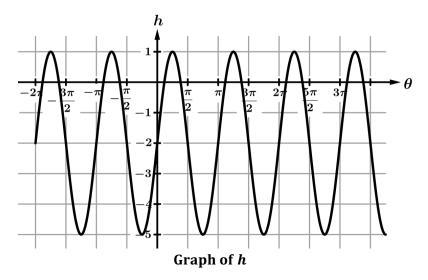


1. The sinusoidal function f(x) is shown in the figure above. Find the period, frequency, amplitude, and midline for the graph of f(x).

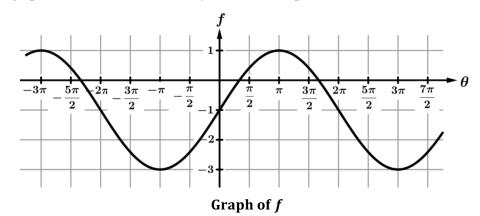


Amplitude:

2. The sinusoidal function $g(\theta)$ is shown in the figure above. Find the period, frequency, amplitude, and midline for the graph of $g(\theta)$.

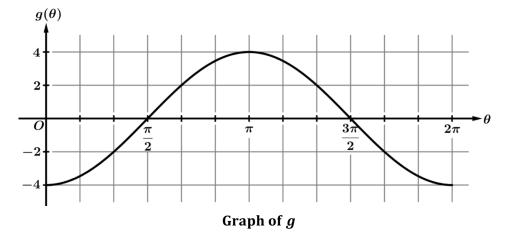
Period: Frequency: Midline: Amplitude:

3. The sinusoidal function $h(\theta)$ is shown in the figure above. Find the period, frequency, amplitude, and midline for the graph of $h(\theta)$.

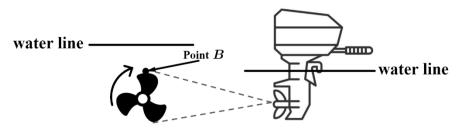

Period: Frequency: Midline: Amplitude:

4. The sinusoidal function $g(\theta)$ has a maximum at the point (0, 24). The first minimum after reaching this maximum value occurs at the point (3π , 10). Find the period, frequency, amplitude, and midline for the graph of $g(\theta)$.

Period: Frequency: Midline: Amplitude:


5. The sinusoidal function $h(\theta)$ has a minimum at the point $\left(\frac{\pi}{4}, 6\right)$. The first maximum after reaching this minimum value occurs at the point $\left(\frac{5\pi}{4}, 16\right)$. Find the period, frequency, amplitude, and midline for the graph of $h(\theta)$. **Period: Frequency: Midline: Amplitude:**

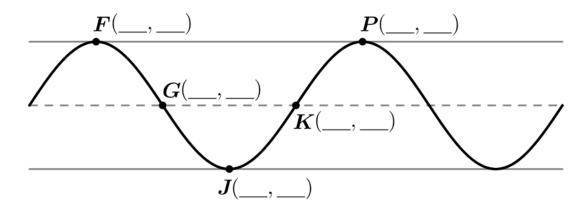
6. The sinusoidal function $k(\theta)$ has a minimum at the point $\left(-\frac{\pi}{2}, -4\right)$. The first maximum after reaching this minimum value occurs at the point (0, 8). Find the period, frequency, amplitude, and midline for the graph of $k(\theta)$. **Period:** Frequency: Midline: Amplitude: **Directions:** Use the graph of the sinusoidal function $f(\theta)$ to answer problems 7 – 10.


- 7. Which of the following best describes the behavior of f over the interval $0 < \theta < \pi$?
- (A) f is increasing at an increasing rate.
- (B) f is increasing at a decreasing rate.
- (C) f is decreasing at an increasing rate.
- (D) f is decreasing at a decreasing rate.
- 8. Which of the following best describes the behavior of f over the interval $-2\pi < \theta < -\pi$?
- (A) f is increasing and the graph of f is concave up.
- (B) f is increasing and the graph of f is concave down.
- (C) f is decreasing and the graph of f is concave up.
- (D) f is decreasing and the graph of f is concave down.
- 9. Which of the following best describes the behavior of f over the interval $2\pi < \theta < 3\pi$?
- (A) f is positive and increasing.
- (B) f is positive and decreasing.
- (C) f is negative and increasing.
- (D) f is negative and decreasing.
- 10. Which of the following best describes the rate of change of f over the interval $-\pi < \theta < 0$?
- (A) The rate of change of f is positive and increasing.
- (B) The rate of change of f is positive and decreasing.
- (C) The rate of change of f is negative and increasing.
- (D) The rate of change of f is negative and decreasing.

Directions: Use the graph of the sinusoidal function $g(\theta)$ to answer problems 11 - 14.

- 11. Which of the following best describes the behavior of g over the interval $0 < \theta < \frac{\pi}{2}$?
- (A) g is positive and increasing.
- (B) g is positive and decreasing.
- (C) g is negative and increasing.
- (D) g is negative and decreasing.
- 12. Which of the following best describes the behavior of g over the interval $\frac{\pi}{2} < \theta < \pi$?
- (A) g is increasing at an increasing rate.
- (B) g is increasing at a decreasing rate.
- (C) g is decreasing at an increasing rate.
- (D) g is decreasing at a decreasing rate.
- 13. Which of the following best describes the rate of change of g over the interval $\pi < \theta < \frac{3\pi}{2}$?
- (A) The rate of change of g is positive and increasing.
- (B) The rate of change of g is positive and decreasing.
- (C) The rate of change of g is negative and increasing.
- (D) The rate of change of g is negative and decreasing.
- 14. Which of the following best describes the behavior of g over the interval $\frac{3\pi}{2} < \theta < 2\pi$?
- (A) g is increasing and the graph of g is concave up.
- (B) g is increasing and the graph of g is concave down.
- (C) g is decreasing and the graph of g is concave up.
- (D) g is decreasing and the graph of g is concave down.

Worksheet B: Topics 3.4 – 3.5


Note: Figure <u>NOT</u> drawn to scale

15. The blades of a boat motor rotate in a clockwise direction and complete 50 rotations every second. Point B is on the tip of one of the blades and is located directly above the center of the motor at time t = 0 seconds, as indicated in the figure. Point B is 8 inches from the center of the motor. The center of the motor is 18 inches below the water line. As the blades of the motor rotate at a constant speed, the distance between B and the water line periodically increases and decreases.

The sinusoidal function h models the distance between point B and the water line, in inches, as a function of time t in seconds.

(A) The graph of h and its dashed midline for two full cycles is shown. Five points, F, G, J, K, and P are labeled on the graph. No scale is indicated, and no axes are presented.

Determine possible coordinates (t, h(t)) for the five points: F, G, J, K, and P.

(B) Find the period, frequency, amplitude, and midline for the graph of h.

(C) Find two intervals for which the graph of h is both decreasing and concave up.