AP Calculus AB/BCWorksheet "The Mean Value Theorem (MVT)"Name:Directions: For each function f described in 1-4, first decide whether the IVT & EVT are guaranteed, and then
determine whether each lettered statement below "**must** be true" or "**might** be true" and provide justification.1)f is continuous for $g \in g$ is h and differentiable for $g \in g$ is $f \in h$.

1) f is continuous for	$a \le x \le b$ and differentiable for $a < x < b$.	
---	-----------------------	--	--

	Guaranteed?	Why or why not?
Intermediate Value Theorem		
(IVT)		
Extreme Value Theorem		
(EVT)		
Mean Value Theorem		
(MVT)		

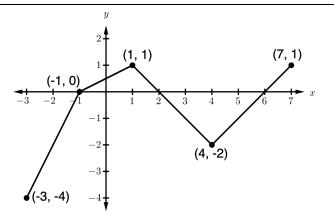
Must be true or might be true? Justify your answer.

a.
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 for some *c* such that $a < c < b$.

- b. f(c) = 0 for some *c* such that a < c < b.
- c. There is a number c in the closed interval [a, b] such that $f(c) \le f(x)$ for all x in [a, b].

2) The function f is continuous for $-2 \le x \le 1$, differentiable for -2 < x < 1, f(-2) = 5, and f(1) = -4.

	Guaranteed?	Why or why not?
Intermediate Value Theorem		
(IVT)		
Extreme Value Theorem		
(EVT)		
Mean Value Theorem		
(MVT)		


Must be true or might be true? Justify your answer.

- a. There exists *c*, where -2 < c < 1, such that f'(c) = 0.
- b. There exists c, where -2 < c < 1, such that f'(c) = -3.
- c. There exists *c*, where -2 < c < 1, such that f(c) = -3.

3) Let f be a differentiable function such that f(2) = 5 and f(5) = 2. Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.

x	f(x)	g(x)
1	6	2
2	9	3
3	10	4
4	-1	6

4) The functions f and g are differentiable for all real numbers. The table gives values of the functions at selected values of x. The function h is given by h(x) = f(g(x)) - 6. Explain why there must be a value c for 1 < c < 3, such that h'(c) = -5.

5) The graph of the piecewise-linear function g is shown above for $-3 \le x \le 7$. Find the average rate of change of g(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g'(c) is equal to this average rate of change? Why or why not?