1. Let $g(x) = (\tan x)(\sec x)$. Rewrite g(x) as a fraction involving powers of $\sin x$ and no other trigonometric functions.

Name:

2. Let
$$h(x) = \frac{1 - \cos^2 x}{\cos^2 x}$$
. Rewrite $h(x)$ as an expression involving $\tan x$ and no other trigonometric functions.

3. Let $f(x) = \frac{1 - \sec^2 x}{\sin^2 x}$. Rewrite f(x) as an expression involving $\sec x$ and no other trigonometric functions.

4. Let $k(x) = (\csc x)(\tan x)$. Rewrite k(x) as an expression involving sec x and no other trigonometric functions.

5. Let $j(x) = (\sec x)(\cot x)(\tan^2 x)$. Rewrite j(x) as a fraction involving powers of $\sin x$ and no other trigonometric functions.

6. Let $m(x) = \frac{(\cot x)(\cos x)}{(\csc x)}$. Rewrite m(x) as a fraction involving powers of $\cos x$ and no other trigonometric

functions.

The figures show two circles centered at the origin with angle measures of α and β , respectively, in standard position. The terminal ray of angle α intersects the circle at point *P*, and the terminal ray of angle β intersects the circle at point *Q*. The coordinates of *P* are (4, 3) and the coordinates of *Q* are (5, 12).

7. Find $\sin(2\alpha)$. 8. Find $\sin(\alpha + \beta)$. 9. Find $\cos(\alpha - \beta)$.

The figures show two circles centered at the origin with angle measures of α and β , respectively, in standard position. The terminal ray of angle α intersects the circle at point *P*, and the terminal ray of angle β intersects the circle at point *Q*. The coordinates of *P* are $(-2, \sqrt{5})$ and the coordinates of *Q* are $(3, \sqrt{7})$. 10. Find $\cos(2\alpha)$. 11. Find $\sin(\alpha - \beta)$. 12. Find $\cos(\alpha + \beta)$.

13. Which of the following expressions is equivalent to $4\cos(2x)$?

(A) $8\sin x \cos x$ (B) $1 - 8\cos^2 x$ (C) $4 + 8\sin^2 x$ (D) $8\cos^2 x - 4$

14. Which of the following expressions is equivalent to $(\sin x + \cos x)^2$?

(A) 1 (B)
$$2\sin x \cos x$$
 (C) $1 + \cos(2x)$ (D) $1 + \sin(2x)$

15. Where $\cos x \neq 0$, which of the following is equivalent to $\frac{\cos^2 x - 1}{\cos^2 x}$?

(A)
$$\frac{\sin^2 x}{\cos^2 x}$$
 (B) $\cot^2 x$ (C) $-\tan^2 x$ (D) $-\sec^2 x \csc^2 x$

16. Which of the following expressions is equivalent to $(1 + \cot^2 x)(\sin^2 x)$?

(A) 1 (B) $\tan^2 x$ (C) $\cot^2 x$ (D) $\sin^4 x$

17. Which of the following expressions is equivalent to $3\sin(2x)$?

(A)
$$3\cos^2 x - 3\sin^2 x$$
 (B) $(6\sin x)(6\cos x)$ (C) $6(\sin x)(\cos x)$ (D) $3 - 6\sin^2 x$

18. Which of the following expressions is equivalent to $\cos \frac{5\pi}{9} \cos \frac{3\pi}{9} - \sin \frac{5\pi}{9} \sin \frac{3\pi}{9}$?

(A)
$$\cos \frac{2\pi}{9}$$
 (B) $\cos \frac{8\pi}{9}$ (C) $\sin \frac{2\pi}{9}$ (D) $\sin \frac{8\pi}{9}$

Worksheet A: Topic 3.12

Equivalent Representations of Trig Functions