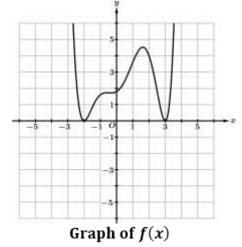
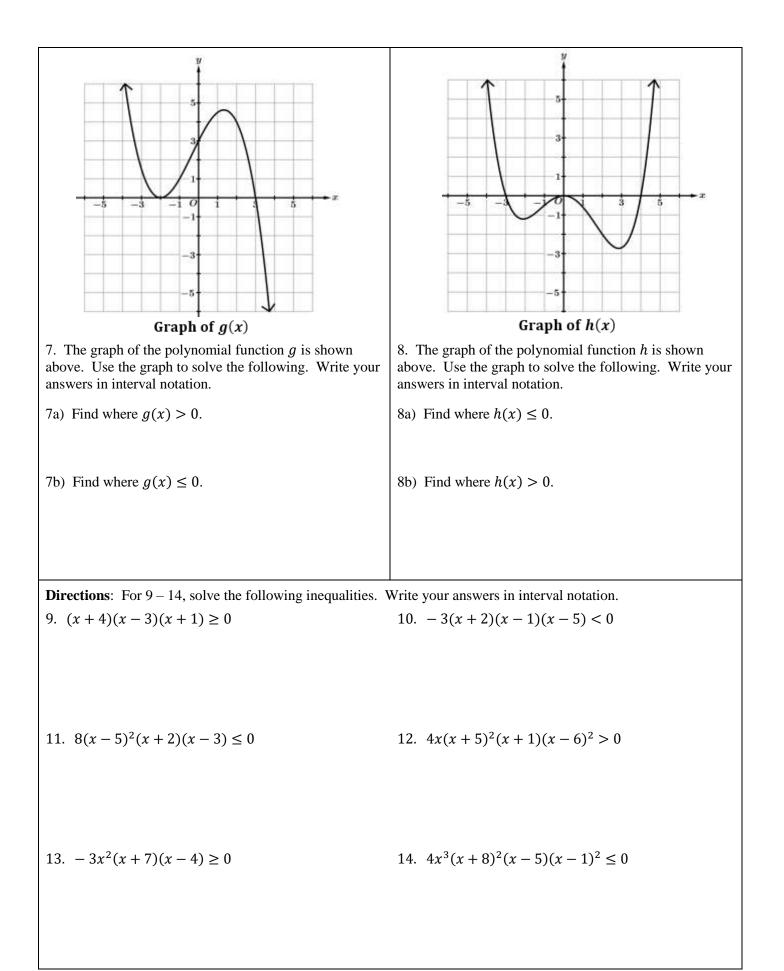

Directions: Read each question carefully. Determine the intervals for each of the following problems. Write your answers in interval notation.


4. The graph of the polynomial function k is shown above. Which of the following could be an expression for k?



5. The graph of the polynomial function p is shown above. Which of the following could be an expression for *p*?

(B)
$$\frac{1}{2}x(x+3)(x-2)$$

(C) $-\frac{1}{2}x(x+3)(x-2)$
(D) $-\frac{1}{2}x^2(x+3)(x-2)$

(A)
$$f(x) = \frac{1}{20}(x+2)(x-3)$$

(B) $f(x) = \frac{1}{20}(x-2)^2(x+3)^2$
(C) $f(x) = -\frac{1}{20}(x+2)^2(x-3)^2$
(D) $f(x) = \frac{1}{20}(x+2)^2(x-3)^2(x^2+1)$

Directions: For 15 - 24, find all <u>real zeros</u> and indicate the multiplicity of each zero.

15. $f(x) = 5(x-3)^4(x+2)(x-1)$	16. $g(x) = -2x(x+3)(x-2)^3$
Zeros (w/ multiplicity):	Zeros (w/ multiplicity):
17. $y = x^2(x+2)^3(x-6)^2$	18. $h(x) = 4x^3(x+7)^2(x-3)$
Zeros (w/ multiplicity):	Zeros (w/ multiplicity):
19. $k(x) = (x^2 - 9)(x^2 + 6x + 9)$	20. $y = -2x(x^2 - 4)(x^2 - 4x + 4)(x^2 - 2x - 8)$
$13. \ \kappa(x) = (x - 3)(x + 0x + 3)$	20. y = -2x(x - 4)(x - 4x + 4)(x - 2x - 6)
Zeros (w/ multiplicity):	Zeros (w/ multiplicity):
21. $p(x) = (x^3 - 3x^2 - 10x)(x^2 + 7x + 10)$	22. $m(x) = (x^3 + x^2 - 12x)(x^4 - 9x^2)$
Zeros (w/ multiplicity):	Zeros (w/ multiplicity):
23. $k(x) = (2x^2 + x - 6)(x^2 + 5x + 6)$	24. $y = x^2(3x^2 - 7x - 6)(x^2 - 3x)$
Zeros (w/ multiplicity):	Zeros (w/ multiplicity):

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = -\infty$$

25. The polynomial function f has end behavior described above. Which of the following functions could be f(x)?

(A) $f(x) = 2x^4 + 3x^3 - 2x - 1$ (B) $f(x) = 2x^3 - 4x^2 + 3x + 7$ (C) $f(x) = -2x^4 + 3x^3 - 2x - 1$ (D) $f(x) = -2x^3 - 4x^2 + 3x + 7$

 $\lim_{x \to -\infty} g(x) = \infty \quad \text{and} \quad \lim_{x \to \infty} g(x) = -\infty$

26. The polynomial function g has end behavior described above. Which of the following functions could be g(x)?

- (A) $g(x) = 2x^4 + 3x^3 2x 1$
- (B) $g(x) = 2x^3 4x^2 + 3x + 7$
- (C) $g(x) = -2x^4 + 3x^3 2x 1$
- (D) $g(x) = -2x^3 4x^2 + 3x + 7$

$$\lim_{x \to -\infty} h(x) = -\infty \quad \text{and} \quad \lim_{x \to \infty} h(x) = \infty$$

27. The polynomial function h has end behavior described above. Which of the following functions could be h(x)?

(A) $h(x) = -2x(x-3)^2(x+2)^5$

(B)
$$h(x) = 2x(x-3)^2(x+2)^5$$

- (C) $h(x) = -2x^2(x-3)^2(x+2)^5$
- (D) $h(x) = 2x^2(x-3)^2(x+2)^5$

28. Let $k(x) = 4x + 3x^2 + 6x^3 - 7x^4 + 6$. Which of the following pairs of statements about the end behavior of k is correct?

- (A) $\lim_{x \to -\infty} k(x) = -\infty$ and $\lim_{x \to \infty} k(x) = -\infty$
- (B) $\lim_{x \to -\infty} k(x) = -\infty$ and $\lim_{x \to \infty} k(x) = \infty$
- (C) $\lim_{x \to -\infty} k(x) = \infty$ and $\lim_{x \to \infty} k(x) = -\infty$
- (D) $\lim_{x \to -\infty} k(x) = \infty$ and $\lim_{x \to \infty} k(x) = \infty$

x	f(x)
1	-2
3	-1
5	3
7	10
9	20

29. The table shows values for a function f at selected values of x. Which of the following claim and explanation statements best fit these data?

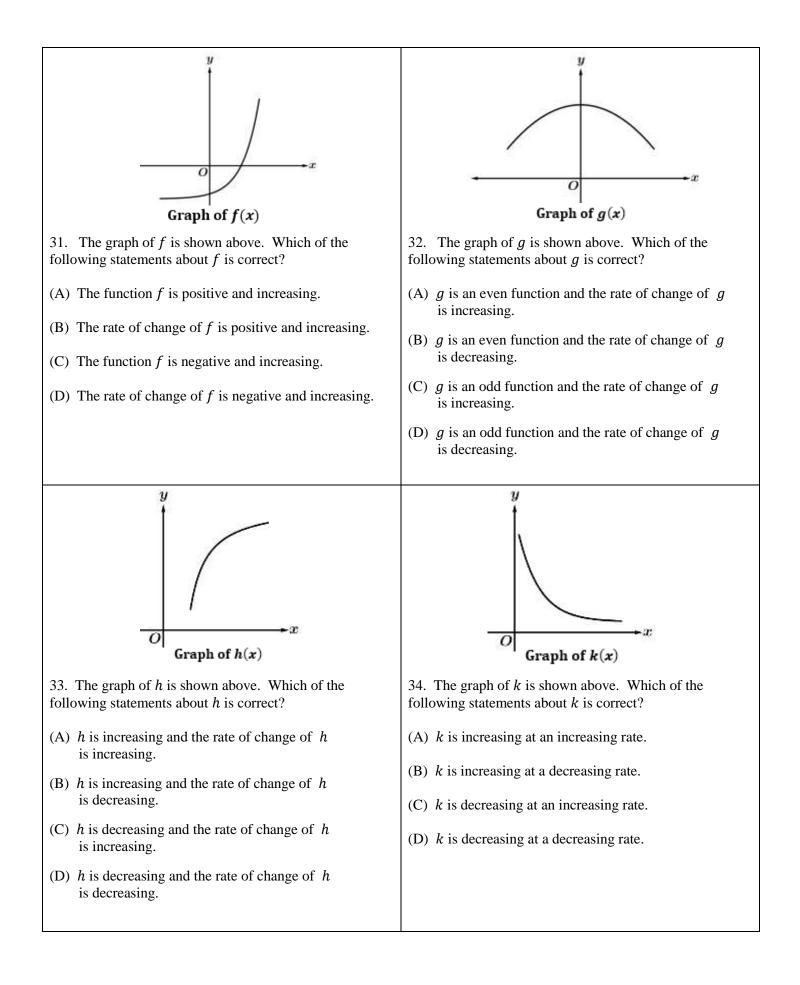
(A) f is best modeled by a linear function because the rate of change over consecutive equal-length input-value intervals is constant.

(B) f is best modeled by a linear function because the rate of change over consecutive equal-length input-value intervals is linear.

(C) f is best modeled by a quadratic function because the rate of change over consecutive equal-length input-value intervals is constant.

(D) f is best modeled by a quadratic function because the rate of change over consecutive equal-length input-value intervals is linear.

x	h(x)
0	100
10	60
20	40
30	30
40	25


30. The table shows values for a function h at selected values of x. Which of the following claim and explanation statements best fit these data?

(A) The graph of h could be concave up because the average rates of change over consecutive equal-length input-value intervals are positive.

(B) The graph of h could be concave up because the average rates of change over consecutive equal-length input-value intervals are increasing.

(C) The graph of h could be concave down because the average rates of change over consecutive equal-length inputvalue intervals are negative.

(D) The graph of h could be concave down because the average rates of change over consecutive equal-length inputvalue intervals are decreasing.

