Directions: Evaluate the following expressions.

1.
$$\cos^{-1}\left(\frac{1}{2}\right) =$$

$$2. \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

3.
$$\tan^{-1}(1) =$$

4.
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) =$$

5.
$$\sin^{-1}\left(-\frac{1}{2}\right) =$$

6.
$$\tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) =$$

Directions: Solve the following equations.

7.
$$\sin^{-1}(x) = \cos^{-1}(0)$$

8.
$$2\sin^{-1}(x) = \cos^{-1}(-\frac{1}{2})$$

9.
$$\tan^{-1}(\pi x) = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

10.
$$3\sin^{-1}\left(\frac{x}{2}\right) = \cos^{-1}\left(-1\right)$$

11. The angle θ is in standard position. The terminal ray intersects the unit circle at point S, whose coordinates are (x, y). The points P, Q, and R are the result of the terminal ray being reflected over the y-axis, the origin, and the x-axis respectively. For each of the following expressions, determine which labeled point intersects the terminal ray of the given angles.

a)
$$\sin^{-1}(-y)$$

b)
$$\cos^{-1}(-x)$$

c)
$$\tan^{-1}\left(\frac{y}{x}\right)$$

12. The angle θ is in standard position. The terminal ray intersects the unit circle at point R, whose coordinates are (x, y). The points P, Q, and S are the result of the terminal ray being reflected over the y-axis, the origin, and the x-axis respectively. For each of the following expressions, determine which labeled point intersects the terminal ray of the given angles.

a)
$$\sin^{-1}(y)$$

b)
$$\cos^{-1}(x)$$

c)
$$\tan^{-1}\left(\frac{y}{x}\right)$$

d)
$$\sin^{-1}(-y)$$

e)
$$\cos^{-1}(-x)$$

f)
$$\tan^{-1}\left(-\frac{y}{x}\right)$$