

1. The figure shows the graph of the polar function $r = f(\theta)$, for $0 \le \theta \le 2\pi$, in the polar coordinate system. Which of the following could be an expression for $f(\theta)$? (A) $2+4\sin\theta$ (B) $2-4\sin\theta$ (C) $2+4\cos\theta$ (D) $2-4\cos\theta$

2. The figure shows the graph of the polar function $r = f(\theta)$, for $0 \le \theta \le 2\pi$, in the polar coordinate system. Which of the following could be an expression for $f(\theta)$? (A) $3+3\sin\theta$ (B) $3-3\sin\theta$ (C) $3+3\cos\theta$ (D) $3-3\cos\theta$

3. The figure shows the graph of the polar function $r = f(\theta)$, for $0 \le \theta \le 2\pi$, in the polar coordinate system. Which of the following could be an expression for $f(\theta)$? (A) $6\cos(2\theta)$ (B) $6\cos(4\theta)$ (C) $6\sin(2\theta)$ (D) $6\sin(4\theta)$

4. A portion of the grpah of the polar function $r = f(\theta)$, where $f(\theta) = 3\sin(2\theta)$, is shown in the polar coordinate system for $a \le \theta \le b$. If $0 \le a < b < 2\pi$, which of the following could be the values for *a* and *b*?

(A)
$$a = \frac{\pi}{4}$$
 and $b = \frac{\pi}{2}$ (B) $a = \frac{\pi}{2}$ and $b = \pi$ (C) $a = \frac{3\pi}{4}$ and $b = \pi$ (D) $a = \frac{3\pi}{2}$ and $b = 2\pi$

5. A portion of the grpah of the polar function $r = f(\theta)$, where $f(\theta) = 3\cos(3\theta)$, is shown in the polar coordinate system for $a \le \theta \le b$. If $0 \le a < b < 2\pi$, which of the following could be the values for *a* and *b*?

(A) a = 0 and $b = \frac{\pi}{6}$ (B) $a = \frac{\pi}{6}$ and $b = \frac{\pi}{3}$ (C) $a = \frac{\pi}{3}$ and $b = \frac{\pi}{2}$ (D) $a = \frac{5\pi}{4}$ and $b = \frac{3\pi}{2}$

6. A portion of the grpah of the polar function $r = f(\theta)$, where $f(\theta) = 2 + 4\cos\theta$, is shown in the polar coordinate system for $a \le \theta \le b$. If $-2\pi \le a < b < 2\pi$, which of the following could be the values for *a* and *b*?

(A) $a = -\frac{2\pi}{3}$ and $b = \frac{2\pi}{3}$ (B) $a = -\frac{\pi}{3}$ and $b = \frac{\pi}{3}$ (C) $a = \frac{\pi}{2}$ and $b = \frac{3\pi}{2}$ (D) $a = \frac{2\pi}{3}$ and $b = \frac{4\pi}{3}$

Worksheet A: Topic 3.14

Polar Function Graphs

7. The figure shows the graph of the polar function $r = f(\theta)$, where $f(\theta) = 6\cos(2\theta)$, in the polar coordinate system for $0 \le \theta \le 2\pi$. There are four points labeled *A*, *B*, *C*, *D* and *E*. If the domain of *f* is restricted to $\frac{\pi}{2} \le \theta \le \pi$, the portion of the given graph that remains consists of two pieces. One of those pieces is the portion of the graph in Quadrant IV from *D* to *E*. Which of the following describes the other remaining piece?

- (A) The portion of the graph in Quadrant II from B to E
- (B) The portion of the graph in Quadrant II from E to A
- (C) The portion of the graph in Quadrant III from E to D
- (D) The portion of the graph in Quadrant IV from E to C

8. The figure shows the graph of the polar function $r = f(\theta)$, where $f(\theta) = 6\sin(2\theta)$, in the polar coordinate system for $0 \le \theta \le 2\pi$. There are four points labeled *A*, *B*, *C*, *D* and *E*. If the domain of *f* is restricted to $\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}$, which of the following describes the portion of the given graph that remains?

- (A) The top portion of the graph in Quadrant II from E to A
- (B) The bottom portion of the graph in Quadrant II from A to E
- (C) The top portion of the graph in Quadrant IV from C to E
- (D) The bottom portion of the graph in Quadrant IV from E to C