158–170, 306–312, 315,

329–332
greatest integer, 162
identity, 233
increasing/decreasing, 173–174
inverse, 226–230
iterates of, 223–224
limits of, 882–890
logistic, 223
methods for representing, 153–154
modeling with, 203–213
modeling with, guidelines for, 205
objective, 736, 737, 738
odd, 188–189, 193, 222
one-to-one, 225–226, 228–230
relations and, 171–172
transformations of, 182–193
trigonometric. see Trigonometric

functions
Fundamental identities, 414–415, 493, 528
Fundamental Principle of Analytic

Geometry, 90, 93
Fundamental Theorem of Algebra, 291

Galilei, Galileo, 816, 817
Galois, Evariste, 273, 282
Galton, Sir Francis, 247
Gateway Arch, 331
Gaudi, Antoni, 771
Gauss, Carl Friedrich, 294, 665, 834–835
Gaussian elimination, 652–653, 664–667
Gauss-Jordan elimination, 667–668
Gear ratio, 517
General conic equation, simplifying,

785–787
Geometric mean, 845
Geometric sequences, 838–846
Geometry, analytic, 742–819. see also

Conics; Ellipses; Hyperbolas;
Parabolas; Parametric equations

GIMPS (Great Internet Mersenne Prime
Search), 824

Global Positioning System (GPS), 643,
656–657

Golden ratio, 829
Googol, 352
Googolplex, 352
Grads, measuring angles with, 478
Graphical addition, 216
Graphical solutions, 104–108

compared with algebraic method, 104,
105–106

for equations, 104–108
for inequalities, 108
for systems of equations, 640–641
using graphing calculator, 102–104

Graphing calculators
approximating area with, 925
choosing viewing rectangle, 426–427
for extreme values of functions,

198–200
pitfalls of, 890
for trigonometric graphs, 425–428
using, 102–104
zoom and trace features of, 884–885

Graphing devices. see Graphing
calculators

Graphing functions, 158–170
exponential functions, 329–332
rational functions, 306–312, 315

Graphs
of complex numbers, 596–598
of equations of two variables, 90–91
of nonlinear inequalities, 721–723
of polar equations, 587–596
of polynomials, 251–260
reflecting, 185–186
shifted, 776–780
shifts, horizontal, 183–185
shifts, vertical, 182–183, 184–185
stretching and shrinking, 186–188
of systems of inequalities, 723–728

Gravity, Newton’s Law of, 46, 126, 388
Greater than (	), 6
Greatest integer function, 162–163, 166
Great Internet Mersenne Prime Search

(GIMPS), 824
Great Trigonometric Survey of India, 505,

525
Grouping, factoring by, 31
Growth constant, 223

Half-angle formulas, 541, 543–546
Half-life of radioactive elements, 373–374

Halley, Edmund, 894
Hamming, Richard, 39
Hardy, G.H., 840
Harmonic mean, 837
Harmonic motion, 417, 442–454

damped, 449–451, 569
modeling periodic behavior, 443–448,

459–462
simple, 443, 575

Harmonic sequences, 837
Heating degree-hour, 932–933
Heaviside, Oliver, 885
Heaviside function, 885
Herons’ Formula, 512–513
Hilbert, David, 103, 708
Hilbert’s tenth problem, 678
Hipparchus, 479
Homogenous coordinates, 794
Hooke’s Law, 127, 134, 931
Horizontal asymptotes, 301, 304–306, 307,

308, 910–911
Horizontal lines, 115, 225, 226
Horizontal line test, 225, 226
Horizontal shifts, of graphs, 183–185
Horizontal stretching and shrinking, of

graphs, 187–188
Huygens, Christian, 805
Hyperbolas, 743, 762–770

with center at origin, 763–764
confocal, 769–770
conjugate, 769
constructing, 774
degenerate, 781
equation of, 766–767
finding tangent line to, 901
geometric definition of, 762
rotating, 784–785
shifted, 778–780
sketching, 764–767
with transverse axis, 764–766

Hyperbolic cosine function, 337
Hyperbolic sine function, 337
Hypocycloid, 808
Hypothesis, induction, 856

Identities
addition and subtraction formulas for,

537
Pythagorean, 414, 493, 528
reciprocal, 413, 414, 493, 528
trigonometric, 413, 414–415, 492–494,

527, 528–534, 563–564
Identity function, 233
Identity matrices, 689–690
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Image of x under , 150
Imaginary axis, 596
Imaginary part, of complex numbers, 285
Incidence, angle of, 570
Inclination, angle of, 482
Inconsistent systems, linear equations,

644–645, 654, 668–670
Independent variables, 150
Index of refraction, 570
Index of summation, 828
Induction, mathematical, 854–860

conjecture and proof, 854–855
induction step, 855–856
principle of, 856–858
sums of powers and, 858–859

Induction hypothesis, 856
Inequalities, 76–87. see also Systems of

inequalities, graphing
absolute value, 81–82
equivalent, 76
graphic solutions for, 108
graphing, 721–723
linear, 77, 724
modeling with, 82–84
nonlinear, 77–81
proving by induction, 858–859
rules for, 76
with three factors, 80–81

Infinite geometric series, 843–844
Infinite series, 841–844
Infinity

limits at, 908–913
symbol, 7

Initial point, vectors, 607
Initial side, of angles, 468
Inner product, of matrices, 678–679
Installment buying, 851–852
Instantaneous rate of change, 177,

881–882, 904–905
defined, 904
estimating, 905
instantaneous velocity of falling objects,

905
Integer exponents, 12–16
Integers, as real number type, 2
Intensity levels of sound, 347, 378–379
Intercepts, 92
Interest, on investment, 59–60
Intermediate Value Theorem, 255, 283
Intersect command, in calculators, 106
Intersections

finding intersection points, 562–563
of intervals, 8
of sets, 7

f Intervals, 7–8
graphing, 8
open and closed, 7
test values for, 78
unions and intersections, 8

Invariants under rotation, 789, 791
Invariant Theory, 710
Inverse cosecant, 556
Inverse cosine, 553–554
Inverse cotangent, 556, 557
Inverse functions, 226–230

defined, 227
finding, 227–230
linear functions becoming, 232
properties of, 227

Inverse numbers, 5
Inverse of matrices, 689–693, 695
Inverse secant, 556
Inverse sine, 551–552
Inverse square law for sound, 382
Inverse tangent, 554–556
Inverse trigonometric functions, 527–528,

550–559
solving trigonometric equations using,

567–568
Inverse variation, 125–126
Invertibility criterion, 707
Involute of a circle, 810
Irrational numbers, 2
Irreducible quadratic factor, 297–298
Iterates of functions, 223–224

Mandelbrot set and bounded, 605–607

Joint variation, 126
Jordan, Camille, 273

Kantorovick, Leonid, 735
Karmarkar, Narendra, 737
Kepler, Johannes, 388, 389, 580, 758
Kepler’s Third Law, 23, 129
Kirchhoff’s Laws, 659
Knuth, Donald, 165
Koopmans, T.C., 735
Kovalevsky, Sonya, 188

Laminar flow, law of, 156
Latus rectum, 748, 761
Law enforcement, use of mathematics for,

344–345
Law of Cooling, Newton’s, 375–376, 381
Law of Cosines, 508–516, 561
Law of Forgetting (Forgetting Curve), 355,

357, 395
Law of Gravity, 46, 126, 388

Law of laminar flow, 156
Law of Sines, 501–508
Law of the Lever, 69, 748
Law of the pendulum, 127
Laws of Exponents, 14–16, 328

for rational exponents, 19
Laws of Logarithms, 352–358
LCD. see Least common denominator

(LCD)
Leading coefficients, 250, 253
Leading entry in row-echelon form, 665
Leading terms, 250

end behavior of polynomial and,
252–254

Leading variable, 668
Learning curve, 368
Least common denominator (LCD)

adding fractions, 5–6
using with rational expressions, 37–38

Least squares line, 240–242, 650–651
Left-hand limits, 887–888, 895–897
Lemniscates, as polar graph, 594
Length, vectors, 608, 610, 611
Lens equation, 56
Leontief, Wassily, 850
Less than (�), 6
Lever, Law of the, 69, 748
Limaçon, 592, 593, 594
Limit Laws, 890–893

finding limits using, 894–895
limits at infinity and, 911

Limits, 880–933
derivative problems, 902–904
finding by direct substitution, 893–894
finding by using algebra and Limit

Laws, 894–895
of a function, 882–890
instantaneous rates of change, 881–882,

904–905
left- and right-hand limits, 895–897
Newton on, 902
special, 892–893
tangent line problems, 898–902

Limits, area problems, 881, 916–925
area defined, 920–922
area under a curve, 922–924
area under a graph, 929–931
estimating area using rectangles,

917–918
limit of approximating sums, 919–920
modeling with, 929–931

Limits at infinity, 908–913
defined, 909
finding, 912
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functions with no limit at infinity, 913
at negative infinity, 910, 912

Limits of sequences, 913–915
defined, 913
finding, 914–915
limits of recursive sequences, 916

Linear and Quadratic Factors Theorem,
297–298

Linear depreciation, 122
Linear equations, 115. see also Systems of

linear equations
applying to rate of change, 118–120
graph of, 115–116
solving, 45–46
two-intercept form of, 121

Linear factors, 297–298
Linear fractional transformations, 302–303
Linear functions

composing, 222
defined, 158
graphs of, 166
as mathematical models, 239–242

Linear inequalities, 77, 724
graphing systems of, 724–726

Linearizing
exponential data, 389–390
power data, 390

Linear programming, 735–741
guidelines for, 737
Karmakar’s technique, 737

Linear speed, 473–474
Line of sight, 482
Lines, 111–123

of best fit, 240–242
family of, graphing, 118
general equation of, 115
parallel, 116–117
perpendicular, 117–118
point-slope form of equation of,

113–114
slope-intercept form of equation of, 114
slope of, 111–113
slope as rate of change, 118–120
vertical and horizontal, 115

Lissajous figure, 806
Lithotripsy, reflection property used in,

759
LnReg command, in calculator, 397
Local extrema, of polynomials, 260–261,

265
Local maximum, 199, 260
Local minimum, 199, 260
loga, 342
Logarithmic equations, 361–364

Logarithmic form, 342–343
Logarithmic functions, 327, 342–352

applications of, 365–366, 376–379
common (base 10) logarithms, 346–347
family of, 344
graphs of, 343–346
natural logarithms, 347–349
properties of, 343

Logarithmic model, 397
Logarithmic scales, 376–379
Logarithms, Laws of, 352–358
Logistic command, in calculator, 392, 397
Logistic curves (or logistic growth model),

334, 339, 392–393, 397
Logistic function, 223
Logistic population growth, 878–879
Longbow curve, 808
Long division

partial fractions and, 720
of polynomials, 265–267

LORAN (LOng RAnge Navigation), 768
Lorenz Contraction Formula, 898
Lotka, Alfred J., 696–697
Lower bounds, 276, 278

Machine, function as, 150
Magnetic resonance imaging (MRI), 746
Magnitude

of an earthquake, 377–378
of a star, 358
of vectors, 608, 610

Main diagonal, of matrices, 689
Major axes, of ellipses, 754, 755
Majority voting, 682
Mandelbrot, Benoit, 600, 605
Mandelbrot set, 605–607
Manning Equation, 23–24
Mathematical models, 58–75

constructing, 59–67
defined, 239
finding line of best fit, 240–242
functions as, 203–213
guidelines for, 58–59
guidelines for modeling functions, 205
linear functions as, 239–242
logarithmic model, 397
measuring fit, 242–243
using inequalities, 82–84
variation, 123–129

Matijasevič, Yuri, 678
Matrices, algebra of, 675–687. see also

Determinants
applied to computer graphics, 683–684,

700–703

Equality of matrices, 767
identity matrices, 689–690
inverse of matrices, 689–693, 695
matrix equations, 681–682, 694–697
multiplication, 678–683, 700
no Zero-Product Property for, 699
rotating images in plane, 792–794
rotating points in plane, 792
rotation of axes formulas, 791
singular matrix, 693
square roots of matrix, 687
stochastic matrices, 683
sum, difference, and scalar product,

767–778
transition matrix, 688–689, 697

Matrices, solving linear equations,
662–675

augmented matrix, 635, 662–663
elementary row operations, 663–664
Gaussian elimination, 664–667
matrix defined, 662
reduced row-echelon form, 665,

667–668
row-echelon form, 665–667

Matrix equations, 681–682, 694–697
linear programming for, 735–741
local, 199, 260
modeling with functions to find,

207–208
Maximum command, in calculators, 200
Maximum value(s), maxima, 195–198,

203
Mean

arithmetic, 838
geometric, 845
harmonic, 837

Mersenne numbers, 824
Midpoint formula, 90
Mill, John Stuart, 112
Minimum command, in calculators, 200
Minimum value(s), minima, 195–198, 203

local, 199, 260
modeling with functions to find,

209–210
Minor axes, of ellipses, 754, 755
Modeling. see also Mathematical models

with area, 929–931
cylindrical projection, 630–631, 632
defined, 203
with equations, 58–75
exponential, 369–376, 386–387,

390–392
force and velocity, 612–615
harmonic motion, 442–454
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Modeling (continued )
with linear systems, 646–648, 656–657,

672–673
logarithmic, 376–379
with logistic functions, 392–393
mapping world, 630–633
path of a projectile, 816–818
with polynomial functions, 320–323
population growth, 327, 369–373,

386–387, 392–393
with power functions, 388–392
prey/predator models, 432–433, 464,

696–697
with recursive sequences, 874–876
standing waves, 576–577
stereographic projection, 631, 632, 633
surveying, 522–525
traveling waves, 575–576
using linear programming, 735–741
using matrix equations, 696–697

Modulus of complex numbers, 597–598
Monomials, 24, 250, 251–252
Mortgage payments, 852

amortizing a mortgage, 854
MRI (magnetic resonance imaging), 746
Multiple angles, trigonometric functions

of, 566–567
Multiplication

of algebraic expressions, 26
of complex numbers, 286, 599–600
of functions, 214
of inequalities, 76
of matrices, 678–683, 700
of polynomials, 25–26
of rational expressions, 36
of vectors by scalars, 608, 611

Multiplicative identity, 5
Multiplicities, zeros and, 259, 293–295

Napier, John, 346
Nash, John, 850
Natural exponential functions, 332–334
Natural logarithms, 347–349
Natural numbers, 2
Nautical mile, 476
Navigation

bearings, 511
LORAN, 768

Negative exponents, 13, 16
Negative numbers, 4

square roots of, 287–288
Negative of image, 687
Newton, Sir Isaac, 758, 766, 816,

894–895, 902

Newton’s Law of Cooling, 375–376, 381,
878

Newton’s Law of Gravitation, 46, 126, 388
n-leaved rose, 591, 594
n! (n factorial), 863
Nodes, standing wave, 576–577
Noether, Emmy, 710
Nonlinear equations, 45
Nonlinear inequalities, 77–81

graphing, 721–723
guidelines for solving, 79

Notation
exponential, 13, 16–17
scientific, 16–17
set-builder, 7
sigma, 828–830
summation, 828
use in problem solving, 138

Nowak, Martin, 824
nth root, 18–19

of complex number, 601–602
Numbers

complex. see Complex numbers
converting sound, pictures, and text into,

30
imaginary, 285–286
inverse, 5
irrational, 2
negative, 4
ordered pair of, 87
polygonal numbers, 847–848
prime, 824, 825
rational, 2–3
real. see Real numbers
Reference, 404–406, 411–412
representing functions with, 154
square, 847
using geometric shapes to represent, 847

Numerators, 5
rationalizing, 40, 895

Numerical method
finding values of functions with, 412
for finding zeros, 283–284
to find trigonometric ratios, 480

Objective function, 736, 737, 738
Oblique asymptotes, 310
Oblique triangles, 501
Odd functions, 188–189, 193, 222
One-sided limits, 887–888, 895–897
One-to-one function, 225–226

finding inverse of, 228–230
Orbits. see Planetary orbits
Ordered pair, of numbers, 87

relation as collection of, 171
Origin (O), 6, 87, 582

hyperbola with center at, 763–764
symmetry with respect to, 95

p, value of, 414
Parabolas, 640, 721, 743, 744–752

confocal, 782
constructing, 772–774
family of, 749
focal diameter of, 748, 749
focal point of, 750
geometric definition of, 744
graph of, 91
graph of shifted, 777–778
with horizontal axis, 747–748
latus rectum of, 748
as quadratic function, 194
sketching, 748–749
with vertical axis, 745–746

Parallax, 487
Parallel lines, 116–117
Parameters, 57, 656, 801, 803
Parametric curve, graphing, 805–806
Parametric equations, 801–810

for cycloid, 804–805
eliminating parameter, 803
graphing parametric curves, 805–806
for path of projectile, 816–818
plane curves and, 801–802
polar equations in parametric form, 806

Pareto, Vilfredo, 357
Pareto’s Principle, 357
Partial fraction decomposition, 716–720
Partial fractions, 715–721
Partial sums, of sequences, 827–828,

834–836, 840–841
Pascal, Blaise, 805, 858
Pascal’s triangle, 861–863, 864
Pattern recognition, 138, 847–848
Paulos, John Allen, 242
Pendulum, law of the, 127
Pentagonal numbers, 847
Perfect square, 30, 48
Perihelion, 760, 801
Perilune, 761
Period

amplitude and, 423–425
harmonic motion and, 443

Periodic behavior, modeling, 443–448,
459–462

Periodic functions, 419, 427, 431
Periodic properties, 434
Periodic rent, 849
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Perpendicular lines, 117–118
Phase shift, of sine and cosine curves,

423–425
pH scale, 376–377
Pi (p), value of, 414
Piecewise defined function, 151, 888

graphing, 161–162
limit of, 896–897

Plane(s)
bounded and unbounded regions, 725
complex, 596
coordinate, 1, 87–88
as graph of linear equation in three

variables, 654
Plane curves, 801–802
Planetary orbits

eccentricities of, 758
Kepler’s description of, 23, 129, 580
perihelion and aphelion, 760, 801
power model for planetary periods,

388–389
Plurality voting, 682
Point-slope form of equation of lines,

113–114
Polar axis, 582
Polar coordinates, 581, 582–587

graphing polar equations, 587–596
relationship between rectangular

coordinates and, 584–585
Polar equations, 585–586

of conics, 795–801
family of, 593
graphs of, 587–596
in parametric form, 806

Polar form of complex numbers, 598–600
Polya, George, 138
Polygonal numbers, 847–848
Polynomial function, 249, 250, 320–323
Polynomials, 24

adding and subtracting, 25
of best fit, 320–323
defined, 250
degrees of, 24–26
dividing, 265–272
end behavior of, 252–254, 255
family of, 261
graphs of, 251–260
guidelines for graphing, 255
local extrema of, 260–261
nested form, 272
product of, 25–26
quadratic, 660–661
real zeros of, 254, 272–284
Tchebycheff, 549

zeros of, 254–260, 269
Population growth, 327, 369–373,

386–387, 392–393
carrying capacity and, 393
logistic, 878–879

Power data, linearizing, 390
Power functions

compared with exponential functions,
332

graphs of, 160, 166
modeling with, 388–392

Powers
finding, using DeMoivre’s Theorem,

601
formulas for lowering, 544

Predator/prey models, 432–433, 464,
696–697

Preference voting, 682
Present value, 340

of an annuity (Ap), 850–851
Prime focus, 752
Prime numbers, 824, 825
Principal, compound interest and, 334
Principal nth root, 18
Principal square root, 17

of complex numbers, 288
Principle of Mathematical Induction,

856–858
Principle of Substitution, 26
Problem solving, principles, 138–141
Products. see also Multiplication

of functions, 214
inner, 678–679
of polynomials, 25–26
positive/negative, 77
scalar, 676, 677, 678
sign of, 78

Product-sum formulas, 541, 546–547
Projectile

modeling path of, 51–52, 816–818
range of, 569

Projection
cylindrical, 630–631, 632
stereographic, 631, 632, 633

Projection laws, 514
Projection of vectors, 622–623
Prolate cycloid, 808
Proof

by contradiction, 133
mathematical induction and, 854–855

Proportionality, 123–129
constant of, 124
direct, 123–125
inverse, 125–126

joint, 126
Pure imaginary number, 285–286
Pythagoras, 54
Pythagorean identities, 414, 493, 528
Pythagorean Theorem, 54, 144

Quadrantal angles, 490
Quadrants, of coordinate plane, 87
Quadratic equations, 46–52

complex roots of, 288–289, 290
factoring, 28
form of, 47
fourth-degree equation of quadratic

type, 53–54
path of projectile modeled by, 51–52
solving by completing the square,

48–49
solving by factoring, 47
solving simple, 47–48
trigonometric identities and, 563–564

Quadratic factors, 297–298
Quadratic formula, 49–50

complex solutions and, 295
discriminant of, 50–51
using Rational Zeros Theorem and,

274–275
Quadratic function, 194–198

extreme values of, 195–198
graphing, 194
maximum/minimum value of, 195–198
standard form of, 194–195

Quadratic inequalities, 78–79
Quadratic polynomial of best fit vs. exact

fit, 660–661
QuadReg command, in calculator, 661
Quotients, 266

difference quotients, 151
in division, 5
of functions, 214
inequalities and, 79–80
positive/negative, 78

Radian measure, of angles, 468–469, 472
Radicals, 17–19

combining, 19
equations for, 53
nth root and, 18–19
using, with rational exponents, 20

Radio, AM and FM, 428
Radioactive decay model, 374–375
Radioactive elements, half-lives of,

373–374
Radiocarbon dating, 351, 360
Ramanujan, Srinivasa, 840
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Range
finding from graphs, 161
of functions, 150
of an inverse function, 227
of a projectile, 569
of a relation, 171

Rate of change
average, 174–178, 904
concavity and changing, 181
constant, 178
instantaneous, 177, 881–882, 904–905
slope as, 118–120, 175

Rational exponents, 19–20
Rational expressions, 35–44

adding and subtracting, 37–38
avoiding common errors, 40–41
compound fractions, 38–39
multiplying and dividing, 36–37
rationalizing denominator or numerator,

40
simplifying, 36

Rational functions, 299–316
graphing, 306–312, 315
simple, 300–302
slant asymptotes and end behavior,

309–311
transformations, 302–303, 315–316

Rationalizing the denominator or
numerator, 20–21, 40, 895

Rational numbers, 2–3
Rational zeros. see Real zeros, of

polynomials
Rational Zeros Theorem, 272–275, 295
Real axis, 596
Real number line, 6, 9–10
Real numbers, 1, 2–12

absolute values and distance, 8–10
Law of Exponents and, 328
natural numbers as, 2
order of (less than, greater than), 6
properties of, 3–6
real lines and, 6
sets and intervals, 6–8

Real part, of complex numbers, 285
Real zeros, of polynomials, 254, 272–284
Reciprocal functions, 166
Reciprocal identities, 413, 414, 493, 528
Reciprocal relations, 480
Reciprocals of inequalities, direction of

inequality and, 76
Rectangles, using to estimate area,

917–918
Rectangular coordinates, 581, 584–586
Recursive sequences, 824–825

limits of, 916
as models, 874–876

Reduced row-echelon form of a matrix,
665, 667–668

Reduction formulas, 418, 442
Ref command, in calculator, 667
Reference angle, 491–492
Reference numbers, 404–406

finding value of trigonometric function
with, 411–412

Reflecting graphs, 185–186, 343, 345
Reflection, total internal, 570
Reflection property

of ellipses, 759
of hyperbolas, 767
of parabolas, 750

Refraction, angle of, 570
Refraction, Index of, 570
Regression line, 240–242, 650–651
Relations, 171–172

reciprocal, 480
Relativity, Theory of, 157, 710, 816
Remainders, 266
Remainder Theorem, 268–269
Repeating decimal, 2
Resistance, electrical, 43, 312
Resultant force, 614–615
Rhind papyrus, 75, 716
Richter, Charles, 377
Richter scale, 377–378
Right angles, 478–483
Right-hand limits, 887–888, 895–897
Right triangle trigonometry, 467–468,

478–487
applications, 481–483

Rise, vs. run in slope, 111
Rivest, Ron, 308
Robinson, Julia, 678
Romanus, Adrianus, 414
Root functions, 166
Root-mean-square (rms) method, 448
Roots

complex, 288–289, 290
of complex numbers, 601–603
of equations, 44
of polynomial equations, 254
of unity, 299

Roses (polar curve), 591, 594
Rotation of axes, 783–794

eliminating xy-term, 786–787
equations of, 784
graphing rotated conics, 787–789
matrix form of formulas, 791
rotating hyperbolas, 784–785

Row-echelon form
of a matrix, 665–667
reduced, 665, 667–668
solving linear equations, 666–667, 669

Row transformations, of determinants,
707–708

Rref command, in calculators, 668, 673
RSA code, 308–309
Rule of Signs (Descartes), 275, 297
Rules, for inequalities, 76
Run, vs. rise in slope, 111

Scalar product, of matrices, 676, 677, 678
Scalars, 607, 608
Scatter plots, 239–242, 320–323, 386–387
Scientific notation, 16–17
Secant

formula for, 488
inverse, 556
trigonometric ratios, 479

Secant function, 408
graphing, 435, 436, 440
secant curves, 439, 440
special values of, 410

Secant line, average rate of change as
slope of, 175

Sectors, circular, 472–473
Semiperimeter, 512
Seq mode, calculators, 823–824
Sequences, 821–828

arithmetic, 833–838
defined, 822
Fibonacci, 678, 825–826, 829, 832
finding terms of, 823–824, 840
geometric, 838–846
harmonic, 837
infinite series, 841–844
partial sums of, 827–828, 834–836,

840–841
polygonal numbers, 847–848
properties of sums of, 830
recursive, 824–825, 874–876, 916
sigma notation of, 828–830

Sequences, limits of, 913–915
Series, infinite, 841–844
Set-builder notation, 7
Sets

as collection of objects, 6
unions and intersections, 7

Shamir, Adi, 308
Shanks, William, 414
Shifted conics, 775–783
Sieve of Eratosthenes, 825
Sight, line of, 482
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Sigma notation, 828–830
Signs, of trigonometric functions, 411, 490
Similarity and similarity ratio, in

trigonometry, 499–501
Simple harmonic motion, 443, 575
Sine

addition and subtraction formulas for,
535, 536, 541

curves, 422, 428, 461–462
double-angle formula for, 542, 786
formula for, 488
half-angle formula for, 544
inverse, 551–552
Law of, 501–508
product-sum formula for, 546
sum of sines and cosines, 538–539
sum-to-product formula for, 547
trigonometric ratios, 479

Sine function, 408
applications, 432–433
graphing, 418–420
graphing transformations of, 420–425
periodic properties of, 419
shifted curves, 423–425
special values of, 410

SinReg command, in calculator, 461, 462
Sinusoidal curves, 422, 431
Slant asymptotes, 309–310
Slope

indicating rate of change, 118–120, 175
of lines, 111–113

Slope-intercept form of equation of a line,
114

Slope of the line tangent to a curve,
899–900

Snell’s Law, 570
Solutions. see Roots
Sound. see also Harmonic motion

intensity levels of, 347, 378–379
inverse square law for, 382

Special Product Formulas, 26–27, 34
Special Theory of Relativity, 816
Species, study of survival of, 688–689
Species-Area relationship, 357–358
Sphere, area of, 156
Splines, polynomial curves, 249, 252, 256
Spring constant, 127, 452, 931
Square matrix, 704–708
Square numbers, 847
Square roots, 17–19

of negative numbers, 287–288
nth root and, 18–19

Squaring function, 150
Standard form, of equation of a circle, 93

Standard position, of angles, 470–471
Standing waves, 576–577
Stars, modeling brightness of, 446
Step functions, 163, 170
Stereographic projection, 631, 632, 633
Stochastic matrices, 683
Substitution, Principle of, 26
Substitution, trigonometric, 532
Substitution method

for solving linear systems, 637–638
using direct substitution for finding

limits, 893–894
Subtraction

of complex numbers, 286
of inequalities, 76
overview of, 4
of polynomials, 25
of rational expressions, 37–38
of vectors, 608

Subtraction and addition formulas,
535–541

Summation notation, 828
Summation variable, 828
Sums

of cubes, 30
of functions, 214
of infinite geometric series, 843–844
limits of approximating, 919–920
of matrices, 676–678
partial sums of sequences, 827–828,

834–836, 840–841
of powers, 858–859
of sequences, properties of, 830
of sines and cosines, 538–539

Sum-to-product formulas, 547
Supplement of angle, 504
Surveying, 522–525

using triangulation for, 504–505
Symmetry, 95–96

tests for, 591–592
Synthetic division, 267–268
Systems of equations, 635, 636–644

elimination method for solving,
638–640

graphical method for solving, 640–641
modeling with, 646–648
substitution method for solving,

637–638
Systems of inequalities, graphing,

723–728. see also Inequalities
Systems of linear equations

dependent and inconsistent, 644–646,
654–656

graph of, 654

modeling with, 646–648, 656–657,
672–673

several variables, 651–661
two variables, 644–651
using Cramer’s rule for solving,

708–711
writing as matrix equations, 681–682

Table command, in calculators, 824
Tables, finding limits using, 884–885
Taking cases, 139
Tangent, 488, 547

addition and subtraction formulas for,
535, 541, 560

double-angle formula for, 542
half-angle formula for, 544
inverse, 554–556
to parabola, 773, 774
trigonometric ratios, 479

Tangent function, 408
graphing, 434–439
special values of, 410
tangent curves, 437–438

Tangent line, 898–902
to a hyperbola, finding, 901

Taussky-Todd, Olga, 672
Taylor, Brook, 436, 834
Tchebycheff, P.L., 549
Tchebycheff polynomials, 549
Terminal points

reference numbers and, 404–406
on unit circle, 401–404
of vectors, 607

Terminal side, of angles, 468
Terminal velocity, 338
Terms

combining like, 25
of polynomial, 24

Terms, of sequences
defined, 822
finding, 823–824, 834, 840
for recursive sequences, 825

Test points, graphing, 255, 256, 257, 722
Test values for intervals, 78
Thales of Miletus, 482
Theodolite, 504
Theory of Relativity, 157, 710, 816
Tide, modeling height of, 459–462
Torricelli’s Law, 156, 232, 325
Total internal reflection, 570
Trace command, in calculators, 106, 199,

725, 884–885
Transformations

of exponential functions, 331, 333
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Transformations (continued)
of functions, 182–193
by matrix multiplication, 700
of monomials, 251–252
of rational functions, 302–303, 315–316
of sine and cosine functions, 420–425

Transition matrix, 688–689, 697
Translation of image, 794
Transverse axes, of hyperbolas, 762,

764–766
Traveling waves, 575–576
Triangles

ambiguous case, 503–505, 508
area of, 494–495, 512–513, 711–712,

714–715
Pascal’s triangle, 861–863, 864
right triangle trigonometry, 467–468,

478–487
solving height problems, 62–63
solving oblique, 501
special, 479–481

Triangular form, of linear systems,
651–652

Triangular numbers, 847
Triangulation, for surveying, 504–505
Trigonometric equations, 527, 561–570
Trigonometric functions, inverse, 527–528,

550–559, 567–568
Trigonometric functions, of angles,

466–525
defined, 488
reference angle and, 491–492
relationship to trigonometric functions

of real numbers, 489
signs of, 490

Trigonometric functions, of real numbers,
398–465

of angles, 409
defined, 408
domains of, 411
even-odd properties, 413–414
relationship to trigonometric functions

of angles, 489
signs of, 411
trigonometric identities, 413, 414–415
unit circle, 400–408
values of, 411–414, 436

Trigonometric graphs
of cosecant and secant functions,

439–440
graphing devices used for, 425–428
of sine and cosine functions, 418–420
of tangent and cotangent functions,

434–439

Trigonometric identities, 527, 528–534
of angles, 492–494
basic types of, 528
proving, 529–532
quadratic equations and, 563–564
of real numbers, 413, 414–415
simplifying, 528–529

Trigonometric ratios, 467, 478–479, 480,
481, 488

Trigonometric substitution, 532
Trinomials, 24
Triple-angle formula, 543
Trochoid, 808
Tsu Ch’ung-chih, 414
Turing, Alan, 103, 178
Two-intercept form of linear equation, 121
Two-sided limits, 895

Unbounded regions, of planes, 725
Unbreakable codes, 308–309
Unions

of intervals, 8
of sets, 7

Unit circle, 400–408
points on, 400
reference numbers, 404–406, 411–412
terminal points, 401–404

Unit vector, 611
Universal machine, 178
Upper and Lower Bounds Theorem,

276–277, 278
Upper bounds, 276, 278

Value of at x, 150
Variables

correlation of, 242–243
defined, 24
dependent and independent, 150
leading, 668
in linear systems, 644–661
summation, 828

Variation, modeling
direct, 123–125
inverse, 125–126
joint, 126

Variation in sign, 255
Vectors, 581–582

algebraic operations on, 610–611
analytic description of, 609–612
angle between, 619
calculating components of, 621–622
direction of, 608, 609, 612, 620–622
dot product of, 617–620

f

expressing in terms of i and j, 611–612
geometric description of, 607–608
horizontal and vertical components, 609,

612
modeling velocity and force, 612–615
orthogonal, 619–620
perpendicularity, checking for, 620
properties of, 611
use of, 607
wind as, tacking against, 626
zero, 608, 611

Velocity
estimating, 907
instantaneous, 904–905
modeling, 612–614
terminal, 338
of traveling waves, 575–576

Vertical asymptotes, 301, 303–308,
434–436, 886–887

Vertical axes, of parabolas, 745–746
Vertical lines, 115
Vertical line test, 163–164
Vertical shifts, graphs, 182–183, 184–185
Vertical stretching and shrinking, graphs,

186–187
Vertices

of ellipses, 754, 755
of feasible region, 737, 739
of hyperbolas, 762, 766–767
of parabolas, 744
of systems of inequalities, 723, 724

Viète, François, 49, 498
Viewing rectangle, of graphing calculator,

102
Voltage, measuring, 448
Volterra, Vito, 696–697
Von Neumann, John, 178
Voting, fair methods, 682–683

Wankel, Felix, 809
Wavelet theory, 30
Waves

standing, 576–577
traveling, 575–576

Weather prediction, 562
Weber-Fechner Law, 378
Whispering galleries, reflection property

used in, 759
Witch of Maria Agnesi (curve), 809
Words, representing functions with, 153,

154
Work

calculating with dot product, 623–624
modeled by area, 929–931
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x-axis, 87, 95
x-coordinate, 87
x-intercepts, 92

graphing rational functions and,
306–312

y-axis, 87, 95
y-coordinate, 87
y-intercepts, 92

graphing rational functions and,
306–312

Zero(s)
additive identity, 4
complex, 291–299
Factor Theorem and, 269–270
multiplicities and, 259, 293–295
numerical method of finding, 283–284
of polynomials, 254–260, 269
Rational Zeros Theorem, 272–275, 295
real, 254, 272–284

Zero exponents, 13
Zero-Product Property, 47, 563
Zeros Theorem, 293
Zero vector, 608, 611
Zoom feature, in calculators, 884
ZSquare command, 104
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