

1. The figure shows a circle centered at the origin with an angle of measure θ in standard position. The terminal ray of the angle intersects the circle at point P. The measure of angle θ is $\frac{\pi}{3}$. Find the measures of the angles in standard position whose terminal ray intersects the circle at points Q, R, and S.

2. The figure shows a circle centered at the origin with an angle of measure θ in standard position. The terminal ray of the angle intersects the circle at point P. The measure of angle θ is $\frac{\pi}{6}$. Find the measures of the angles in standard position whose terminal ray intersects the circle at points Q, R, and S.

3. The figure shows a circle centered at the origin with an angle of measure θ in standard position. The terminal ray of the angle intersects the circle at point P. The measure of angle θ is $\frac{\pi}{4}$. Find the measures of the angles in standard position whose terminal ray intersects the circle at points Q, R, and S.

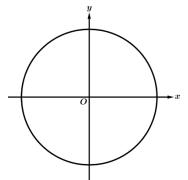
- 4. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant II, which of the following could be θ ?
- (A) $\frac{\pi}{4}$
- (B) $\frac{5\pi}{6}$
- (D) $\frac{7\pi}{4}$
- 5. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant III, which of the following could be θ ?
- (A) $\frac{\pi}{3}$

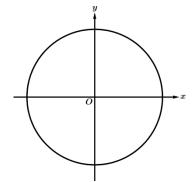
- (B) $\frac{3\pi}{2}$ (C) $\frac{5\pi}{4}$ (D) $\frac{11\pi}{6}$
- 6. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant IV, which of the following could be θ ?
- (A) $\frac{\pi}{6}$
- (B) $\frac{\pi}{2}$
- (C) $\frac{5\pi}{6}$ (D) $\frac{5\pi}{3}$

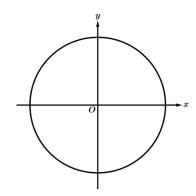
- 7. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant I, which of the following could be θ ?
- (A) $-\frac{\pi}{6}$
- (B) $\frac{11\pi}{6}$ (C) $-\frac{5\pi}{3}$ (D) $\frac{5\pi}{3}$
- 8. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant II, which of the following could be θ ?
- (A) π

- (B) $\frac{2\pi}{3}$ (C) $\frac{7\pi}{6}$ (D) $\frac{7\pi}{4}$
- 9. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant III, which of the following could be θ ?
- (A) $\frac{4\pi}{3}$

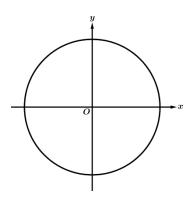
- (B) $\frac{\pi}{2}$ (C) $\frac{3\pi}{4}$ (D) $\frac{5\pi}{3}$
- 10. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant IV, which of the following could be θ ?
- (A) $\frac{7\pi}{6}$ (B) $\frac{7\pi}{4}$ (C) $\frac{3\pi}{4}$

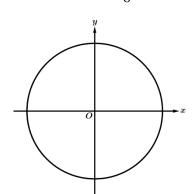

- 11. Let θ be an angle in standard position whose terminal ray intersects a circle centered at the origin at point P. If point P is in quadrant I, which of the following could be θ ?
- (A) $\frac{13\pi}{6}$
- (B) $\frac{13\pi}{4}$ (C) $\frac{11\pi}{3}$ (D) $\frac{11\pi}{2}$

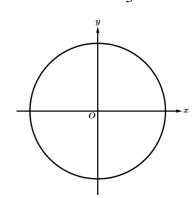

Directions: For problems 12 - 20, sketch the following angles in standard position on the axes below.


12.
$$\theta = \frac{2\pi}{3}$$

$$14. \ \theta = \frac{5\pi}{4}$$

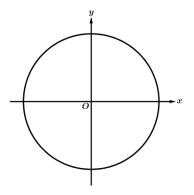


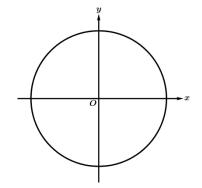


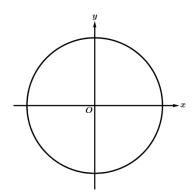

15.
$$\theta = \frac{\pi}{2}$$

$$16. \ \theta = \frac{7\pi}{6}$$

17.
$$\theta = \frac{5\pi}{3}$$

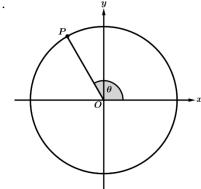


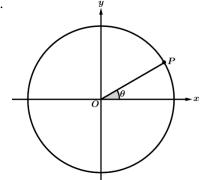



18.
$$\theta = \pi$$

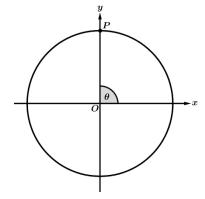
$$19. \ \theta = \frac{3\pi}{4}$$

$$20. \ \theta = \frac{11\pi}{6}$$

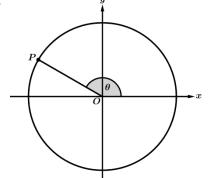



Directions: For problems 21 - 36, determine which of the given answers could be the measure of angle θ in the figure.

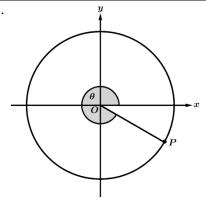
21.


(A) $\frac{5\pi}{6}$ (B) $\frac{7\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

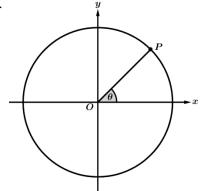
22.


(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

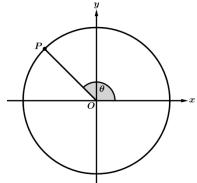
23.


(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$

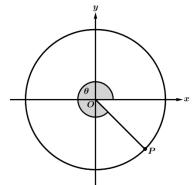
24.


(A) $\frac{\pi}{6}$ (B) $\frac{2\pi}{3}$ (C) $\frac{5\pi}{6}$ (D) $\frac{7\pi}{6}$

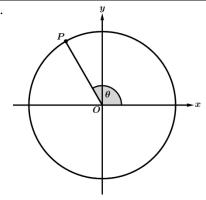
25.


(A) $\frac{\pi}{6}$ (B) $\frac{7\pi}{6}$ (C) $\frac{5\pi}{3}$ (D) $\frac{11\pi}{6}$

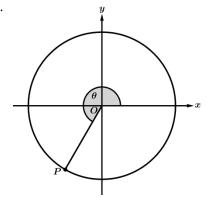
26.


(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

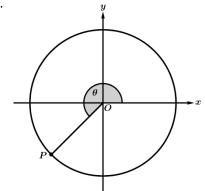
27.


(A) $\frac{2\pi}{3}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{6}$ (D) $\frac{5\pi}{4}$

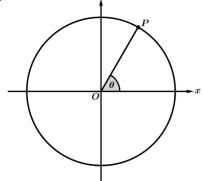
28.


(A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{7\pi}{4}$

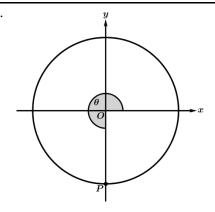
29.


(A) $\frac{5\pi}{6}$ (B) $\frac{7\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

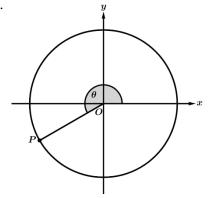
30.


(A) $\frac{5\pi}{6}$ (B) $\frac{7\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

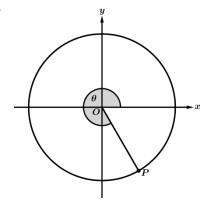
31.


(A) $\frac{3\pi}{4}$ (B) $\frac{7\pi}{6}$ (C) $\frac{5\pi}{4}$ (D) $\frac{4\pi}{3}$

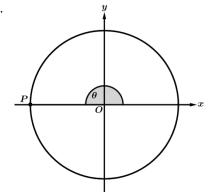
32.


(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

33.


(A) $\frac{\pi}{2}$ (B) π (C) $\frac{3\pi}{4}$ (D) $\frac{3\pi}{2}$

34.


(A) $\frac{5\pi}{6}$ (B) $\frac{7\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

35.

(A) $\frac{4\pi}{3}$ (B) $\frac{5\pi}{3}$ (C) $\frac{7\pi}{4}$ (D) $\frac{11\pi}{6}$

36.

(A) $\frac{\pi}{2}$ (B) π (C) $\frac{3\pi}{2}$ (D) 2π