Name:

1. Let $f(x) = \sec\left(\frac{1}{2}x\right)$. Which of the following is a vertical asymptote on the graph of f?

(A)
$$x = 0$$
 (B) $x = \frac{\pi}{4}$ (C) $x = \frac{\pi}{2}$ (D) $x = \pi$

2. In the *xy*-plane, the graph of which of the following functions has a vertical asymptote at $x = \frac{\pi}{2}$?

(A) $f(x) = \csc(x)$ (B) $f(x) = \csc(2x)$ (C) $f(x) = \sec\left(x - \frac{\pi}{2}\right)$ (D) $f(x) = \sec\left(\frac{1}{2}x\right)$

3. In the *xy*-plane, the graph of which of the following functions has a vertical asymptote at x = 2? (A) $f(x) = \csc\left(\frac{1}{2}x\right)$ (B) $f(x) = \csc(2x)$ (C) $f(x) = \sec(\pi x)$ (D) $f(x) = \sec\left(\frac{\pi}{4}x\right)$

4. Let $g(x) = \cot(2x)$. Which of the following is a vertical asymptote on the graph of g?

(A) $x = \frac{\pi}{6}$ (B) $x = \frac{\pi}{4}$ (C) $x = \frac{\pi}{3}$ (D) $x = \frac{\pi}{2}$

5. Let $h(x) = 3\sec(4x) + 1$. Which of the following statements about the graph of *h* is correct? (A) The graph of *h* has vertical asymptotes when $x = \frac{\pi}{8} + \frac{\pi}{4}k$, where *k* is an integer.

(B) The graph of *h* has vertical asymptotes when $x = \frac{\pi}{4} + \frac{\pi}{2}k$, where *k* is an integer.

(C) The graph of *h* has vertical asymptotes when $x = \frac{\pi}{2} + \frac{\pi}{4}k$, where *k* is an integer.

(D) The graph of h has vertical asymptotes when $x = 2\pi + 4\pi k$, where k is an integer.

6. Let $h(x) = 5 \sec\left(\frac{1}{2}x\right)$. Which of the following gives the range of h? (A) $\left(-\infty, -1\right] \cup \left[1, \infty\right)$ (B) $\left(-\infty, -5\right] \cup \left[5, \infty\right)$ (C) $\left(-\infty, -2\right] \cup \left[2, \infty\right)$ (D) $\left[-5, 5\right]$

7. Let $k(x) = 4\csc(2x) - 1$. Which of the following gives the range of k? (A) $(-\infty, -1] \cup [1, \infty)$ (B) $(-\infty, -4] \cup [4, \infty)$ (C) $(-\infty, -5] \cup [3, \infty)$ (D) $\left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \infty\right)$

8. Let $f(x) = 2 \sec(x) - 5$ and g(x) = -1. In the *xy*-plane, what are the *x*-coordinates of the points of intersection of the graphs of *f* and *g* for $0 \le x < 2\pi$?

9. Let $h(x) = 2 - 3\csc x$ and k(x) = 5. In the *xy*-plane, what are the *x*-coordinates of the points of intersection of the graphs of *h* and *k* for $0 \le x < 2\pi$?

10. Let $m(x) = 3\csc^2 x - 2$ and p(x) = 2. In the *xy*-plane, what are the *x*-coordinates of the points of intersection of the graphs of *m* and *p* for $0 \le x < 2\pi$?

11. Let $f(x) = 2 + 3.1 \cot(0.3x + 5)$. In the *xy*-plane, what are the *x*-coordinates of the points of where f(x) = -6 for $0 \le x < 2\pi$?