x	f(x)		
-1	5		
2	-4		
3	-6		
5	-11		

1. The continuous function f(x) is <u>odd</u> and decreasing with selected values shown in the table above. Use the table to find the following.

a) f(-2) = b) f(1) = c) If f(x) = 11 then x =

d) Find the average rate of change of f(x) over the interval $-3 \le x \le 5$.

x	g(x)		
-5	-9		
-2	-7		
-1	С		
а	7		
5	b		

2. The continuous function g(x) is <u>odd</u> and increasing with selected values shown in the table above.

a) Find the values of *a* and *b*.

b) If the average rate of change of g(x) over the interval [-1, 5] is 2 find the value of c.

x	-4	-2	-1	1	b	4
h(x)	а	8	a + b	С	8	7

3. Let h(x) be an <u>even</u> function with selected values shown in the table above. Find the values of a, b, and c.

4. The function k is an <u>even</u> function with domain $-6 \le x \le 6$. A portion of the graph of k is shown above with the portions from $-6 \le x \le -3$ and $0 \le x \le 3$ missing from the graph. Use the graph to find the following.

a) k(-5) = b) k(-4) = c) k(2) =

d) Find the average rate of change of k over the interval [-6, 6].

e) On the graph above, draw the missing portions for the graph of k.

Graph of g

5. The function *g* is an <u>odd</u> function with domain $-6 \le x \le 6$. A portion of the graph of *g* is shown above with parts of the graph missing. Use the graph to find the following.

a)
$$g(5) =$$
 b) $g(-1) =$ c) $g(-2) =$ d) $g(4) =$

$$f(x) = x^2 + 3x$$
 $h(x) = 3x - 5$ $k(x) = x^3 + x^2 + 7x$ $p(x) = x^5 + 4x^3$

6. Equations for the functions f, h, k, and p are shown above. Use these equations to determine if the following functions are even, odd, or neither. Show the work that leads to your answer.

a)
$$y = f(x) - h(x)$$

b) $y = k(x) - f(x)$

c)
$$y = p(x) - 10x$$

d) $y = p(x) + f(x)$