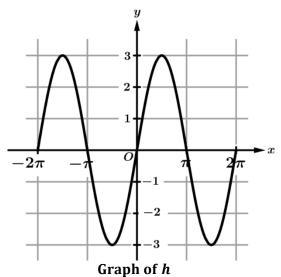
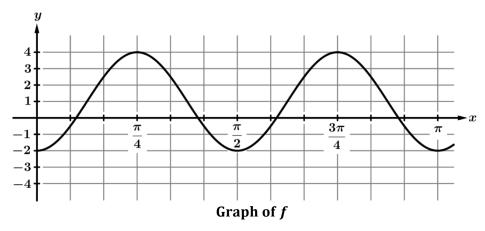


Graph of h

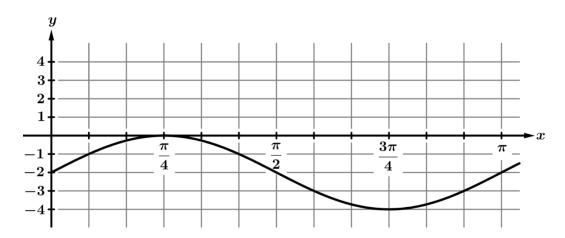
1. The graph of the sinusoidal function h is shown in the figure above. The function h can be written as $h(\theta) = a \sin(b\theta) + d$. Find the values of the constants a, b, and d.



2. The graph of the sinusoidal function f is shown in the figure above. The function f can be written as $f(\theta) = a\cos(b\theta) + d$. Find the values of the constants a, b, and d.

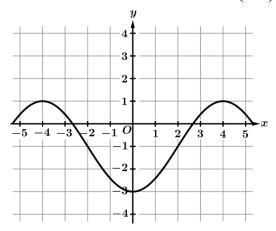


Graph of h

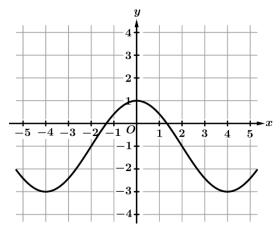

- 3. The figure shows the graph of a sinusoidal function h. What are the values of the period and amplitude of h?
- (A) The period is π , and the amplitude is 3.
- (B) The period is π , and the amplitude is 6.
- (C) The period is $\frac{\pi}{2}$, and the amplitude is 3.
- (D) The period is $\frac{\pi}{2}$, and the amplitude is 6.

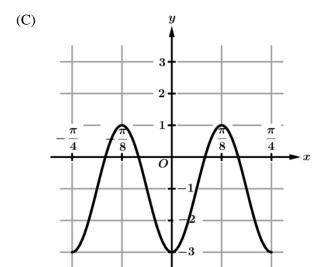
- 4. The figure shows the graph of a sinusoidal function h. What are the values of the period and amplitude of h?
- (A) The period is π , and the amplitude is 3.
- (B) The period is π , and the amplitude is 6.
- (C) The period is 2π , and the amplitude is 3.
- (D) The period is 2π , and the amplitude is 6.

5. The figure shows the graph of a sinusoidal function f. Write an equation for f.

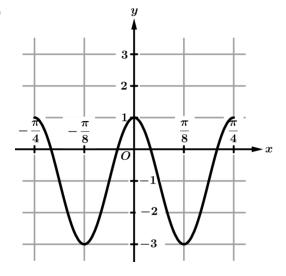


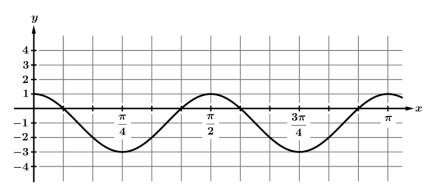
Graph of g


6. The figure shows the graph of a sinusoidal function g. Write an equation for g.


7. The function f is given by $f(x) = -2\cos\left(\frac{\pi}{4}x\right) - 1$. Which of the following could be the graph of f(x)?

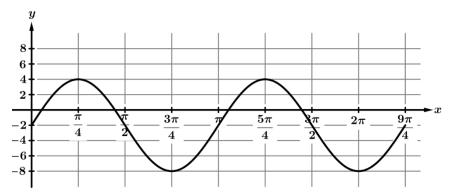
(A)




(B)

(D)

Graph of g


8. The figure shows the graph of a trigonometric function g. Which of the following could be an expression for g(x)

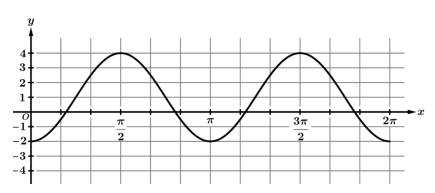
$$(A) 2\sin(4x)-1$$

(B)
$$2\sin\left(4\left(x-\frac{\pi}{2}\right)\right)-1$$

(C)
$$2\cos\left(4\left(x-\frac{\pi}{4}\right)\right)-1$$

(C)
$$2\cos\left(4\left(x-\frac{\pi}{4}\right)\right)-1$$
 (D) $-2\cos\left(4\left(x-\frac{3\pi}{4}\right)\right)-1$

Graph of f


9. The figure shows the graph of a trigonometric function f. Which of the following could be an expression for f(x)

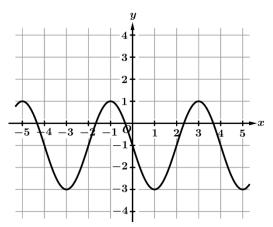
(A)
$$6\sin(2x)+2$$

(B)
$$6\sin\left(2\left(x-\frac{\pi}{2}\right)\right)-2$$

(B)
$$6\sin\left(2\left(x-\frac{\pi}{2}\right)\right)-2$$
 (C) $-6\sin\left(2\left(x-\frac{3\pi}{2}\right)\right)-2$ (D) $-6\sin\left(2\left(x-2\pi\right)\right)-2$

(D)
$$-6\sin(2(x-2\pi))-2$$

Graph of h


10. The figure shows the graph of a trigonometric function h. Which of the following could be an expression for h(x)

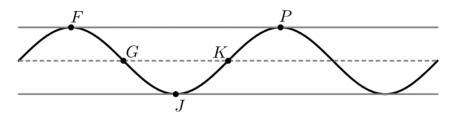
$$(A) -3\cos(2x) - 2$$

(B)
$$3\cos\left(2\left(x-\frac{\pi}{2}\right)\right) +$$

(A)
$$-3\cos(2x)-2$$
 (B) $3\cos(2(x-\frac{\pi}{2}))+1$ (C) $3\sin(2(x-\frac{\pi}{2}))+1$ (D) $-3\sin(2(x-\pi))+1$

(D)
$$-3\sin(2(x-\pi))+$$

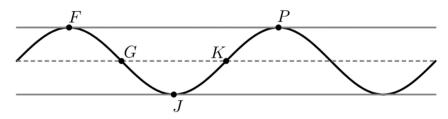
Graph of k


11. The figure shows the graph of a trigonometric function k. Which of the following could be an expression for k(x)

(A)
$$2\sin\left(\frac{\pi}{2}x\right)$$

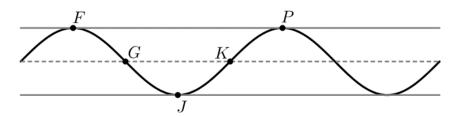
(B)
$$-2\sin\left(\frac{1}{4}x\right)-1$$

(C)
$$2\sin\left(\frac{\pi}{2}(x-2)\right)-1$$


(A)
$$2\sin\left(\frac{\pi}{2}x\right) - 1$$
 (B) $-2\sin\left(\frac{1}{4}x\right) - 1$ (C) $2\sin\left(\frac{\pi}{2}(x-2)\right) - 1$ (D) $-2\cos\left(\frac{\pi}{2}(x+1)\right) - 1$

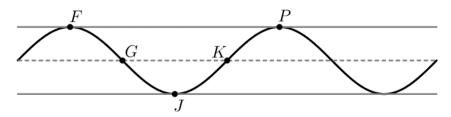
12. The graph of h and its dashed midline for two full cycles is shown. Five points, F, G, J, K, and P are labeled on the graph. No scale is indicated, and no axes are presented.

The coordinates for the five points: F, G, J, K, and P are: F(0,12), G(5,9), J(10,6), K(15,9), P(20,12).


The function h can be written in the form $h(t) = a \sin(b(t+c)) + d$. Find values of constants a, b, c, and d.

13. The graph of h and its dashed midline for two full cycles is shown. Five points, F, G, J, K, and P are labeled on the graph. No scale is indicated, and no axes are presented.

The coordinates of
$$F, G, J, K$$
, and P are: $F\left(\frac{\pi}{2}, 6\right)$, $G\left(\frac{3\pi}{4}, -1\right)$, $J\left(\pi, -8\right)$, $K\left(\frac{5\pi}{4}, -1\right)$, $P\left(\frac{3\pi}{2}, 6\right)$.


The function h can be written in the form $h(t) = a \sin(b(t+c)) + d$. Find values of constants a, b, c, and d.

14. The graph of h and its dashed midline for two full cycles is shown. Five points, F, G, J, K, and P are labeled on the graph. No scale is indicated, and no axes are presented.

The coordinates for the points F, G, J, K, and P are $F(\pi, 40), G(2\pi, 30), J(3\pi, 20), K(4\pi, 30), P(5\pi, 40)$.

The function h can be written in the form $h(t) = a\cos(b(t+c)) + d$. Find values of constants a, b, c, and d.

15. The graph of h and its dashed midline for two full cycles is shown. Five points, F, G, J, K, and P are labeled on the graph. No scale is indicated, and no axes are presented.

The coordinates of F, G, J, K, and P are $F(0,12), G(\frac{1}{100}, 7), J(\frac{1}{50}, 2), K(\frac{3}{100}, 7), P(\frac{1}{25}, 12).$

The function h can be written in the form $h(t) = a\cos(b(t+c)) + d$. Find values of constants a, b, c, and d.