

1. The graph of y = f(x), consisting of three line segments, is shown above for $-3 \le x \le 3$. The graph of y = g(x) is the result of transforming the graph of f. Which of the following gives the transformation from f to g?

- (A) g(x) = f(x-2) 1
- (B) g(x) = f(x+2) 1
- (C) g(x) = f(x-2) + 1
- (D) g(x) = f(x+2) + 1

2. The graph of y = f(x), consisting of three line segments, is shown above for $-3 \le x \le 3$. The graph of y = g(x) is the result of transforming the graph of f. Which of the following gives the transformation from f to g?

- (A) g(x) = f(-x)
- (B) g(x) = -f(x)
- (C) g(x) = f(x 1)
- (D) g(x) = f(x) 1

x	-2	0	1	3	x	-5	-3	-2	
f(x)	4	-3	-1	2	g(x)	6	-1	1	

3. The tables above give values of f and g at selected values of x. The graph of y = g(x) is the result of transforming the graph of f. Which of the following could be the transformation from f to g?

- (A) g(x) = f(x 3) 2
- (B) g(x) = f(x-3) + 2
- (C) g(x) = f(x+3) 2
- (D) g(x) = f(x+3) + 2

x	-3	0	2	4	x	3	0	-2	-
f(x)	1	5	0	-2	g(x)	2	10	0	-

4. The tables above give values of f and g at selected values of x. The graph of y = g(x) is the result of transforming the graph of f. Which of the following could be the transformation from f to g?

(A) $g(x) = \frac{1}{2}f(-x)$ (B) g(x) = f(x-6) + 1 (C) g(x) = -2f(x) (D) g(x) = 2f(-x)

x	-2	0	2	4	x	-1	0	1	2
f(x)	3	-4	2	0	g(x)	6	-8	4	0

5. The tables above give values of f and g at selected values of x. The graph of y = g(x) is the result of transforming the graph of f. Which of the following could be the transformation from f to g?

(A)
$$g(x) = \frac{1}{2}f\left(\frac{x}{2}\right)$$
 (B) $g(x) = \frac{1}{2}f(2x)$ (C) $g(x) = 2f\left(\frac{x}{2}\right)$ (D) $g(x) = 2f(2x)$

0

4

Directions: Use the information below for problems 6 - 9.

The function
$$y = f(x)$$
 has domain $-4 \le x \le 6$ and range $0 \le y \le 10$.

6. The graph of y = g(x) is the result of the transformation g(x) = 2f(x - 3) + 1. Which of the following gives the domain of g(x)?

(A)
$$-7 \le x \le 3$$
 (B) $-1 \le x \le 9$ (C) $-3 \le x \le 7$ (D) $-7 \le x \le 13$

7. The graph of y = g(x) is the result of the transformation g(x) = 2f(x - 3) + 1. Which of the following gives the range of g(x)?

(A) $-1 \le y \le 4$ (B) $-3 \le y \le 7$ (C) $1 \le y \le 21$ (D) $3 \le y \le 13$

8. The graph of y = h(x) is the result of the transformation h(x) = -3f(2x) - 4. Which of the following gives the domain of h(x)?

(A) $-22 \le x \le 8$ (B) $-8 \le x \le 12$ (C) $-2 \le x \le 3$ (D) $0 \le x \le 5$

9. The graph of y = h(x) is the result of the transformation h(x) = -3f(2x) - 4. Which of the following gives the range of h(x)?

(A) $-34 \le y \le -4$ (B) $0 \le y \le 5$ (C) $0 \le y \le 10$ (D) $-4 \le y \le 6$

10. The graph of y = k(x) is the result of the transformation $k(x) = 4f\left(\frac{x}{2}\right) + 1$. The point (2, -3) on the graph of *f* maps to which of the following points on the graph of *k*?

(A) (1, -11) (B) (1, -8) (C) (4, -11) (D) (4, -8)

11. The graph of y = p(x) is the result of the transformation p(x) = -2f(x - 3) + 4. The point (4, 1) on the graph of *f* maps to which of the following points on the graph of *p*?

(A) (-4,4) (B) (1,2) (C) (7,-10) (D) (7,2)