Directions: The graphs several polynomial functions are shown below. Use the graphs to find all intervals of x that satisfy the given conditions.

1.

1a. f(x) < 0:_____

1b. f(x) = 0:_____

3a. h(x) < 0:_____

3b. h(x) = 0: _____

2.

2a. $g(x) \le 0$:______

2b. g(x) > 0:_____

4.

Graph of k

4a. $k(x) \ge 0$:

4b. k(x) < 0:_____

Directions: Solve the following inequalities.

5.
$$3x(x+1)(x-2) < 0$$

6.
$$-2(x+3)(x-6) \ge 0$$

7.
$$4(x-2)(x-7)^2 \ge 0$$

8.
$$-7x^2(x+4)^2 > 0$$

9.
$$x(x+8)^2(x-3) \le 0$$

10.
$$(x+5)(x-1)(x-9)^2 < 0$$

11.
$$-x(x+4)^2(x-2)^2 \le 0$$

12.
$$x^3(x+7)(x-4)^2 > 0$$

13.
$$x^2 - 2x - 48 \le 0$$

14.
$$(x^2-9)(x^2+2x-3) \ge 0$$

Directions: Solve the following inequalities.

15.
$$x^3 - 8x^2 + 16x \ge 0$$

16.
$$x^4 + 5x^3 < 0$$

17.
$$x^2 + 5x > 8x + 18$$

18.
$$x^2 - 7x < 5x - 36$$

19. The function f is given by $f(x) = 2x^2 + 5x - 1$ and the function g is given by $g(x) = x^2 + x + 4$. Find all intervals where $f(x) \ge g(x)$.

20. The function h is given by $h(x) = x^4 - 6x^2$ and the function k is given by $k(x) = 3x^2$. Find all intervals where h(x) > k(x).